1
|
Hughes LA, Rackham O, Filipovska A. Illuminating mitochondrial translation through mouse models. Hum Mol Genet 2024; 33:R61-R79. [PMID: 38779771 PMCID: PMC11112386 DOI: 10.1093/hmg/ddae020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/22/2024] [Accepted: 01/31/2024] [Indexed: 05/25/2024] Open
Abstract
Mitochondria are hubs of metabolic activity with a major role in ATP conversion by oxidative phosphorylation (OXPHOS). The mammalian mitochondrial genome encodes 11 mRNAs encoding 13 OXPHOS proteins along with 2 rRNAs and 22 tRNAs, that facilitate their translation on mitoribosomes. Maintaining the internal production of core OXPHOS subunits requires modulation of the mitochondrial capacity to match the cellular requirements and correct insertion of particularly hydrophobic proteins into the inner mitochondrial membrane. The mitochondrial translation system is essential for energy production and defects result in severe, phenotypically diverse diseases, including mitochondrial diseases that typically affect postmitotic tissues with high metabolic demands. Understanding the complex mechanisms that underlie the pathologies of diseases involving impaired mitochondrial translation is key to tailoring specific treatments and effectively targeting the affected organs. Disease mutations have provided a fundamental, yet limited, understanding of mitochondrial protein synthesis, since effective modification of the mitochondrial genome has proven challenging. However, advances in next generation sequencing, cryoelectron microscopy, and multi-omic technologies have revealed unexpected and unusual features of the mitochondrial protein synthesis machinery in the last decade. Genome editing tools have generated unique models that have accelerated our mechanistic understanding of mitochondrial translation and its physiological importance. Here we review the most recent mouse models of disease pathogenesis caused by defects in mitochondrial protein synthesis and discuss their value for preclinical research and therapeutic development.
Collapse
Affiliation(s)
- Laetitia A Hughes
- Telethon Kids Institute, Northern Entrance, Perth Children’s Hospital, 15 Hospital Avenue, Nedlands, WA 6009, Australia
- Harry Perkins Institute of Medical Research, 6 Verdun Street, Nedlands, WA 6009, Australia
- ARC Centre of Excellence in Synthetic Biology, 35 Stirling Highway, Crawley, WA 6009, The University of Western Australia, Crawley, WA 6009, Australia
| | - Oliver Rackham
- Telethon Kids Institute, Northern Entrance, Perth Children’s Hospital, 15 Hospital Avenue, Nedlands, WA 6009, Australia
- Harry Perkins Institute of Medical Research, 6 Verdun Street, Nedlands, WA 6009, Australia
- ARC Centre of Excellence in Synthetic Biology, 35 Stirling Highway, Crawley, WA 6009, The University of Western Australia, Crawley, WA 6009, Australia
- Curtin Medical School, Curtin University, Kent Street, Bentley, WA 6102, Australia
- Curtin Health Innovation Research Institute, Curtin University, Kent Street, Bentley, WA 6102, Australia
| | - Aleksandra Filipovska
- Telethon Kids Institute, Northern Entrance, Perth Children’s Hospital, 15 Hospital Avenue, Nedlands, WA 6009, Australia
- ARC Centre of Excellence in Synthetic Biology, 35 Stirling Highway, Crawley, WA 6009, The University of Western Australia, Crawley, WA 6009, Australia
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, 19 Innovation Walk, Clayton, Clayton, VIC 3168, Australia
| |
Collapse
|
2
|
Isaac RS, Tullius TW, Hansen KG, Dubocanin D, Couvillion M, Stergachis AB, Churchman LS. Single-nucleoid architecture reveals heterogeneous packaging of mitochondrial DNA. Nat Struct Mol Biol 2024; 31:568-577. [PMID: 38347148 PMCID: PMC11370055 DOI: 10.1038/s41594-024-01225-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 01/09/2024] [Indexed: 03/03/2024]
Abstract
Cellular metabolism relies on the regulation and maintenance of mitochondrial DNA (mtDNA). Hundreds to thousands of copies of mtDNA exist in each cell, yet because mitochondria lack histones or other machinery important for nuclear genome compaction, it remains unresolved how mtDNA is packaged into individual nucleoids. In this study, we used long-read single-molecule accessibility mapping to measure the compaction of individual full-length mtDNA molecules at near single-nucleotide resolution. We found that, unlike the nuclear genome, human mtDNA largely undergoes all-or-none global compaction, with most nucleoids existing in an inaccessible, inactive state. Highly accessible mitochondrial nucleoids are co-occupied by transcription and replication components and selectively form a triple-stranded displacement loop structure. In addition, we showed that the primary nucleoid-associated protein TFAM directly modulates the fraction of inaccessible nucleoids both in vivo and in vitro, acting consistently with a nucleation-and-spreading mechanism to coat and compact mitochondrial nucleoids. Together, these findings reveal the primary architecture of mtDNA packaging and regulation in human cells.
Collapse
Affiliation(s)
- R Stefan Isaac
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Thomas W Tullius
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Katja G Hansen
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Danilo Dubocanin
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Mary Couvillion
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Andrew B Stergachis
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, WA, USA.
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.
| | - L Stirling Churchman
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
3
|
Tan BG, Gustafsson CM, Falkenberg M. Mechanisms and regulation of human mitochondrial transcription. Nat Rev Mol Cell Biol 2024; 25:119-132. [PMID: 37783784 DOI: 10.1038/s41580-023-00661-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2023] [Indexed: 10/04/2023]
Abstract
The expression of mitochondrial genes is regulated in response to the metabolic needs of different cell types, but the basic mechanisms underlying this process are still poorly understood. In this Review, we describe how different layers of regulation cooperate to fine tune initiation of both mitochondrial DNA (mtDNA) transcription and replication in human cells. We discuss our current understanding of the molecular mechanisms that drive and regulate transcription initiation from mtDNA promoters, and how the packaging of mtDNA into nucleoids can control the number of mtDNA molecules available for both transcription and replication. Indeed, a unique aspect of the mitochondrial transcription machinery is that it is coupled to mtDNA replication, such that mitochondrial RNA polymerase is additionally required for primer synthesis at mtDNA origins of replication. We discuss how the choice between replication-primer formation and genome-length RNA synthesis is controlled at the main origin of replication (OriH) and how the recent discovery of an additional mitochondrial promoter (LSP2) in humans may change this long-standing model.
Collapse
Affiliation(s)
- Benedict G Tan
- Institute for Mitochondrial Diseases and Ageing, Faculty of Medicine and University Hospital Cologne, Cluster of Excellence Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Claes M Gustafsson
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Maria Falkenberg
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
4
|
Heo J, Park YJ, Kim Y, Lee HS, Kim J, Kwon SH, Kang MG, Rhee HW, Sun W, Lee JH, Cho H. Mitochondrial E3 ligase MARCH5 is a safeguard against DNA-PKcs-mediated immune signaling in mitochondria-damaged cells. Cell Death Dis 2023; 14:788. [PMID: 38040710 PMCID: PMC10692114 DOI: 10.1038/s41419-023-06315-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 11/10/2023] [Accepted: 11/15/2023] [Indexed: 12/03/2023]
Abstract
Mitochondrial dysfunction is important in various chronic degenerative disorders, and aberrant immune responses elicited by cytoplasmic mitochondrial DNA (mtDNA) may be related. Here, we developed mtDNA-targeted MTERF1-FokI and TFAM-FokI endonuclease systems to induce mitochondrial DNA double-strand breaks (mtDSBs). In these cells, the mtDNA copy number was significantly reduced upon mtDSB induction. Interestingly, in cGAS knockout cells, synthesis of interferon β1 and interferon-stimulated gene was increased upon mtDSB induction. We found that mtDSBs activated DNA-PKcs and HSPA8 in a VDAC1-dependent manner. Importantly, the mitochondrial E3 ligase MARCH5 bound active DNA-PKcs in cells with mtDSBs and reduced the type І interferon response through the degradation of DNA-PKcs. Likewise, mitochondrial damage caused by LPS treatment in RAW264.7 macrophage cells increased phospho-HSPA8 levels and the synthesis of mIFNB1 mRNA in a DNA-PKcs-dependent manner. Accordingly, in March5 knockout macrophages, phospho-HSPA8 levels and the synthesis of mIFNB1 mRNA were prolonged after LPS stimulation. Together, cytoplasmic mtDNA elicits a cellular immune response through DNA-PKcs, and mitochondrial MARCH5 may be a safeguard to prevent persistent inflammatory reactions.
Collapse
Affiliation(s)
- June Heo
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, South Korea
- Department of Biomedical Sciences, Graduate School of Ajou University, Suwon, South Korea
| | - Yeon-Ji Park
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, South Korea
| | - Yonghyeon Kim
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, South Korea
- Department of Biomedical Sciences, Graduate School of Ajou University, Suwon, South Korea
| | - Ho-Soo Lee
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, South Korea
| | - Jeongah Kim
- Department of Anatomy, College of medicine, Korea University, Seoul, South Korea
| | - Soon-Hwan Kwon
- Department of Infectious Diseases, Research Center of Infectious and Environmental Diseases, Armed Forces Medical Research Institute, Daejeon, South Korea
| | - Myeong-Gyun Kang
- Department of Chemistry, Seoul National University, Seoul, South Korea
| | - Hyun-Woo Rhee
- Department of Chemistry, Seoul National University, Seoul, South Korea
| | - Woong Sun
- Department of Anatomy, College of medicine, Korea University, Seoul, South Korea
| | - Jae-Ho Lee
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, South Korea.
- Department of Biomedical Sciences, Graduate School of Ajou University, Suwon, South Korea.
| | - Hyeseong Cho
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, South Korea.
| |
Collapse
|
5
|
Long Q, Zhou Y, Guo J, Wu H, Liu X. Multi-phase separation in mitochondrial nucleoids and eukaryotic nuclei. BIOPHYSICS REPORTS 2023; 9:113-119. [PMID: 38028151 PMCID: PMC10648231 DOI: 10.52601/bpr.2023.220018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 02/10/2023] [Indexed: 03/28/2023] Open
Abstract
In mammalian cells, besides nuclei, mitochondria are the only semi-autonomous organelles possessing own DNA organized in the form of nucleoids. While eukaryotic nuclear DNA compaction, chromatin compartmentalization and transcription are regulated by phase separation, our recent work proposed a model of mitochondrial nucleoid self-assembly and transcriptional regulation by multi-phase separation. Herein, we summarized the phase separation both in the nucleus and mitochondrial nucleoids, and did a comparison of the organization and activity regulating, which would provide new insight into the understanding of both architecture and genetics of nucleus and mitochondrial nucleoids.
