1
|
Jha SK, De Rubis G, Devkota SR, Zhang Y, Adhikari R, Jha LA, Bhattacharya K, Mehndiratta S, Gupta G, Singh SK, Panth N, Dua K, Hansbro PM, Paudel KR. Cellular senescence in lung cancer: Molecular mechanisms and therapeutic interventions. Ageing Res Rev 2024; 97:102315. [PMID: 38679394 DOI: 10.1016/j.arr.2024.102315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 04/03/2024] [Accepted: 04/23/2024] [Indexed: 05/01/2024]
Abstract
Lung cancer stands as the primary contributor to cancer-related fatalities worldwide, affecting both genders. Two primary types exist where non-small cell lung cancer (NSCLC), accounts for 80-85% and SCLC accounts for 10-15% of cases. NSCLC subtypes include adenocarcinoma, squamous cell carcinoma, and large cell carcinoma. Smoking, second-hand smoke, radon gas, asbestos, and other pollutants, genetic predisposition, and COPD are lung cancer risk factors. On the other hand, stresses such as DNA damage, telomere shortening, and oncogene activation cause a prolonged cell cycle halt, known as senescence. Despite its initial role as a tumor-suppressing mechanism that slows cell growth, excessive or improper control of this process can cause age-related diseases, including cancer. Cellular senescence has two purposes in lung cancer. Researchers report that senescence slows tumor growth by constraining multiplication of impaired cells. However, senescent cells also demonstrate the pro-inflammatory senescence-associated secretory phenotype (SASP), which is widely reported to promote cancer. This review will look at the role of cellular senescence in lung cancer, describe its diagnostic markers, ask about current treatments to control it, look at case studies and clinical trials that show how senescence-targeting therapies can be used in lung cancer, and talk about problems currently being faced, and possible solutions for the same in the future.
Collapse
Affiliation(s)
- Saurav Kumar Jha
- Department of Biological Sciences and Bioengineering (BSBE), Indian Institute of Technology, Kanpur, Uttar Pradesh 208016, India
| | - Gabriele De Rubis
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
| | - Shankar Raj Devkota
- Monash Biomedicine Discovery Institute, and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
| | - Yali Zhang
- School of Chemical Engineering, University of Adelaide, Adelaide 5005, Australia
| | - Radhika Adhikari
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam 58554, Republic of Korea
| | - Laxmi Akhileshwar Jha
- Naraina Vidya Peeth Group of Institutions, Faculty of Pharmacy, Dr. A. P. J. Abdul Kalam Technical University, Lucknow, Uttar Pradesh 0208020, India
| | - Kunal Bhattacharya
- Pratiksha Institute of Pharmaceutical Sciences, Guwahati, Assam 781026, India; Royal School of Pharmacy, The Assam Royal Global University, Guwahati, Assam 781035, India
| | - Samir Mehndiratta
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia
| | - Gaurav Gupta
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Sachin Kumar Singh
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia; School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T Road, Phagwara, Punjab, India
| | - Nisha Panth
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW 2007, Australia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW 2007, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, Australia.
| | - Philip M Hansbro
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW 2007, Australia.
| | - Keshav Raj Paudel
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW 2007, Australia.
| |
Collapse
|
2
|
Ibragimova M, Kussainova A, Aripova A, Bersimbaev R, Bulgakova O. The Molecular Mechanisms in Senescent Cells Induced by Natural Aging and Ionizing Radiation. Cells 2024; 13:550. [PMID: 38534394 DOI: 10.3390/cells13060550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/17/2024] [Accepted: 03/19/2024] [Indexed: 03/28/2024] Open
Abstract
This review discusses the relationship between cellular senescence and radiation exposure. Given the wide range of ionizing radiation sources encountered by people in professional and medical spheres, as well as the influence of natural background radiation, the question of the effect of radiation on biological processes, particularly on aging processes, remains highly relevant. The parallel relationship between natural and radiation-induced cellular senescence reveals the common aspects underlying these processes. Based on recent scientific data, the key points of the effects of ionizing radiation on cellular processes associated with aging, such as genome instability, mitochondrial dysfunction, altered expression of miRNAs, epigenetic profile, and manifestation of the senescence-associated secretory phenotype (SASP), are discussed. Unraveling the molecular mechanisms of cellular senescence can make a valuable contribution to the understanding of the molecular genetic basis of age-associated diseases in the context of environmental exposure.
Collapse
Affiliation(s)
- Milana Ibragimova
- Department of General Biology and Genomics, Institute of Cell Biology and Biotechnology, L.N. Gumilyov Eurasian National University, Astana 010008, Kazakhstan
| | - Assiya Kussainova
- Department of General Biology and Genomics, Institute of Cell Biology and Biotechnology, L.N. Gumilyov Eurasian National University, Astana 010008, Kazakhstan
- Department of Health Sciences, University of Genova, Via Pastore 1, 16132 Genoa, Italy
| | - Akmaral Aripova
- Department of General Biology and Genomics, Institute of Cell Biology and Biotechnology, L.N. Gumilyov Eurasian National University, Astana 010008, Kazakhstan
| | - Rakhmetkazhi Bersimbaev
- Department of General Biology and Genomics, Institute of Cell Biology and Biotechnology, L.N. Gumilyov Eurasian National University, Astana 010008, Kazakhstan
| | - Olga Bulgakova
- Department of General Biology and Genomics, Institute of Cell Biology and Biotechnology, L.N. Gumilyov Eurasian National University, Astana 010008, Kazakhstan
| |
Collapse
|
3
|
Aziz MM, El-Sheikh MM, Mohamed MA, Abdelrahman SS, Mekkawy MH. The senomorphic impact of astaxanthin on irradiated rat spleen: STING, TLR4 and mTOR contributed pathway. Int J Immunopathol Pharmacol 2024; 38:3946320241297342. [PMID: 39475763 PMCID: PMC11528771 DOI: 10.1177/03946320241297342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 10/09/2024] [Indexed: 11/03/2024] Open
Abstract
OBJECTIVES Exposure of spleen tissues to ionizing radiation during radiotherapy can induce cellular stress and immune-dysfunction leading to cellular senescence. INTRODUCTION The process of a cancerous development is facilitated by the accumulation of senescent cells. This justifies the incorporation of anti-senescent medications during splenic irradiation (SI). METHODS In this study senescence was induced in the spleen of male albino rats by radiation exposure (5Gy-single whole body gamma-irradiation) then after 2 weeks, oral astaxanthin regimen was started once daily in a dose of 25 mg/kg for 7 consecutive days. Concurrent control groups were carried out. RESULTS the present data reflected that irradiation provoked an increase in the oxidative stress biomarkers (nitric oxide, lipid peroxidation and total reactive oxygen species levels)and the inflammatory biomarkers (Myeloperoxidase and interleukin-6). In addition irradiation led to the over expression of stimulator of interferon genes (cGAS-STING), mammalian target of rapamycin (mTOR) and Toll-like receptor 4 (TLR4) along with the lactate dehydrogenase (LDH), cyclin-dependent kinase inhibitor 1 (p21) cyclin-dependent kinase inhibitor 2A (p16) increment with elevation of tumor suppressor protein (p53) level. However, reduced glutathione contents and catalase activity were reduced post irradiation in spleen tissues, all these changes reflecting induction of cellular senescence. Astaxanthin treatment showed an improvement in the antioxidant/oxidative stress balance, inflammatory biomarkers, histopathological examination and immunohistochemical expressions of the tested proteins in the irradiated rats. CONCLUSION the current findings offer a new insight into the senomorphic effect of astaxanthin following radiation-induced spleen senescence via STING, mTOR, and TLR4 signalling pathways.
