1
|
Tarancon-Diez L, Carrasco I, Montes L, Falces-Romero I, Vazquez-Alejo E, Jiménez de Ory S, Dapena M, Iribarren JA, Díez C, Ramos-Ruperto L, Colino E, Calvo C, Muñoz-Fernandez MÁ, Navarro ML, Sainz T. Torque teno virus: a potential marker of immune reconstitution in youths with vertically acquired HIV. Sci Rep 2024; 14:24691. [PMID: 39433755 PMCID: PMC11494008 DOI: 10.1038/s41598-024-73870-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/23/2024] [Indexed: 10/23/2024] Open
Abstract
Torque teno virus (TTV) viral load (VL), a component of the human virome, increases during immune suppression or dysregulation. This study aimed to explore TTV VL in youths living with vertically acquired HIV (YWVH) and its potential as an immunovirological marker. We performed an observational, retrospective study involving YWVH under antiretroviral treatment (ART) from the Spanish Cohort of HIV-infected children, adolescents, and vertically HIV-infected patients transferred to Adult Units (CoRISpe-FARO), compared to HIV-negative healthy donors (HD). Plasma TTV VL was assessed by qPCR. T-cell phenotype was analysed on cryopreserved peripheral blood mononuclear cells by flow cytometry. Correlations with baseline CD4 and CD8 and long-term virological evolution were examined. A total of 57 YWVH were compared with 23 HD. YWVH had a median CD4 T-cells of 736 cells/mm3 [IQR: 574-906], a median of 17 years [IQR: 14-20.5] since ART initiation, and 65 months [IQR: 39-116] under HIV-RNA virological control. TTV VL was higher among YWVH and in males compared with females (p < 0.05). Among YWVH, TTV VL correlated with CD4 and CD8 counts and the CD4/CD8 ratio (p = 0.002; r = - 0.39, p = 0.037; r = 0.277, p = 0.005; r = - 0.37 respectively). TTV VL correlated with activation expression markers (HLA-DR+/CD38+) on CD4 (p = 0.007, r = 0.39) and the soluble proinflammatory cytokine IL-6 (p = 0.006, r = 0.38).
Collapse
Affiliation(s)
- Laura Tarancon-Diez
- Servicio de Pediatría, Hospital General Universitario Gregorio Marañón, Madrid, Spain.
- Grupo de Infecciones en la Población Pediátrica, Health Research Institute Gregorio Marañón (IiSGM) Madrid, Calle Dr. Esquerdo 46, 28007, Madrid, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain.
| | - Itziar Carrasco
- Servicio de Pediatría, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Grupo de Infecciones en la Población Pediátrica, Health Research Institute Gregorio Marañón (IiSGM) Madrid, Calle Dr. Esquerdo 46, 28007, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Laura Montes
- General Pediatrics and Infectious and Tropical Diseases Department, Hospital La Paz, Madrid, Spain
- University Hospital La Paz Research Institute (IdiPAZ), Madrid, Spain
| | - Iker Falces-Romero
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Department of Microbiology and Parasitology, Hospital La Paz, Madrid, Spain
| | - Elena Vazquez-Alejo
- Molecular Immunology Laboratoy, Hospital General Universitario Gregorio Marañón, Health Research Institute Gregorio Marañón (IiSGM), Madrid, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Santiago Jiménez de Ory
- Servicio de Pediatría, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Grupo de Infecciones en la Población Pediátrica, Health Research Institute Gregorio Marañón (IiSGM) Madrid, Calle Dr. Esquerdo 46, 28007, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Marta Dapena
- Department of Infectious Diseases, Hospital General de Castellón, Castellón, Spain
| | | | - Cristina Díez
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Unidad de Enfermedades Infecciosas/VIH, Hospital General Universitario Gregorio Marañón, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain
| | - Luis Ramos-Ruperto
- University Hospital La Paz Research Institute (IdiPAZ), Madrid, Spain
- Infectious Diseases Unit, Hospital La Paz-Carlos III-Cantoblanco, Madrid, Spain
- Hospital La Paz, Madrid, Spain
| | - Elena Colino
- Hospital Materno Infantil Las Palmas, Las Palmas de Gran Canaria, Spain
| | - Cristina Calvo
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- General Pediatrics and Infectious and Tropical Diseases Department, Hospital La Paz, Madrid, Spain
- University Hospital La Paz Research Institute (IdiPAZ), Madrid, Spain
- Departamento de Pediatría, Universidad Autónoma de Madrid, Madrid, Spain
| | - Mª Ángeles Muñoz-Fernandez
- Molecular Immunology Laboratoy, Hospital General Universitario Gregorio Marañón, Health Research Institute Gregorio Marañón (IiSGM), Madrid, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - María Luisa Navarro
- Servicio de Pediatría, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Grupo de Infecciones en la Población Pediátrica, Health Research Institute Gregorio Marañón (IiSGM) Madrid, Calle Dr. Esquerdo 46, 28007, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Departamento de Pediatría, Universidad Complutense de Madrid (UCM), Madrid, Spain
| | - Talía Sainz
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- General Pediatrics and Infectious and Tropical Diseases Department, Hospital La Paz, Madrid, Spain
- University Hospital La Paz Research Institute (IdiPAZ), Madrid, Spain
- Departamento de Pediatría, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
2
|
Dal Lago S, Brani P, Ietto G, Dalla Gasperina D, Gianfagna F, Giaroni C, Bosi A, Drago Ferrante F, Genoni A, Manzoor HZ, Ambrosini A, De Cicco M, Quartarone CD, Khemara S, Carcano G, Maggi F, Baj A. Torque Teno Virus: A Promising Biomarker in Kidney Transplant Recipients. Int J Mol Sci 2024; 25:7744. [PMID: 39062987 PMCID: PMC11277443 DOI: 10.3390/ijms25147744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/08/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Torque Teno Virus (TTV) is a ubiquitous component of the human virome, not associated with any disease. As its load increases when the immune system is compromised, such as in kidney transplant (KT) recipients, TTV load monitoring has been proposed as a method to assess immunosuppression. In this prospective study, TTV load was measured in plasma and urine samples from 42 KT recipients, immediately before KT and in the first 150 days after it. Data obtained suggest that TTV could be a relevant marker for evaluating immune status and could be used as a guide to predict the onset of infectious complications in the follow-up of KT recipients. Since we observed no differences considering distance from transplantation, while we found a changing trend in days before viral infections, we suggest to consider changes over time in the same subjects, irrespective of time distance from transplantation.