Collapse
Affiliation(s)
- Qi Long
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Guangzhou Medical University; Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Yanshuang Zhou
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Guangzhou Medical University; Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Jingyi Guo
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Guangzhou Medical University; Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Hao Wu
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Guangzhou Medical University; Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Xingguo Liu
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People’s Hospital, Guangzhou Medical University; Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, China-New Zealand Joint Laboratory on Biomedicine and Health, CUHK-GIBH Joint Research Laboratory on Stem Cells and Regenerative Medicine, Institute for Stem Cell and Regeneration, Institute for Stem Cell and Regeneration, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, China
| |
Collapse
|
6
|
Rubalcava-Gracia D, García-Villegas R, Larsson NG. No role for nuclear transcription regulators in mammalian mitochondria? Mol Cell 2023; 83:832-842. [PMID: 36182692 DOI: 10.1016/j.molcel.2022.09.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/17/2022] [Accepted: 09/08/2022] [Indexed: 10/14/2022]
Abstract
Although the mammalian mtDNA transcription machinery is simple and resembles bacteriophage systems, there are many reports that nuclear transcription regulators, as exemplified by MEF2D, MOF, PGC-1α, and hormone receptors, are imported into mammalian mitochondria and directly interact with the mtDNA transcription machinery. However, the supporting experimental evidence for this concept is open to alternate interpretations, and a main issue is the difficulty in distinguishing indirect regulation of mtDNA transcription, caused by altered nuclear gene expression, from direct intramitochondrial effects. We provide a critical discussion and experimental guidelines to stringently assess roles of intramitochondrial factors implicated in direct regulation of mammalian mtDNA transcription.
Collapse
Affiliation(s)
- Diana Rubalcava-Gracia
- Division of Molecular Metabolism, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Rodolfo García-Villegas
- Division of Molecular Metabolism, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Nils-Göran Larsson
- Division of Molecular Metabolism, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
7
|
Abstract
Mitoribosome biogenesis is a complex and energetically costly process that involves RNA elements encoded in the mitochondrial genome and mitoribosomal proteins most frequently encoded in the nuclear genome. The process is catalyzed by extra-ribosomal proteins, nucleus-encoded assembly factors that act in all stages of the assembly process to coordinate the processing and maturation of ribosomal RNAs with the hierarchical association of ribosomal proteins. Biochemical studies and recent cryo-EM structures of mammalian mitoribosomes have provided hints regarding their assembly. In this general concept chapter, we will briefly describe the current knowledge, mainly regarding the mammalian mitoribosome biogenesis pathway and factors involved, and will emphasize the biological sources and approaches that have been applied to advance the field.
Collapse
Affiliation(s)
- J Conor Moran
- Department of Biochemistry and Molecular Biology, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Samuel Del'Olio
- Department of Molecular and Cellular Pharmacology, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Austin Choi
- Department of Neurology, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Hui Zhong
- Department of Biochemistry and Molecular Biology, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Antoni Barrientos
- Department of Neurology and Department of Biochemistry and Molecular Biology, University of Miami, Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
8
|
Modulating p-AMPK/mTOR Pathway of Mitochondrial Dysfunction Caused by MTERF1 Abnormal Expression in Colorectal Cancer Cells. Int J Mol Sci 2022; 23:ijms232012354. [PMID: 36293209 PMCID: PMC9604058 DOI: 10.3390/ijms232012354] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 11/30/2022] Open
Abstract
Human mitochondrial transcription termination factor 1 (MTERF1) has been demonstrated to play an important role in mitochondrial gene expression regulation. However, the molecular mechanism of MTERF1 in colorectal cancer (CRC) remains largely unknown. Here, we found that MTERF1 expression was significantly increased in colon cancer tissues compared with normal colorectal tissue by Western blotting, immunohistochemistry, and tissue microarrays (TMA). Overexpression of MTERF1 in the HT29 cell promoted cell proliferation, migration, invasion, and xenograft tumor formation, whereas knockdown of MTERF1 in HCT116 cells appeared to be the opposite phenotype to HT29 cells. Furthermore, MTERF1 can increase mitochondrial DNA (mtDNA) replication, transcription, and protein synthesis in colorectal cancer cells; increase ATP levels, the mitochondrial crista density, mitochondrial membrane potential, and oxygen consumption rate (OCR); and reduce the ROS production in colorectal cancer cells, thereby enhancing mitochondrial oxidative phosphorylation (OXPHOS) activity. Mechanistically, we revealed that MTERF1 regulates the AMPK/mTOR signaling pathway in cancerous cell lines, and we also confirmed the involvement of the AMPK/mTOR signaling pathway in both xenograft tumor tissues and colorectal cancer tissues. In summary, our data reveal an oncogenic role of MTERF1 in CRC progression, indicating that MTERF1 may represent a new therapeutic target in the future.
Collapse
|
9
|
Kozhukhar N, Spadafora D, Rodriguez YAR, Alexeyev MF. A Method for In Situ Reverse Genetic Analysis of Proteins Involved mtDNA Replication. Cells 2022; 11:2168. [PMID: 35883613 PMCID: PMC9316749 DOI: 10.3390/cells11142168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/29/2022] [Accepted: 07/10/2022] [Indexed: 02/01/2023] Open
Abstract
The unavailability of tractable reverse genetic analysis approaches represents an obstacle to a better understanding of mitochondrial DNA replication. Here, we used CRISPR-Cas9 mediated gene editing to establish the conditional viability of knockouts in the key proteins involved in mtDNA replication. This observation prompted us to develop a set of tools for reverse genetic analysis in situ, which we called the GeneSwap approach. The technique was validated by identifying 730 amino acid (aa) substitutions in the mature human TFAM that are conditionally permissive for mtDNA replication. We established that HMG domains of TFAM are functionally independent, which opens opportunities for engineering chimeric TFAMs with customized properties for studies on mtDNA replication, mitochondrial transcription, and respiratory chain function. Finally, we present evidence that the HMG2 domain plays the leading role in TFAM species-specificity, thus indicating a potential pathway for TFAM-mtDNA evolutionary co-adaptations.
Collapse
Affiliation(s)
| | | | | | - Mikhail F. Alexeyev
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, AL 36688, USA; (N.K.); (D.S.); (Y.A.R.R.)
| |
Collapse
|
10
|
Hyatt JK. MOTS-c increases in skeletal muscle following long-term physical activity and improves acute exercise performance after a single dose. Physiol Rep 2022; 10:e15377. [PMID: 35808870 PMCID: PMC9270643 DOI: 10.14814/phy2.15377] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/08/2022] [Accepted: 06/17/2022] [Indexed: 05/03/2023] Open
Abstract
Skeletal muscle adapts to aerobic exercise training, in part, through fast-to-slow phenotypic shifts and an expansion of mitochondrial networks. Recent research suggests that the local and systemic benefits of exercise training also may be modulated by the mitochondrial-derived peptide, MOTS-c. Using a combination of acute and chronic exercise challenges, the goal of the present study was to characterize the interrelationship between MOTS-c and exercise. Compared to sedentary controls, 4-8 weeks of voluntary running increased MOTS-c protein expression ~1.5-5-fold in rodent plantaris, medial gastrocnemius, and tibialis anterior muscles and is sustained for 4-6 weeks of detraining. This MOTS-c increase coincides with elevations in mtDNA reflecting an expansion of the mitochondrial genome to aerobic training. In a second experiment, a single dose (15 mg/kg) of MOTS-c administered to untrained mice improved total running time (12% increase) and distance (15% increase) during an acute exercise test. In a final experiment, MOTS-c protein translocated from the cytoplasm into the nucleus in two of six mouse soleus muscles 1 h following a 90-min downhill running challenge; no nuclear translocation was observed in the plantaris muscles from the same animals. These findings indicate that MOTS-c protein accumulates within trained skeletal muscle likely through a concomitant increase in mtDNA. Furthermore, these data suggest that the systemic benefits of exercise are, in part, mediated by an expansion of the skeletal muscle-derived MOTS-c protein pool. The benefits of training may persist into a period of inactivity (e.g., detraining) resulting from a sustained increase in intramuscular MOTS-c proteins levels.
Collapse
|
11
|
Abstract
In the course of its short history, mitochondrial DNA (mtDNA) has made a long journey from obscurity to the forefront of research on major biological processes. mtDNA alterations have been found in all major disease groups, and their significance remains the subject of intense research. Despite remarkable progress, our understanding of the major aspects of mtDNA biology, such as its replication, damage, repair, transcription, maintenance, etc., is frustratingly limited. The path to better understanding mtDNA and its role in cells, however, remains torturous and not without errors, which sometimes leave a long trail of controversy behind them. This review aims to provide a brief summary of our current knowledge of mtDNA and highlight some of the controversies that require attention from the mitochondrial research community.
Collapse
Affiliation(s)
- Inna Shokolenko
- Department of Biomedical Sciences, Pat Capps Covey College of Allied Health Professions, University of South Alabama, Mobile, AL 36688, USA
| | - Mikhail Alexeyev
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, AL 36688, USA
- Correspondence:
| |
Collapse
|
12
|
Mitochondria homeostasis: Biology and involvement in hepatic steatosis to NASH. Acta Pharmacol Sin 2022; 43:1141-1155. [PMID: 35105958 PMCID: PMC9061859 DOI: 10.1038/s41401-022-00864-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/09/2022] [Indexed: 12/13/2022] Open
Abstract
Mitochondrial biology and behavior are central to the physiology of liver. Multiple mitochondrial quality control mechanisms remodel mitochondrial homeostasis under physiological and pathological conditions. Mitochondrial dysfunction and damage induced by overnutrition lead to oxidative stress, inflammation, liver cell death, and collagen production, which advance hepatic steatosis to nonalcoholic steatohepatitis (NASH). Accumulating evidence suggests that specific interventions that target mitochondrial homeostasis, including energy metabolism, antioxidant effects, and mitochondrial quality control, have emerged as promising strategies for NASH treatment. However, clinical translation of these findings is challenging due to the complex and unclear mechanisms of mitochondrial homeostasis in the pathophysiology of NASH.
Collapse
|
13
|
Organization and expression of the mammalian mitochondrial genome. Nat Rev Genet 2022; 23:606-623. [PMID: 35459860 DOI: 10.1038/s41576-022-00480-x] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2022] [Indexed: 02/07/2023]
Abstract
The mitochondrial genome encodes core subunits of the respiratory chain that drives oxidative phosphorylation and is, therefore, essential for energy conversion. Advances in high-throughput sequencing technologies and cryoelectron microscopy have shed light on the structure and organization of the mitochondrial genome and revealed unique mechanisms of mitochondrial gene regulation. New animal models of impaired mitochondrial protein synthesis have shown how the coordinated regulation of the cytoplasmic and mitochondrial translation machineries ensures the correct assembly of the respiratory chain complexes. These new technologies and disease models are providing a deeper understanding of mitochondrial genome organization and expression and of the diseases caused by impaired energy conversion, including mitochondrial, neurodegenerative, cardiovascular and metabolic diseases. They also provide avenues for the development of treatments for these conditions.