Collapse
Affiliation(s)
- Maha M Aziz
- Department of Drug Radiation Research, Egyptian Atomic Energy Authority, National Center for Radiation Research and Technology, Cairo, Egypt
| | - Marwa M El-Sheikh
- Department of Drug Radiation Research, Egyptian Atomic Energy Authority, National Center for Radiation Research and Technology, Cairo, Egypt
| | - Marwa A Mohamed
- Department of Drug Radiation Research, Egyptian Atomic Energy Authority, National Center for Radiation Research and Technology, Cairo, Egypt
| | - Sahar S Abdelrahman
- Department of Pathology, College of Veterinary Medicine, Cairo University, Cairo, Egypt
| | - Mai H Mekkawy
- Department of Drug Radiation Research, Egyptian Atomic Energy Authority, National Center for Radiation Research and Technology, Cairo, Egypt
| |
Collapse
|
4
|
Johnson M, Bell A, Lauing KL, Ladomersky E, Zhai L, Penco-Campillo M, Shah Y, Mauer E, Xiu J, Nicolaides T, Drumm M, McCortney K, Elemento O, Kim M, Bommi P, Low JT, Memon R, Wu J, Zhao J, Mi X, Glantz MJ, Sengupta S, Castro B, Yamini B, Horbinski C, Baker DJ, Walunas TL, Schiltz GE, Lukas RV, Wainwright DA. Advanced Age in Humans and Mouse Models of Glioblastoma Show Decreased Survival from Extratumoral Influence. Clin Cancer Res 2023; 29:4973-4989. [PMID: 37725593 PMCID: PMC10690140 DOI: 10.1158/1078-0432.ccr-23-0834] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 08/03/2023] [Accepted: 09/14/2023] [Indexed: 09/21/2023]
Abstract
PURPOSE Glioblastoma (GBM) is the most common aggressive primary malignant brain tumor in adults with a median age of onset of 68 to 70 years old. Although advanced age is often associated with poorer GBM patient survival, the predominant source(s) of maladaptive aging effects remains to be established. Here, we studied intratumoral and extratumoral relationships between adult patients with GBM and mice with brain tumors across the lifespan. EXPERIMENTAL DESIGN Electronic health records at Northwestern Medicine and the NCI SEER databases were evaluated for GBM patient age and overall survival. The commercial Tempus and Caris databases, as well as The Cancer Genome Atlas were profiled for gene expression, DNA methylation, and mutational changes with varying GBM patient age. In addition, gene expression analysis was performed on the extratumoral brain of younger and older adult mice with or without a brain tumor. The survival of young and old wild-type or transgenic (INK-ATTAC) mice with a brain tumor was evaluated after treatment with or without senolytics and/or immunotherapy. RESULTS Human patients with GBM ≥65 years of age had a significantly decreased survival compared with their younger counterparts. While the intra-GBM molecular profiles were similar between younger and older patients with GBM, non-tumor brain tissue had a significantly different gene expression profile between young and old mice with a brain tumor and the eradication of senescent cells improved immunotherapy-dependent survival of old but not young mice. CONCLUSIONS This work suggests a potential benefit for combining senolytics with immunotherapy in older patients with GBM.
Collapse
Affiliation(s)
- Margaret Johnson
- Department of Neurosurgery, Duke University School of Medicine, Durham, North Carolina
| | - April Bell
- Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois
| | - Kristen L. Lauing
- Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois
- Department of Neurological Surgery at Loyola University Medical Center, Maywood, Illinois
| | | | - Lijie Zhai
- Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois
- Department of Neurological Surgery at Loyola University Medical Center, Maywood, Illinois
| | - Manon Penco-Campillo
- Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois
- Department of Neurological Surgery at Loyola University Medical Center, Maywood, Illinois
| | - Yajas Shah
- Institute of Computational Biomedicine, Weill Cornell Medicine, New York, New York
| | | | | | | | - Michael Drumm
- Department of Neurological Surgery, Feinberg School of Medicine, Chicago, Illinois
| | - Kathleen McCortney
- Department of Neurological Surgery, Feinberg School of Medicine, Chicago, Illinois
| | - Olivier Elemento
- Institute of Computational Biomedicine, Weill Cornell Medicine, New York, New York
| | - Miri Kim
- Department of Neurological Surgery at Loyola University Medical Center, Maywood, Illinois
| | - Prashant Bommi
- Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois
- Department of Neurological Surgery at Loyola University Medical Center, Maywood, Illinois
| | - Justin T. Low
- Department of Neurosurgery, Duke University School of Medicine, Durham, North Carolina
| | - Ruba Memon
- Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois
| | - Jennifer Wu
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Junfei Zhao
- Department of Systems Biology, Herbert Irving Comprehensive Center, Columbia University, New York, New York
- Department of Biomedical Informatics, Columbia University, New York, New York
| | - Xinlei Mi
- Department of Preventive Medicine-Division of Biostatistics at Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Michael J. Glantz
- Department of Neurosurgery, Penn State Health Milton S. Hershey Medical Center, Hershey, Pennsylvania
| | - Soma Sengupta
- Departments of Neurology, Neurosurgery, and the Lineberger Cancer Center, University of North Carolina Chapel Hill, Chapel Hill, North Carolina
| | - Brandyn Castro
- Department of Neurological Surgery, University of Chicago, Chicago, Illinois
| | - Bakhtiar Yamini
- Department of Neurological Surgery, University of Chicago, Chicago, Illinois
| | - Craig Horbinski
- Department of Neurological Surgery, Feinberg School of Medicine, Chicago, Illinois
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Darren J. Baker
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, Minnesota
- Paul F. Glenn Center for the Biology of Aging at Mayo Clinic, Rochester, Minnesota
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota
| | - Theresa L. Walunas
- Department of Medicine-Division of General Internal Medicine and Geriatrics at Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Gary E. Schiltz
- Department of Chemistry, Northwestern University, Evanston, Illinois
| | - Rimas V. Lukas
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Derek A. Wainwright
- Department of Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, Illinois
- Department of Neurological Surgery at Loyola University Medical Center, Maywood, Illinois
- Cardinal Bernardin Cancer Center, Loyola University Chicago, Maywood, Illinois
| |
Collapse
|
5
|
Song KX, Wang JX, Huang D. Therapy-induced senescent tumor cells in cancer relapse. JOURNAL OF THE NATIONAL CANCER CENTER 2023; 3:273-278. [PMID: 39036667 PMCID: PMC11256611 DOI: 10.1016/j.jncc.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/08/2023] [Accepted: 09/14/2023] [Indexed: 07/23/2024] Open
Abstract
Cellular senescence is characterized by a generally irreversible cell cycle arrest and the secretion of bioactive factors known as the senescence-associated secretory phenotype (SASP). In an oncogenic context, senescence is considered a tumor suppressive mechanism as it prevents cell proliferation and inhibits the progression from pre-malignant to malignant disease. However, recent studies have demonstrated that senescent tumor cells, which could spontaneously exist within cancer tissues or arise in response to various cancer interventions (the so-called therapy-induced senescence, TIS), can acquire pro-tumorigenic properties and are capable of driving local and metastatic relapse. This highlights the complex and multifaceted nature of cellular senescence in cancer biology. Here, we summarize the current knowledge of the pathological function of therapy-induced senescent tumor cells and discuss possible mechanisms by which tumor cell senescence contributes to cancer relapse. We also discuss implications for future studies toward targeting these less appreciated cells.
Collapse
Affiliation(s)
- Ke-Xin Song
- Department of General Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Jun-Xian Wang
- Department of General Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - De Huang
- Department of General Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, China
- School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
6
|
Paget V, Guipaud O, François A, Milliat F. Detection of radiation-induced senescence by the Debacq-Chainiaux protocol: Improvements and upgrade in the detection of positive events. Methods Cell Biol 2023; 181:161-180. [PMID: 38302237 DOI: 10.1016/bs.mcb.2022.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Senescent cells are blocked in the cell cycle but remain metabolically active. These cells, once engaged in the senescence process, fail to initiate DNA replication. Due to the shortening of telomeres, replicative senescence can be triggered by a DNA damage response. Moreover, cells can also be induced to senesce by DNA damage in response to elevated reactive oxygen species (ROS), activation of oncogenes, cell-cell fusion or after ionizing radiation. There are multiple experimental ways to detect senescent cells directly or indirectly. Senescence-associated cellular traits (SA β-Gal activity, increase in cell volume and lysosome content, appearance of γ-H2AX foci, increase of ROS and oxidative damage adducts, etc.) can be identified by numerous methods of detection (flow cytometry, confocal imaging, in situ staining, etc.). Here, we improved an existing flow cytometry protocol and further developed a new one specifically tailored to ionizing radiation-induced endothelial senescence. Thus, we have upgraded the Debacq-Chainiaux protocol and added improvements in this protocol (i) to better detect positive events (ii) to offer a compatibility to simultaneously analyze various intracellular molecules including phosphorylated signaling proteins and cytokines, whether related or not to senescence processes.
