1
|
Park SWS, Fransson S, Sundquist F, Nilsson JN, Grybäck P, Wessman S, Strömgren J, Djos A, Fagman H, Sjögren H, Georgantzi K, Herold N, Kogner P, Granberg D, Gaze MN, Martinsson T, Karlsson K, Stenman JJE. Heterogeneous SSTR2 target expression and a novel KIAA1549:: BRAF fusion clone in a progressive metastatic lesion following 177Lutetium-DOTATATE molecular radiotherapy in neuroblastoma: a case report. Front Oncol 2024; 14:1408729. [PMID: 39324010 PMCID: PMC11422106 DOI: 10.3389/fonc.2024.1408729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/20/2024] [Indexed: 09/27/2024] Open
Abstract
In this case report, we present the treatment outcomes of the first patient enrolled in the LuDO-N trial. The patient is a 21-month-old girl diagnosed with high-risk neuroblastoma (NB) and widespread skeletal metastasis. The patient initially underwent first-line therapy according to SIOPEN HRNBL-1 but was switched to second-line treatments due to disease progression, and she was finally screened for enrollment in the LuDO-N trial due to refractory disease. Upon enrollment, the patient received two rounds of the radiolabeled somatostatin analogue lutetium-177 octreotate (177Lu-DOTATATE), which was well tolerated. A dosimetry analysis revealed a heterogeneous uptake across tumor lesions, resulting in a significant absorbed dose of 54 Gy in the primary tumor, but only 2 Gy at one of the metastatic sites in the distal femur. While the initial treatment response showed disease stabilization, the distal femoral metastasis continued to progress, leading to the eventual death of the patient. A tissue analysis of the biopsies collected throughout the course of the disease revealed heterogeneous drug target expression of somatostatin receptor 2 (SSTR2) across and within tumor lesions. Furthermore, genomic profiling revealed a novel KIAA1549::BRAF fusion oncogene amplification in the distal femoral metastasis at recurrence that might be related with resistance to radiation, possibly through the downregulation of SSTR2. This case report demonstrates a mixed response to molecular radiotherapy (MRT) with 177Lu-DOTATATE. The observed variation in SSTR2 expression between tumor lesions suggests that heterogeneous target expression may have been the reason for treatment failure in this patient's case. Further investigation within the LuDO-N trial will give a more comprehensive understanding of the correlation between SSTR2 expression levels and treatment outcomes, which will be important to advance treatment strategies based on MRT for children with high-risk NB.
Collapse
Affiliation(s)
- Se Whee Sammy Park
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Susanne Fransson
- Department of Laboratory Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Fredrik Sundquist
- Department of Urology, Karolinska University Hospital, Stockholm, Sweden
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Joachim N Nilsson
- Department of Medical Radiation Physics and Nuclear Medicine, Karolinska University Hospital, Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Per Grybäck
- Department of Medical Radiation Physics and Nuclear Medicine, Karolinska University Hospital, Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Sandra Wessman
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- Department of Pathology and Cancer Diagnostics, Karolinska University Hospital, Stockholm, Sweden
| | - Jacob Strömgren
- Department of Pediatric Radiology, Karolinska University Hospital, Stockholm, Sweden
| | - Anna Djos
- Department of Laboratory Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Henrik Fagman
- Department of Laboratory Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Helene Sjögren
- Clinical Genetics and Genomics, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Kleopatra Georgantzi
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
- Department of Pediatric Oncology, Karolinska University Hospital, Stockholm, Sweden
| | - Nikolas Herold
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
- Department of Pediatric Oncology, Karolinska University Hospital, Stockholm, Sweden
| | - Per Kogner
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
- Department of Pediatric Oncology, Karolinska University Hospital, Stockholm, Sweden
| | - Dan Granberg
- Department of Breast, Endocrine Tumors and Sarcomas, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Mark N Gaze
- Department of Oncology, University College London Hospitals National Health Service (NHS) Foundation Trust, London, United Kingdom
| | - Tommy Martinsson
- Department of Laboratory Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Kasper Karlsson
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Jakob J E Stenman
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
- Department of Pediatric Surgery, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
2
|
Colori A, Ackwerh R, Chang YC, Cody K, Dunlea C, Gains JE, Gaunt T, Gillies CMS, Hardy C, Lalli N, Lim PS, Soto C, Gaze MN. Paediatric radiotherapy in the United Kingdom: an evolving subspecialty and a paradigm for integrated teamworking in oncology. Br J Radiol 2024; 97:21-30. [PMID: 38263828 PMCID: PMC11027255 DOI: 10.1093/bjr/tqad028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/03/2023] [Accepted: 10/18/2023] [Indexed: 01/25/2024] Open
Abstract