Collapse
Affiliation(s)
- Sara Dal Lago
- Nephrology Department, ASST Sette Laghi, University of Insubria, 21100 Varese, Italy
| | - Paola Brani
- Department of Medicine and Technological Innovation, University of Insubria, 21100 Varese, Italy
| | - Giuseppe Ietto
- Department of Medicine and Technological Innovation, University of Insubria, 21100 Varese, Italy
| | - Daniela Dalla Gasperina
- Department of Medicine and Technological Innovation, University of Insubria, 21100 Varese, Italy
| | - Francesco Gianfagna
- Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy
- Mediterranea Cardiocentro, 80122 Napoli, Italy
| | - Cristina Giaroni
- Department of Medicine and Technological Innovation, University of Insubria, 21100 Varese, Italy
| | - Annalisa Bosi
- Department of Medicine and Surgery, University of Insubria, 21100 Varese, Italy
| | | | - Angelo Genoni
- Department of Medicine and Technological Innovation, University of Insubria, 21100 Varese, Italy
| | - Hafza Zahira Manzoor
- Department of Medicine and Technological Innovation, University of Insubria, 21100 Varese, Italy
| | - Andrea Ambrosini
- Nephrology Department, ASST Sette Laghi, University of Insubria, 21100 Varese, Italy
| | - Marco De Cicco
- Nephrology Department, ASST Sette Laghi, University of Insubria, 21100 Varese, Italy
| | | | - Sara Khemara
- Nephrology Department, ASST Sette Laghi, University of Insubria, 21100 Varese, Italy
| | - Giulio Carcano
- Department of Medicine and Technological Innovation, University of Insubria, 21100 Varese, Italy
| | - Fabrizio Maggi
- Laboratory of Virology, National Institute for Infectious Diseases L. Spallanzani—IRCCS, 00149 Rome, Italy
| | - Andreina Baj
- Department of Medicine and Technological Innovation, University of Insubria, 21100 Varese, Italy
| |
Collapse
|
3
|
Roberto P, Cinti L, Lucente D, Russo G, Lai Q, Micozzi A, Gentile G, Turriziani O, Pierangeli A, Antonelli G. TTV and CMV viral load dynamics: Which emerges first during immunosuppression? J Med Virol 2024; 96:e29814. [PMID: 39015038 DOI: 10.1002/jmv.29814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/22/2024] [Accepted: 07/08/2024] [Indexed: 07/18/2024]
Abstract
Novel biomarkers reflecting the degree of immunosuppression in transplant patients are required to ensure eventual personalized equilibrium between rejection and infection risks. With the above aim, Torque Teno Virus (TTV) viremia was precisely examined in a large cohort of transplanted immunocompromised patients (192 hematological and 60 solid organ transplant recipients) being monitored for Cytomegalovirus reactivation. TTV load was measured in 2612 plasma samples from 448 patients. The results revealed a significant increase in TTV viral load approximately 14 days following CMV reactivation/infection in solid organ transplant (SOT) patients. No recognizable difference in TTV load was noted among hematological patients during the entire timeframe analyzed. Furthermore, a temporal gap of approximately 30 days was noted between the viral load peaks reached by the two viruses, with Cytomegalovirus (CMV) preceding TTV. It was not possible to establish a correlation between CMV reactivation/infection and TTV viremia in hematological patients. On the other hand, the SOT patient cohort allowed us to analyze viral kinetics and draw intriguing conclusions. Taken together, the data suggest, to our knowledge for the first time, that CMV infection itself could potentially cause an increase in TTV load in the peripheral blood of patients undergoing immunosuppressive therapy.
Collapse
Affiliation(s)
- Piergiorgio Roberto
- Laboratory of Microbiology and Virology, Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
- PhD National Programme in One Health Approaches to Infectious Diseases and Life Science Research, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy
- University Hospital "Policlinico Umberto I", Rome, Italy
| | - Lilia Cinti
- Laboratory of Microbiology and Virology, Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
- University Hospital "Policlinico Umberto I", Rome, Italy
- PhD National Programme in Innovazione nella diagnosi, prevenzione e terapia delle infezioni a rischio epidemico-pandemico, Dipartimento di Biotecnologie Mediche, University of Siena, Siena, Italy
| | - Dario Lucente
- Department of Mathematics & Physics, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Gianluca Russo
- University Hospital "Policlinico Umberto I", Rome, Italy
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Quirino Lai
- University Hospital "Policlinico Umberto I", Rome, Italy
- Department of Chirurgia Generale e Specialistica, Sapienza Università di Roma, Roma, Italy
| | - Alessandra Micozzi
- University Hospital "Policlinico Umberto I", Rome, Italy
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Giuseppe Gentile
- University Hospital "Policlinico Umberto I", Rome, Italy
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Ombretta Turriziani
- Laboratory of Microbiology and Virology, Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
- University Hospital "Policlinico Umberto I", Rome, Italy
| | - Alessandra Pierangeli
- Laboratory of Microbiology and Virology, Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Guido Antonelli
- Laboratory of Microbiology and Virology, Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
- University Hospital "Policlinico Umberto I", Rome, Italy
| |
Collapse
|
4
|
Spezia PG, Carletti F, Novazzi F, Specchiarello E, Genoni A, Drago Ferrante F, Minosse C, Matusali G, Mancini N, Focosi D, Antonelli G, Girardi E, Maggi F. Torquetenovirus Viremia Quantification Using Real-Time PCR Developed on a Fully Automated, Random-Access Platform. Viruses 2024; 16:963. [PMID: 38932255 PMCID: PMC11209079 DOI: 10.3390/v16060963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/11/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Quantification of Torquetenovirus (TTV) viremia is becoming important for evaluating the status of the immune system in solid organ transplant recipients, monitoring the appearance of post-transplant complications, and controlling the efficacy of maintenance immunosuppressive therapy. Thus, diagnostic approaches able to scale up TTV quantification are needed. Here, we report on the development and validation of a real-time PCR assay for TTV quantification on the Hologic Panther Fusion® System by utilizing its open-access channel. The manual real-time PCR previously developed in our laboratories was optimized to detect TTV DNA on the Hologic Panther Fusion® System. The assay was validated using clinical samples. The automated TTV assay has a limit of detection of 1.6 log copies per ml of serum. Using 112 samples previously tested via manual real-time PCR, the concordance in TTV detection was 93% between the assays. When the TTV levels were compared, the overall agreement between the methods, as assessed using Passing-Bablok linear regression and Bland-Altman analyses, was excellent. In summary, we validated a highly sensitive and accurate method for the diagnostic use of TTV quantification on a fully automated Hologic Panther Fusion® System. This will greatly improve the turnaround time for TTV testing and better support the laboratory diagnosis of this new viral biomarker.
Collapse
Affiliation(s)
- Pietro Giorgio Spezia
- Laboratory of Virology, National Institute for Infectious Diseases Lazzaro Spallanzani—IRCCS, 00149 Rome, Italy; (P.G.S.); (E.S.); (C.M.); (G.M.); (F.M.)
| | - Fabrizio Carletti
- Laboratory of Virology, National Institute for Infectious Diseases Lazzaro Spallanzani—IRCCS, 00149 Rome, Italy; (P.G.S.); (E.S.); (C.M.); (G.M.); (F.M.)
| | - Federica Novazzi
- Laboratory of Medical Microbiology and Virology, Department of Medicine and Technological Innovation, Italy; Ospedale di Circolo e Fondazione Macchi, University of Insubria, 21100 Varese, Italy; (F.N.); (A.G.); (F.D.F.); (N.M.)
| | - Eliana Specchiarello
- Laboratory of Virology, National Institute for Infectious Diseases Lazzaro Spallanzani—IRCCS, 00149 Rome, Italy; (P.G.S.); (E.S.); (C.M.); (G.M.); (F.M.)
| | - Angelo Genoni
- Laboratory of Medical Microbiology and Virology, Department of Medicine and Technological Innovation, Italy; Ospedale di Circolo e Fondazione Macchi, University of Insubria, 21100 Varese, Italy; (F.N.); (A.G.); (F.D.F.); (N.M.)
| | - Francesca Drago Ferrante
- Laboratory of Medical Microbiology and Virology, Department of Medicine and Technological Innovation, Italy; Ospedale di Circolo e Fondazione Macchi, University of Insubria, 21100 Varese, Italy; (F.N.); (A.G.); (F.D.F.); (N.M.)
| | - Claudia Minosse
- Laboratory of Virology, National Institute for Infectious Diseases Lazzaro Spallanzani—IRCCS, 00149 Rome, Italy; (P.G.S.); (E.S.); (C.M.); (G.M.); (F.M.)
| | - Giulia Matusali
- Laboratory of Virology, National Institute for Infectious Diseases Lazzaro Spallanzani—IRCCS, 00149 Rome, Italy; (P.G.S.); (E.S.); (C.M.); (G.M.); (F.M.)
| | - Nicasio Mancini
- Laboratory of Medical Microbiology and Virology, Department of Medicine and Technological Innovation, Italy; Ospedale di Circolo e Fondazione Macchi, University of Insubria, 21100 Varese, Italy; (F.N.); (A.G.); (F.D.F.); (N.M.)
| | - Daniele Focosi
- North-Western Tuscany Blood Bank, Pisa University Hospital, 56124 Pisa, Italy;
| | - Guido Antonelli
- Laboratory of Microbiology and Virology, Department of Molecular Medicine, Sapienza University of Rome, 00185 Rome, Italy;
| | - Enrico Girardi
- Scientific Direction, National Institute for Infectious Diseases Lazzaro Spallanzani—IRCCS, 00149 Rome, Italy;
| | - Fabrizio Maggi
- Laboratory of Virology, National Institute for Infectious Diseases Lazzaro Spallanzani—IRCCS, 00149 Rome, Italy; (P.G.S.); (E.S.); (C.M.); (G.M.); (F.M.)