Collapse
|
14
|
Miranda M, Bonekamp NA, Kühl I. Starting the engine of the powerhouse: mitochondrial transcription and beyond. Biol Chem 2022; 403:779-805. [PMID: 35355496 DOI: 10.1515/hsz-2021-0416] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 03/09/2022] [Indexed: 12/25/2022]
Abstract
Mitochondria are central hubs for cellular metabolism, coordinating a variety of metabolic reactions crucial for human health. Mitochondria provide most of the cellular energy via their oxidative phosphorylation (OXPHOS) system, which requires the coordinated expression of genes encoded by both the nuclear (nDNA) and mitochondrial genomes (mtDNA). Transcription of mtDNA is not only essential for the biogenesis of the OXPHOS system, but also generates RNA primers necessary to initiate mtDNA replication. Like the prokaryotic system, mitochondria have no membrane-based compartmentalization to separate the different steps of mtDNA maintenance and expression and depend entirely on nDNA-encoded factors imported into the organelle. Our understanding of mitochondrial transcription in mammalian cells has largely progressed, but the mechanisms regulating mtDNA gene expression are still poorly understood despite their profound importance for human disease. Here, we review mechanisms of mitochondrial gene expression with a focus on the recent findings in the field of mammalian mtDNA transcription and disease phenotypes caused by defects in proteins involved in this process.
Collapse
Affiliation(s)
- Maria Miranda
- Department of Mitochondrial Biology, Max Planck Institute for Biology of Ageing, Cologne, D-50931, Germany
| | - Nina A Bonekamp
- Department of Neuroanatomy, Mannheim Center for Translational Neurosciences (MCTN), Medical Faculty Mannheim, Heidelberg University, Mannheim, D-68167, Germany
| | - Inge Kühl
- Department of Cell Biology, Institute of Integrative Biology of the Cell (I2BC), UMR9198, CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette, F-91190, France
| |
Collapse
|
15
|
Xu Z, Mo Y, Li X, Hong W, Shao S, Liu Y, Shu F, Jiang L, Tan N. The Novel LncRNA AK035396 Drives Cardiomyocyte Apoptosis Through Mterf1 in Myocardial Ischemia/Reperfusion Injury. Front Cell Dev Biol 2021; 9:773381. [PMID: 34820386 PMCID: PMC8606567 DOI: 10.3389/fcell.2021.773381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 10/18/2021] [Indexed: 12/04/2022] Open
Abstract
Background: Myocardial ischaemia/reperfusion (I/R) injury is still a major challenge in clinical treatment. The role of long non-coding RNA (lncRNA) in the regulation of myocardial I/R injury still needs to be elucidated. Methods: The primary isolated neonatal mousse cardiomyocytes and adult mice were used to construct a myocardial ischemia-reperfusion model. qRT-PCR is used to verify gene expression in myocardial tissue and myocardial cells. The effect of AK035396 in primary cardiomyocytes and mouse myocardium was confirmed by TUNEL staining and in vitro flow cytometry experiments. RNA pulldown and Western blot were used to identify AK035396 interacting proteins. The expression of apoptosis-related proteins was identified by qRT-PCR and Western blot. Results:In vivo and in vitro MIRI models, AK035396 was up-regulated after myocardial infarction. Functional studies have shown that knockdown of AK035396 reduces the apoptosis of primary cardiomyocytes and mouse myocardial tissue. AK035396 directly interacts with Mterf1 and inhibits the level of Mterf1. Further experiments have shown that inhibiting Mterf1 will promote the expression of mitochondrial genes COXII and CYTb and cause cell apoptosis. Conclusion: AK035396 plays an important role in myocardial ischaemia-reperfusion injury by regulating the Mterf1-COXII/CYTb pathway.
Collapse
Affiliation(s)
- Zhaoyan Xu
- Department of Cardiology, the Second School of Clinical Medicine, The First People Hospital of Foshan, Southern Medical University, Guangzhou, China
| | - Yuanxi Mo
- Department of Cardiology, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xinyi Li
- School of Medicine, South China University of Technology, Guangzhou, China.,Guangdong Provincial Geriatrics Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Wanzi Hong
- Department of Cardiology, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,School of Medicine, South China University of Technology, Guangzhou, China
| | - Sisi Shao
- Department of Cardiology, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,School of Medicine, South China University of Technology, Guangzhou, China
| | - Yaoxin Liu
- Department of Cardiology, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,School of Medicine, South China University of Technology, Guangzhou, China
| | - Fen Shu
- Department of Cardiology, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,School of Medicine, South China University of Technology, Guangzhou, China
| | - Lei Jiang
- School of Medicine, South China University of Technology, Guangzhou, China.,Guangdong Provincial Geriatrics Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Ning Tan
- Department of Cardiology, the Second School of Clinical Medicine, The First People Hospital of Foshan, Southern Medical University, Guangzhou, China.,Department of Cardiology, Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,School of Medicine, South China University of Technology, Guangzhou, China
| |
Collapse
|
16
|
Yan B, Tzertzinis G, Schildkraut I, Ettwiller L. Comprehensive determination of transcription start sites derived from all RNA polymerases using ReCappable-seq. Genome Res 2021; 32:162-174. [PMID: 34815308 PMCID: PMC8744680 DOI: 10.1101/gr.275784.121] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 11/19/2021] [Indexed: 11/24/2022]
Abstract
Determination of eukaryotic transcription start sites (TSSs) has been based on methods that require the cap structure at the 5' end of transcripts derived from Pol II RNA polymerase. Consequently, these methods do not reveal TSSs derived from the other RNA polymerases that also play critical roles in various cell functions. To address this limitation, we developed ReCappable-seq, which comprehensively identifies TSS for both Pol II and non-Pol II transcripts at single-nucleotide resolution. The method relies on specific enzymatic exchange of 5' m7G caps and 5' triphosphates with a selectable tag. When applied to human transcriptomes, ReCappable-seq identifies Pol II TSSs that are in agreement with orthogonal methods such as CAGE. Additionally, ReCappable-seq reveals a rich landscape of TSSs associated with Pol III transcripts that have not previously been amenable to study at genome-wide scale. Novel TSS from non-Pol II transcription can be located in the nuclear and mitochondrial genomes. ReCappable-seq interrogates the regulatory landscape of coding and noncoding RNA concurrently and enables the classification of epigenetic profiles associated with Pol II and non-Pol II TSS.
Collapse
Affiliation(s)
- Bo Yan
- New England Biolabs Incorporated, Ipswich, Massachusetts 01938, USA
| | | | - Ira Schildkraut
- New England Biolabs Incorporated, Ipswich, Massachusetts 01938, USA
| | | |
Collapse
|
17
|
Phase separation drives the self-assembly of mitochondrial nucleoids for transcriptional modulation. Nat Struct Mol Biol 2021; 28:900-908. [PMID: 34711968 DOI: 10.1038/s41594-021-00671-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 09/14/2021] [Indexed: 11/08/2022]
Abstract
Mitochondria, the only semiautonomous organelles in mammalian cells, possess a circular, double-stranded genome termed mitochondrial DNA (mtDNA). While nuclear genomic DNA compaction, chromatin compartmentalization and transcription are known to be regulated by phase separation, how the mitochondrial nucleoid, a highly compacted spherical suborganelle, is assembled and functions is unknown. Here we assembled mitochondrial nucleoids in vitro and show that mitochondrial transcription factor A (TFAM) undergoes phase separation with mtDNA to drive nucleoid self-assembly. Moreover, nucleoid droplet formation promotes recruitment of the transcription machinery via a special, co-phase separation that concentrates transcription initiation, elongation and termination factors, and retains substrates to facilitate mtDNA transcription. We propose a model of mitochondrial nucleoid self-assembly driven by phase separation, and a pattern of co-phase separation involved in mitochondrial transcriptional regulation, which orchestrates the roles of TFAM in both mitochondrial nucleoid organization and transcription.
Collapse
|
18
|
p107 mediated mitochondrial function controls muscle stem cell proliferative fates. Nat Commun 2021; 12:5977. [PMID: 34645816 PMCID: PMC8514468 DOI: 10.1038/s41467-021-26176-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 09/22/2021] [Indexed: 11/23/2022] Open
Abstract
Muscle diseases and aging are associated with impaired myogenic stem cell self-renewal and fewer proliferating progenitors (MPs). Importantly, distinct metabolic states induced by glycolysis or oxidative phosphorylation have been connected to MP proliferation and differentiation. However, how these energy-provisioning mechanisms cooperate remain obscure. Herein, we describe a mechanism by which mitochondrial-localized transcriptional co-repressor p107 regulates MP proliferation. We show p107 directly interacts with the mitochondrial DNA, repressing mitochondrial-encoded gene transcription. This reduces ATP production by limiting electron transport chain complex formation. ATP output, controlled by the mitochondrial function of p107, is directly associated with the cell cycle rate. Sirt1 activity, dependent on the cytoplasmic glycolysis product NAD+, directly interacts with p107, impeding its mitochondrial localization. The metabolic control of MP proliferation, driven by p107 mitochondrial function, establishes a cell cycle paradigm that might extend to other dividing cell types. The connection between cell cycle, metabolic state and mitochondrial activity is unclear. Here, the authors show that p107 represses mitochondrial transcription and ATP output in response to glycolytic byproducts, causing metabolic control of the cell cycle rate in myogenic progenitors.
Collapse
|
19
|
Menger KE, Rodríguez-Luis A, Chapman J, Nicholls TJ. Controlling the topology of mammalian mitochondrial DNA. Open Biol 2021; 11:210168. [PMID: 34547213 PMCID: PMC8455175 DOI: 10.1098/rsob.210168] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The genome of mitochondria, called mtDNA, is a small circular DNA molecule present at thousands of copies per human cell. MtDNA is packaged into nucleoprotein complexes called nucleoids, and the density of mtDNA packaging affects mitochondrial gene expression. Genetic processes such as transcription, DNA replication and DNA packaging alter DNA topology, and these topological problems are solved by a family of enzymes called topoisomerases. Within mitochondria, topoisomerases are involved firstly in the regulation of mtDNA supercoiling and secondly in disentangling interlinked mtDNA molecules following mtDNA replication. The loss of mitochondrial topoisomerase activity leads to defects in mitochondrial function, and variants in the dual-localized type IA topoisomerase TOP3A have also been reported to cause human mitochondrial disease. We review the current knowledge on processes that alter mtDNA topology, how mtDNA topology is modulated by the action of topoisomerases, and the consequences of altered mtDNA topology for mitochondrial function and human health.