Many different malignancies occur in children, but overall, cancer in childhood is rare. Survival rates have improved appreciably and are higher compared with most adult tumour types. Treatment schedules evolve as a result of clinical trials and are typically complex and multi-modality, with radiotherapy an integral component of many. Risk stratification in paediatric oncology is increasingly refined, resulting in a more personalized use of radiation. Every available modality of radiation delivery: simple and advanced photon techniques, proton beam therapy, molecular radiotherapy, and brachytherapy, have their place in the treatment of children's cancers. Radiotherapy is rarely the sole treatment. As local therapy, it is often given before or after surgery, so the involvement of the surgeon is critically important, particularly when brachytherapy is used. Systemic treatment is the standard of care for most paediatric tumour types, concomitant administration of chemotherapy is typical, and immunotherapy has an increasing role. Delivery of radiotherapy is not done by clinical or radiation oncologists alone; play specialists and anaesthetists are required, together with mould room staff, to ensure compliance and immobilization. The support of clinical radiologists is needed to ensure the correct interpretation of imaging for target volume delineation. Physicists and dosimetrists ensure the optimal dose distribution, minimizing exposure of organs at risk. Paediatric oncology doctors, nurses, and a range of allied health professionals are needed for the holistic wrap-around care of the child and family. Radiographers are essential at every step of the way. With increasing complexity comes a need for greater centralization of services.
Collapse
Affiliation(s)
- Amy Colori
- Department of Oncology, University College London Hospitals NHS Foundation Trust, London, NW1 2PG, United Kingdom
| | - Raymond Ackwerh
- Department of Anaesthetics, University College London Hospitals NHS Foundation Trust, London, NW1 2BU, United Kingdom
| | - Yen-Ch’ing Chang
- Department of Oncology, University College London Hospitals NHS Foundation Trust, London, NW1 2PG, United Kingdom
| | - Kristy Cody
- Department of Radiotherapy, University College London Hospitals NHS Foundation Trust, London, NW1 2BU, United Kingdom
| | - Cathy Dunlea
- Department of Radiotherapy, University College London Hospitals NHS Foundation Trust, London, NW1 2BU, United Kingdom
| | - Jennifer E Gains
- Department of Oncology, University College London Hospitals NHS Foundation Trust, London, NW1 2PG, United Kingdom
| | - Trevor Gaunt
- Department of Radiology, University College London Hospitals NHS Foundation Trust, London, NW1 2BU, United Kingdom
| | - Callum M S Gillies
- Department of Radiotherapy Physics, University College London Hospitals NHS Foundation Trust, London, NW1 2PG, United Kingdom
| | - Claire Hardy
- Department of Radiotherapy, University College London Hospitals NHS Foundation Trust, London, NW1 2BU, United Kingdom
| | - Narinder Lalli
- Department of Radiotherapy Physics, University College London Hospitals NHS Foundation Trust, London, NW1 2PG, United Kingdom
| | - Pei S Lim
- Department of Oncology, University College London Hospitals NHS Foundation Trust, London, NW1 2PG, United Kingdom
| | - Carmen Soto
- Department of Paediatric Oncology, University College London Hospitals NHS Foundation Trust, London, NW1 2BU, United Kingdom
| | - Mark N Gaze
- Department of Oncology, University College London Hospitals NHS Foundation Trust, London, NW1 2PG, United Kingdom
- Department of Oncology, UCL Cancer Institute, University College London, London, WC1E 6DD, United Kingdom
| |
Collapse
|
3
|
Boterberg T, Dunlea C, Harrabi S, Janssens G, Laprie A, Whitfield G, Gaze M. Contemporary paediatric radiation oncology. Arch Dis Child 2023; 108:332-337. [PMID: 35851293 DOI: 10.1136/archdischild-2021-323059] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 07/03/2022] [Indexed: 11/03/2022]
Abstract
Treatment with ionising radiation is a valuable component of treatment schedules for a many children and young people with cancer. While some form of radiotherapy has been in use for over 100 years, a series of innovations has revolutionised paediatric radiation oncology. Mostly, high-energy X-ray photons are used, but proton beam radiotherapy is increasingly offered, especially in children and young people. This is to reduce the radiation exposure of healthy normal tissues and so the likelihood of adverse effects. Other methods of radiotherapy delivery include brachytherapy and molecular radiotherapy. The most appropriate treatment technique should be selected for every child. Advances in computers and imaging, developments in the technology of radiation delivery and a better understanding of pathology and molecular biology of cancer, coupled with parallel improvements in surgery and systemic therapy, have led to a transformation of practice in recent decades. Initially an empirical art form, radiotherapy for children has become a technically advanced, evidence-based cornerstone of increasingly personalised cancer medicine with solid scientific foundations. Late sequelae of treatment-the adverse effects once accepted as the cost of cure-have been significantly reduced in parallel with increased survival rates. The delivery of radiotherapy to children and young people requires a specialised multiprofessional team including radiation oncologists, therapeutic radiographers, play specialists and physicists among others. This article reviews the types of radiotherapy now available and outlines the pathway of the child through treatment. It aims to demonstrate to paediatricians how contemporary paediatric radiation oncology differs from past practice.