| |
Collapse
|
5
|
Rosiewicz KS, Blazquez-Navarro A, Kaliszczyk S, Bauer C, Or-Guil M, Viebahn R, Zgoura P, Reinke P, Roch T, Hugo C, Westhoff T, Thieme C, Stervbo U, Babel N. Interactions of TTV with BKV, CMV, EBV, and HHV-6A and their impact on post-transplant graft function in kidney transplant recipients. FRONTIERS IN TRANSPLANTATION 2024; 3:1393838. [PMID: 38993745 PMCID: PMC11235294 DOI: 10.3389/frtra.2024.1393838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/24/2024] [Indexed: 07/13/2024]
Abstract
Background Mono and combined reactivation of latent viruses occurs frequently under immunosuppressive therapy in kidney transplant patients. Recently, monitoring torque teno virus (TTV) reactivation came more into focus as a potential biomarker for immune status. The surrogate characteristics of TTV reactivation on acute rejection, and the combined reactivation with other latent viruses such as cytomegalovirus (CMV), human BK virus (BKV), Epstein-Barr virus (EBV), and human herpes virus-6A (HHV-6A) on allograft function, are unknown so far. Methods Blood samples from 93 kidney transplant recipients obtained during the first post-transplant year were analyzed for TTV/BKV/CMV/EBV/HHV-6A load. Clinical characteristics, including graft function [glomerular filtration rate (GFR)], were collected in parallel. Results TTV had the highest prevalence and viral loads at 100% and a mean of 5.72 copies/ml (cp/ml) (log10). We found 28.0%, 26.9%, 7.5%, and 51.6% of simultaneous reactivation of TTV with BKV, CMV, EBV, and HHV-6, respectively. These combined reactivations were not associated with a significantly reduced estimated GFR at month 12. Of interest, patients with lower TTV loads <5.0 cp/ml (log10) demonstrated not only a higher incidence of acute rejection, but also an unexpected significantly earlier occurrence and higher incidence of BKV and HHV-6A reactivation. Correlations between TTV loads, other latent viruses, and immunosuppressive medication were only significant from 6 months after transplant. Conclusion We were able to observe and support previously introduced TTV load thresholds predicting kidney allograft rejection. However, due to a possible delayed relation between immunosuppressive medication and TTV viral load adaptation, the right time points to start using TTV as a biomarker might need to be further clarified by other and better designed studies.
Collapse
Affiliation(s)
- Kamil S. Rosiewicz
- Berlin Center for Advanced Therapies (BeCAT), Charité — Universitätsmedizin Berlin, Berlin, Germany
| | - Arturo Blazquez-Navarro
- Berlin Center for Advanced Therapies (BeCAT), Charité — Universitätsmedizin Berlin, Berlin, Germany
- Center for Translational Medicine, Universitätsklinikum der Ruhr-Universität Bochum, Medizinische Klinik I, Herne, Germany
| | - Sviatlana Kaliszczyk
- Berlin Center for Advanced Therapies (BeCAT), Charité — Universitätsmedizin Berlin, Berlin, Germany
- Center for Translational Medicine, Universitätsklinikum der Ruhr-Universität Bochum, Medizinische Klinik I, Herne, Germany
| | | | - Michal Or-Guil
- Institute of Medical Immunology, Charité — Universitätsmedizin Berlin, Berlin, Germany
| | - Richard Viebahn
- Chirurgische Klinik, Universitätsklinikum Knappschaftskrankenhaus Bochum, Bochum, Germany
| | - Panagiota Zgoura
- Chirurgische Klinik, Universitätsklinikum Knappschaftskrankenhaus Bochum, Bochum, Germany
| | - Petra Reinke
- Berlin Center for Advanced Therapies (BeCAT), Charité — Universitätsmedizin Berlin, Berlin, Germany
| | - Toralf Roch
- Berlin Center for Advanced Therapies (BeCAT), Charité — Universitätsmedizin Berlin, Berlin, Germany
| | - Christian Hugo
- Universitätsklinikum Carl Gustav Carus, Medizinische Klinik III — Bereich Nephrologie, Dresden, Germany
| | - Timm Westhoff
- Center for Translational Medicine, Universitätsklinikum der Ruhr-Universität Bochum, Medizinische Klinik I, Herne, Germany
| | - Constantin Thieme
- Berlin Center for Advanced Therapies (BeCAT), Charité — Universitätsmedizin Berlin, Berlin, Germany
| | - Ulrik Stervbo
- Berlin Center for Advanced Therapies (BeCAT), Charité — Universitätsmedizin Berlin, Berlin, Germany
- Center for Translational Medicine, Universitätsklinikum der Ruhr-Universität Bochum, Medizinische Klinik I, Herne, Germany
| | - Nina Babel
- Berlin Center for Advanced Therapies (BeCAT), Charité — Universitätsmedizin Berlin, Berlin, Germany
- Center for Translational Medicine, Universitätsklinikum der Ruhr-Universität Bochum, Medizinische Klinik I, Herne, Germany
| |
Collapse
|
6
|
Laroche C, Engen RM. Immune monitoring in pediatric kidney transplant. Pediatr Transplant 2024; 28:e14785. [PMID: 38766986 DOI: 10.1111/petr.14785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/25/2024] [Accepted: 04/29/2024] [Indexed: 05/22/2024]
Abstract
BACKGROUND Long-term outcomes in pediatric kidney transplantation remain suboptimal, largely related to chronic rejection. Creatinine is a late marker of renal injury, and more sensitive, early markers of allograft injury are an active area of current research. METHODS This is an educational review summarizing existing strategies for monitoring for rejection in kidney transplant recipients. RESULTS We summarize supporting currently available clinical tests, including surveillance biopsy, donor specific antibodies, and donor-derived cell free DNA, as well as the potential limitations of these studies. In addition, we review the current avenues of active research, including transcriptomics, proteomics, metabolomics, and torque tenovirus levels. CONCLUSION Advancing the use of noninvasive immune monitoring will depend on well-designed multicenter trials that include patients with stable graft function, include biopsy results on all patients, and can demonstrate both association with a patient-relevant clinical endpoint such as graft survival or change in glomerular filtration rate and a potential timepoint for intervention.
Collapse
Affiliation(s)
| | - Rachel M Engen
- University of Wisconsin Madison, Madison, Wisconsin, USA
| |
Collapse
|
7
|
Caixeta RAV, Batista AM, Caetano MW, Palmieri M, Schwab G, Zerbinati RM, Victor ASP, Gallo CDB, Tozetto-Mendoza TR, Junges R, Ortega KL, Costa ALF, Sarmento DJDS, Pallos D, Lindoso JAL, Giannecchini S, Braz-Silva PH. Investigation of Oral Shedding of Torquetenovirus (TTV) in Moderate-to-Severe COVID-19 Hospitalised Patients. Viruses 2024; 16:831. [PMID: 38932124 PMCID: PMC11209259 DOI: 10.3390/v16060831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 05/19/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Torquetenovirus (TTV) is a small DNA virus constituting the human virome. High levels of TTV-DNA have been shown to be associated with immunosuppression and inflammatory chronic disorders. AIM To assess the possible association between the salivary viral load of TTV-DNA in patients hospitalised due to COVID-19 and disease severity. METHODS Saliva samples collected from 176 patients infected with SARS-CoV-2 were used to investigate the presence of SARS-CoV-2 and TTV-DNA by use of real-time RT-PCR. RESULTS The majority of patients were male with severe COVID-19. Presence of SARS-CoV-2 was observed in the saliva of 64.77% of patients, showing TTV-DNA in 55.68% of them. Patients with impaired clinical conditions (p < 0.001), which evolved to death (p = 0.003), showed a higher prevalence of TTV-DNA. The median viral load in patients with severe condition was 4.99 log10 copies/mL, in which those who were discharged and those evolving to death had values of 3.96 log10 copies/mL and 6.27 log10 copies/mL, respectively. A statistically significant association was found between the distribution of TTV-DNA viral load in saliva samples and severity of COVID-19 (p = 0.004) and disease outcomes (p < 0.001). CONCLUSIONS These results indicate that TTV-DNA in saliva could be a useful biomarker of COVID-19 severity and prognosis.