Collapse
Affiliation(s)
- V Paget
- Institute for Radiological Protection and Nuclear Safety (IRSN), PSE-SANTE/SERAMED/LRMed (Radiobiology of Medical Exposure Laboratory), Fontenay-aux-Roses, France.
| | - O Guipaud
- Institute for Radiological Protection and Nuclear Safety (IRSN), PSE-SANTE/SERAMED/LRMed (Radiobiology of Medical Exposure Laboratory), Fontenay-aux-Roses, France
| | - A François
- Institute for Radiological Protection and Nuclear Safety (IRSN), PSE-SANTE/SERAMED/LRMed (Radiobiology of Medical Exposure Laboratory), Fontenay-aux-Roses, France
| | - F Milliat
- Institute for Radiological Protection and Nuclear Safety (IRSN), PSE-SANTE/SERAMED/LRMed (Radiobiology of Medical Exposure Laboratory), Fontenay-aux-Roses, France
| |
Collapse
|
7
|
Piletska E, Thompson D, Jones R, Cruz AG, Poblocka M, Canfarotta F, Norman R, Macip S, Jones DJL, Piletsky S. Snapshot imprinting as a tool for surface mapping and identification of novel biomarkers of senescent cells. NANOSCALE ADVANCES 2022; 4:5304-5311. [PMID: 36540121 PMCID: PMC9724690 DOI: 10.1039/d2na00424k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 10/11/2022] [Indexed: 06/17/2023]
Abstract
Cellular senescence has proved to be a strong contributor to ageing and age-related diseases, such as cancer and atherosclerosis. Therefore, the protein content of senescent cells is highly relevant to drug discovery, diagnostics and therapeutic applications. However, current technologies for the analysis of proteins are based on a combination of separation techniques and mass spectrometry, which require handling large sample sizes and a large volume of data and are time-consuming. This limits their application in personalised medicine. An easy, quick and inexpensive procedure is needed for qualitative and quantitative analysis of proteins expressed by a cell or tissue. Here, we describe the use of the "snapshot imprinting" approach for the identification of proteins differentially expressed by senescent cells. Molecularly imprinted polymer nanoparticles (MIPs) were formed in the presence of whole cells. Following trypsinolysis, protein epitopes protected by complex with MIPs were eluted from the nanoparticles and analysed by LC-MS/MS. In this work, "snapshot imprinting" was performed parallel to a standard proteomic "shaving approach", showing similar results. The analysis by "snapshot imprinting" identified three senescent-specific proteins: cell division cycle 7-related protein kinase, partitioning defective three homolog B and putative ATP-dependent RNA helicase DHX57, the abundance of which could potentially make them specific markers of senescence. Identifying biomarkers for the future elimination of senescent cells grants the potential for developing therapeutics for age-related diseases.
Collapse
Affiliation(s)
- Elena Piletska
- Chemistry Department, College of Science and Engineering, University of Leicester Leicester LE1 7RH UK
| | - Dana Thompson
- Chemistry Department, College of Science and Engineering, University of Leicester Leicester LE1 7RH UK
| | - Rebecca Jones
- Chemistry Department, College of Science and Engineering, University of Leicester Leicester LE1 7RH UK
| | - Alvaro Garcia Cruz
- Chemistry Department, College of Science and Engineering, University of Leicester Leicester LE1 7RH UK
| | - Marta Poblocka
- Mechanisms of Cancer and Aging Laboratory, Department of Molecular and Cell Biology, University of Leicester Leicester LE1 7RH UK
| | - Francesco Canfarotta
- Chemistry Department, College of Science and Engineering, University of Leicester Leicester LE1 7RH UK
| | - Rachel Norman
- FoodLab, Faculty of Health Sciences, Universitat Oberta de Catalunya 08018 Barcelona Spain
| | - Salvador Macip
- Mechanisms of Cancer and Aging Laboratory, Department of Molecular and Cell Biology, University of Leicester Leicester LE1 7RH UK
- FoodLab, Faculty of Health Sciences, Universitat Oberta de Catalunya 08018 Barcelona Spain
| | - Donald J L Jones
- Department of Cancer Studies, RKCSB, University of Leicester Leicester LE2 7LX UK
| | - Sergey Piletsky
- Chemistry Department, College of Science and Engineering, University of Leicester Leicester LE1 7RH UK
| |
Collapse
|
8
|
Chen H, Han Z, Luo Q, Wang Y, Li Q, Zhou L, Zuo H. Radiotherapy modulates tumor cell fate decisions: a review. Radiat Oncol 2022; 17:196. [PMID: 36457125 PMCID: PMC9714175 DOI: 10.1186/s13014-022-02171-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 11/29/2022] [Indexed: 12/02/2022] Open
Abstract
Cancer has always been a worldwide problem, and the application of radiotherapy has greatly improved the survival rate of cancer patients. Radiotherapy can modulate multiple cell fate decisions to kill tumor cells and achieve its therapeutic effect. With the development of radiotherapy technology, how to increase the killing effect of tumor cells and reduce the side effects on normal cells has become a new problem. In this review, we summarize the mechanisms by which radiotherapy induces tumor cell apoptosis, necrosis, necroptosis, pyroptosis, ferroptosis, autophagy, senescence, mitotic catastrophe, and cuproptosis. An in-depth understanding of these radiotherapy-related cell fate decisions can greatly improve the efficiency of radiotherapy for cancer.
Collapse
Affiliation(s)
| | - Zhongyu Han
- Chengdu Xinhua Hospital, Chengdu, China ,grid.411304.30000 0001 0376 205XSchool of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qian Luo
- Chengdu Xinhua Hospital, Chengdu, China
| | - Yi Wang
- Chengdu Xinhua Hospital, Chengdu, China
| | - Qiju Li
- Chengdu Xinhua Hospital, Chengdu, China
| | | | | |
Collapse
|
9
|
Re-purposing the pro-senescence properties of doxorubicin to introduce immunotherapy in breast cancer brain metastasis. Cell Rep Med 2022; 3:100821. [PMID: 36384097 PMCID: PMC9729880 DOI: 10.1016/j.xcrm.2022.100821] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 09/02/2022] [Accepted: 10/18/2022] [Indexed: 11/17/2022]
Abstract
An increasing number of breast cancer patients develop brain metastases (BM). Standard-of-care treatments are largely inefficient, and breast cancer brain metastasis (BCBM) patients are considered untreatable. Immunotherapies are not successfully employed in BCBM, in part because breast cancer is a "cold" tumor and also because the brain tissue has a unique immune landscape. Here, we generate and characterize immunocompetent models of BCBM derived from PyMT and Neu mammary tumors to test how harnessing the pro-senescence properties of doxorubicin can be used to prime the specific immune BCBM microenvironment. We reveal that BCBM senescent cells, induced by doxorubicin, trigger the recruitment of PD1-expressing T cells to the brain. Importantly, we demonstrate that induction of senescence with doxorubicin improves the efficacy of immunotherapy with anti-PD1 in BCBM in a CD8 T cell-dependent manner, thereby providing an optimized strategy to introduce immune-based treatments in this lethal disease. In addition, our BCBM models can be used for pre-clinical testing of other therapeutic strategies in the future.
Collapse
|
10
|
Camero S, Cassandri M, Pomella S, Milazzo L, Vulcano F, Porrazzo A, Barillari G, Marchese C, Codenotti S, Tomaciello M, Rota R, Fanzani A, Megiorni F, Marampon F. Radioresistance in rhabdomyosarcomas: Much more than a question of dose. Front Oncol 2022; 12:1016894. [PMID: 36248991 PMCID: PMC9559533 DOI: 10.3389/fonc.2022.1016894] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/12/2022] [Indexed: 11/15/2022] Open
Abstract
Management of rhabdomyosarcoma (RMS), the most common soft tissue sarcoma in children, frequently accounting the genitourinary tract is complex and requires a multimodal therapy. In particular, as a consequence of the advancement in dose conformity technology, radiation therapy (RT) has now become the standard therapeutic option for patients with RMS. In the clinical practice, dose and timing of RT are adjusted on the basis of patients' risk stratification to reduce late toxicity and side effects on normal tissues. However, despite the substantial improvement in cure rates, local failure and recurrence frequently occur. In this review, we summarize the general principles of the treatment of RMS, focusing on RT, and the main molecular pathways and specific proteins involved into radioresistance in RMS tumors. Specifically, we focused on DNA damage/repair, reactive oxygen species, cancer stem cells, and epigenetic modifications that have been reported in the context of RMS neoplasia in both in vitro and in vivo studies. The precise elucidation of the radioresistance-related molecular mechanisms is of pivotal importance to set up new more effective and tolerable combined therapeutic approaches that can radiosensitize cancer cells to finally ameliorate the overall survival of patients with RMS, especially for the most aggressive subtypes.