Collapse
Affiliation(s)
- Katja E. Menger
- Wellcome Centre for Mitochondrial Research, Biosciences Institute, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Alejandro Rodríguez-Luis
- Wellcome Centre for Mitochondrial Research, Biosciences Institute, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - James Chapman
- Wellcome Centre for Mitochondrial Research, Biosciences Institute, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| | - Thomas J. Nicholls
- Wellcome Centre for Mitochondrial Research, Biosciences Institute, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK
| |
Collapse
|
20
|
Human Mitochondrial RNA Processing and Modifications: Overview. Int J Mol Sci 2021; 22:ijms22157999. [PMID: 34360765 PMCID: PMC8348895 DOI: 10.3390/ijms22157999] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/23/2021] [Accepted: 07/24/2021] [Indexed: 01/29/2023] Open
Abstract
Mitochondria, often referred to as the powerhouses of cells, are vital organelles that are present in almost all eukaryotic organisms, including humans. They are the key energy suppliers as the site of adenosine triphosphate production, and are involved in apoptosis, calcium homeostasis, and regulation of the innate immune response. Abnormalities occurring in mitochondria, such as mitochondrial DNA (mtDNA) mutations and disturbances at any stage of mitochondrial RNA (mtRNA) processing and translation, usually lead to severe mitochondrial diseases. A fundamental line of investigation is to understand the processes that occur in these organelles and their physiological consequences. Despite substantial progress that has been made in the field of mtRNA processing and its regulation, many unknowns and controversies remain. The present review discusses the current state of knowledge of RNA processing in human mitochondria and sheds some light on the unresolved issues.
Collapse
|
21
|
Gorelick AN, Kim M, Chatila WK, La K, Hakimi AA, Berger MF, Taylor BS, Gammage PA, Reznik E. Respiratory complex and tissue lineage drive recurrent mutations in tumour mtDNA. Nat Metab 2021; 3:558-570. [PMID: 33833465 PMCID: PMC9304985 DOI: 10.1038/s42255-021-00378-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 03/03/2021] [Indexed: 12/21/2022]
Abstract
Mitochondrial DNA (mtDNA) encodes protein subunits and translational machinery required for oxidative phosphorylation (OXPHOS). Using repurposed whole-exome sequencing data, in the present study we demonstrate that pathogenic mtDNA mutations arise in tumours at a rate comparable to those in the most common cancer driver genes. We identify OXPHOS complexes as critical determinants shaping somatic mtDNA mutation patterns across tumour lineages. Loss-of-function mutations accumulate at an elevated rate specifically in complex I and often arise at specific homopolymeric hotspots. In contrast, complex V is depleted of all non-synonymous mutations, suggesting that impairment of ATP synthesis and mitochondrial membrane potential dissipation are under negative selection. Common truncating mutations and rarer missense alleles are both associated with a pan-lineage transcriptional programme, even in cancer types where mtDNA mutations are comparatively rare. Pathogenic mutations of mtDNA are associated with substantial increases in overall survival of colorectal cancer patients, demonstrating a clear functional relationship between genotype and phenotype. The mitochondrial genome is therefore frequently and functionally disrupted across many cancers, with major implications for patient stratification, prognosis and therapeutic development.
Collapse
Affiliation(s)
- Alexander N Gorelick
- Computational Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Minsoo Kim
- Computational Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Walid K Chatila
- Computational Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Konnor La
- Laboratory of Metabolic Regulation and Genetics, Rockefeller University, New York, NY, USA
| | - A Ari Hakimi
- Urology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Michael F Berger
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Barry S Taylor
- Computational Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Payam A Gammage
- CRUK Beatson Institute, Glasgow, UK.
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK.
| | - Ed Reznik
- Computational Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Marie-Josée and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Urology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
22
|
Wobbe L. The Molecular Function of Plant mTERFs as Key Regulators of Organellar Gene Expression. PLANT & CELL PHYSIOLOGY 2021; 61:2004-2017. [PMID: 33067620 DOI: 10.1093/pcp/pcaa132] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 09/25/2020] [Indexed: 05/27/2023]
Abstract
The protein family of mTERFs (mitochondrial transcription termination factors) was initially studied in mammalian and insect mitochondria before the first Arabidopsis mTERF mutant was characterized. More than 10 years of research on the function of plant mTERFs in the flowering plants Arabidopsis thaliana, Zea mays and the green microalga Chlamydomonas reinhardtii has since highlighted that mTERFs are key regulators of organellar gene expression (OGE) in mitochondria and in chloroplasts. Additional functions to be fulfilled by plant mTERFs (e.g. splicing) and the fact that the expression of two organellar genomes had to be facilitated have led to a massive expansion of the plant mTERF portfolio compared to that found in mammals. Plant mTERFs are implicated in all steps of OGE ranging from the modulation of transcription to the maturation of tRNAs and hence translation. Furthermore, being regulators of OGE, mTERFs are required for a successful long-term acclimation to abiotic stress, retrograde signaling and interorganellar communication. Here, I review the recent progress in the elucidation of molecular mTERF functions.
Collapse
Affiliation(s)
- Lutz Wobbe
- Algae Biotechnology & Bioenergy Group, Faculty of Biology, Center for Biotechnology (CeBiTec), Bielefeld University, Universit�tsstrasse 27, Bielefeld 33615, Germany
| |
Collapse
|
23
|
Research Progress in the Molecular Functions of Plant mTERF Proteins. Cells 2021; 10:cells10020205. [PMID: 33494215 PMCID: PMC7909791 DOI: 10.3390/cells10020205] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 01/16/2021] [Accepted: 01/18/2021] [Indexed: 12/16/2022] Open
Abstract
Present-day chloroplast and mitochondrial genomes contain only a few dozen genes involved in ATP synthesis, photosynthesis, and gene expression. The proteins encoded by these genes are only a small fraction of the many hundreds of proteins that act in chloroplasts and mitochondria. Hence, the vast majority, including components of organellar gene expression (OGE) machineries, are encoded by nuclear genes, translated into the cytosol and imported to these organelles. Consequently, the expression of nuclear and organellar genomes has to be very precisely coordinated. Furthermore, OGE regulation is crucial to chloroplast and mitochondria biogenesis, and hence, to plant growth and development. Notwithstanding, the molecular mechanisms governing OGE are still poorly understood. Recent results have revealed the increasing importance of nuclear-encoded modular proteins capable of binding nucleic acids and regulating OGE. Mitochondrial transcription termination factor (mTERF) proteins are a good example of this category of OGE regulators. Plant mTERFs are located in chloroplasts and/or mitochondria, and have been characterized mainly from the isolation and analyses of Arabidopsis and maize mutants. These studies have revealed their fundamental roles in different plant development aspects and responses to abiotic stress. Fourteen mTERFs have been hitherto characterized in land plants, albeit to a different extent. These numbers are limited if we consider that 31 and 35 mTERFs have been, respectively, identified in maize and Arabidopsis. Notwithstanding, remarkable progress has been made in recent years to elucidate the molecular mechanisms by which mTERFs regulate OGE. Consequently, it has been experimentally demonstrated that plant mTERFs are required for the transcription termination of chloroplast genes (mTERF6 and mTERF8), transcriptional pausing and the stabilization of chloroplast transcripts (MDA1/mTERF5), intron splicing in chloroplasts (BSM/RUG2/mTERF4 and Zm-mTERF4) and mitochondria (mTERF15 and ZmSMK3) and very recently, also in the assembly of chloroplast ribosomes and translation (mTERF9). This review aims to provide a detailed update of current knowledge about the molecular functions of plant mTERF proteins. It principally focuses on new research that has made an outstanding contribution to unravel the molecular mechanisms by which plant mTERFs regulate the expression of chloroplast and mitochondrial genomes.
Collapse
|
24
|
Li T, Pan W, Yuan Y, Liu Y, Li Y, Wu X, Wang F, Cui L. Identification, Characterization, and Expression Profile Analysis of the mTERF Gene Family and Its Role in the Response to Abiotic Stress in Barley ( Hordeum vulgare L.). FRONTIERS IN PLANT SCIENCE 2021; 12:684619. [PMID: 34335653 PMCID: PMC8319850 DOI: 10.3389/fpls.2021.684619] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/23/2021] [Indexed: 05/17/2023]
Abstract
Plant mitochondrial transcription termination factor (mTERF) family regulates organellar gene expression (OGE) and is functionally characterized in diverse species. However, limited data are available about its functions in the agriculturally important cereal barley (Hordeum vulgare L.). In this study, we identified 60 mTERFs in the barley genome (HvmTERFs) through a comprehensive search against the most updated barley reference genome, Morex V2. Then, phylogenetic analysis categorized these genes into nine subfamilies, with approximately half of the HvmTERFs belonging to subfamily IX. Members within the same subfamily generally possessed conserved motif composition and exon-intron structure. Both segmental and tandem duplication contributed to the expansion of HvmTERFs, and the duplicated gene pairs were subjected to strong purifying selection. Expression analysis suggested that many HvmTERFs may play important roles in barley development (e.g., seedlings, leaves, and developing inflorescences) and abiotic stresses (e.g., cold, salt, and metal ion), and HvmTERF21 and HvmTERF23 were significant induced by various abiotic stresses and/or phytohormone treatment. Finally, the nucleotide diversity was decreased by only 4.5% for HvmTERFs during the process of barley domestication. Collectively, this is the first report to characterize HvmTERFs, which will not only provide important insights into further evolutionary studies but also contribute to a better understanding of the potential functions of HvmTERFs and ultimately will be useful in future gene functional studies.
Collapse
Affiliation(s)
- Tingting Li
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Wenqiu Pan
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, China
| | - Yiyuan Yuan
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Ying Liu
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Yihan Li
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Xiaoyu Wu
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Fei Wang
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, China
| | - Licao Cui
- College of Bioscience and Engineering, Jiangxi Agricultural University, Nanchang, China
- *Correspondence: Licao Cui
| |
Collapse
|
25
|
Basu U, Bostwick AM, Das K, Dittenhafer-Reed KE, Patel SS. Structure, mechanism, and regulation of mitochondrial DNA transcription initiation. J Biol Chem 2020; 295:18406-18425. [PMID: 33127643 PMCID: PMC7939475 DOI: 10.1074/jbc.rev120.011202] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 10/29/2020] [Indexed: 12/14/2022] Open
Abstract
Mitochondria are specialized compartments that produce requisite ATP to fuel cellular functions and serve as centers of metabolite processing, cellular signaling, and apoptosis. To accomplish these roles, mitochondria rely on the genetic information in their small genome (mitochondrial DNA) and the nucleus. A growing appreciation for mitochondria's role in a myriad of human diseases, including inherited genetic disorders, degenerative diseases, inflammation, and cancer, has fueled the study of biochemical mechanisms that control mitochondrial function. The mitochondrial transcriptional machinery is different from nuclear machinery. The in vitro re-constituted transcriptional complexes of Saccharomyces cerevisiae (yeast) and humans, aided with high-resolution structures and biochemical characterizations, have provided a deeper understanding of the mechanism and regulation of mitochondrial DNA transcription. In this review, we will discuss recent advances in the structure and mechanism of mitochondrial transcription initiation. We will follow up with recent discoveries and formative findings regarding the regulatory events that control mitochondrial DNA transcription, focusing on those involved in cross-talk between the mitochondria and nucleus.