Collapse
Affiliation(s)
- Rafael Antônio Velôso Caixeta
- Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo 05508-000, Brazil; (R.A.V.C.); (M.W.C.); (M.P.); (C.d.B.G.); (K.L.O.)
| | - Alexandre Mendes Batista
- Laboratory of Virology (LIM-52-HCFMUSP), Institute of Tropical Medicine, University of São Paulo School of Medicine, São Paulo 05403-000, Brazil; (A.M.B.); (G.S.); (R.M.Z.); (A.S.P.V.); (T.R.T.-M.)
| | - Matheus Willian Caetano
- Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo 05508-000, Brazil; (R.A.V.C.); (M.W.C.); (M.P.); (C.d.B.G.); (K.L.O.)
- Laboratory of Virology (LIM-52-HCFMUSP), Institute of Tropical Medicine, University of São Paulo School of Medicine, São Paulo 05403-000, Brazil; (A.M.B.); (G.S.); (R.M.Z.); (A.S.P.V.); (T.R.T.-M.)
| | - Michelle Palmieri
- Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo 05508-000, Brazil; (R.A.V.C.); (M.W.C.); (M.P.); (C.d.B.G.); (K.L.O.)
| | - Gabriela Schwab
- Laboratory of Virology (LIM-52-HCFMUSP), Institute of Tropical Medicine, University of São Paulo School of Medicine, São Paulo 05403-000, Brazil; (A.M.B.); (G.S.); (R.M.Z.); (A.S.P.V.); (T.R.T.-M.)
| | - Rodrigo Melim Zerbinati
- Laboratory of Virology (LIM-52-HCFMUSP), Institute of Tropical Medicine, University of São Paulo School of Medicine, São Paulo 05403-000, Brazil; (A.M.B.); (G.S.); (R.M.Z.); (A.S.P.V.); (T.R.T.-M.)
| | - Andressa Silva Pereira Victor
- Laboratory of Virology (LIM-52-HCFMUSP), Institute of Tropical Medicine, University of São Paulo School of Medicine, São Paulo 05403-000, Brazil; (A.M.B.); (G.S.); (R.M.Z.); (A.S.P.V.); (T.R.T.-M.)
| | - Camila de Barros Gallo
- Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo 05508-000, Brazil; (R.A.V.C.); (M.W.C.); (M.P.); (C.d.B.G.); (K.L.O.)
| | - Tânia Regina Tozetto-Mendoza
- Laboratory of Virology (LIM-52-HCFMUSP), Institute of Tropical Medicine, University of São Paulo School of Medicine, São Paulo 05403-000, Brazil; (A.M.B.); (G.S.); (R.M.Z.); (A.S.P.V.); (T.R.T.-M.)
| | - Roger Junges
- Institute of Oral Biology, Faculty of Dentistry, University of Oslo, 0313 Oslo, Norway;
| | - Karem L. Ortega
- Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo 05508-000, Brazil; (R.A.V.C.); (M.W.C.); (M.P.); (C.d.B.G.); (K.L.O.)
- Oral Medicine, Oral Surgery and Implantology Unit (MedOralRes), Faculty of Medicine and Dentistry, University of Santiago de Compostela, 15705 Santiago de Compostela, Spain
| | | | | | - Débora Pallos
- School of Dentistry, University of Santo Amaro, São Paulo 04743-030, Brazil;
| | - José Angelo Lauletta Lindoso
- Emílio Ribas Institute of Infectious Diseases, São Paulo 01246-900, Brazil;
- Laboratory of Protozoology (LIM-49-HC-FMUSP), Institute of Tropical Medicine, University of São Paulo School of Medicine, São Paulo 01246-903, Brazil
- Department of Infectious Diseases, University of São Paulo School of Medicine, São Paulo 01246-903, Brazil
| | - Simone Giannecchini
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Paulo Henrique Braz-Silva
- Department of Stomatology, School of Dentistry, University of São Paulo, São Paulo 05508-000, Brazil; (R.A.V.C.); (M.W.C.); (M.P.); (C.d.B.G.); (K.L.O.)
- Laboratory of Virology (LIM-52-HCFMUSP), Institute of Tropical Medicine, University of São Paulo School of Medicine, São Paulo 05403-000, Brazil; (A.M.B.); (G.S.); (R.M.Z.); (A.S.P.V.); (T.R.T.-M.)
| |
Collapse
|
8
|
Albert E, Giménez E, Hernani R, Piñana JL, Solano C, Navarro D. Torque Teno Virus DNA Load in Blood as an Immune Status Biomarker in Adult Hematological Patients: The State of the Art and Future Prospects. Viruses 2024; 16:459. [PMID: 38543824 PMCID: PMC10974055 DOI: 10.3390/v16030459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/11/2024] [Accepted: 03/15/2024] [Indexed: 05/23/2024] Open
Abstract
A solid body of scientific evidence supports the assumption that Torque teno virus (TTV) DNA load in the blood compartment may behave as a biomarker of immunosuppression in solid organ transplant recipients; in this clinical setting, high or increasing TTV DNA levels precede the occurrence of infectious complications, whereas the opposite anticipates the development of acute rejection. The potential clinical value of the TTV DNA load in blood to infer the risk of opportunistic viral infection or immune-related (i.e., graft vs. host disease) clinical events in the hematological patient, if any, remains to be determined. In fact, contradictory data have been published on this matter in the allo-SCT setting. Studies addressing this topic, which we review and discuss herein, are highly heterogeneous as regards design, patient characteristics, time points selected for TTV DNA load monitoring, and PCR assays used for TTV DNA quantification. Moreover, clinical outcomes are often poorly defined. Prospective, ideally multicenter, and sufficiently powered studies with well-defined clinical outcomes are warranted to elucidate whether TTV DNA load monitoring in blood may be of any clinical value in the management of hematological patients.
Collapse
Affiliation(s)
- Eliseo Albert
- Microbiology Service, Clinic University Hospital, INCLIVA Health Research Institute, 46010 Valencia, Spain; (E.A.); (E.G.)
| | - Estela Giménez
- Microbiology Service, Clinic University Hospital, INCLIVA Health Research Institute, 46010 Valencia, Spain; (E.A.); (E.G.)
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, 28029 Madrid, Spain
| | - Rafael Hernani
- Hematology Service, Hospital Clínico Universitario, INCLIVA Health Research Institute, 46010 Valencia, Spain; (R.H.); (J.L.P.); (C.S.)
| | - José Luis Piñana
- Hematology Service, Hospital Clínico Universitario, INCLIVA Health Research Institute, 46010 Valencia, Spain; (R.H.); (J.L.P.); (C.S.)
| | - Carlos Solano
- Hematology Service, Hospital Clínico Universitario, INCLIVA Health Research Institute, 46010 Valencia, Spain; (R.H.); (J.L.P.); (C.S.)
- Department of Medicine, School of Medicine, University of Valencia, 46010 Valencia, Spain
| | - David Navarro
- Microbiology Service, Clinic University Hospital, INCLIVA Health Research Institute, 46010 Valencia, Spain; (E.A.); (E.G.)
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, 28029 Madrid, Spain
- Department of Microbiology, School of Medicine, University of Valencia, 46010 Valencia, Spain
| |
Collapse
|
9
|
Reyes NS, Spezia PG, Jara R, Filippini F, Boccia N, García G, Hermida E, Poletta FA, Pistello M, Laham G, Maggi F, Echavarria M. Torque Teno Virus (TTV) in Renal Transplant Recipients: Species Diversity and Variability. Viruses 2024; 16:432. [PMID: 38543797 PMCID: PMC10974959 DOI: 10.3390/v16030432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/26/2024] [Accepted: 02/28/2024] [Indexed: 05/23/2024] Open
Abstract
Torque Teno Virus (TTV) is a nonpathogenic and ubiquitous ssDNA virus, a member of the Anelloviridae family. TTV has been postulated as a biomarker in transplant patients. This study aimed to determine the TTV species diversity and variability in renal transplant recipients and to associate species diversity with the corresponding TTV viral load. From 27 recipients, 30 plasma samples were selected. Viral load was determined using two real-time PCR assays, followed by RCA-NGS and ORF1 phylogenetic analysis. The TTV diversity was determined in all samples. Variability was determined in three patients with two sequential samples (pre- and post-transplantation). Most of the samples presented multiple TTV species, up to 15 different species were detected. In the pre-transplant samples (n = 12), the most prevalent species were TTV3 (75%) and TTV13 (75%), and the median number of species per sample was 5 (IQR: 4-7.5). TTV3 was also the most prevalent (56%) in the post-transplant samples (n = 18), and the median number of species was 2 (IQR: 1.8-5.5). No significant correlation between the number of species and viral load was found. The number and type of TTV species showed total variability over time. We report high TTV species diversity in Argentinian recipients, especially in pre-transplant period, with total intra-host variability. However, we found no significant correlation between this high diversity and TTV viral load.