Collapse
Affiliation(s)
- Simona Camero
- Department of Maternal, Infantile and Urological Sciences, Sapienza University of Rome, Rome, Italy
| | - Matteo Cassandri
- Department of Radiological Sciences, Oncology and Anatomical Pathology, Sapienza University of Rome, Rome, Italy
- Department of Oncohematology, Bambino Gesù Children’s Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Silvia Pomella
- Department of Oncohematology, Bambino Gesù Children’s Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Luisa Milazzo
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Francesca Vulcano
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Antonella Porrazzo
- Department of Radiological Sciences, Oncology and Anatomical Pathology, Sapienza University of Rome, Rome, Italy
- Units of Molecular Genetics of Complex Phenotypes, Bambino Gesù Children’s Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCSS), Rome, Italy
| | - Giovanni Barillari
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Cinzia Marchese
- Department of Experimental Medicine, “Sapienza” University of Rome, Rome, Italy
| | - Silvia Codenotti
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Miriam Tomaciello
- Department of Radiological Sciences, Oncology and Anatomical Pathology, Sapienza University of Rome, Rome, Italy
| | - Rossella Rota
- Department of Oncohematology, Bambino Gesù Children’s Hospital, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Alessandro Fanzani
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Francesca Megiorni
- Department of Experimental Medicine, “Sapienza” University of Rome, Rome, Italy
| | - Francesco Marampon
- Department of Radiological Sciences, Oncology and Anatomical Pathology, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
11
|
Wang Z, Gao J, Xu C. Tackling cellular senescence by targeting miRNAs. Biogerontology 2022; 23:387-400. [PMID: 35727469 DOI: 10.1007/s10522-022-09972-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 06/06/2022] [Indexed: 11/29/2022]
Abstract
Cellular senescence, which is characterized by permanent proliferation arrest, has become an important target for the amelioration of various human diseases. The activity of senescent cells is mainly related to the senescence-associated secretory phenotype (SASP). The SASP can cause chronic inflammation in local tissues and organs through autocrine and paracrine mechanisms, and a series of factors secreted by senescent cells can deteriorate the cellular microenvironment, promoting tumor formation and exacerbating aging-related diseases. Therefore, avoiding the promotion of cancer is an urgent problem. In recent years, increased attention has been given to the mechanistic study of microRNAs in senescence. As important posttranscriptional regulators, microRNAs possess unique tissue-specific expression in senescence. MicroRNAs can regulate the SASP by regulating proteins in the senescence signaling pathway, the reverse transcriptase activity of telomerase, the generation of reactive oxygen species and oxidative damage to mitochondria. Numerous studies have confirmed that removing senescent cells does not cause significant side effects, which also opens the door to the development of treatment modalities against senescent cells. Herein, this review discusses the double-edged sword of cellular senescence in tumors and aging-related diseases and emphasizes the roles of microRNAs in regulating the SASP, especially the potential of microRNAs to be used as therapeutic targets to inhibit senescence, giving rise to novel therapeutic approaches for the treatment of aging-associated diseases.
Collapse
Affiliation(s)
- Zehua Wang
- Obstetrics and Gynecology, Hospital of Fudan University, Shanghai, 200011, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, 200011, China
| | - Jianwen Gao
- School of Medical Engineering, Ma'anshan University, No. 8, Huangchi Road, Gushu Town, Dangtu County, Ma'anshan, 243100, Anhui, China. .,Major of Biotechnological Pharmaceutics, Shanghai Pharmaceutical School, Shanghai, 200135, China.
| | - Congjian Xu
- Obstetrics and Gynecology, Hospital of Fudan University, Shanghai, 200011, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, 200011, China.,Department of Obstetrics and Gynecology of Shanghai Medical School, Fudan University, Shanghai, 200032, China
| |
Collapse
|
12
|
At the Crossroads of Life and Death: The Proteins That Influence Cell Fate Decisions. Cancers (Basel) 2022; 14:cancers14112745. [PMID: 35681725 PMCID: PMC9179324 DOI: 10.3390/cancers14112745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 05/30/2022] [Accepted: 05/30/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Cellular senescence and apoptosis were historically thought of as two distinct cell fate pathways. However, many of the proteins involved are integral to both pathways. In particular, the ability of p53 to regulate both senescence and apoptosis meant it was seen as the decisive factor in these decisions, yet questions remain about its ability to select on its own the most appropriate cell fate according to each situation. Therefore, cell fates are no longer considered fixed endpoints but dynamic states that can be shifted given the right combination of activation and/or inhibitions of cofactors. Abstract When a cell is damaged, it must decide how to respond. As a consequence of a variety of stresses, cells can induce well-regulated programmes such as senescence, a persistent proliferative arrest that limits their replication. Alternatively, regulated programmed cell death can be induced to remove the irreversibly damaged cells in a controlled manner. These programmes are mainly triggered and controlled by the tumour suppressor protein p53 and its complex network of effectors, but how it decides between these wildly different responses is not fully understood. This review focuses on the key proteins involved both in the regulation and induction of apoptosis and senescence to examine the key events that determine cell fate following damage. Furthermore, we examine how the regulation and activity of these proteins are altered during the progression of many chronic diseases, including cancer.
Collapse
|
13
|
Furukawa M, Matsuda K, Aoki Y, Yamada M, Wang J, Watanabe M, Kurosawa M, Shikama Y, Matsushita K. Analysis of senescence in gingival tissues and gingival fibroblast cultures. Clin Exp Dent Res 2022; 8:939-949. [PMID: 35491709 PMCID: PMC9382052 DOI: 10.1002/cre2.581] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/30/2022] [Accepted: 04/03/2022] [Indexed: 11/14/2022] Open
Abstract
Objective To determine senescence‐associated changes in the gingival tissues of aged mice and gingival fibroblast cultures. Materials and Methods The production of senescence‐associated β‐galactosidase (SA‐β‐gal) and mRNA expression of p16, p21, interleukin (IL)‐1β, and tumor necrosis factor α (TNF‐α) were evaluated in gingival tissues, gingival fibroblasts of 10‐ and 20‐month‐old C57BL/6NCrl mice, and multiple‐passaged and hydrogen peroxide‐stimulated human gingival fibroblasts (HGFs). Changes in molecular expression in HGF cultures due to senescent cell elimination by the senolytic drug ABT‐263 (Navitoclax) were analyzed. Results Compared to 10‐week‐old mice, the 20‐month‐old mice had higher numbers of M1 macrophages. The proportion of cells expressing SA‐β‐gal were also higher in 20‐ month‐old mice than in 10‐week‐old‐mice. Gingival fibroblasts in 20‐month‐old mice expressed less collagen 1a1, collagen 4a1, and collagen 4a2 mRNA than those in 10‐week‐old mice. Compared to control cells, H2O2 treated HGF cells expressed higher levels of SA‐β‐gal and p16, p21, IL‐1β, and TNF‐α. Furthermore, ABT‐263 suppressed HGF cell expression of cytokines after senescence induction. Conclusions Senescence‐associated changes were observed in the gingival tissues of aged mice and HGF cultures. In addition, the potential of senolytic drugs to modify aging‐related changes in the gingiva was shown.
