1
|
Waheed M, Hussain MB, Saeed F, Afzaal M, Ahmed A, Irfan R, Akram N, Ahmed F, Hailu GG. Phytochemical Profiling and Therapeutic Potential of Thyme ( Thymus spp.): A Medicinal Herb. Food Sci Nutr 2024; 12:9893-9912. [PMID: 39723027 PMCID: PMC11666979 DOI: 10.1002/fsn3.4563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 10/07/2024] [Accepted: 10/11/2024] [Indexed: 12/28/2024] Open
Abstract
Thymol is a phenol monoterpene that is naturally derived from cymene and is an isomer of carvacrol. It constitutes a significant portion (10%-64%) of the essential oils found in thyme (Thymus vulgaris L., Lamiaceae), a medicinal plant renowned for its therapeutic properties. Wild thyme is native to the Mediterranean region and has been used in cooking and medicine for a long time. In contemporary contexts, both thymol and thyme offer diverse functional applications in the pharmaceutical, food, and cosmetic industries. Thymol has attracted scientific interest for its potential therapeutic applications in pharmaceuticals and nutraceuticals. Studies have explored its efficacy in treating respiratory, nervous, and cardiovascular disorders, highlighting its promising role in diverse therapeutic interventions. Additionally, this compound demonstrates antimicrobial, antioxidant, anticarcinogenic, anti-inflammatory, and antispasmodic properties. It also shows potential as a growth enhancer and has immunomodulatory properties as well. Other discussed aspects include thymol toxicity, bioavailability, metabolism, and distribution in animals and humans. This review summarizes the most significant data regarding the beneficial effects of thyme bioactive compounds and their applications as a food preservative while taking into account the thyme plant extract and its essential oil.
Collapse
Affiliation(s)
- Marwa Waheed
- Department of Food ScienceGovernment College University FaisalabadFaisalabadPakistan
| | | | - Farhan Saeed
- Department of Food ScienceGovernment College University FaisalabadFaisalabadPakistan
| | - Muhammad Afzaal
- Department of Food ScienceGovernment College University FaisalabadFaisalabadPakistan
| | - Aftab Ahmed
- Department of Nutritional SciencesGovernment College University FaisalabadFaisalabadPakistan
| | - Rushba Irfan
- Institute of Home Sciences, Faculty of Food, Nutrition & Home SciencesUniversity of Agriculture FaisalabadFaisalabadPakistan
| | - Noor Akram
- Food Safety & Biotechnology Lab, Department of Food ScienceGovernment College University FaisalabadFaisalabadPakistan
| | - Faiyaz Ahmed
- Department of Basic Health Sciences, College of Applied Medical SciencesQassim UniversityBuraydahSaudi Arabia
| | | |
Collapse
|
2
|
Zhang N, Yu X, Song L, Xiao Z, Xie J, Xu H. Ferritin confers protection against iron-mediated neurotoxicity and ferroptosis through iron chelating mechanisms in MPP +-induced MES23.5 dopaminergic cells. Free Radic Biol Med 2022; 193:751-763. [PMID: 36395957 DOI: 10.1016/j.freeradbiomed.2022.11.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/03/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022]
Abstract
Ferritin is the main iron storage protein and plays an important role in maintaining iron homeostasis. In a previous study, we reported that apoferritin exerted a neuroprotective effect against MPTP by regulation of brain iron metabolism and ferroptosis. However, the precise cellular mechanisms of extracellular ferritin underlying this protection are not fully elucidated. Ferritin was reported to be localized in different intracellular compartments, cytoplasm or released outside cells. Here we demonstrated that the intracellular iron increased after iron treatment in primary cultured astrocytes. These iron-loaded astrocytes released more ferritin in order to buffer extracellular iron. Using co-culture system of primary cultured astrocytes and MES23.5 dopaminergic cells, we showed that ferritin released by astrocytes could enter MES23.5 dopaminergic cells. And primary cultured astrocytes protected MES23.5 dopaminergic cells against 1-methyl-4-phenylpyridinium ion (MPP+)-induced neurotoxicity and ferroptosis. In addition, we found that exogenous Apoferritin or Ferritin pretreatment could significantly inhibit MPP+-induced cell damage by restoring the cell viability and mitochondrial transmembrane potential (ΔΨm). Furthermore, exogenous Apoferritin and Ferritin might also protect MES23.5 dopaminergic cells against MPP+ by decreasing reactive oxygen species (ROS) and inhibiting the increase of the labile iron pool (LIP). This suggests that astrocytes increased ferritin release to respond to iron overload, which might inhibit iron-mediated oxidative damage and ferroptosis of dopamine (DA) neurons in Parkinson's disease (PD).