Collapse
Affiliation(s)
- Noelia Soledad Reyes
- Virology Unit, Centro de Educación Médica e Investigaciones Clínicas (CEMIC) University Hospital, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Galván 4102, Buenos Aires C1631FWO, Argentina; (R.J.); (E.H.); (M.E.)
| | - Pietro Giorgio Spezia
- Laboratory of Virology, National Institute for Infectious Diseases Lazzaro Spallanzani—IRCCS, 00149 Rome, Italy;
| | - Raquel Jara
- Virology Unit, Centro de Educación Médica e Investigaciones Clínicas (CEMIC) University Hospital, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Galván 4102, Buenos Aires C1631FWO, Argentina; (R.J.); (E.H.); (M.E.)
| | - Fabio Filippini
- Department of Translational Research, University of Pisa, 56127 Pisa, Italy; (F.F.); (M.P.)
| | - Natalia Boccia
- Department of Nephrology, Centro de Educación Médica e Investigaciones Clínicas (CEMIC) University Hospital, Buenos Aires C1631FWO, Argentina; (N.B.); (G.G.); (G.L.)
| | - Gonzalo García
- Department of Nephrology, Centro de Educación Médica e Investigaciones Clínicas (CEMIC) University Hospital, Buenos Aires C1631FWO, Argentina; (N.B.); (G.G.); (G.L.)
| | - Eliana Hermida
- Virology Unit, Centro de Educación Médica e Investigaciones Clínicas (CEMIC) University Hospital, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Galván 4102, Buenos Aires C1631FWO, Argentina; (R.J.); (E.H.); (M.E.)
| | - Fernando Adrian Poletta
- Genetic Epidemiology Laboratory, Centro de Educación Médica e Investigaciones Clínicas (CEMIC) University Hospital, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1631FWO, Argentina;
| | - Mauro Pistello
- Department of Translational Research, University of Pisa, 56127 Pisa, Italy; (F.F.); (M.P.)
| | - Gustavo Laham
- Department of Nephrology, Centro de Educación Médica e Investigaciones Clínicas (CEMIC) University Hospital, Buenos Aires C1631FWO, Argentina; (N.B.); (G.G.); (G.L.)
| | - Fabrizio Maggi
- Laboratory of Virology, National Institute for Infectious Diseases Lazzaro Spallanzani—IRCCS, 00149 Rome, Italy;
| | - Marcela Echavarria
- Virology Unit, Centro de Educación Médica e Investigaciones Clínicas (CEMIC) University Hospital, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Galván 4102, Buenos Aires C1631FWO, Argentina; (R.J.); (E.H.); (M.E.)
| |
Collapse
|
10
|
Regele F, Haupenthal F, Doberer K, Görzer I, Kapps S, Strassl R, Bond G. The kinetics of Torque Teno virus plasma load following calcineurin inhibitor dose change in kidney transplant recipients. J Med Virol 2024; 96:e29554. [PMID: 38511586 DOI: 10.1002/jmv.29554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/02/2024] [Accepted: 03/10/2024] [Indexed: 03/22/2024]
Abstract
Torque Teno virus (TTV) is nonpathogenic, highly prevalent, and reflects the immune status of its host. Thus, TTV plasma load was suggested for the guidance of immunosuppression post solid organ transplantation. The present study was designed to determine the kinetics of TTV following changes in calcineurin inhibitor (CNI) dose. A total of 48 adult recipients of a kidney graft transplanted at the Medical University of Vienna between 2018 and 2019 with isolated changes in CNI dose were selected from the prospective TTV-POET trial. TTV plasma load was quantified by in-house PCR. At Day 30 following CNI dose adaptation (median 33% of daily dose) no changes in TTV load were noted. However, at Day 60, following CNI dose reduction a lower TTV load of 6.4 log10 c/mL (median; interquartile range [IQR] 4.9-8.1) compared with the baseline of 7.1 log10 c/mL (IQR 5.3-8.9) was noted (p = 0.001); there was also a trend toward a higher TTV load following CNI increase (6.6 log10 c/mL, IQR 4.1-9.7 vs. 5.2 log10 c/mL, IQR 4.5-6.8; p = 0.09). The data suggested that TTV load changes become noticeable only 2 months after CNI dose adaptation, which might be the ideal time point for TTV load monitoring.
Collapse
Affiliation(s)
- Florina Regele
- Department of Medicine III, Division of Nephrology and Dialysis, Medical University of Vienna, Vienna, Austria
| | - Frederik Haupenthal
- Department of Medicine III, Division of Nephrology and Dialysis, Medical University of Vienna, Vienna, Austria
| | - Konstantin Doberer
- Department of Medicine III, Division of Nephrology and Dialysis, Medical University of Vienna, Vienna, Austria
| | - Irene Görzer
- Center for Virology, Medical University of Vienna, Vienna, Austria
| | - Sebastian Kapps
- Department of Medicine III, Division of Nephrology and Dialysis, Medical University of Vienna, Vienna, Austria
| | - Robert Strassl
- Department of Laboratory Medicine, Division of Clinical Virology, Medical University of Vienna, Vienna, Austria
| | - Gregor Bond
- Department of Medicine III, Division of Nephrology and Dialysis, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
11
|
Pinnetti C, Cimini E, Mazzotta V, Matusali G, Vergori A, Mondi A, Rueca M, Batzella S, Tartaglia E, Bettini A, Notari S, Rubino M, Tempestilli M, Pareo C, Falasca L, Del Nonno F, Scarabello A, Camici M, Gagliardini R, Girardi E, Vaia F, Maggi F, Agrati C, Antinori A. Mpox as AIDS-defining event with a severe and protracted course: clinical, immunological, and virological implications. THE LANCET. INFECTIOUS DISEASES 2024; 24:e127-e135. [PMID: 37778364 DOI: 10.1016/s1473-3099(23)00482-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/18/2023] [Accepted: 07/18/2023] [Indexed: 10/03/2023]
Abstract
A 59-year-old treatment-naive patient with advanced HIV infection presented with a severe and protracted course of mpox (formerly known as monkeypox) that did not respond to the current mpox treatment options. The patient worsened clinically, and developed new mucocutaneous lesions and necrotic evolution of pre-existing ones, along with multiple bilateral lung nodules and the appearance of a tracheal necrotic lesion. Although severe forms of mpox have been observed in people with severe immune system deficiency, including those with advanced HIV presentation, the immunological mechanisms underlying this observation have not yet been fully explained. To our knowledge, this is the first account of a necrotising mpox in a person living with HIV, with viral shedding for more than 11 months and a comprehensive immunological description. Moreover, we documented the virus' persistence by detecting mpox virus DNA from multiple sites and quantified anti-monkeypox virus IgA, IgM, IgG, and neutralising antibodies in serum samples. The severe HIV-driven immune depression and the presence of other co-infections might skew and impair immune responses, thus contributing to the persistence of monkeypox virus infection. Further investigations of immune responses to monkeypox virus infection in people with severe immunosuppression are required to improve management and prevention.