Collapse
Affiliation(s)
- Masae Furukawa
- Department of Oral Disease Research National Center for Geriatrics and Gerontology Obu Japan
| | | | - Yu Aoki
- Daiichi Sankyo Healthcare Co., Ltd. Tokyo Japan
| | - Mitsuyoshi Yamada
- Department of Oral Disease Research National Center for Geriatrics and Gerontology Obu Japan
- Department of Operative Dentistry, School of Dentistry Aichi Gakuin University Nagoya Japan
| | - Jingshu Wang
- Department of Oral Disease Research National Center for Geriatrics and Gerontology Obu Japan
| | - Maki Watanabe
- Department of Oral Disease Research National Center for Geriatrics and Gerontology Obu Japan
| | - Mie Kurosawa
- Department of Oral Disease Research National Center for Geriatrics and Gerontology Obu Japan
| | - Yosuke Shikama
- Department of Oral Disease Research National Center for Geriatrics and Gerontology Obu Japan
| | - Kenji Matsushita
- Department of Oral Disease Research National Center for Geriatrics and Gerontology Obu Japan
| |
Collapse
|
14
|
Suzuki K, Kawamura K, Ujiie R, Nakayama T, Mitsutake N. Characterization of radiation-induced micronuclei associated with premature senescence, and their selective removal by senolytic drug, ABT-263. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2022; 876-877:503448. [PMID: 35483779 DOI: 10.1016/j.mrgentox.2022.503448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 12/26/2021] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
Radiotherapy is well-recognized as an efficient non-invasive remedy for cancer treatment. Since 10 Gy, a weekly total dose for conventional radiotherapy, was proven to create unreparable and residual DNA double-strand breaks (DSBs), they were found to give rise to mitotic failure, such as mitotic catastrophe, which resulted in multiple micronuclei associated with premature senescence. We demonstrated that pulverization of micronuclear DNA was caspase-dependent and triggered not ATM-dependent but DNA-PK-dependent DNA damage response, including phosphorylation of histone H2AX. Pulverization of micronuclear DNA and senescence-associated secretory phenotype (SASP) worsen tumor microenvironment after radiotherapy, so that senolytic drug was applied to eliminate senescent cancer cells. Prematurely senescent cancer cells with micronuclei caused by 10 Gy of γ-irradiation were subjected to 5 μM of ABT-263, a Bcl-2 family inhibitor, and selective cancer cell death by apoptosis was observed, while ABT-263 had little effect on growing cancer cells. Western blot analysis showed augmented expression of both apoptotic and anti-apoptotic proteins in senescent cells, indicating that increased apoptotic factors are essential for selective apoptotic cell death in combination with ABT-263. Our results suggested that selective elimination of senescent cells alleviates SASP and micronuclei-mediated the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) activation, both of which lead to unfavorable adverse effects caused by radiotherapy.
Collapse
Affiliation(s)
- Keiji Suzuki
- Department of Radiation Medical Sciences, Nagasaki University Atomic Bomb Disease Institute. 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan; Life Sciences and Radiation Research, Graduate School of Biomedical Sciences Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan.
| | - Kasumi Kawamura
- Department of Radiation Medical Sciences, Nagasaki University Atomic Bomb Disease Institute. 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Risa Ujiie
- Life Sciences and Radiation Research, Graduate School of Biomedical Sciences Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Takahumi Nakayama
- Department of Molecular Medicine, Nagasaki University Atomic Bomb Disease Institute. 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Norisato Mitsutake
- Department of Radiation Medical Sciences, Nagasaki University Atomic Bomb Disease Institute. 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan; Life Sciences and Radiation Research, Graduate School of Biomedical Sciences Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| |
Collapse
|
15
|
Cytlak UM, Dyer DP, Honeychurch J, Williams KJ, Travis MA, Illidge TM. Immunomodulation by radiotherapy in tumour control and normal tissue toxicity. Nat Rev Immunol 2022; 22:124-138. [PMID: 34211187 DOI: 10.1038/s41577-021-00568-1] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/19/2021] [Indexed: 12/12/2022]
Abstract
Radiotherapy (RT) is a highly effective anticancer treatment that is delivered to more than half of all patients with cancer. In addition to the well-documented direct cytotoxic effects, RT can have immunomodulatory effects on the tumour and surrounding tissues. These effects are thought to underlie the so-called abscopal responses, whereby RT generates systemic antitumour immunity outside the irradiated tumour. The full scope of these immune changes remains unclear but is likely to involve multiple components, such as immune cells, the extracellular matrix, endothelial and epithelial cells and a myriad of chemokines and cytokines, including transforming growth factor-β (TGFβ). In normal tissues exposed to RT during cancer therapy, acute immune changes may ultimately lead to chronic inflammation and RT-induced toxicity and organ dysfunction, which limits the quality of life of survivors of cancer. Here we discuss the emerging understanding of RT-induced immune effects with particular focus on the lungs and gut and the potential immune crosstalk that occurs between these tissues.
Collapse
Affiliation(s)
- Urszula M Cytlak
- Lydia Becker Institute for Immunology and Inflammation, Wellcome Centre for Cell-Matrix Research, Manchester Collaborative Centre for Inflammation Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
- Targeted Therapy Group, Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
| | - Douglas P Dyer
- Lydia Becker Institute for Immunology and Inflammation, Wellcome Centre for Cell-Matrix Research, Manchester Collaborative Centre for Inflammation Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Jamie Honeychurch
- Targeted Therapy Group, Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Kaye J Williams
- Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Mark A Travis
- Lydia Becker Institute for Immunology and Inflammation, Wellcome Centre for Cell-Matrix Research, Manchester Collaborative Centre for Inflammation Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
| | - Timothy M Illidge
- Targeted Therapy Group, Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
| |
Collapse
|
16
|
Niklander SE, Lambert DW, Hunter KD. Senescent Cells in Cancer: Wanted or Unwanted Citizens. Cells 2021; 10:cells10123315. [PMID: 34943822 PMCID: PMC8699088 DOI: 10.3390/cells10123315] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/02/2021] [Accepted: 11/23/2021] [Indexed: 01/10/2023] Open
Abstract
Over recent decades, the field of cellular senescence has attracted considerable attention due to its association with aging, the development of age-related diseases and cancer. Senescent cells are unable to proliferate, as the pathways responsible for initiating the cell cycle are irreversibly inhibited. Nevertheless, senescent cells accumulate in tissues and develop a pro-inflammatory secretome, known as the senescence-associated secretory phenotype (SASP), which can have serious deleterious effects if not properly regulated. There is increasing evidence suggesting senescent cells contribute to different stages of carcinogenesis in different anatomical sites, mainly due to the paracrine effects of the SASP. Thus, a new therapeutic field, known as senotherapeutics, has developed. In this review, we aim to discuss the molecular mechanisms underlying the senescence response and its relationship with cancer development, focusing on the link between senescence-related inflammation and cancer. We will also discuss different approaches to target senescent cells that might be of use for cancer treatment.
Collapse
Affiliation(s)
- Sven E. Niklander
- Unidad de Patologia y Medicina Oral, Facultad de Odontologia, Universidad Andres Bello, Viña del Mar 2520000, Chile
- Correspondence: ; Tel.: +56-(32)2845108
| | - Daniel W. Lambert
- Unit of Oral and Maxillofacial Medicine and Pathology, School of Clinical Dentistry, University of Sheffield, Sheffield S10 2TA, UK; (D.W.L.); (K.D.H.)
- Healthy Lifespan Institute, University of Sheffield, Sheffield S10 2TN, UK
| | - Keith D. Hunter
- Unit of Oral and Maxillofacial Medicine and Pathology, School of Clinical Dentistry, University of Sheffield, Sheffield S10 2TA, UK; (D.W.L.); (K.D.H.)
- Oral Biology and Pathology, University of Pretoria, Pretoria 0028, South Africa
| |
Collapse
|
17
|
Targeted clearance of senescent cells using an antibody-drug conjugate against a specific membrane marker. Sci Rep 2021; 11:20358. [PMID: 34645909 PMCID: PMC8514501 DOI: 10.1038/s41598-021-99852-2] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 10/01/2021] [Indexed: 12/20/2022] Open
Abstract
A wide range of diseases have been shown to be influenced by the accumulation of senescent cells, from fibrosis to diabetes, cancer, Alzheimer's and other age-related pathologies. Consistent with this, clearance of senescent cells can prolong healthspan and lifespan in in vivo models. This provided a rationale for developing a new class of drugs, called senolytics, designed to selectively eliminate senescent cells in human tissues. The senolytics tested so far lack specificity and have significant off-target effects, suggesting that a targeted approach could be more clinically relevant. Here, we propose to use an extracellular epitope of B2M, a recently identified membrane marker of senescence, as a target for the specific delivery of toxic drugs into senescent cells. We show that an antibody-drug conjugate (ADC) against B2M clears senescent cells by releasing duocarmycin into them, while an isotype control ADC was not toxic for these cells. This effect was dependent on p53 expression and therefore more evident in stress-induced senescence. Non-senescent cells were not affected by either antibody, confirming the specificity of the treatment. Our results provide a proof-of-principle assessment of a novel approach for the specific elimination of senescent cells using a second generation targeted senolytic against proteins of their surfaceome, which could have clinical applications in pathological ageing and associated diseases.