Collapse
Affiliation(s)
- Na Zhang
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Xiaoqi Yu
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Limei Song
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Zhixin Xiao
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Junxia Xie
- Institute of Brain Science and Disease, Qingdao University, Qingdao, China.
| | - Huamin Xu
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, School of Basic Medicine, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
3
|
Abera Z, Ejara D, Gebremedhin S. Nutritional and non-nutritional factors associated with low birth weight in Sawula Town, Gamo Gofa Zone, Southern Ethiopia. BMC Res Notes 2019; 12:540. [PMID: 31443690 PMCID: PMC6708206 DOI: 10.1186/s13104-019-4529-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 07/26/2019] [Accepted: 07/30/2019] [Indexed: 12/26/2022] Open
Abstract
OBJECTIVE Birth weight is a major predictor of infant growth and survival, and is dependent on maternal health and nutrition during pregnancy. This study aimed to determine the magnitude and identify nutritional and non-nutritional factors associated with LBW among newborn in Southern Ethiopia. Institutional-based cross-sectional study was used. Systematic random sampling was employed to select the study subjects. Data were entered into Epi-info Version 3.5.3 and then exported to SPSS Version 20 for analysis. Bivariable and multivariable logistic regression were used to compare birth weight across categories of independent variables. The output of the analysis were presented using adjusted odd ratio (AOR) with the corresponding 95% confidence interval (CI). RESULTS A total of 358 mothers participated in the study. The mean (± standard deviation) birth weight of all term infants was 3304 (± 684) gram. The prevalence of LBW was 17.3% (95% CI 13.7-21.2%). Mothers who had MUAC less than 23 cm [AOR = 6.51 (95% CI 2.85-14.91)] and with hemoglobin < 11 mg/dl [AOR = 3.42 (95% CI 1.73-6.78)] have increased odds of delivering LBW and mothers who often take dairy products [AOR = 0.36 (95% CI 0.13-0.98)] were less likely deliver LBW babies than their counterparts.
Collapse
Affiliation(s)
- Zelalem Abera
- JSI/Transform Primary Health Care Project, Arba Minch, Ethiopia
| | - Daba Ejara
- Mada Walabu University, Shashamene campus, Shashamene, Ethiopia
| | | |
Collapse
|
4
|
Figueiredo ACMG, Gomes-Filho IS, Batista JET, Orrico GS, Porto ECL, Cruz Pimenta RM, dos Santos Conceição S, Brito SM, Ramos MDSX, Sena MCF, Vilasboas SWSL, Seixas da Cruz S, Pereira MG. Maternal anemia and birth weight: A prospective cohort study. PLoS One 2019; 14:e0212817. [PMID: 30884493 PMCID: PMC6422668 DOI: 10.1371/journal.pone.0212817] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 01/26/2019] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVE To investigate the association between maternal anemia and low/insufficient birth weight. DESIGN A prospective cohort study of pregnant women who underwent prenatal care at the healthcare units in a municipality of northeast Brazil together with their newborn infants was carried out. The pregnant women were classified as having anemia when the hemoglobin level was below 11 g/dl. Infants who were born full term weighing less than 2500 grams were classified as low birth weight, and those weighing between 2500 and 2999 grams were classified as insufficient weight. The occurrence of maternal anemia and its association with birth weight was verified using crude and adjusted Relative Risk (RR) estimates with their corresponding 95% confidence intervals (95%CIs). RESULTS The final sample was comprised of 622 women. Maternal anemia was considered a risk factor for low/insufficient birth weight, after adjusting the effect measurement for maternal age, family income, urinary infection, parity, alcoholic beverage consumption during pregnancy and gestational body mass index: RRadjusted = 1.38 [95% CI: 1.07 to 1.77]. CONCLUSIONS Maternal anemia was associated with low/insufficient birth weight, representing a risk factor for the gestational outcomes studied.