Collapse
Affiliation(s)
- Carmela Pinnetti
- Clinical and Research Infectious Diseases Department, National Institute for Infectious Diseases, Lazzaro Spallanzani IRCCS, Rome, Italy
| | - Eleonora Cimini
- Cellular Immunology and Pharmacology Laboratory, National Institute for Infectious Diseases, Lazzaro Spallanzani IRCCS, Rome, Italy
| | - Valentina Mazzotta
- Clinical and Research Infectious Diseases Department, National Institute for Infectious Diseases, Lazzaro Spallanzani IRCCS, Rome, Italy.
| | - Giulia Matusali
- Laboratory of Virology, National Institute for Infectious Diseases, Lazzaro Spallanzani IRCCS, Rome, Italy
| | - Alessandra Vergori
- Clinical and Research Infectious Diseases Department, National Institute for Infectious Diseases, Lazzaro Spallanzani IRCCS, Rome, Italy
| | - Annalisa Mondi
- Clinical and Research Infectious Diseases Department, National Institute for Infectious Diseases, Lazzaro Spallanzani IRCCS, Rome, Italy
| | - Martina Rueca
- Laboratory of Virology, National Institute for Infectious Diseases, Lazzaro Spallanzani IRCCS, Rome, Italy
| | - Sandro Batzella
- Bronchopneumology and Interventional Pulmonology, San Camillo-Forlanini Hospital, Rome, Italy
| | - Eleonora Tartaglia
- Cellular Immunology and Pharmacology Laboratory, National Institute for Infectious Diseases, Lazzaro Spallanzani IRCCS, Rome, Italy
| | - Aurora Bettini
- Laboratory of Virology, National Institute for Infectious Diseases, Lazzaro Spallanzani IRCCS, Rome, Italy
| | - Stefania Notari
- Cellular Immunology and Pharmacology Laboratory, National Institute for Infectious Diseases, Lazzaro Spallanzani IRCCS, Rome, Italy
| | - Marika Rubino
- Cellular Immunology and Pharmacology Laboratory, National Institute for Infectious Diseases, Lazzaro Spallanzani IRCCS, Rome, Italy
| | - Massimo Tempestilli
- Cellular Immunology and Pharmacology Laboratory, National Institute for Infectious Diseases, Lazzaro Spallanzani IRCCS, Rome, Italy
| | - Carlo Pareo
- Respiratory Infectious Diseases Unit, National Institute for Infectious Diseases, Lazzaro Spallanzani IRCCS, Rome, Italy
| | - Laura Falasca
- Pathology Unit, National Institute for Infectious Diseases, Lazzaro Spallanzani IRCCS, Rome, Italy
| | - Franca Del Nonno
- Pathology Unit, National Institute for Infectious Diseases, Lazzaro Spallanzani IRCCS, Rome, Italy
| | - Alessandra Scarabello
- Clinical and Research Infectious Diseases Department, National Institute for Infectious Diseases, Lazzaro Spallanzani IRCCS, Rome, Italy
| | - Marta Camici
- Clinical and Research Infectious Diseases Department, National Institute for Infectious Diseases, Lazzaro Spallanzani IRCCS, Rome, Italy
| | - Roberta Gagliardini
- Clinical and Research Infectious Diseases Department, National Institute for Infectious Diseases, Lazzaro Spallanzani IRCCS, Rome, Italy
| | - Enrico Girardi
- Scientific Direction, National Institute for Infectious Diseases, Lazzaro Spallanzani IRCCS, Rome, Italy
| | - Francesco Vaia
- General Direction, National Institute for Infectious Diseases, Lazzaro Spallanzani IRCCS, Rome, Italy
| | - Fabrizio Maggi
- Laboratory of Virology, National Institute for Infectious Diseases, Lazzaro Spallanzani IRCCS, Rome, Italy
| | - Chiara Agrati
- Unit of Pathogen Specific Immunity, Department of Paediatric Haematology and Oncology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Andrea Antinori
- Clinical and Research Infectious Diseases Department, National Institute for Infectious Diseases, Lazzaro Spallanzani IRCCS, Rome, Italy
| |
Collapse
|
12
|
Sabbaghian M, Gheitasi H, Shekarchi AA, Tavakoli A, Poortahmasebi V. The mysterious anelloviruses: investigating its role in human diseases. BMC Microbiol 2024; 24:40. [PMID: 38281930 PMCID: PMC10823751 DOI: 10.1186/s12866-024-03187-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/08/2024] [Indexed: 01/30/2024] Open
Abstract
Anelloviruses (AVs) that infect the human population are members of the Anelloviridae family. They are widely distributed in human populations worldwide. Torque teno virus (TTV) was the first virus of this family to be identified and is estimated to be found in the serum of 80-90% of the human population. Sometime after the identification of TTV, Torque teno mini virus (TTMV) and Torque teno midi virus (TTMDV) were also identified and classified in this family. Since identifying these viruses, have been detected in various types of biological fluids of the human body, including blood and urine, as well as vital organs such as the liver and kidney. They can be transmitted from person to person through blood transfusions, fecal-oral contact, and possibly sexual intercourse. Recent studies on these newly introduced viruses show that although they are not directly related to human disease, they may be indirectly involved in initiating or exacerbating some human population-related diseases and viral infections. Among these diseases, we can mention various types of cancers, immune system diseases, viral infections, hepatitis, and AIDS. Also, they likely use the microRNAs (miRNAs) they encode to fulfill this cooperative role. Also, in recent years, the role of proliferation and their viral load, especially TTV, has been highlighted to indicate the immune system status of immunocompromised people or people who undergo organ transplants. Here, we review the possible role of these viruses in diseases that target humans and highlight them as important viruses that require further study. This review can provide new insights to researchers.
Collapse
Affiliation(s)
- Mohammad Sabbaghian
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamidreza Gheitasi
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Akbar Shekarchi
- Department of Pathology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahmad Tavakoli
- Research Center of Pediatric Infectious Diseases, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Vahdat Poortahmasebi
- Department of Bacteriology and Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
- Research Center for Clinical Virology, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
13
|
Reineke M, Morath C, Speer C, Rudek M, Bundschuh C, Klein JA, Mahler CF, Kälble F, Nusshag C, Beimler J, Zeier M, Bartenschlager R, Schnitzler P, Benning L. Dynamics of torque teno virus load in kidney transplant recipients with indication biopsy and therapeutic modifications of immunosuppression. Front Med (Lausanne) 2024; 11:1337367. [PMID: 38327708 PMCID: PMC10847215 DOI: 10.3389/fmed.2024.1337367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 01/04/2024] [Indexed: 02/09/2024] Open
Abstract
Following kidney transplantation, lifelong immunosuppressive therapy is essential to prevent graft rejection. On the downside, immunosuppression increases the risk of severe infections, a major cause of death among kidney transplant recipients (KTRs). To improve post-transplant outcomes, adequate immunosuppressive therapy is therefore a challenging but vital aspect of clinical practice. Torque teno virus load (TTVL) was shown to reflect immune competence in KTRs, with low TTVL linked to an elevated risk for rejections and high TTVL associated with infections in the first year post-transplantation. Yet, little is known about the dynamics of TTVL after the first year following transplantation and how TTVL changes with respect to short-term modifications in immunosuppressive therapy. Therefore, we quantified TTVL in 106 KTRs with 108 clinically indicated biopsies, including 65 biopsies performed >12 months post-transplantation, and correlated TTVL to histopathology. In addition, TTVL was quantified at 7, 30, and 90 days post-biopsy to evaluate how TTVL was affected by changes in immunosuppression resulting from interventions based on histopathological reporting. TTVL was highest in patients biopsied between 1 and 12 months post-transplantation (N = 23, median 2.98 × 107 c/mL) compared with those biopsied within 30 days (N = 20, median 7.35 × 103 c/mL) and > 1 year post-transplantation (N = 65, median 1.41 × 104 c/mL; p < 0.001 for both). Patients with BK virus-associated nephropathy (BKVAN) had significantly higher TTVL than patients with rejection (p < 0.01) or other pathologies (p < 0.001). When converted from mycophenolic acid to a mTOR inhibitor following the diagnosis of BKVAN, TTVL decreased significantly between biopsy and 30 and 90 days post-biopsy (p < 0.01 for both). In KTR with high-dose corticosteroid pulse therapy for rejection, TTVL increased significantly between biopsy and 30 and 90 days post-biopsy (p < 0.05 and p < 0.01, respectively). Of note, no significant changes were seen in TTVL within 7 days of changes in immunosuppressive therapy. Additionally, TTVL varied considerably with time since transplantation and among individuals, with a significant influence of age and BMI on TTVL (p < 0.05 for all). In conclusion, our findings indicate that TTVL reflects changes in immunosuppressive therapy, even in the later stages of post-transplantation. To guide immunosuppressive therapy based on TTVL, one should consider inter- and intraindividual variations, as well as potential confounding factors.