Collapse
Affiliation(s)
- Tom Boterberg
- Department of Radiotherapy, University of Ghent, Ghent, Belgium
| | - Cathy Dunlea
- Department of Radiotherapy, University College London Hospitals NHS Foundation Trust, London, UK
| | - Semi Harrabi
- Department of Radiotherapy, University Hospital Heidelberg, Heidelberg, Baden-Württemberg, Germany
| | - Geert Janssens
- Department of Paediatric Oncology, Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Department of Radiotherapy, University Medical Centre, Utrecht, The Netherlands
| | - Anne Laprie
- Department of Radiotherapy, Institut Universitaire du Cancer Toulouse Oncopole, Toulouse, France
| | - Gillian Whitfield
- Department of Radiotherapy, Christie Hospital, Manchester, Manchester, UK
| | - Mark Gaze
- Department of Oncology, University College London Hospitals NHS Foundation Trust, London, UK
| |
Collapse
|
4
|
Sundquist F, Georgantzi K, Jarvis KB, Brok J, Koskenvuo M, Rascon J, van Noesel M, Grybäck P, Nilsson J, Braat A, Sundin M, Wessman S, Herold N, Hjorth L, Kogner P, Granberg D, Gaze M, Stenman J. A Phase II Trial of a Personalized, Dose-Intense Administration Schedule of 177Lutetium-DOTATATE in Children With Primary Refractory or Relapsed High-Risk Neuroblastoma-LuDO-N. Front Pediatr 2022; 10:836230. [PMID: 35359899 PMCID: PMC8960300 DOI: 10.3389/fped.2022.836230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/31/2022] [Indexed: 12/16/2022] Open
Abstract
Background Half the children with high-risk neuroblastoma die with widespread metastases. Molecular radiotherapy is an attractive systemic treatment for this relatively radiosensitive tumor. 131I-mIBG is the most widely used form in current use, but is not universally effective. Clinical trials of 177Lutetium DOTATATE have so far had disappointing results, possibly because the administered activity was too low, and the courses were spread over too long a period of time, for a rapidly proliferating tumor. We have devised an alternative administration schedule to overcome these limitations. This involves two high-activity administrations of single agent 177Lu-DOTATATE given 2 weeks apart, prescribed as a personalized whole body radiation absorbed dose, rather than a fixed administered activity. "A phase II trial of 177Lutetium-DOTATATE in children with primary refractory or relapsed high-risk neuroblastoma - LuDO-N" (EudraCT No: 2020-004445-36, ClinicalTrials.gov Identifier: NCT04903899) evaluates this new dosing schedule. Methods The LuDO-N trial is a phase II, open label, multi-center, single arm, two stage design clinical trial. Children aged 18 months to 18 years are eligible. The trial is conducted by the Nordic Society for Pediatric Hematology and Oncology (NOPHO) and it has been endorsed by SIOPEN (https://www.siopen.net). The Karolinska University Hospital, is the sponsor of the LuDO-N trial, which is conducted in collaboration with Advanced Accelerator Applications, a Novartis company. All Scandinavian countries, Lithuania and the Netherlands participate in the trial and the UK has voiced an interest in joining in 2022. Results The pediatric use of the Investigational Medicinal Product (IMP) 177Lu-DOTATATE, as well as non-IMPs SomaKit TOC® (68Ga-DOTATOC) and LysaKare® amino acid solution for renal protection, have been approved for pediatric use, within the LuDO-N Trial by the European Medicines Agency (EMA). The trial is currently recruiting. Recruitment is estimated to be finalized within 3-5 years. Discussion In this paper we present the protocol of the LuDO-N Trial. The rationale and design of the trial are discussed in relation to other ongoing, or planned trials with similar objectives. Further, we discuss the rapid development of targeted radiopharmaceutical therapy and the future perspectives for developing novel therapies for high-risk neuroblastoma and other pediatric solid tumors.