Collapse
Affiliation(s)
| | | | | | - Géssica Santana Orrico
- Department of Epidemiology, Federal University of Recôncavo da Bahia, Santo Antônio de Jesus, Bahia, Brazil
| | | | | | | | - Sheila Monteiro Brito
- Department of Epidemiology, Federal University of Recôncavo da Bahia, Santo Antônio de Jesus, Bahia, Brazil
| | | | | | | | - Simone Seixas da Cruz
- Department of Epidemiology, Federal University of Recôncavo da Bahia, Santo Antônio de Jesus, Bahia, Brazil
| | | |
Collapse
|
5
|
Badu-Boateng C, Naftalin RJ. Ascorbate and ferritin interactions: Consequences for iron release in vitro and in vivo and implications for inflammation. Free Radic Biol Med 2019; 133:75-87. [PMID: 30268889 DOI: 10.1016/j.freeradbiomed.2018.09.041] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 09/25/2018] [Accepted: 09/26/2018] [Indexed: 01/19/2023]
Abstract
This review discusses the chemical mechanisms of ascorbate-dependent reduction and solubilization of ferritin's ferric iron core and subsequent release of ferrous iron. The process is accelerated by low concentrations of Fe(II) that increase ferritin's intrinsic ascorbate oxidase activity, hence increasing the rate of ascorbate radical formation. These increased rates of ascorbate oxidation provide reducing equivalents (electrons) to ferritin's core and speed the core reduction rates with subsequent solubilization and release of Fe(II). Ascorbate-dependent solubilization of ferritin's iron core has consequences relating to the interpretation of 59Fe uptake sourced from 59Fe-lebelled holotransferrin into ferritin. Ascorbate-dependent reduction of the ferritin core iron solubility increases the size of ferritin's iron exchangeable pool and hence the rate and amount of exchange uptake of 59Fe into ferritin, whilst simultaneously increasing net iron release rate from ferritin. This may rationalize the inconsistency that ascorbate apparently stabilizes 59Fe ferritin and retards lysosomal ferritinolysis and whole cell 59Fe release, whilst paradoxically increasing the rate of net iron release from ferritin. This capacity of ascorbate and iron to synergise ferritin iron release has pathological significance, as it lowers the concentration at which ascorbate activates ferritin's iron release to within the physiological range (50-250 μM). These effects have relevance to inflammatory pathology and to the pro-oxidant effects of ascorbate in cancer therapy and cell death by ferroptosis.
Collapse
Affiliation(s)
- Charles Badu-Boateng
- Kings, BHF Centre of Research Excellence, School of Cardiovascular Medicine & Sciences, Faculty of Life Sciences & Medicine, King's College London, 150 Stamford Street, London SE1 9NH, UK
| | - Richard J Naftalin
- Kings, BHF Centre of Research Excellence, School of Cardiovascular Medicine & Sciences, Faculty of Life Sciences & Medicine, King's College London, 150 Stamford Street, London SE1 9NH, UK
| |
Collapse
|
6
|
Wang D, Yu S, Zhang Y, Huang L, Luo R, Tang Y, Zhao K, Lu B. Caspse-11-GSDMD pathway is required for serum ferritin secretion in sepsis. Clin Immunol 2019; 205:148-152. [PMID: 30731209 DOI: 10.1016/j.clim.2018.11.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 10/08/2018] [Accepted: 11/08/2018] [Indexed: 01/04/2023]
Abstract
Ferritin is the major iron storage molecule of vertebrates, which can be detected in serum under numerous conditions, including inflammatory, neurodegenerative, and malignant diseases. Given this character, serum ferritin is frequently used as a biomarker in clinical settings. How the ferritin secreted to the serum has attracted much attention. Although some studies have found ferritin was mediated via the endoplasmic reticulum (ER)-Golgi secretion pathway or secretory lysosomes trafficking pathway under normal conditions, the secretion pathway of ferritin under pathological conditions, especially in sepsis is not very clear. In this report, we adopt a murine sepsis model to study the secretion pathway of ferritin in sepsis. We demonstrated caspase-11-GSDMD pathway and associated pyroptosis are required for secretion of ferritin in vitro and in vivo in sepsis. Moreover, our work connects pyroptosis to serum ferritin secretion and suggests a passive release process of ferritin, enhancing our understanding of the mechanism of ferritin secretion.