Collapse
Affiliation(s)
- Marvin Reineke
- Department of Nephrology, Heidelberg University Hospital, Heidelberg, Germany
| | - Christian Morath
- Department of Nephrology, Heidelberg University Hospital, Heidelberg, Germany
- German Center for Infection Research, DZIF, Heidelberg Partner Site, Heidelberg, Germany
| | - Claudius Speer
- Department of Nephrology, Heidelberg University Hospital, Heidelberg, Germany
- Department of Molecular Medicine Partnership Unit Heidelberg, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Markus Rudek
- Department of Nephrology, Heidelberg University Hospital, Heidelberg, Germany
| | - Christian Bundschuh
- Medical Faculty Heidelberg, Department of Infectious Diseases, Virology, Heidelberg University, Heidelberg, Germany
| | - Julian A.F. Klein
- Medical Faculty Heidelberg, Department of Infectious Diseases, Virology, Heidelberg University, Heidelberg, Germany
| | - Christoph F. Mahler
- Department of Nephrology, Heidelberg University Hospital, Heidelberg, Germany
| | - Florian Kälble
- Department of Nephrology, Heidelberg University Hospital, Heidelberg, Germany
| | - Christian Nusshag
- Department of Nephrology, Heidelberg University Hospital, Heidelberg, Germany
| | - Jörg Beimler
- Department of Nephrology, Heidelberg University Hospital, Heidelberg, Germany
| | - Martin Zeier
- Department of Nephrology, Heidelberg University Hospital, Heidelberg, Germany
| | - Ralf Bartenschlager
- German Center for Infection Research, DZIF, Heidelberg Partner Site, Heidelberg, Germany
- Medical Faculty Heidelberg, Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Diseases Research, Heidelberg University, Heidelberg, Germany
- Division Virus-Associated Carcinogenesis, German Cancer Research Center, Heidelberg, Germany
| | - Paul Schnitzler
- German Center for Infection Research, DZIF, Heidelberg Partner Site, Heidelberg, Germany
- Medical Faculty Heidelberg, Department of Infectious Diseases, Virology, Heidelberg University, Heidelberg, Germany
| | - Louise Benning
- Department of Nephrology, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
14
|
Jonker J, Doorenbos CSE, Kremer D, Gore EJ, Niesters HGM, van Leer-Buter C, Bourgeois P, Connelly MA, Dullaart RPF, Berger SP, Sanders JSF, Bakker SJL. High-Density Lipoprotein Particles and Torque Teno Virus in Stable Outpatient Kidney Transplant Recipients. Viruses 2024; 16:143. [PMID: 38257843 PMCID: PMC10818741 DOI: 10.3390/v16010143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/11/2024] [Accepted: 01/17/2024] [Indexed: 01/24/2024] Open
Abstract
Torque teno virus (TTV) is emerging as a potential marker for monitoring immune status. In transplant recipients who are immunosuppressed, higher TTV DNA loads are observed than in healthy individuals. TTV load measurement may aid in optimizing immunosuppressive medication dosing in solid organ transplant recipients. Additionally, there is a growing interest in the role of HDL particles in immune function; therefore, assessment of both HDL concentrations and TTV load may be of interest in transplant recipients. The objective of this study was to analyze TTV loads and HDL parameters in serum samples collected at least one year post-transplantation from 656 stable outpatient kidney transplant recipients (KTRs), enrolled in the TransplantLines Food and Nutrition Cohort (Groningen, the Netherlands). Plasma HDL particles and subfractions were measured using nuclear magnetic resonance spectroscopy. Serum TTV load was measured using a quantitative real-time polymerase chain reaction. Associations between HDL parameters and TTV load were examined using univariable and multivariable linear regression. The median age was 54.6 [IQR: 44.6 to 63.1] years, 43.3% were female, the mean eGFR was 52.5 (±20.6) mL/min/1.73 m2 and the median allograft vintage was 5.4 [IQR: 2.0 to 12.0] years. A total of 539 participants (82.2%) had a detectable TTV load with a mean TTV load of 3.04 (±1.53) log10 copies/mL, the mean total HDL particle concentration was 19.7 (±3.4) μmol/L, and the mean HDL size was 9.1 (±0.5) nm. The univariable linear regression revealed a negative association between total HDL particle concentration and TTV load (st.β = -0.17, 95% CI st.β: -0.26 to -0.09, p < 0.001). An effect modification of smoking behavior influencing the association between HDL particle concentration and TTV load was observed (Pinteraction = 0.024). After adjustment for age, sex, alcohol intake, hemoglobin, eGFR, donor age, allograft vintage and the use of calcineurin inhibitors, the negative association between HDL particle concentration and TTV load remained statistically significant in the non-smoking population (st.β = -0.14, 95% CI st.β: -0.23 to -0.04, p = 0.006). Furthermore, an association between small HDL particle concentration and TTV load was found (st.β = -0.12, 95% CI st.β: -0.22 to -0.02, p = 0.017). Higher HDL particle concentrations were associated with a lower TTV load in kidney transplant recipients, potentially indicative of a higher immune function. Interventional studies are needed to provide causal evidence on the effects of HDL on the immune system.
Collapse
Affiliation(s)
- Jip Jonker
- Department of Internal Medicine, Division of Nephrology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Caecilia S. E. Doorenbos
- Department of Internal Medicine, Division of Nephrology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Daan Kremer
- Department of Internal Medicine, Division of Nephrology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Edmund J. Gore
- Department of Medical Microbiology and Infection Prevention, Division of Clinical Virology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Hubert G. M. Niesters
- Department of Medical Microbiology and Infection Prevention, Division of Clinical Virology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Coretta van Leer-Buter
- Department of Medical Microbiology and Infection Prevention, Division of Clinical Virology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | | | | | - Robin P. F. Dullaart
- Department of Internal Medicine, Division of Endocrinology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Stefan P. Berger
- Department of Internal Medicine, Division of Nephrology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Jan-Stephan F. Sanders
- Department of Internal Medicine, Division of Nephrology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Stephan J. L. Bakker
- Department of Internal Medicine, Division of Nephrology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| |
Collapse
|
15
|
Overbeek R, Leitl CJ, Stoll SE, Wetsch WA, Kammerer T, Mathes A, Böttiger BW, Seifert H, Hart D, Dusse F. The Value of Next-Generation Sequencing in Diagnosis and Therapy of Critically Ill Patients with Suspected Bloodstream Infections: A Retrospective Cohort Study. J Clin Med 2024; 13:306. [PMID: 38256440 PMCID: PMC10816005 DOI: 10.3390/jcm13020306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 12/30/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
Bloodstream infection (BSI), a frequent cause of severe sepsis, is a life-threatening complication in critically ill patients and still associated with a high mortality rate. Rapid pathogen identification from blood is crucial for an early diagnosis and the treatment of patients with suspected BSI. For this purpose, novel diagnostic tools on the base of genetic analysis have emerged for clinical application. The aim of this study was to assess the diagnostic value of additional next-generation sequencing (NGS) pathogen test for patients with suspected BSI in a surgical ICU and its potential impact on antimicrobial therapy. In this retrospective single-centre study, clinical data and results from blood culture (BC) and NGS pathogen diagnostics were analysed for ICU patients with suspected BSI. Consecutive changes in antimicrobial therapy and diagnostic procedures were evaluated. Results: 41 cases with simultaneous NGS and BC sampling were assessed. NGS showed a statistically non-significant higher positivity rate than BC (NGS: 58.5% (24/41 samples) vs. BC: 21.9% (9/41); p = 0.056). NGS detected eight different potentially relevant bacterial species, one fungus and six different viruses, whereas BC detected four different bacterial species and one fungus. NGS results affected antimicrobial treatment in 7.3% of cases. Conclusions: NGS-based diagnostics have the potential to offer a higher positivity rate than conventional culture-based methods in patients with suspected BSI. Regarding the high cost, their impact on anti-infective therapy is currently limited. Larger randomized prospective clinical multicentre studies are required to assess the clinical benefit of this novel diagnostic technology.