Collapse
Affiliation(s)
- Urmimala Basu
- Department of Biochemistry and Molecular Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey, USA; Graduate School of Biomedical Sciences, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey, USA
| | | | - Kalyan Das
- Department of Microbiology, Immunology, and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | | | - Smita S Patel
- Department of Biochemistry and Molecular Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey, USA.
| |
Collapse
|
26
|
Saneto RP. Mitochondrial diseases: expanding the diagnosis in the era of genetic testing. JOURNAL OF TRANSLATIONAL GENETICS AND GENOMICS 2020; 4:384-428. [PMID: 33426505 PMCID: PMC7791531 DOI: 10.20517/jtgg.2020.40] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mitochondrial diseases are clinically and genetically heterogeneous. These diseases were initially described a little over three decades ago. Limited diagnostic tools created disease descriptions based on clinical, biochemical analytes, neuroimaging, and muscle biopsy findings. This diagnostic mechanism continued to evolve detection of inherited oxidative phosphorylation disorders and expanded discovery of mitochondrial physiology over the next two decades. Limited genetic testing hampered the definitive diagnostic identification and breadth of diseases. Over the last decade, the development and incorporation of massive parallel sequencing has identified approximately 300 genes involved in mitochondrial disease. Gene testing has enlarged our understanding of how genetic defects lead to cellular dysfunction and disease. These findings have expanded the understanding of how mechanisms of mitochondrial physiology can induce dysfunction and disease, but the complete collection of disease-causing gene variants remains incomplete. This article reviews the developments in disease gene discovery and the incorporation of gene findings with mitochondrial physiology. This understanding is critical to the development of targeted therapies.
Collapse
Affiliation(s)
- Russell P. Saneto
- Center for Integrative Brain Research, Neuroscience Institute, Seattle, WA 98101, USA
- Department of Neurology/Division of Pediatric Neurology, Seattle Children’s Hospital/University of Washington, Seattle, WA 98105, USA
| |
Collapse
|
27
|
Boguszewska K, Szewczuk M, Kaźmierczak-Barańska J, Karwowski BT. The Similarities between Human Mitochondria and Bacteria in the Context of Structure, Genome, and Base Excision Repair System. Molecules 2020; 25:E2857. [PMID: 32575813 PMCID: PMC7356350 DOI: 10.3390/molecules25122857] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/17/2020] [Accepted: 06/19/2020] [Indexed: 02/06/2023] Open
Abstract
Mitochondria emerged from bacterial ancestors during endosymbiosis and are crucial for cellular processes such as energy production and homeostasis, stress responses, cell survival, and more. They are the site of aerobic respiration and adenosine triphosphate (ATP) production in eukaryotes. However, oxidative phosphorylation (OXPHOS) is also the source of reactive oxygen species (ROS), which are both important and dangerous for the cell. Human mitochondria contain mitochondrial DNA (mtDNA), and its integrity may be endangered by the action of ROS. Fortunately, human mitochondria have repair mechanisms that allow protecting mtDNA and repairing lesions that may contribute to the occurrence of mutations. Mutagenesis of the mitochondrial genome may manifest in the form of pathological states such as mitochondrial, neurodegenerative, and/or cardiovascular diseases, premature aging, and cancer. The review describes the mitochondrial structure, genome, and the main mitochondrial repair mechanism (base excision repair (BER)) of oxidative lesions in the context of common features between human mitochondria and bacteria. The authors present a holistic view of the similarities of mitochondria and bacteria to show that bacteria may be an interesting experimental model for studying mitochondrial diseases, especially those where the mechanism of DNA repair is impaired.
Collapse
Affiliation(s)
| | | | | | - Bolesław T. Karwowski
- DNA Damage Laboratory of Food Science Department, Faculty of Pharmacy, Medical University of Lodz, ul. Muszynskiego 1, 90-151 Lodz, Poland; (K.B.); (M.S.); (J.K.-B.)
| |
Collapse
|
28
|
Mitochondrial OXPHOS Biogenesis: Co-Regulation of Protein Synthesis, Import, and Assembly Pathways. Int J Mol Sci 2020; 21:ijms21113820. [PMID: 32481479 PMCID: PMC7312649 DOI: 10.3390/ijms21113820] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/21/2020] [Accepted: 05/25/2020] [Indexed: 02/07/2023] Open
Abstract
The assembly of mitochondrial oxidative phosphorylation (OXPHOS) complexes is an intricate process, which—given their dual-genetic control—requires tight co-regulation of two evolutionarily distinct gene expression machineries. Moreover, fine-tuning protein synthesis to the nascent assembly of OXPHOS complexes requires regulatory mechanisms such as translational plasticity and translational activators that can coordinate mitochondrial translation with the import of nuclear-encoded mitochondrial proteins. The intricacy of OXPHOS complex biogenesis is further evidenced by the requirement of many tightly orchestrated steps and ancillary factors. Early-stage ancillary chaperones have essential roles in coordinating OXPHOS assembly, whilst late-stage assembly factors—also known as the LYRM (leucine–tyrosine–arginine motif) proteins—together with the mitochondrial acyl carrier protein (ACP)—regulate the incorporation and activation of late-incorporating OXPHOS subunits and/or co-factors. In this review, we describe recent discoveries providing insights into the mechanisms required for optimal OXPHOS biogenesis, including the coordination of mitochondrial gene expression with the availability of nuclear-encoded factors entering via mitochondrial protein import systems.
Collapse
|
29
|
Jin X, Cheng Z, Wang B, Yau TO, Chen Z, Barker SC, Chen D, Bu W, Sun D, Gao S. Precise annotation of human, chimpanzee, rhesus macaque and mouse mitochondrial genomes leads to insight into mitochondrial transcription in mammals. RNA Biol 2020; 17:395-402. [PMID: 31905034 DOI: 10.1080/15476286.2019.1709746] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
In the present study, we applied our 'precise annotation' to the mitochondrial (mt) genomes of human, chimpanzee, rhesus macaque and mouse using 5' and 3' end small RNAs. Our new annotations updated previous annotations. In particular, our new annotations led to two important novel findings: (1) the identification of five Conserved Sequence Blocks (CSB1, CSB2, CSB3, LSP and HSP) in the control regions; and (2) the annotation of Transcription Initiation and novel Transcription Termination Sites. Based on these annotations, we proposed a novel model of mt transcription which can account for the mt transcription and its regulation in mammals. According to our model, Transcription Termination Sites function as switches to regulate the production of short, long primary transcripts and uninterrupted transcription, rather than simply terminate the mt transcription. Moreover, the expression levels of mitochondrial transcription termination factors control the proportions of rRNAs, mRNAs and lncRNAs in total mt RNA. Our findings point to the existence of many other, as yet unidentified, Transcription Termination Sites in mammals.
Collapse
Affiliation(s)
- Xiufeng Jin
- College of Life Sciences, Nankai University, Tianjin, P.R.China
| | - Zhi Cheng
- College of Life Sciences, Nankai University, Tianjin, P.R.China
| | - Bo Wang
- Department of Paediatric Surgery, Tianjin Medical University General Hospital, Tianjin, P.R.China
| | - Tung On Yau
- John Van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Ze Chen
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei, P.R. China
| | - Stephen C Barker
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Defu Chen
- College of Life Sciences, Nankai University, Tianjin, P.R.China
| | - Wenjun Bu
- College of Life Sciences, Nankai University, Tianjin, P.R.China
| | - Daqing Sun
- Department of Paediatric Surgery, Tianjin Medical University General Hospital, Tianjin, P.R.China
| | - Shan Gao
- College of Life Sciences, Nankai University, Tianjin, P.R.China
| |
Collapse
|
30
|
Ayyub SA, Gao F, Lightowlers RN, Chrzanowska-Lightowlers ZM. Rescuing stalled mammalian mitoribosomes - what can we learn from bacteria? J Cell Sci 2020; 133:133/1/jcs231811. [PMID: 31896602 DOI: 10.1242/jcs.231811] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
In the canonical process of translation, newly completed proteins escape from the ribosome following cleavage of the ester bond that anchors the polypeptide to the P-site tRNA, after which the ribosome can be recycled to initiate a new round of translation. Not all protein synthesis runs to completion as various factors can impede the progression of ribosomes. Rescuing of stalled ribosomes in mammalian mitochondria, however, does not share the same mechanisms that many bacteria use. The classic method for rescuing bacterial ribosomes is trans-translation. The key components of this system are absent from mammalian mitochondria; however, four members of a translation termination factor family are present, with some evidence of homology to members of a bacterial back-up rescue system. To date, there is no definitive demonstration of any other member of this family functioning in mitoribosome rescue. Here, we provide an overview of the processes and key players of canonical translation termination in both bacteria and mammalian mitochondria, followed by a perspective of the bacterial systems used to rescue stalled ribosomes. We highlight any similarities or differences with the mitochondrial translation release factors, and suggest potential roles for these proteins in ribosome rescue in mammalian mitochondria.
Collapse
Affiliation(s)
- Shreya Ahana Ayyub
- The Wellcome Centre for Mitochondrial Research, Newcastle University, The Medical School, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Fei Gao
- The Wellcome Centre for Mitochondrial Research, Newcastle University, The Medical School, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Robert N Lightowlers
- The Wellcome Centre for Mitochondrial Research, Newcastle University, The Medical School, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| | - Zofia M Chrzanowska-Lightowlers
- The Wellcome Centre for Mitochondrial Research, Newcastle University, The Medical School, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK
| |
Collapse
|
31
|
Mishmar D, Levin R, Naeem MM, Sondheimer N. Higher Order Organization of the mtDNA: Beyond Mitochondrial Transcription Factor A. Front Genet 2019; 10:1285. [PMID: 31998357 PMCID: PMC6961661 DOI: 10.3389/fgene.2019.01285] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 11/21/2019] [Indexed: 01/09/2023] Open
Abstract
The higher order organization of eukaryotic and prokaryotic genomes is pivotal in the regulation of gene expression. Specifically, chromatin accessibility in eukaryotes and nucleoid accessibility in bacteria are regulated by a cohort of proteins to alter gene expression in response to diverse physiological conditions. By contrast, prior studies have suggested that the mitochondrial genome (mtDNA) is coated solely by mitochondrial transcription factor A (TFAM), whose increased cellular concentration was proposed to be the major determinant of mtDNA packaging in the mitochondrial nucleoid. Nevertheless, recent analysis of DNase-seq and ATAC-seq experiments from multiple human and mouse samples suggest gradual increase in mtDNA occupancy during the course of embryonic development to generate a conserved footprinting pattern which correlate with sites that have low TFAM occupancy in vivo (ChIP-seq) and tend to adopt G-quadruplex structures. These findings, along with recent identification of mtDNA binding by known modulators of chromatin accessibility such as MOF, suggest that mtDNA higher order organization is generated by cross talk with the nuclear regulatory system, may have a role in mtDNA regulation, and is more complex than once thought.