Collapse
|
18
|
Ruiz FJ, Inkman M, Rashmi R, Muhammad N, Gabriel N, Miller CA, McLellan MD, Goldstein M, Markovina S, Grigsby PW, Zhang J, Schwarz JK. HPV transcript expression affects cervical cancer response to chemoradiation. JCI Insight 2021; 6:e138734. [PMID: 34255749 PMCID: PMC8409981 DOI: 10.1172/jci.insight.138734] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 07/07/2021] [Indexed: 12/24/2022] Open
Abstract
Persistent HPV infection is causative for the majority of cervical cancer cases; however, current guidelines do not require HPV testing for newly diagnosed cervical cancer. Using an institutional cohort of 88 patients with cervical cancer treated uniformly with standard-of-care chemoradiation treatment (CRT) with prospectively collected clinical outcome data, we observed that patients with cervical tumors containing HPV genotypes other than HPV 16 have worse survival outcomes after CRT compared with patients with HPV 16+ tumors, consistent with previously published studies. Using RNA sequencing analysis, we quantified viral transcription efficiency and found higher levels of E6 and the alternative transcript E6*I in cervical tumors with HPV genotypes other than HPV 16. These findings were validated using whole transcriptome data from The Cancer Genome Atlas (n = 304). For the first time to our knowledge, transcript expression level of HPV E6*I was identified as a predictive biomarker of CRT outcome in our complete institutional data set (n = 88) and within the HPV 16+ subset (n = 36). In vitro characterization of HPV E6*I and E6 overexpression revealed that both induce CRT resistance through distinct mechanisms dependent upon p53–p21. Our findings suggest that high expression of E6*I and E6 may represent novel biomarkers of CRT efficacy, and these patients may benefit from alternative treatment strategies.
Collapse
Affiliation(s)
- Fiona J Ruiz
- Department of Radiation Oncology.,Division of Biological and Biomedical Sciences Molecular Cell Biology
| | - Matthew Inkman
- Department of Radiation Oncology.,Institute for Informatics
| | | | | | | | | | | | | | | | - Perry W Grigsby
- Department of Radiation Oncology.,Alvin J. Siteman Cancer Center.,Division of Nuclear Medicine, Mallinckrodt Institute, and
| | - Jin Zhang
- Department of Radiation Oncology.,Institute for Informatics.,Alvin J. Siteman Cancer Center
| | - Julie K Schwarz
- Department of Radiation Oncology.,Alvin J. Siteman Cancer Center.,Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
19
|
Wiesmann N, Gieringer R, Viel M, Eckrich J, Tremel W, Brieger J. Zinc Oxide Nanoparticles Can Intervene in Radiation-Induced Senescence and Eradicate Residual Tumor Cells. Cancers (Basel) 2021; 13:cancers13122989. [PMID: 34203835 PMCID: PMC8232817 DOI: 10.3390/cancers13122989] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 06/08/2021] [Accepted: 06/11/2021] [Indexed: 01/10/2023] Open
Abstract
Despite recent advancements in tumor therapy, metastasis and tumor relapse remain major complications hindering the complete recovery of many cancer patients. Dormant tumor cells, which reside in the body, possess the ability to re-enter the cell cycle after therapy. This phenomenon has been attributed to therapy-induced senescence. We show that these cells could be targeted by the use of zinc oxide nanoparticles (ZnO NPs). In the present study, the properties of tumor cells after survival of 16 Gy gamma-irradiation were investigated in detail. Analysis of morphological features, proliferation, cell cycle distribution, and protein expression revealed classical hallmarks of senescent cells among the remnant cell mass after irradiation. The observed radiation-induced senescence was associated with the increased ability to withstand further irradiation. Additionally, tumor cells were able to re-enter the cell cycle and proliferate again after weeks. Treatment with ZnO NPs was evaluated as a therapeutical approach to target senescent cells. ZnO NPs were suitable to induce cell death in senescent, irradiation-resistant tumor cells. Our findings underline the pathophysiological relevance of remnant tumor cells that survived first-line radiotherapy. Additionally, we highlight the therapeutic potential of ZnO NPs for targeting senescent tumor cells.
Collapse
Affiliation(s)
- Nadine Wiesmann
- Department of Otorhinolaryngology, University Medical Center Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (R.G.); (J.E.); (J.B.)
- Department of Oral and Maxillofacial Surgery, Plastic Surgery, University Medical Center Mainz, Augustusplatz 2, 55131 Mainz, Germany
- Correspondence: ; Tel.: +49-6131-17-4034
| | - Rita Gieringer
- Department of Otorhinolaryngology, University Medical Center Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (R.G.); (J.E.); (J.B.)
| | - Melanie Viel
- Department of Chemistry, Johannes Gutenberg-University, Duesbergweg 10-14, 55128 Mainz, Germany; (M.V.); (W.T.)
| | - Jonas Eckrich
- Department of Otorhinolaryngology, University Medical Center Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (R.G.); (J.E.); (J.B.)
| | - Wolfgang Tremel
- Department of Chemistry, Johannes Gutenberg-University, Duesbergweg 10-14, 55128 Mainz, Germany; (M.V.); (W.T.)
| | - Juergen Brieger
- Department of Otorhinolaryngology, University Medical Center Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (R.G.); (J.E.); (J.B.)
| |
Collapse
|
20
|
Gottwald D, Putz F, Hohmann N, Büttner-Herold M, Hecht M, Fietkau R, Distel L. Role of tumor cell senescence in non-professional phagocytosis and cell-in-cell structure formation. BMC Mol Cell Biol 2020; 21:79. [PMID: 33160318 PMCID: PMC7648987 DOI: 10.1186/s12860-020-00326-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 10/27/2020] [Indexed: 12/16/2022] Open
Abstract
Background Non-professional phagocytosis is usually triggered by stimuli such as necrotic cell death. In tumor therapy, the tumors often disappear slowly and only long time after the end of therapy. Here, tumor therapy inactivates the cells by inducing senescence. Therefore, study focused whether senescence is a stimulus for non-professional phagocytosis or whether senescent cells themselves phagocytize non-professionally. Results Senescence was induced in cell lines by camptothecin and a phagocytosis assay was performed. In tissue of a cohort of 192 rectal cancer patients senescence and non-professional phagocytosis was studied by anti-histone H3K9me3 and anti-E-cadherin staining. Senescent fibroblasts and pancreas carcinoma cells phagocytize necrotic cells but are not phagocytized. In the tissue of rectal carcinoma, senescent cells can phagocytize and can be phagocytized. A high number of senescent cells and, at the same time, high numbers of non-professional phagocytizing cells in the rectal carcinoma tissue lead to an extremely unfavorable prognosis regarding overall survival. Conclusion Senescent cells can be non-professionally phagocytized and at the same time they can non-professionally phagocytize in vivo. In vitro experiments indicate that it is unlikely that senescence is a strong trigger for non-professional phagocytosis. Combined high rates of non-professional phagocytosis and high rates of senescence are an extremely poor prognostic factor for overall survival.
Collapse
Affiliation(s)
- Dorian Gottwald
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91054, Erlangen, Germany
| | - Florian Putz
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91054, Erlangen, Germany
| | - Nora Hohmann
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91054, Erlangen, Germany
| | - Maike Büttner-Herold
- Department of Nephropathology, Institute of Pathology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen, Nürnberg, Germany
| | - Markus Hecht
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91054, Erlangen, Germany
| | - Rainer Fietkau
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91054, Erlangen, Germany
| | - Luitpold Distel
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91054, Erlangen, Germany.
| |
Collapse
|
21
|
Roy S, Malone S, Grimes S, Morgan SC. Impact of Concomitant Medications on Biochemical Outcome in Localised Prostate Cancer Treated with Radiotherapy and Androgen Deprivation Therapy. Clin Oncol (R Coll Radiol) 2020; 33:181-190. [PMID: 32994091 DOI: 10.1016/j.clon.2020.09.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/11/2020] [Accepted: 09/14/2020] [Indexed: 02/07/2023]
Abstract
AIMS Several classes of concomitant medications have been shown to affect oncological outcomes in patients with prostate cancer (PCa). We assessed the association between the use of commonly prescribed concomitant medications and biochemical relapse-free survival (bRFS) in patients with localised PCa treated with radiotherapy and androgen deprivation therapy (ADT). MATERIALS AND METHODS A secondary pooled analysis of two phase III randomised trials was carried out. In the first trial, patients with localised PCa with clinical stage T1b-T3, prostate-specific antigen <30 ng/ml and Gleason score ≤7 were treated with radical radiotherapy and 6 months of ADT starting 4 months before or concomitantly with radiotherapy. In the second trial, patients with high-risk PCa were treated with radical radiotherapy and 36 months of ADT with randomisation to three-dimensional conformal or intensity-modulated radiotherapy. Information on concomitant medications was collected from the medical record. Univariable and multivariable Cox regression was used to identify factors associated with bRFS. RESULTS Overall, 486 patients were evaluable. The median follow-up was 125 months; 10-year bRFS was 83.7%. On univariable analysis, receipt of metformin was significantly associated with worse bRFS. Ten-year bRFS was 73% and 85% for patients with and without concomitant metformin (adjusted hazard ratio 2.11, 95% confidence interval 1.03-4.33). Similar evidence of an association was observed with sulfonamide-based α1-receptor blockers (adjusted hazard ratio 2.72, 95% confidence interval 1.31-5.66). However, no such association was seen with receipt of quinazoline-based α1-receptor blockers (adjusted hazard ratio 1.09, 95% confidence interval 0.42-2.82). There was no significant association between bRFS and receipt of all other medication classes considered. CONCLUSIONS In this population of patients with localised PCa treated with radiotherapy and ADT, receipt of concomitant metformin and sulfonamide-based α1-receptor blockers was associated with inferior biochemical outcome. Randomised trials are required to assess the true effect of these medications on oncological outcomes in localised PCa.