Collapse
Affiliation(s)
- Fredrik Sundquist
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Kleopatra Georgantzi
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
- Pediatric Oncology, Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Kirsten Brunsvig Jarvis
- Department of Paediatric Haematology and Oncology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Jesper Brok
- Department of Paediatrics and Adolescent Medicine, Rigshospitalet, Copenhagen, Denmark
| | - Minna Koskenvuo
- Helsinki University Central Hospital, University of Helsinki, Helsinki, Finland
| | - Jelena Rascon
- Center for Pediatric Oncology and Hematology, Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania
| | - Max van Noesel
- Solid Tumor Department, Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Per Grybäck
- Department of Medical Radiation Physics and Nuclear Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Joachim Nilsson
- Department of Medical Radiation Physics and Nuclear Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Arthur Braat
- Department of Nuclear Medicine, Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Mikael Sundin
- Division of Pediatrics, Department of Pediatric Hematology, Immunology and HCT, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Sandra Wessman
- Department of Pathology, Department of Oncology-Pathology, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Nikolas Herold
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
- Pediatric Oncology, Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Lars Hjorth
- Department of Clinical Sciences Lund, Paediatrics, Lund University, Skane University Hospital, Lund, Sweden
| | - Per Kogner
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Dan Granberg
- Department of Breast, Endocrine Tumors and Sarcomas, Department of Molecular Medicine and Surgery, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Mark Gaze
- Department of Oncology, University College London Hospitals NHS Foundation Trust, London, United Kingdom
| | - Jakob Stenman
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
- Department of Pediatric Surgery, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
5
|
Taylor CA, Shankar A, Gaze MN, Peet C, Gains JE, Wan S, Voo S, Priftakis D, Bomanji JB. Renal protection during 177lutetium DOTATATE molecular radiotherapy in children: a proposal for safe amino acid infusional volume during peptide receptor radionuclide therapy. Nucl Med Commun 2022; 43:242-246. [PMID: 34678829 DOI: 10.1097/mnm.0000000000001497] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Peptide receptor radionuclide therapy (PRRT) using radiolabelled somatostatin analogues such as 177-lutetium DOTATATE is an effective treatment modality for neuroendocrine tumours, paragangliomas, and neuroblastomas. However, renal and haematopoietic toxicities are the major limitations of this therapeutic approach. The renal toxicity of PRRT is mediated by renal proximal tubular reabsorption and interstitial retention of the radiolabelled peptides resulting in excessive renal irradiation that can be dose-limiting. To protect the kidneys from PRRT-induced radiation nephropathy, basic amino acids are infused during PRRT as they competitively bind to the proximal tubular cells and prevent uptake of the radionuclide. In adults, 1 L of a basic amino acid solution consisting of arginine and lysine is infused over 4 h commencing 30 min prior to PRRT. However, this volume of amino acids infused over 4 h is excessive in small children and can result in hemodynamic overload. This is all the more relevant in paediatric oncology, as many of the children may have been heavily pretreated and so may have treatment-related renal and or cardiac impairment. We have therefore developed the following guidelines for safe paediatric dosing of renal protective amino acid infusions during PRRT. Our recommendations have been made taking into consideration the renal physiology in small children and the principles of safe fluid management in children.