Collapse
Affiliation(s)
- Dan Mishmar
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Rotem Levin
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Mansur M Naeem
- Institute of Medical Sciences and the Department of Paediatrics, The University of Toronto, Toronto, ON, Canada
| | - Neal Sondheimer
- Institute of Medical Sciences and the Department of Paediatrics, The University of Toronto, Toronto, ON, Canada
| |
Collapse
|
32
|
Kotrys AV, Szczesny RJ. Mitochondrial Gene Expression and Beyond-Novel Aspects of Cellular Physiology. Cells 2019; 9:cells9010017. [PMID: 31861673 PMCID: PMC7017415 DOI: 10.3390/cells9010017] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 12/15/2019] [Accepted: 12/17/2019] [Indexed: 02/06/2023] Open
Abstract
Mitochondria are peculiar organelles whose proper function depends on the crosstalk between two genomes, mitochondrial and nuclear. The human mitochondrial genome (mtDNA) encodes only 13 proteins; nevertheless, its proper expression is essential for cellular homeostasis, as mtDNA-encoded proteins are constituents of mitochondrial respiratory complexes. In addition, mtDNA expression results in the production of RNA molecules, which influence cell physiology once released from the mitochondria into the cytoplasm. As a result, dysfunctions of mtDNA expression may lead to pathologies in humans. Here, we review the mechanisms of mitochondrial gene expression with a focus on recent findings in the field. We summarize the complex turnover of mitochondrial transcripts and present an increasing body of evidence indicating new functions of mitochondrial transcripts. We discuss mitochondrial gene regulation in different cellular contexts, focusing on stress conditions. Finally, we highlight the importance of emerging aspects of mitochondrial gene regulation in human health and disease.
Collapse
|
33
|
Kotrys AV, Cysewski D, Czarnomska SD, Pietras Z, Borowski LS, Dziembowski A, Szczesny RJ. Quantitative proteomics revealed C6orf203/MTRES1 as a factor preventing stress-induced transcription deficiency in human mitochondria. Nucleic Acids Res 2019; 47:7502-7517. [PMID: 31226201 PMCID: PMC6698753 DOI: 10.1093/nar/gkz542] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 06/05/2019] [Accepted: 06/13/2019] [Indexed: 12/18/2022] Open
Abstract
Maintenance of mitochondrial gene expression is crucial for cellular homeostasis. Stress conditions may lead to a temporary reduction of mitochondrial genome copy number, raising the risk of insufficient expression of mitochondrial encoded genes. Little is known how compensatory mechanisms operate to maintain proper mitochondrial transcripts levels upon disturbed transcription and which proteins are involved in them. Here we performed a quantitative proteomic screen to search for proteins that sustain expression of mtDNA under stress conditions. Analysis of stress-induced changes of the human mitochondrial proteome led to the identification of several proteins with poorly defined functions among which we focused on C6orf203, which we named MTRES1 (Mitochondrial Transcription Rescue Factor 1). We found that the level of MTRES1 is elevated in cells under stress and we show that this upregulation of MTRES1 prevents mitochondrial transcript loss under perturbed mitochondrial gene expression. This protective effect depends on the RNA binding activity of MTRES1. Functional analysis revealed that MTRES1 associates with mitochondrial RNA polymerase POLRMT and acts by increasing mitochondrial transcription, without changing the stability of mitochondrial RNAs. We propose that MTRES1 is an example of a protein that protects the cell from mitochondrial RNA loss during stress.
Collapse
Affiliation(s)
- Anna V Kotrys
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Warsaw 02-106, Poland
| | - Dominik Cysewski
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Warsaw 02-106, Poland
| | - Sylwia D Czarnomska
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Warsaw 02-106, Poland
| | - Zbigniew Pietras
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Warsaw 02-106, Poland.,Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, Warsaw 02-109, Poland
| | - Lukasz S Borowski
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Warsaw 02-106, Poland.,Faculty of Biology, Institute of Genetics and Biotechnology, University of Warsaw, Warsaw 02-106, Poland
| | - Andrzej Dziembowski
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Warsaw 02-106, Poland.,Faculty of Biology, Institute of Genetics and Biotechnology, University of Warsaw, Warsaw 02-106, Poland
| | - Roman J Szczesny
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Warsaw 02-106, Poland
| |
Collapse
|
34
|
Holt IJ. The mitochondrial R-loop. Nucleic Acids Res 2019; 47:5480-5489. [PMID: 31045202 PMCID: PMC6582354 DOI: 10.1093/nar/gkz277] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 03/11/2019] [Accepted: 04/29/2019] [Indexed: 12/18/2022] Open
Abstract
The DNA in mitochondria contributes essential components of the organelle’s energy producing machinery that is essential for life. In 1971, many mitochondrial DNA molecules were found to have a third strand of DNA that maps to a region containing critical regulatory elements for transcription and replication. Forty-five years later, a third strand of RNA in the same region has been reported. This mitochondrial R-loop is present on thousands of copies of mitochondrial DNA per cell making it potentially the most abundant R-loop in nature. Here, I assess the discovery of the mitochondrial R-loop, discuss why it remained unrecognized for almost half a century and propose for it central roles in the replication, organization and expression of mitochondrial DNA, which if compromised can lead to disease states.
Collapse
Affiliation(s)
- Ian J Holt
- Biodonostia Health Research Institute, 20014 San Sebastián, Spain & IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain.,Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Royal Free Campus, London, NW3 2PF, UK.,CIBERNED (Center for Networked Biomedical Research on Neurodegenerative Diseases, Ministry of Economy and Competitiveness, Institute Carlos III), Madrid, Spain
| |
Collapse
|
35
|
Ding S, Zhang Y, Hu Z, Huang X, Zhang B, Lu Q, Wen X, Wang Y, Lu C. mTERF5 Acts as a Transcriptional Pausing Factor to Positively Regulate Transcription of Chloroplast psbEFLJ. MOLECULAR PLANT 2019; 12:1259-1277. [PMID: 31128276 DOI: 10.1016/j.molp.2019.05.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 04/22/2019] [Accepted: 05/16/2019] [Indexed: 05/21/2023]
Abstract
RNA polymerase transcriptional pausing represents a major checkpoint in transcription in bacteria and metazoans, but it is unknown whether this phenomenon occurs in plant organelles. Here, we report that transcriptional pausing occurs in chloroplasts. We found that mTERF5 specifically and positively regulates the transcription of chloroplast psbEFLJ in Arabidopsis thaliana that encodes four key subunits of photosystem II. We found that mTERF5 causes the plastid-encoded RNA polymerase (PEP) complex to pause at psbEFLJ by binding to the +30 to +51 region of double-stranded DNA. Moreover, we revealed that mTERF5 interacts with pTAC6, an essential subunit of the PEP complex, although pTAC6 is not involved in the transcriptional pausing at psbEFLJ. We showed that mTERF5 recruits additional pTAC6 to the transcriptionally paused region of psbEFLJ, and the recruited pTAC6 proteins could be assembled into the PEP complex to regulate psbEFLJ transcription. Taken together, our findings shed light on the role of transcriptional pausing in chloroplast transcription in plants.
Collapse
Affiliation(s)
- Shunhua Ding
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Yi Zhang
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi Hu
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiahe Huang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Bohan Zhang
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingtao Lu
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Xiaogang Wen
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Yingchun Wang
- University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Congming Lu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, China.
| |
Collapse
|
36
|
Bouda E, Stapon A, Garcia-Diaz M. Mechanisms of mammalian mitochondrial transcription. Protein Sci 2019; 28:1594-1605. [PMID: 31309618 DOI: 10.1002/pro.3688] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/10/2019] [Accepted: 07/11/2019] [Indexed: 01/06/2023]
Abstract
Numerous age-related human diseases have been associated with deficiencies in cellular energy production. Moreover, genetic alterations resulting in mitochondrial dysfunction are the cause of inheritable disorders commonly known as mitochondrial diseases. Many of these deficiencies have been directly or indirectly linked to deficits in mitochondrial gene expression. Transcription is an essential step in gene expression and elucidating the molecular mechanisms involved in this process is critical for understanding defects in energy production. For the past five decades, substantial efforts have been invested in the field of mitochondrial transcription. These efforts have led to the discovery of the main protein factors responsible for transcription as well as to a basic mechanistic understanding of the transcription process. They have also revealed various mechanisms of transcriptional regulation as well as the links that exist between the transcription process and downstream processes of RNA maturation. Here, we review the knowledge gathered in early mitochondrial transcription studies and focus on recent findings that shape our current understanding of mitochondrial transcription, posttranscriptional processing, as well as transcriptional regulation in mammalian systems.
Collapse
Affiliation(s)
- Emilie Bouda
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York
| | - Anthony Stapon
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York
| | - Miguel Garcia-Diaz
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York
| |
Collapse
|
37
|
Sun S, Wu C, Yang C, Chen J, Wang X, Nan Y, Huang Z, Ma L. Prognostic roles of mitochondrial transcription termination factors in non-small cell lung cancer. Oncol Lett 2019; 18:3453-3462. [PMID: 31516563 PMCID: PMC6732965 DOI: 10.3892/ol.2019.10680] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Accepted: 05/02/2019] [Indexed: 12/13/2022] Open
Abstract
Mitochondrial transcription termination factors (MTERFs) regulate mitochondrial gene transcription and metabolism in numerous types of cells. Previous studies have indicated that MTERFs serve pivotal roles in the pathogenesis of various cancer types. However, the expression and prognostic roles of MTERFs in patients with non-small cell lung cancer (NSCLC) remain elusive. The present study investigated the gene alteration frequency and expression level using Gene Expression Omnibus datasets and reverse transcription-quantitative polymerase chain reaction, and evaluated the prognostic roles of MTERFs in patients with NSCLC using the Kaplan-Meier plotter database. In human lung cancer tissues, it was observed that the mRNA levels of MTERF1, 2, 3 and 4 were positively associated with the copy number of these genes. The mRNA expression levels of MTERF1 and 3 were significantly increased in NSCLC tissues compared with adjacent non-tumor tissues; however, the mRNA expression of MTERF2 was significantly decreased in NSCLC tissues. High mRNA expression levels of MTERF1, 2, 3 and 4 were strongly associated with an improved overall survival rate (OS) in patients with lung adenocarcinoma. Additionally, high mRNA expression levels of MTERF1, 2, 3 and 4 were also strongly associated with an improved OS of patients with NSCLC in the earlier stages of disease (stage I) or patients with negative surgical margins. These results indicate the critical prognostic values of MTERF expression levels in NSCLC. The findings of the present study may be beneficial for understanding the molecular biology mechanism of NSCLC and for generating effective therapeutic approaches for patients with NSCLC.