Collapse
Affiliation(s)
- Dan Wang
- Department of Hematology, Key Laboratory of non-resolving inflammation and cancer of Human Province, The third Xiangya Hospital, Central South University, Changsha, Hunan Province 410000, PR China
| | - Songlin Yu
- Department of Hematology, Key Laboratory of non-resolving inflammation and cancer of Human Province, The third Xiangya Hospital, Central South University, Changsha, Hunan Province 410000, PR China; Postdoctoral Research Station of Clinical Medicine, the Third Xiangya Hospital, Central South University, Changsha, Hunan Province 410000, PR China
| | - Yening Zhang
- Department of Hematology, Key Laboratory of non-resolving inflammation and cancer of Human Province, The third Xiangya Hospital, Central South University, Changsha, Hunan Province 410000, PR China
| | - Lingmin Huang
- Department of Hematology, Key Laboratory of non-resolving inflammation and cancer of Human Province, The third Xiangya Hospital, Central South University, Changsha, Hunan Province 410000, PR China
| | - Ruiheng Luo
- Department of Hematology, Key Laboratory of non-resolving inflammation and cancer of Human Province, The third Xiangya Hospital, Central South University, Changsha, Hunan Province 410000, PR China
| | - Yiting Tang
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan Province 410000, PR China
| | - Kai Zhao
- Department of Hematology, Key Laboratory of non-resolving inflammation and cancer of Human Province, The third Xiangya Hospital, Central South University, Changsha, Hunan Province 410000, PR China.
| | - Ben Lu
- Department of Hematology, Key Laboratory of non-resolving inflammation and cancer of Human Province, The third Xiangya Hospital, Central South University, Changsha, Hunan Province 410000, PR China; Key Laboratory of Medical Genetics, School of Biological Science and Technology, Central South University, Changsha, Hunan Province 410000, PR China; Key Laboratory of sepsis and translational medicine, School of Basic Medical Science, Central South University, Changsha, Hunan Province 410000, PR China; Department of Pathophysiology, School of Basic Medical Science, Jinan University, Guangzhou, Guangdong Province 510632, PR China.
| |
Collapse
|
7
|
Alkhateeb A, Zubritsky L, Kinsman B, Leitzel K, Campbell-Baird C, Ali SM, Connor J, Lipton A. Elevation in multiple serum inflammatory biomarkers predicts survival of pancreatic cancer patients with inoperable disease. J Gastrointest Cancer 2015; 45:161-7. [PMID: 24446242 DOI: 10.1007/s12029-013-9564-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
PURPOSE Cancer-associated inflammation plays a driver role in pancreatic tumor development and progression. Moreover, recent studies have implicated the inflammatory tumor microenvironment in modulating therapy response and inducing resistance. The aim of this study is to investigate the prognostic and predictive value of the inflammatory biomarkers serum ferritin and C-reactive protein (CRP) in advanced pancreatic cancer patients. METHODS We measured pretreatment serum ferritin and CRP levels in 159 patients with inoperable pancreatic cancer participating in a phase III trial. RESULTS Serum ferritin and CRP levels were examined for correlations with overall survival using Kaplan-Meier analysis. When analyzed on a categorical basis, patients with higher ferritin (>median) or CRP (>25th percentile) had shorter overall survival. Moreover, the two biomarkers were not correlated suggesting independent mechanisms of production and release. However, when patients were evaluated by their ferritin and CRP levels, only patients with elevation in both inflammatory biomarkers showed a significant decrease in overall survival. CONCLUSIONS Serum ferritin and CRP are independent prognostic factors for shorter survival in patients with inoperable pancreatic tumors. Moreover, the evaluation of patients based on both biomarkers suggested that their prognostic value, although independent, reflected the broader state of cancer-associated inflammation. Thus, serum ferritin and CRP should be further explored as clinical biomarkers.
Collapse
Affiliation(s)
- A Alkhateeb
- Department of Neurosurgery, The Pennsylvania State University Hershey Medical Center, Hershey, PA, 17033, USA
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Waldvogel-Abramowski S, Waeber G, Gassner C, Buser A, Frey BM, Favrat B, Tissot JD. Physiology of iron metabolism. Transfus Med Hemother 2014; 41:213-21. [PMID: 25053935 DOI: 10.1159/000362888] [Citation(s) in RCA: 131] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 12/04/2013] [Indexed: 12/12/2022] Open
Abstract
A revolution occurred during the last decade in the comprehension of the physiology as well as in the physiopathology of iron metabolism. The purpose of this review is to summarize the recent knowledge that has accumulated, allowing a better comprehension of the mechanisms implicated in iron homeostasis. Iron metabolism is very fine tuned. The free molecule is very toxic; therefore, complex regulatory mechanisms have been developed in mammalian to insure adequate intestinal absorption, transportation, utilization, and elimination. 'Ironomics' certainly will be the future of the understanding of genes as well as of the protein-protein interactions involved in iron metabolism.