Collapse
Affiliation(s)
| | | | | | | | | | - Simon Wan
- Department of Nuclear Medicine, University College London Hospitals NHS Foundation Trust, London, UK
| | - Stefan Voo
- Department of Nuclear Medicine, University College London Hospitals NHS Foundation Trust, London, UK
| | - Dimitrios Priftakis
- Department of Nuclear Medicine, University College London Hospitals NHS Foundation Trust, London, UK
| | - Jamshed B Bomanji
- Department of Nuclear Medicine, University College London Hospitals NHS Foundation Trust, London, UK
| |
Collapse
|
6
|
Kyriakidis I, Vasileiou E, Rossig C, Roilides E, Groll AH, Tragiannidis A. Invasive Fungal Diseases in Children with Hematological Malignancies Treated with Therapies That Target Cell Surface Antigens: Monoclonal Antibodies, Immune Checkpoint Inhibitors and CAR T-Cell Therapies. J Fungi (Basel) 2021; 7:186. [PMID: 33807678 PMCID: PMC7999508 DOI: 10.3390/jof7030186] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 02/27/2021] [Accepted: 03/02/2021] [Indexed: 12/12/2022] Open
Abstract
Since 1985 when the first agent targeting antigens on the surface of lymphocytes was approved (muromonab-CD3), a multitude of such therapies have been used in children with hematologic malignancies. A detailed literature review until January 2021 was conducted regarding pediatric patient populations treated with agents that target CD2 (alefacept), CD3 (bispecific T-cell engager [BiTE] blinatumomab), CD19 (denintuzumab mafodotin, B43, BiTEs blinatumomab and DT2219ARL, the immunotoxin combotox, and chimeric antigen receptor [CAR] T-cell therapies tisagenlecleucel and axicabtagene ciloleucel), CD20 (rituximab and biosimilars, 90Y-ibritumomab tiuxetan, ofatumumab, and obinutuzumab), CD22 (epratuzumab, inotuzumab ozogamicin, moxetumomab pasudotox, BiTE DT2219ARL, and the immunotoxin combotox), CD25 (basiliximab and inolimomab), CD30 (brentuximab vedotin and iratumumab), CD33 (gemtuzumab ozogamicin), CD38 (daratumumab and isatuximab), CD52 (alemtuzumab), CD66b (90Y-labelled BW 250/183), CD248 (ontuxizumab) and immune checkpoint inhibitors against CTLA-4 (CD152; abatacept, ipilimumab and tremelimumab) or with PD-1/PD-L1 blockade (CD279/CD274; atezolizumab, avelumab, camrelizumab, durvalumab, nivolumab and pembrolizumab). The aim of this narrative review is to describe treatment-related invasive fungal diseases (IFDs) of each category of agents. IFDs are very common in patients under blinatumomab, inotuzumab ozogamicin, basiliximab, gemtuzumab ozogamicin, alemtuzumab, and tisagenlecleucel and uncommon in patients treated with moxetumomab pasudotox, brentuximab vedotin, abatacept, ipilimumab, pembrolizumab and avelumab. Although this new era of precision medicine shows promising outcomes of targeted therapies in children with leukemia or lymphoma, the results of this review stress the necessity for ongoing surveillance and suggest the need for antifungal prophylaxis in cases where IFDs are very common complications.
Collapse
Affiliation(s)
- Ioannis Kyriakidis
- Pediatric and Adolescent Hematology-Oncology Unit, 2nd Department of Pediatrics, Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki, AHEPA Hospital, 54636 Thessaloniki, Greece; (I.K.); (E.V.)
| | - Eleni Vasileiou
- Pediatric and Adolescent Hematology-Oncology Unit, 2nd Department of Pediatrics, Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki, AHEPA Hospital, 54636 Thessaloniki, Greece; (I.K.); (E.V.)
| | - Claudia Rossig
- Department of Pediatric Hematology and Oncology, University Children’s Hospital Münster, D-48149 Münster, Germany;
| | - Emmanuel Roilides
- Infectious Diseases Unit, Basic and Translational Research Unit, Special Unit for Biomedical Research and Education, 3rd Department of Pediatrics, Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki, Hippokration General Hospital, 54642 Thessaloniki, Greece;
| | - Andreas H. Groll
- Center for Bone Marrow Transplantation and Department of Pediatric Hematology and Oncology, Infectious Disease Research Program, University Children’s Hospital Münster, D-48149 Münster, Germany;
| | - Athanasios Tragiannidis
- Pediatric and Adolescent Hematology-Oncology Unit, 2nd Department of Pediatrics, Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki, AHEPA Hospital, 54636 Thessaloniki, Greece; (I.K.); (E.V.)
- Center for Bone Marrow Transplantation and Department of Pediatric Hematology and Oncology, Infectious Disease Research Program, University Children’s Hospital Münster, D-48149 Münster, Germany;
| |
Collapse
|