Collapse
Affiliation(s)
- Shuangyan Sun
- Department of Radiology, Jilin Province Cancer Hospital, Changchun, Jilin 130012, P.R. China
| | - Chunjiao Wu
- Department of Thoracic Oncology, Jilin Province Cancer Hospital, Changchun, Jilin 130012, P.R. China
| | - Changliang Yang
- Department of Thoracic Oncology, Jilin Province Cancer Hospital, Changchun, Jilin 130012, P.R. China
| | - Jian Chen
- Department of Interventional Radiology, Jilin Province Cancer Hospital, Changchun, Jilin 130012, P.R. China
| | - Xiu Wang
- Department of Interventional Radiology, Jilin Province Cancer Hospital, Changchun, Jilin 130012, P.R. China
| | - Yingji Nan
- Department of Radiology, Jilin Province Cancer Hospital, Changchun, Jilin 130012, P.R. China
| | - Zhicheng Huang
- Department of Radiology, Jilin Province Cancer Hospital, Changchun, Jilin 130012, P.R. China
| | - Lixia Ma
- Department of Thoracic Oncology, Jilin Province Cancer Hospital, Changchun, Jilin 130012, P.R. China
| |
Collapse
|
38
|
Transcription, Processing, and Decay of Mitochondrial RNA in Health and Disease. Int J Mol Sci 2019; 20:ijms20092221. [PMID: 31064115 PMCID: PMC6540609 DOI: 10.3390/ijms20092221] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/01/2019] [Accepted: 05/03/2019] [Indexed: 12/16/2022] Open
Abstract
Although the large majority of mitochondrial proteins are nuclear encoded, for their correct functioning mitochondria require the expression of 13 proteins, two rRNA, and 22 tRNA codified by mitochondrial DNA (mtDNA). Once transcribed, mitochondrial RNA (mtRNA) is processed, mito-ribosomes are assembled, and mtDNA-encoded proteins belonging to the respiratory chain are synthesized. These processes require the coordinated spatio-temporal action of several enzymes, and many different factors are involved in the regulation and control of protein synthesis and in the stability and turnover of mitochondrial RNA. In this review, we describe the essential steps of mitochondrial RNA synthesis, maturation, and degradation, the factors controlling these processes, and how the alteration of these processes is associated with human pathologies.
Collapse
|
39
|
Robles P, Quesada V. Transcriptional and Post-transcriptional Regulation of Organellar Gene Expression (OGE) and Its Roles in Plant Salt Tolerance. Int J Mol Sci 2019; 20:E1056. [PMID: 30823472 PMCID: PMC6429081 DOI: 10.3390/ijms20051056] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 02/21/2019] [Accepted: 02/25/2019] [Indexed: 12/26/2022] Open
Abstract
Given their endosymbiotic origin, chloroplasts and mitochondria genomes harbor only between 100 and 200 genes that encode the proteins involved in organellar gene expression (OGE), photosynthesis, and the electron transport chain. However, as the activity of these organelles also needs a few thousand proteins encoded by the nuclear genome, a close coordination of the gene expression between the nucleus and organelles must exist. In line with this, OGE regulation is crucial for plant growth and development, and is achieved mainly through post-transcriptional mechanisms performed by nuclear genes. In this way, the nucleus controls the activity of organelles and these, in turn, transmit information about their functional state to the nucleus by modulating nuclear expression according to the organelles' physiological requirements. This adjusts organelle function to plant physiological, developmental, or growth demands. Therefore, OGE must appropriately respond to both the endogenous signals and exogenous environmental cues that can jeopardize plant survival. As sessile organisms, plants have to respond to adverse conditions to acclimate and adapt to them. Salinity is a major abiotic stress that negatively affects plant development and growth, disrupts chloroplast and mitochondria function, and leads to reduced yields. Information on the effects that the disturbance of the OGE function has on plant tolerance to salinity is still quite fragmented. Nonetheless, many plant mutants which display altered responses to salinity have been characterized in recent years, and interestingly, several are affected in nuclear genes encoding organelle-localized proteins that regulate the expression of organelle genes. These results strongly support a link between OGE and plant salt tolerance, likely through retrograde signaling. Our review analyzes recent findings on the OGE functions required by plants to respond and tolerate salinity, and highlights the fundamental role that chloroplast and mitochondrion homeostasis plays in plant adaptation to salt stress.
Collapse
Affiliation(s)
- Pedro Robles
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Spain.
| | - Víctor Quesada
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Spain.
| |
Collapse
|
40
|
Castillo A, Vilà M, Pedriza I, Pardo R, Cámara Y, Martín E, Beiroa D, Torres-Torronteras J, Oteo M, Morcillo MA, Martí R, Simó R, Nogueiras R, Villena JA. Adipocyte MTERF4 regulates non-shivering adaptive thermogenesis and sympathetic-dependent glucose homeostasis. Biochim Biophys Acta Mol Basis Dis 2019; 1865:1298-1312. [PMID: 30690068 DOI: 10.1016/j.bbadis.2019.01.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 01/15/2019] [Accepted: 01/23/2019] [Indexed: 12/12/2022]
Abstract
In humans, low brown adipose tissue (BAT) mass and activity have been associated with increased adiposity and fasting glucose levels, suggesting that defective BAT-dependent thermogenesis could contribute to the development of obesity and/or type 2 diabetes. The thermogenic function of BAT relies on a vast network of mitochondria exclusively equipped with UCP1. Mitochondrial biogenesis is exquisitely regulated by a well-defined network of transcription factors that coordinate the expression of nuclear genes required for the formation of functional mitochondria. However, less is known about the mitochondrial factors that control the expression of the genes encoded by the mitochondrial genome. Here, we have studied the role of mitochondrial transcription termination factor-4 (MTERF4) in BAT by using a new mouse model devoid of MTERF4 specifically in adipocytes (MTERF4-FAT-KO mice). Lack of MTERF4 in BAT leads to reduced OxPhos mitochondrial protein levels and impaired assembly of OxPhos complexes I, III and IV due to deficient translation of mtDNA-encoded proteins. As a result, brown adipocytes lacking MTERF4 exhibit impaired respiratory capacity. MTERF4-FAT-KO mice show a blunted thermogenic response and are unable to maintain body temperature when exposed to cold. Despite impaired BAT function, MTERF4-FAT-KO mice do not develop obesity or insulin resistance. Still, MTERF4-FAT-KO mice became resistant to the insulin-sensitizing effects of β3-specific adrenergic receptor agonists. Our results demonstrate that MTERF4 regulates mitochondrial protein translation and is essential for proper BAT thermogenic activity. Our study also supports the notion that pharmacological activation of BAT is a plausible therapeutic target for the treatment of insulin resistance.
Collapse
Affiliation(s)
- Anna Castillo
- Laboratory of Metabolism and Obesity, Vall d'Hebron - Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Maria Vilà
- Laboratory of Metabolism and Obesity, Vall d'Hebron - Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Inés Pedriza
- Laboratory of Metabolism and Obesity, Vall d'Hebron - Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Rosario Pardo
- Laboratory of Metabolism and Obesity, Vall d'Hebron - Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Yolanda Cámara
- Group of Mitochondrial and Neuromuscular Pathology, Vall d'Hebron - Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain; CIBERER, CIBER on Rare Diseases, Instituto de Salud Carlos III, Barcelona, Spain
| | - Edgar Martín
- Laboratory of Metabolism and Obesity, Vall d'Hebron - Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Daniel Beiroa
- Department of Physiology, CIMUS, Universidad de Santiago de Compostela, Santiago de Compostela, Spain; CIBEROBN, CIBER on Physiopathology of Obesity and Nutrition, Santiago de Compostela, Spain
| | - Javier Torres-Torronteras
- Group of Mitochondrial and Neuromuscular Pathology, Vall d'Hebron - Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain; CIBERER, CIBER on Rare Diseases, Instituto de Salud Carlos III, Barcelona, Spain
| | - Marta Oteo
- Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas, Madrid, Spain
| | - Miguel A Morcillo
- Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas, Madrid, Spain
| | - Ramon Martí
- Group of Mitochondrial and Neuromuscular Pathology, Vall d'Hebron - Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain; CIBERER, CIBER on Rare Diseases, Instituto de Salud Carlos III, Barcelona, Spain
| | - Rafael Simó
- Group of Diabetes and Metabolism, Vall d'Hebron - Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain; CIBERDEM, CIBER on Diabetes and Associated Metabolic Diseases, Instituto de Salud Carlos III, Barcelona, Spain
| | - Rubén Nogueiras
- Department of Physiology, CIMUS, Universidad de Santiago de Compostela, Santiago de Compostela, Spain; CIBEROBN, CIBER on Physiopathology of Obesity and Nutrition, Santiago de Compostela, Spain
| | - Josep A Villena
- Laboratory of Metabolism and Obesity, Vall d'Hebron - Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain; CIBERDEM, CIBER on Diabetes and Associated Metabolic Diseases, Instituto de Salud Carlos III, Barcelona, Spain.
| |
Collapse
|
41
|
Cogliati S, Lorenzi I, Rigoni G, Caicci F, Soriano ME. Regulation of Mitochondrial Electron Transport Chain Assembly. J Mol Biol 2018; 430:4849-4873. [DOI: 10.1016/j.jmb.2018.09.016] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/20/2018] [Accepted: 09/25/2018] [Indexed: 12/26/2022]
|
42
|
Ji D, Manavski N, Meurer J, Zhang L, Chi W. Regulated chloroplast transcription termination. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1860:69-77. [PMID: 30414934 DOI: 10.1016/j.bbabio.2018.11.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 10/15/2018] [Accepted: 11/07/2018] [Indexed: 11/16/2022]
Abstract
Transcription termination by the RNA polymerase (RNAP) is a fundamental step of gene expression that involves the release of the nascent transcript and dissociation of the RNAP from the DNA template. However, the functional importance of termination extends beyond the mere definition of the gene borders. Chloroplasts originate from cyanobacteria and possess their own gene expression system. Plastids have a unique hybrid transcription system consisting of two different types of RNAPs of dissimilar phylogenetic origin together with several additional nuclear encoded components. Although the basic components involved in chloroplast transcription have been identified, little attention has been paid to the chloroplast transcription termination. Recent identification and functional characterization of novel factors in regulating transcription termination in Arabidopsis chloroplasts via genetic and biochemical approaches have provided insights into the mechanisms and significance of transcription termination in chloroplast gene expression. This review provides an overview of the current knowledge of the transcription termination in chloroplasts.