Collapse
Affiliation(s)
| | - Gérard Waeber
- Service de médecine interne, CHUV, Lausanne, Switzerland
| | | | | | | | - Bernard Favrat
- Department of Ambulatory Care and Community Medicine, Lausanne, Switzerland
| | - Jean-Daniel Tissot
- Service régional vaudois de transfusion sanguine, Epalinges, Switzerland
| |
Collapse
|
9
|
Alkhateeb AA, Connor JR. The significance of ferritin in cancer: anti-oxidation, inflammation and tumorigenesis. Biochim Biophys Acta Rev Cancer 2013; 1836:245-54. [PMID: 23891969 DOI: 10.1016/j.bbcan.2013.07.002] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 07/09/2013] [Accepted: 07/18/2013] [Indexed: 12/16/2022]
Abstract
The iron storage protein ferritin has been continuously studied for over 70years and its function as the primary iron storage protein in cells is well established. Although the intracellular functions of ferritin are for the most part well-characterized, the significance of serum (extracellular) ferritin in human biology is poorly understood. Recently, several lines of evidence have demonstrated that ferritin is a multi-functional protein with possible roles in proliferation, angiogenesis, immunosuppression, and iron delivery. In the context of cancer, ferritin is detected at higher levels in the sera of many cancer patients, and the higher levels correlate with aggressive disease and poor clinical outcome. Furthermore, ferritin is highly expressed in tumor-associated macrophages which have been recently recognized as having critical roles in tumor progression and therapy resistance. These characteristics suggest ferritin could be an attractive target for cancer therapy because its down-regulation could disrupt the supportive tumor microenvironment, kill cancer cells, and increase sensitivity to chemotherapy. In this review, we provide an overview of the current knowledge on the function and regulation of ferritin. Moreover, we examine the literature on ferritin's contributions to tumor progression and therapy resistance, in addition to its therapeutic potential.
Collapse
Affiliation(s)
- Ahmed A Alkhateeb
- Department of Neurosurgery, The Pennsylvania State University Hershey Medical Center, Hershey, PA, USA
| | | |
Collapse
|
10
|
Tang H, Jensen JH, Sammet CL, Sheth S, Swaminathan SV, Hultman K, Kim D, Wu EX, Brown TR, Brittenham GM. MR characterization of hepatic storage iron in transfusional iron overload. J Magn Reson Imaging 2013; 39:307-16. [PMID: 23720394 DOI: 10.1002/jmri.24171] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 03/15/2013] [Indexed: 01/09/2023] Open
Abstract
PURPOSE To quantify the two principal forms of hepatic storage iron, diffuse, soluble iron (primarily ferritin), and aggregated, insoluble iron (primarily hemosiderin) using a new MRI method in patients with transfusional iron overload. MATERIALS AND METHODS Six healthy volunteers and 20 patients with transfusion-dependent thalassemia syndromes and iron overload were examined. Ferritin- and hemosiderin-like iron were determined based on the measurement of two distinct relaxation parameters: the "reduced" transverse relaxation rate, RR2 , and the "aggregation index," A, using three sets of Carr-Purcell-Meiboom-Gill (CPMG) datasets with different interecho spacings. Agarose phantoms, simulating the relaxation and susceptibility properties of tissue with different concentrations of dispersed (ferritin-like) and aggregated (hemosiderin-like) iron, were used for validation. RESULTS Both phantom and in vivo human data confirmed that transverse relaxation components associated with the dispersed and aggregated iron could be separated using the two-parameter (RR2 , A) method. The MRI-determined total hepatic storage iron was highly correlated (r = 0.95) with measurements derived from biopsy or biosusceptometry. As total hepatic storage iron increased, the proportion stored as aggregated iron became greater. CONCLUSION This method provides a new means for noninvasive MRI determination of the partition of hepatic storage iron between ferritin and hemosiderin in iron overload disorders.