Collapse
Affiliation(s)
- S Roy
- Radiation Medicine Program, The Ottawa Hospital Cancer Centre, Ottawa, Ontario, Canada; Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - S Malone
- Radiation Medicine Program, The Ottawa Hospital Cancer Centre, Ottawa, Ontario, Canada; Division of Radiation Oncology, University of Ottawa, Ottawa, Ontario, Canada
| | - S Grimes
- Radiation Medicine Program, The Ottawa Hospital Cancer Centre, Ottawa, Ontario, Canada
| | - S C Morgan
- Radiation Medicine Program, The Ottawa Hospital Cancer Centre, Ottawa, Ontario, Canada; Division of Radiation Oncology, University of Ottawa, Ottawa, Ontario, Canada.
| |
Collapse
|
22
|
Hainfeld JF, Ridwan SM, Stanishevskiy FY, Smilowitz HM. Iodine nanoparticle radiotherapy of human breast cancer growing in the brains of athymic mice. Sci Rep 2020; 10:15627. [PMID: 32973267 PMCID: PMC7515899 DOI: 10.1038/s41598-020-72268-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 08/18/2020] [Indexed: 12/16/2022] Open
Abstract
About 30% of breast cancers metastasize to the brain; those widely disseminated are fatal typically in 3-4 months, even with the best available treatments, including surgery, drugs, and radiotherapy. To address this dire situation, we have developed iodine nanoparticles (INPs) that target brain tumors after intravenous (IV) injection. The iodine then absorbs X-rays during radiotherapy (RT), creating free radicals and local tumor damage, effectively boosting the local RT dose at the tumor. Efficacy was tested using the very aggressive human triple negative breast cancer (TNBC, MDA-MB-231 cells) growing in the brains of athymic nude mice. With a well-tolerated non-toxic IV dose of the INPs (7 g iodine/kg body weight), tumors showed a heavily iodinated rim surrounding the tumor having an average uptake of 2.9% iodine by weight, with uptake peaks at 4.5%. This is calculated to provide a dose enhancement factor of approximately 5.5 (peaks at 8.0), the highest ever reported for any radiation-enhancing agents. With RT alone (15 Gy, single dose), all animals died by 72 days; INP pretreatment resulted in longer-term remissions with 40% of mice surviving 150 days and 30% surviving > 280 days.
Collapse
Affiliation(s)
- James F Hainfeld
- Nanoprobes, Inc., 95 Horseblock Rd., Unit 1, Yaphank, NY, 11980, USA.
| | - Sharif M Ridwan
- Department of Cell Biology, University of Connecticut Health Center, 263 Farmington Ave., Farmington, CT, 06030, USA
| | | | - Henry M Smilowitz
- Department of Cell Biology, University of Connecticut Health Center, 263 Farmington Ave., Farmington, CT, 06030, USA
| |
Collapse
|
23
|
Krenacs T, Meggyeshazi N, Forika G, Kiss E, Hamar P, Szekely T, Vancsik T. Modulated Electro-Hyperthermia-Induced Tumor Damage Mechanisms Revealed in Cancer Models. Int J Mol Sci 2020; 21:E6270. [PMID: 32872532 PMCID: PMC7504298 DOI: 10.3390/ijms21176270] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/22/2020] [Accepted: 08/24/2020] [Indexed: 12/18/2022] Open
Abstract
The benefits of high-fever range hyperthermia have been utilized in medicine from the Ancient Greek culture to the present day. Amplitude-modulated electro-hyperthermia, induced by a 13.56 MHz radiofrequency current (mEHT, or Oncothermia), has been an emerging means of delivering loco-regional clinical hyperthermia as a complementary of radiation-, chemo-, and molecular targeted oncotherapy. This unique treatment exploits the metabolic shift in cancer, resulting in elevated oxidative glycolysis (Warburg effect), ion concentration, and electric conductivity. These promote the enrichment of electric fields and induce heat (controlled at 42 °C), as well as ion fluxes and disequilibrium through tumor cell membrane channels. By now, accumulating preclinical studies using in vitro and in vivo models of different cancer types have revealed details of the mechanism and molecular background of the oncoreductive effects of mEHT monotherapy. These include the induction of DNA double-strand breaks, irreversible heath and cell stress, and programmed cells death; the upregulation of molecular chaperones and damage (DAMP) signaling, which may contribute to a secondary immunogenic tumor cell death. In combination therapies, mEHT proved to be a good chemosensitizer through increasing drug uptake and tumor reductive effects, as well as a good radiosensitizer by downregulating hypoxia-related target genes. Recently, immune stimulation or intratumoral antigen-presenting dendritic cell injection have been able to extend the impact of local mEHT into a systemic "abscopal" effect. The complex network of pathways emerging from the published mEHT experiments has not been overviewed and arranged yet into a framework to reveal links between the pieces of the "puzzle". In this paper, we review the mEHT-related damage mechanisms published in tumor models, which may allow some geno-/phenotype treatment efficiency correlations to be exploited both in further research and for more rational clinical treatment planning when mEHT is involved in combination therapies.
Collapse
Affiliation(s)
- Tibor Krenacs
- Department of Pathology and Experimental Cancer Research, Semmelweis University, H-1085 Budapest, Hungary; (N.M.); (G.F.); (T.S.)
| | - Nora Meggyeshazi
- Department of Pathology and Experimental Cancer Research, Semmelweis University, H-1085 Budapest, Hungary; (N.M.); (G.F.); (T.S.)
| | - Gertrud Forika
- Department of Pathology and Experimental Cancer Research, Semmelweis University, H-1085 Budapest, Hungary; (N.M.); (G.F.); (T.S.)
| | - Eva Kiss
- Institute of Oncology at 1st Department of Internal Medicine, Semmelweis University, H-1083 Budapest, Hungary;
| | - Peter Hamar
- Institute of Translational Medicine, Semmelweis University, H-1094 Budapest, Hungary; (P.H.); (T.V.)
| | - Tamas Szekely
- Department of Pathology and Experimental Cancer Research, Semmelweis University, H-1085 Budapest, Hungary; (N.M.); (G.F.); (T.S.)
| | - Tamas Vancsik
- Institute of Translational Medicine, Semmelweis University, H-1094 Budapest, Hungary; (P.H.); (T.V.)
| |
Collapse
|
24
|
Ghorai A, Mahaddalkar T, Thorat R, Dutt S. Sustained inhibition of PARP-1 activity delays glioblastoma recurrence by enhancing radiation-induced senescence. Cancer Lett 2020; 490:44-53. [PMID: 32645394 DOI: 10.1016/j.canlet.2020.06.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 06/08/2020] [Accepted: 06/26/2020] [Indexed: 12/21/2022]
Abstract
Glioblastoma (GBM) is the most common primary brain tumor and is highly aggressive with a median survival of 15 months. We have previously shown that residual cells of GBM form multinucleated giant cells (MNGCs) showing a senescent phenotype, but eventually escape from therapy induced senescence (TIS), resulting in GBM recurrence. Here we demonstrate the role of PARP-1 in TIS and its recovery. We show that genetic and pharmacological inhibition of PARP-1 has an anti-proliferative effect on GBM cell lines and primary cultures derived from patient samples. Furthermore, the PARP-1 inhibitor olaparib, in combination with radiation increased MNGCs formation and senescence as assessed by β-galactosidase activity, and macroH2A1 levels in residual cells. Additionally, we found that reduced PARP-1 activity and not protein levels in residual cells was crucial for MNGCs formation and their maintenance in the senescent state. PARP-1 activity was restored to higher levels in recurrent cells that escaped from TIS. Importantly, olaparib + radiation treatment significantly delayed recurrence in vitro as well in vivo in orthotopic GBM mouse models with a significant increase in overall survival of mice. Overall, this study demonstrates that sustained inhibition of PARP-1 activity during radiation treatment significantly delays GBM recurrence.