Collapse
Affiliation(s)
- Daili Ji
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Nikolay Manavski
- Centre National de la Recherche Scientifique (CNRS), Institut de Biologie Moleculaire des Plantes, 12 rue du General Zimmer, 67084 Strasbourg, France
| | - Jörg Meurer
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University Munich, D-82152 Planegg-Martinsried, Germany
| | - Lixin Zhang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Wei Chi
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
| |
Collapse
|
43
|
Structural basis of mitochondrial transcription. Nat Struct Mol Biol 2018; 25:754-765. [PMID: 30190598 DOI: 10.1038/s41594-018-0122-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 07/29/2018] [Indexed: 01/17/2023]
Abstract
The mitochondrial genome is transcribed by a single-subunit DNA-dependent RNA polymerase (mtRNAP) and its auxiliary factors. Structural studies have elucidated how mtRNAP cooperates with its dedicated transcription factors to direct RNA synthesis: initiation factors TFAM and TFB2M assist in promoter-DNA binding and opening by mtRNAP while the elongation factor TEFM increases polymerase processivity to the levels required for synthesis of long polycistronic mtRNA transcripts. Here, we review the emerging body of structural and functional studies of human mitochondrial transcription, provide a molecular movie that can be used for teaching purposes and discuss the open questions to guide future directions of investigation.
Collapse
|
44
|
Barshad G, Marom S, Cohen T, Mishmar D. Mitochondrial DNA Transcription and Its Regulation: An Evolutionary Perspective. Trends Genet 2018; 34:682-692. [DOI: 10.1016/j.tig.2018.05.009] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 05/19/2018] [Accepted: 05/31/2018] [Indexed: 12/15/2022]
|
45
|
Mitochondrial transcription and translation: overview. Essays Biochem 2018; 62:309-320. [PMID: 30030363 PMCID: PMC6056719 DOI: 10.1042/ebc20170102] [Citation(s) in RCA: 172] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 05/14/2018] [Accepted: 05/14/2018] [Indexed: 12/13/2022]
Abstract
Mitochondria are the major source of ATP in the cell. Five multi-subunit complexes in the inner membrane of the organelle are involved in the oxidative phosphorylation required for ATP production. Thirteen subunits of these complexes are encoded by the mitochondrial genome often referred to as mtDNA. For this reason, the expression of mtDNA is vital for the assembly and functioning of the oxidative phosphorylation complexes. Defects of the mechanisms regulating mtDNA gene expression have been associated with deficiencies in assembly of these complexes, resulting in mitochondrial diseases. Recently, numerous factors involved in these processes have been identified and characterized leading to a deeper understanding of the mechanisms that underlie mitochondrial diseases.
Collapse
|
46
|
Ferreira N, Rackham O, Filipovska A. Regulation of a minimal transcriptome by repeat domain proteins. Semin Cell Dev Biol 2018; 76:132-141. [DOI: 10.1016/j.semcdb.2017.08.037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 08/15/2017] [Accepted: 08/18/2017] [Indexed: 01/19/2023]
|
47
|
Mice lacking the mitochondrial exonuclease MGME1 accumulate mtDNA deletions without developing progeria. Nat Commun 2018; 9:1202. [PMID: 29572490 PMCID: PMC5865154 DOI: 10.1038/s41467-018-03552-x] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 02/21/2018] [Indexed: 12/17/2022] Open
Abstract
Replication of mammalian mitochondrial DNA (mtDNA) is an essential process that requires high fidelity and control at multiple levels to ensure proper mitochondrial function. Mutations in the mitochondrial genome maintenance exonuclease 1 (MGME1) gene were recently reported in mitochondrial disease patients. Here, to study disease pathophysiology, we generated Mgme1 knockout mice and report that homozygous knockouts develop depletion and multiple deletions of mtDNA. The mtDNA replication stalling phenotypes vary dramatically in different tissues of Mgme1 knockout mice. Mice with MGME1 deficiency accumulate a long linear subgenomic mtDNA species, similar to the one found in mtDNA mutator mice, but do not develop progeria. This finding resolves a long-standing debate by showing that point mutations of mtDNA are the main cause of progeria in mtDNA mutator mice. We also propose a role for MGME1 in the regulation of replication and transcription termination at the end of the control region of mtDNA. It has been debated whether premature ageing in mitochondrial DNA mutator mice is driven by point mutations or deletions of mtDNA. Matic et al generate Mgme1 knockout mice and show here that these mice have tissue-specific replication stalling and accumulate deleted mtDNA, without developing progeria.
Collapse
|
48
|
Boot A, Oosting J, van Eendenburg JDH, Kuppen PJK, Morreau H, van Wezel T. Methylation associated transcriptional repression of ELOVL5 in novel colorectal cancer cell lines. PLoS One 2017; 12:e0184900. [PMID: 28931069 PMCID: PMC5607170 DOI: 10.1371/journal.pone.0184900] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Accepted: 09/03/2017] [Indexed: 01/16/2023] Open
Abstract
Genetic and epigenetic alterations mark colorectal cancer (CRC). Global hypomethylation is observed in nearly all CRC, but a distinct subset of CRC show the CpG Island Methylator Phenotype (CIMP). These tumors show DNA hypermethylation of a specific subset of CpG islands, resulting in transcriptional downregulation of nearby genes. Recently we reported the establishment of novel CRC cell lines derived from primary and metastatic CRC tissues. In this study we describe the DNA methylation profiling of these low passage CRC cell lines. We generated global DNA methylation profiles with Infinium HumanMethylation450 BeadChips and analysed them in conjunction with matching gene expression profiles. Multidimensional scaling of the DNA methylation and gene expression datasets showed that BRAF mutated cell lines form a distinct group. In this group we investigated the 706 loci which we have previously identified to be hypermethylated in BRAF mutant CRC. We validated the significant findings in the The Cancer Genome Atlas colon adenocarcinoma dataset. Our analysis identified ELOVL5, FAM127B, MTERF1, ZNF606 to be subject to transcriptional downregulation through DNA hypermethylation in CRC. We further investigated ELOVL5 with qPCR and immunohistochemical staining, validating our results, but did not find a clear relation between ELOVL5 expression and tumor stage or relapse free survival. ELOVL5, FAM127B, MTERF1, ZNF606 are involved in important cellular processes such as apoptosis, lipogenesis and the downstream transcriptional effect of the MAPK-pathway. We have identified a DNA methylation profile regulating key cellular processes in CRC, resulting in a growth advantage to the tumor cells.
Collapse
Affiliation(s)
- Arnoud Boot
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jan Oosting
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Peter J. K. Kuppen
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Hans Morreau
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Tom van Wezel
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
- * E-mail:
| |
Collapse
|
49
|
Abstract
Mitochondria are intracellular organelles responsible for adenosine triphosphate production. The strict control of intracellular energy needs require proper mitochondrial functioning. The mitochondria are under dual controls of mitochondrial DNA (mtDNA) and nuclear DNA (nDNA). Mitochondrial dysfunction can arise from changes in either mtDNA or nDNA genes regulating function. There are an estimated ∼1500 proteins in the mitoproteome, whereas the mtDNA genome has 37 proteins. There are, to date, ∼275 genes shown to give rise to disease. The unique physiology of mitochondrial functioning contributes to diverse gene expression. The onset and range of phenotypic expression of disease is diverse, with onset from neonatal to seventh decade of life. The range of dysfunction is heterogeneous, ranging from single organ to multisystem involvement. The complexity of disease expression has severely limited gene discovery. Combining phenotypes with improvements in gene sequencing strategies are improving the diagnosis process. This chapter focuses on the interplay of the unique physiology and gene discovery in the current knowledge of genetically derived mitochondrial disease.
Collapse
Affiliation(s)
- Russell P Saneto
- Seattle Children's Hospital/University of Washington, Seattle, WA, United States.
| |
Collapse
|
50
|
Mulder H. Transcribing β-cell mitochondria in health and disease. Mol Metab 2017; 6:1040-1051. [PMID: 28951827 PMCID: PMC5605719 DOI: 10.1016/j.molmet.2017.05.014] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 05/13/2017] [Accepted: 05/22/2017] [Indexed: 12/17/2022] Open
Abstract
Background The recent genome-wide association studies (GWAS) of Type 2 Diabetes (T2D) have identified the pancreatic β-cell as the culprit in the pathogenesis of the disease. Mitochondrial metabolism plays a crucial role in the processes controlling release of insulin and β-cell mass. This notion implies that mechanisms controlling mitochondrial function have the potential to play a decisive pathogenetic role in T2D. Scope of the review This article reviews studies demonstrating that there is indeed mitochondrial dysfunction in islets in T2D, and that GWAS have identified a variant in the gene encoding transcription factor B1 mitochondrial (TFB1M), predisposing to T2D due to mitochondrial dysfunction and impaired insulin secretion. Mechanistic studies of the nature of this pathogenetic link, as well as of other mitochondrial transcription factors, are described. Major conclusions Based on this, it is argued that transcription and translation in mitochondria are critical processes determining mitochondrial function in β-cells in health and disease.
Collapse
Key Words
- AMPK, AMP-dependent protein kinase
- ATGL, adipocyte triglyceride lipase
- COX, Cytochrome c oxidase
- CYTB, Cytochrome b
- ERR-α, Estrogen-related receptor-α
- Expression quantitative trait locus (eQTL)
- GDH, Glutamate dehydrogenase
- GSIS, Glucose-stimulated insulin secretion
- GWAS, Genome-wide association study
- Genome-wide association study (GWAS)
- HSL, Hormone-sensitive lipase
- ICDc, Cytosolic isocitrate dehydrogenase
- Insulin secretion
- Islets
- KATP, ATP-dependent K+-channel
- MTERF, Mitochondrial transcription termination factor
- Mitochondria
- ND, NADH dehydrogenase
- NRF, Nuclear respiratory factor
- NSUN4, NOP2/Sun RNA methyltransferase family member 4
- OXPHOS, Oxidative phosphorylation
- PC, Pyruvate carboxylase
- PDH, pyruvate dehydrogenase
- PGC, Peroxisome proliferator-activated receptor-γ co-activator
- POLRMT, Mitochondrial RNA polymerase
- POLγ, DNA polymerase-γ
- PPARγ, Peroxisome proliferator-activated receptor-γ
- PRC, PGC1-related coactivator
- SENP1, Sentrin/SUMO-specific protease-1
- SNP, Single Nucleotide Polymorphism
- SUR1, Sulphonylurea receptor-1
- T2D, Type 2 Diabetes
- TCA, Tricarboxylic acid
- TEFM, Mitochondrial transcription elongation factor
- TFAM, Transcription factor A mitochondrial
- TFB1M, Transcription factor B1 mitochondrial
- TFB2M, Transcription factor B2 mitochondrial
- eQTL, Expression quantitative trait locus
- β-Cell
Collapse
Affiliation(s)
- Hindrik Mulder
- Unit of Molecular Metabolism, Lund University Diabetes Centre, Malmö, Sweden
| |
Collapse
|