Collapse
Affiliation(s)
- Haiying Tang
- Imaging, Discovery Medicine & Clinical Pharmacology, Bristol Myers Squibb, Princeton, New Jersey, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
This chapter is focused on the iron metallome in eukaryotes at the cellular and subcellular level, including properties, utilization in metalloproteins, trafficking, storage, and regulation of these processes. Studies in the model eukaryote Saccharomyces cerevisiae and mammalian cells will be highlighted. The discussion of iron properties will center on the speciation and localization of intracellular iron as well as the cellular and molecular mechanisms for coping with both low iron bioavailability and iron toxicity. The section on iron metalloproteins will emphasize heme, iron-sulfur cluster, and non-heme iron centers, particularly their cellular roles and mechanisms of assembly. The section on iron uptake, trafficking, and storage will compare methods used by yeast and mammalian cells to import iron, how this iron is brought into various organelles, and types of iron storage proteins. Regulation of these processes will be compared between yeast and mammalian cells at the transcriptional, post-transcriptional, and post-translational levels.
Collapse
Affiliation(s)
- Adrienne C. Dlouhy
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| | - Caryn E. Outten
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA
| |
Collapse
|
12
|
Abstract
Iron metabolism has been intensively examined over the last decade and there are many new players in this field which are worth to be introduced. Since its discovery many studies confirmed role of liver hormone hepcidin as key regulator of iron metabolism and pointed out liver as the central organ of system iron homeostasis. Liver cells receive multiple signals related to iron balance and respond by transcriptional regulation of hepcidin expression. This liver hormone is negative regulator of iron metabolism that represses iron efflux from macrophages, hepatocytes and enterocytes by its binding to iron export protein ferroportin. Ferroportin degradation leads to cellular iron retention and decreased iron availability. At level of a cell IRE/IRP (iron responsive elements/iron responsive proteins) system allows tight regulation of iron assimilation that prevents an excess of free intracellular iron which could lead to oxidative stress and damage of DNA, proteins and lipid membranes by ROS (reactive oxygen species). At the same time IRE/IRP system provides sufficient iron in order to meet the metabolic needs. Recently a significant progress in understanding of iron metabolism has been made and new molecular participants have been characterized. Article gives an overview of the current understanding of iron metabolism: absorption, distribution, cellular uptake, release, and storage. We also discuss mechanisms underlying systemic and cellular iron regulation with emphasis on central regulatory hormone hepcidin.
Collapse
Affiliation(s)
- Leida Tandara
- Department of Medical Laboratory Diagnosis, University Hospital Center Split, Split, Croatia.
| | | |
Collapse
|
13
|
Tang X, Zhou B. Ferritin is the key to dietary iron absorption and tissue iron detoxification in Drosophila melanogaster. FASEB J 2012; 27:288-98. [PMID: 23064556 DOI: 10.1096/fj.12-213595] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Mammalian ferritin is predominantly in the cytosol, with a minor portion found in plasma. In most insects, including Drosophila melanogaster, ferritin belongs to the secretory type. The functional role of secretory ferritin in iron homeostasis remains poorly understood in insects as well as in mammalians. Here we used Drosophila to dissect the involvement of ferritin in insect iron metabolism. Midgut-specific knockdown of ferritin resulted in iron accumulation in the gut but systemic iron deficiency (37% control), accompanied by retarded development and reduced survival (3% survival), and was rescued by dietary iron supplementation (50% survival) or exacerbated by iron depletion (0% survival). These results suggest an essential role of ferritin in removing iron from enterocytes across the basolateral membrane. Expression of wild-type ferritin in the midgut, especially in the iron cell region, could significantly rescue ferritin-null mutants (first-instar larvae rescued up to early adults), indicating iron deficiency as the major cause of early death for ferritin flies. In many nonintestinal tissues, tissue-specific ferritin knockdown also caused local iron accumulation (100% increase) and resulted in severe tissue damage, as evidenced by cell loss. Overall, our study demonstrated Drosophila ferritin is essential to two key aspects of iron homeostasis: dietary iron absorption and tissue iron detoxification.