Collapse
Affiliation(s)
- Atanu Ghorai
- Shilpee Dutt Laboratory, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, India
| | - Tejashree Mahaddalkar
- Shilpee Dutt Laboratory, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400085, India
| | - Rahul Thorat
- Laboratory Animal Facility, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre (TMC), Kharghar, Navi Mumbai, India
| | - Shilpee Dutt
- Shilpee Dutt Laboratory, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400085, India.
| |
Collapse
|
25
|
Kaur A, Macip S, Stover CM. An Appraisal on the Value of Using Nutraceutical Based Senolytics and Senostatics in Aging. Front Cell Dev Biol 2020; 8:218. [PMID: 32309282 PMCID: PMC7145958 DOI: 10.3389/fcell.2020.00218] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 03/13/2020] [Indexed: 01/10/2023] Open
Abstract
The average human life expectancy has increased globally, and continues to rise, owing to the substantive progress made in healthcare, medicine, sanitation, housing and education. This ultimately enriches society with a greater proportion of elderly people. Sustaining a healthy aged population is key to diminish the societal and economic impact of age-related infirmities. This is especially challenging because tissue function, and thus wellbeing, naturally progressively decline as humans age. With age increasing the risk of developing diseases, one of the therapeutic options is to interfere with the molecular and cellular pathways involved in age-related tissue dysfunction, which is in part caused by the accumulation of senescent cells. One strategy to prevent this could be using drugs that selectively kill these cells (senolytics). In parallel, some compounds have been identified that prevent or slow down the progression of senescence or some of its features (senostatics). Senolytic and senostatic therapies have been shown to be efficient in vivo, but they also have unwanted dose-dependent side effects, including toxicity. Important advances might be made using bioactive compounds from plants and foods (nutraceuticals) if, as is proposed, they offer similar effectiveness with fewer side effects. The focus of this review is on the use of nutraceuticals in interfering with cellular senescence.
Collapse
Affiliation(s)
- Amanpreet Kaur
- Department of Respiratory Sciences, University of Leicester, Leicester, United Kingdom
| | - Salvador Macip
- Mechanisms of Cancer and Ageing Laboratory, Department of Molecular and Cell Biology, University of Leicester, Leicester, United Kingdom.,Faculty of Health Sciences, Universitat Oberta de Catalunya, Barcelona, Spain
| | - Cordula M Stover
- Department of Respiratory Sciences, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
26
|
Petragnano F, Pietrantoni I, Di Nisio V, Fasciani I, Del Fattore A, Capalbo C, Cheleschi S, Tini P, Orelli S, Codenotti S, Mazzei MA, D'Ermo G, Pannitteri G, Tombolini M, De Cesaris P, Riccioli A, Filippini A, Milazzo L, Vulcano F, Fanzani A, Maggio R, Marampon F, Tombolini V. Modulating the dose-rate differently affects the responsiveness of human epithelial prostate- and mesenchymal rhabdomyosarcoma-cancer cell line to radiation. Int J Radiat Biol 2020; 96:823-835. [PMID: 32149569 DOI: 10.1080/09553002.2020.1739774] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Purpose: Radiation therapy (RT), by using ionizing radiation (IR), destroys cancer cells inducing DNA damage. Despite several studies are continuously performed to identify the best curative dose of IR, the role of dose-rate, IR delivered per unit of time, on tumor control is still largely unknown.Materials and methods: Rhabdomyosarcoma (RMS) and prostate cancer (PCa) cell lines were irradiated with 2 or 10 Gy delivered at dose-rates of 1.5, 2.5, 5.5 and 10.1 Gy/min. Cell-survival rate and cell cycle distribution were evaluated by clonogenic assays and flow cytometry, respectively. The production of reactive oxygen species (ROS) was detected by cytometry. Quantitative polymerase chain reaction assessed the expression of anti-oxidant-related factors including NRF2, SODs, CAT and GPx4 and miRNAs (miR-22, -126, -210, -375, -146a, -34a). Annexin V and caspase-8, -9 and -3 activity were assessed to characterize cell death. Senescence was determined by assessing β-galactosidase (SA-β-gal) activity. Immunoblotting was performed to assess the expression/activation of: i) phosphorylated H2AX (γ-H2AX), markers of DNA double strand breaks (DSBs); ii) p19Kip1/Cip1, p21Waf1/Cip1 and p27Kip1/Cip1, senescence-related-markers; iii) p62, LC3-I and LC3-II, regulators of autophagy; iv) ATM, RAD51, DNA-PKcs, Ku70 and Ku80, mediators of DSBs repair.Results: Low dose-rate (LDR) more efficiently induced apoptosis and senescence in RMS while high dose-rate (HDR) necrosis in PCa. This paralleled with a lower ability of LDR-RMS and HDR-PCa irradiated cells to activate DSBs repair. Modulating the dose rate did not differently affect the anti-oxidant ability of cancer cells.Conclusion: The present results indicate that a stronger cytotoxic effect was induced by modulating the dose-rate in a cancer cell-dependent manner, this suggesting that choose the dose-rate based on the individual patient's tumor characteristics could be strategic for effective RT exposures.
Collapse
Affiliation(s)
- Francesco Petragnano
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Ilaria Pietrantoni
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Valentina Di Nisio
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Irene Fasciani
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Andrea Del Fattore
- Bone Physiopathology Unit Genetics and Rare Diseases Research Area, Bambino Gesù Children's Hospital, Rome, Italy
| | - Carlo Capalbo
- Department of Molecular Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Sara Cheleschi
- Department of Medicine, Surgery and Neuroscience, Rheumatology Unit, University of Siena, Policlinico Le Scotte, Siena, Italy
| | - Paolo Tini
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA, USA.,Unit of Radiation Oncology, University Hospital of Siena, Siena, Italy
| | - Simone Orelli
- Department of Radiology, Radiotherapy, Oncology, Anatomopathology, "Sapienza" University of Rome, Rome, Italy
| | - Silvia Codenotti
- Department of Molecular and Translational Medicine, Division of Biotechnology, University of Brescia, Brescia, Italy
| | | | - Giuseppe D'Ermo
- Department of Surgery "Pietro Valdoni", "Sapienza" University of Rome, Rome, Italy
| | - Gaetano Pannitteri
- Department of Cardiovascular, Respiratory, Nephrologic, Anaesthesiologic and Geriatric Sciences, Sapienza University, Rome, Italy
| | - Mario Tombolini
- Department of Sense Organs, "Sapienza" University of Rome, Rome, Italy
| | - Paola De Cesaris
- Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Section of Histology and Medical Embryology, "Sapienza" University, Rome, Italy
| | - Anna Riccioli
- Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Section of Histology and Medical Embryology, "Sapienza" University, Rome, Italy
| | - Antonio Filippini
- Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Section of Histology and Medical Embryology, "Sapienza" University, Rome, Italy
| | - Luisa Milazzo
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Francesca Vulcano
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Alessandro Fanzani
- Department of Molecular and Translational Medicine, Division of Biotechnology, University of Brescia, Brescia, Italy
| | - Roberto Maggio
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Francesco Marampon
- Department of Radiology, Radiotherapy, Oncology, Anatomopathology, "Sapienza" University of Rome, Rome, Italy
| | - Vincenzo Tombolini
- Department of Radiology, Radiotherapy, Oncology, Anatomopathology, "Sapienza" University of Rome, Rome, Italy
| |
Collapse
|
27
|
Symonds P, Jones GDD. Hot Topics in Radiobiology. Clin Oncol (R Coll Radiol) 2019; 31:269-271. [PMID: 30885531 DOI: 10.1016/j.clon.2019.02.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 02/20/2019] [Indexed: 10/27/2022]
Affiliation(s)
- P Symonds
- Leicester Cancer Research Centre, University of Leicester, Leicester Royal Infirmary, Leicester, UK.
| | - G D D Jones
- Leicester Cancer Research Centre, University of Leicester, Leicester Royal Infirmary, Leicester, UK
| |
Collapse
|