Collapse
Affiliation(s)
- Xiaona Tang
- State Key Laboratory of Biomembrane and Membrane Biotechnology, School of Life Sciences, Tsinghua University, Beijing, China
| | | |
Collapse
|
14
|
Anderson CP, Shen M, Eisenstein RS, Leibold EA. Mammalian iron metabolism and its control by iron regulatory proteins. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1823:1468-83. [PMID: 22610083 DOI: 10.1016/j.bbamcr.2012.05.010] [Citation(s) in RCA: 353] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Revised: 05/07/2012] [Accepted: 05/11/2012] [Indexed: 02/06/2023]
Abstract
Cellular iron homeostasis is maintained by iron regulatory proteins 1 and 2 (IRP1 and IRP2). IRPs bind to iron-responsive elements (IREs) located in the untranslated regions of mRNAs encoding protein involved in iron uptake, storage, utilization and export. Over the past decade, significant progress has been made in understanding how IRPs are regulated by iron-dependent and iron-independent mechanisms and the pathological consequences of IRP2 deficiency in mice. The identification of novel IREs involved in diverse cellular pathways has revealed that the IRP-IRE network extends to processes other than iron homeostasis. A mechanistic understanding of IRP regulation will likely yield important insights into the basis of disorders of iron metabolism. This article is part of a Special Issue entitled: Cell Biology of Metals.
Collapse
Affiliation(s)
- Cole P Anderson
- Department of Oncological Sciences, University of Utah, 15 N. 2030 E., Salt Lake City, UT 84112, USA
| | | | | | | |
Collapse
|
15
|
Affiliation(s)
- Robert E Fleming
- Department of Pediatrics, Saint Louis University School of Medicine, St. Louis, USA
| | | |
Collapse
|
16
|
Chen C, Paw BH. Cellular and mitochondrial iron homeostasis in vertebrates. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1823:1459-67. [PMID: 22285816 DOI: 10.1016/j.bbamcr.2012.01.003] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Revised: 01/07/2012] [Accepted: 01/07/2012] [Indexed: 02/08/2023]
Abstract
Iron plays an essential role in cellular metabolism and biological processes. However, due to its intrinsic redox activity, free iron is a potentially toxic molecule in cellular biochemistry. Thus, organisms have developed sophisticated ways to import, sequester, and utilize iron. The transferrin cycle is a well-studied iron uptake pathway that is important for most vertebrate cells. Circulating iron can also be imported into cells by mechanisms that are independent of transferrin. Once imported into erythroid cells, iron is predominantly consumed by the mitochondria for the biosynthesis of heme and iron sulfur clusters. This review focuses on canonical transferrin-mediated and the newly discovered, non-transferrin mediated iron uptake pathways, as well as, mitochondrial iron homeostasis in higher eukaryotes. This article is part of a Special Issue entitled: Cell Biology of Metals.
Collapse
Affiliation(s)
- Caiyong Chen
- Department of Medicine, Hematology Division, Brigham & Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
17
|
The ferroxidase center is essential for ferritin iron loading in the presence of phosphate and minimizes side reactions that form Fe(III)-phosphate colloids. Biometals 2011; 25:259-73. [PMID: 22012445 DOI: 10.1007/s10534-011-9500-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2011] [Accepted: 10/08/2011] [Indexed: 10/16/2022]
Abstract
Ferritin iron loading was studied in the presence of physiological serum phosphate concentrations (1 mM), elevated serum concentrations (2-5 mM), and intracellular phosphate concentrations (10 mM). Experiments compared iron loading into homopolymers of H and L ferritin with horse spleen ferritin. Prior to studying the reactions with ferritin, a series of control reactions were performed to study the solution chemistry of Fe(2+) and phosphate. In the absence of ferritin, phosphate catalyzed Fe(2+) oxidation and formed soluble polymeric Fe(III)-phosphate complexes. The Fe(III)-phosphate complexes were characterized by electron microscopy and atomic force microscopy, which revealed spherical nanoparticles with diameters of 10-20 nm. The soluble Fe(III)-phosphate complexes also formed as competing reactions during iron loading into ferritin. Elemental analysis on ferritin samples separated from the Fe(III)-phosphate complexes showed that as the phosphate concentration increased, the iron loading into horse ferritin decreased. The composition of the mineral that does form inside horse ferritin has a higher iron/phosphate ratio (~1:1) than ferritin purified from tissue (~10:1). Phosphate significantly inhibited iron loading into L ferritin, due to the lack of the ferroxidase center in this homopolymer. Spectrophotometric assays of iron loading into H ferritin showed identical iron loading curves in the presence of phosphate, indicating that the ferroxidase center of H ferritin efficiently competes with phosphate for the binding and oxidation of Fe(2+). Additional studies demonstrated that H ferritin ferroxidase activity could be used to oxidize Fe(2+) and facilitate the transfer of the Fe(3+) into apo transferrin in the presence of phosphate.
Collapse
|