Collapse
Affiliation(s)
- Remco Overbeek
- Department of Anaesthesiology and Intensive Care Medicine, Faculty of Medicine, University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
| | - Christoph J. Leitl
- Department of Anaesthesiology and Intensive Care Medicine, Faculty of Medicine, University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
| | - Sandra E. Stoll
- Department of Anaesthesiology and Intensive Care Medicine, Faculty of Medicine, University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
| | - Wolfgang A. Wetsch
- Department of Anaesthesiology and Intensive Care Medicine, Faculty of Medicine, University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
| | - Tobias Kammerer
- Department of Anaesthesiology and Intensive Care Medicine, Faculty of Medicine, University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
| | - Alexander Mathes
- Department of Anaesthesiology and Intensive Care Medicine, Faculty of Medicine, University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
| | - Bernd W. Böttiger
- Department of Anaesthesiology and Intensive Care Medicine, Faculty of Medicine, University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
| | - Harald Seifert
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine, University Hospital Cologne, University of Cologne, 50935 Cologne, Germany
| | - Dominique Hart
- Department of Anaesthesiology and Intensive Care Medicine, Faculty of Medicine, University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
| | - Fabian Dusse
- Department of Anaesthesiology and Intensive Care Medicine, Faculty of Medicine, University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
| |
Collapse
|
16
|
Doorenbos CSE, Jonker J, Hao J, Gore EJ, Kremer D, Knobbe TJ, de Joode AAE, Sanders JSF, Thaunat O, Niesters HGM, Van Leer-Buter CC, Bakker SJL. Smoking, Alcohol Intake and Torque Teno Virus in Stable Kidney Transplant Recipients. Viruses 2023; 15:2387. [PMID: 38140628 PMCID: PMC10748022 DOI: 10.3390/v15122387] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
Torque Teno Virus (TTV) is a non-pathogenic virus that is highly prevalent among kidney transplant recipients (KTRs). Its circulating load is associated with an immunological status in KTR and is considered a promising tool for guiding immunosuppression. To allow for optimal guidance, it is important to identify other determinants of TTV load. We aimed to investigate the potential association of smoking and alcohol intake with TTV load. For this cross-sectional study, serum TTV load was measured using PCR in stable kidney transplant recipients at ≥1 year after transplantation, and smoking status and alcohol intake were assessed through questionnaires and measurements of urinary cotinine and ethyl glucuronide. A total of 666 KTRs were included (57% male). A total of 549 KTR (82%) had a detectable TTV load (3.1 ± 1.5 log10 copies/mL). In KTR with a detectable TTV load, cyclosporin and tacrolimus use were positively associated with TTV load (St. β = 0.46, p < 0.001 and St. β = 0.66, p < 0.001, respectively), independently of adjustment for potential confounders. Current smoking and alcohol intake of >20 g/day were negatively associated with TTV load (St. β = -0.40, p = 0.004 and St. β = -0.33, p = 0.009, respectively), independently of each other and of adjustment for age, sex, kidney function, time since transplantation and calcineurin inhibitor use. This strong association of smoking and alcohol intake with TTV suggests a need to account for the smoking status and alcohol intake when applying TTV guided immunosuppression in KTR.
Collapse
Affiliation(s)
- Caecilia S. E. Doorenbos
- Department of Internal Medicine, Division of Nephrology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (J.J.)
| | - Jip Jonker
- Department of Internal Medicine, Division of Nephrology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (J.J.)
| | - Jiasi Hao
- Department of Epidemiology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Edmund J. Gore
- Department of Medical Microbiology, Division of Clinical Virology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Daan Kremer
- Department of Internal Medicine, Division of Nephrology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (J.J.)
| | - Tim J. Knobbe
- Department of Internal Medicine, Division of Nephrology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (J.J.)
| | - Anoek A. E. de Joode
- Department of Internal Medicine, Division of Nephrology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (J.J.)
| | - Jan Stephan F. Sanders
- Department of Internal Medicine, Division of Nephrology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (J.J.)
| | - Olivier Thaunat
- Department of Transplantation Nephrology and Clinical Immunology Hospices Civils de Lyon, Claude Bernard Lyon I University, INSERM Unit 1111, 69003 Lyon, France
| | - Hubert G. M. Niesters
- Department of Medical Microbiology, Division of Clinical Virology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Coretta C. Van Leer-Buter
- Department of Medical Microbiology, Division of Clinical Virology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Stephan J. L. Bakker
- Department of Internal Medicine, Division of Nephrology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (J.J.)
| |
Collapse
|
17
|
Spiertz A, Tsakmaklis A, Farowski F, Knops E, Heger E, Wirtz M, Kaiser R, Holtick U, Vehreschild MJGT, Di Cristanziano V. Torque teno virus-DNA load as individual cytomegalovirus risk assessment parameter upon allogeneic hematopoietic stem cell transplantation. Eur J Haematol 2023; 111:963-969. [PMID: 37772680 DOI: 10.1111/ejh.14111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 09/30/2023]
Abstract
BACKGROUND Immune recovery following allogeneic hematopoietic stem cell transplantation (allo-HSCT) decisively influences the occurrence of opportunistic infections, one of the leading causes of death among this group of patients. Yet, today, there are no laboratory parameters mirroring immune function sufficiently. Torque teno virus (TTV) has already proven itself as a functional immune marker in other settings. AIMS In this analysis, we investigated whether monitoring of TTV-DNA load in whole blood is able to provide additional information on the capacity of the immune system to control cytomegalovirus (CMV) replication in allo-HSCT recipients. METHODS Whole blood samples from 59 patients were collected upon allo-HSCT (between Day -7 and +10), on Day +14, +21, +28, +56, +90, and +365 post-transplant. TTV-DNA loads and other relevant clinical information were correlated with the risk of CMV infections or reactivations, defined by evidence of viral replication in blood. RESULTS CMV serostatus of the recipient and a TTV load below 1000 copies/mL upon allo-HSCT were significantly associated with an increased incidence of CMV infection or reactivation. CONCLUSIONS Quantification of TTV load in the early phase of allo-HSCT procedure could provide additional information in order to identify patients at risk for CMV infection or reactivation.
Collapse
Affiliation(s)
- Arlene Spiertz
- Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Anastasia Tsakmaklis
- Department of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Fedja Farowski
- Department of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, University of Cologne, Cologne, Germany
- Department of Internal Medicine, Infectious Diseases, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Elena Knops
- Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Eva Heger
- Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Maike Wirtz
- Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Rolf Kaiser
- Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Udo Holtick
- Department of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Maria J G T Vehreschild
- Department of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, University of Cologne, Cologne, Germany
- Department of Internal Medicine, Infectious Diseases, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Veronica Di Cristanziano
- Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
18
|
Feghoul L, Caillault A, Peyrony O, Salmona M, Nere ML, Delaugerre C, Azoulay E, Chevret S, LeGoff J. Respiratory torque teno virus load at emergency department visit predicts intensive care unit admission of SARS-CoV-2 infected patients. J Med Virol 2023; 95:e29319. [PMID: 38102899 DOI: 10.1002/jmv.29319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/30/2023] [Accepted: 12/04/2023] [Indexed: 12/17/2023]
Abstract
Accurate prediction of COVID-19 severity remains a challenge. Torque teno virus (TTV), recognized as a surrogate marker of functional immunity in solid organ transplant recipients, holds the potential for assessing infection outcomes. We investigated whether quantifying TTV in nasopharyngeal samples upon emergency department (ED) admission could serve as an early predictor of COVID-19 severity. Retrospective single-center study in the ED of Saint-Louis Hospital in Paris, France. TTV DNA was quantified in nasopharyngeal swab samples collected for SARS-CoV-2 testing. Among 295 SARS-CoV-2 infected patients, 92 returned home, 160 were admitted to medical wards, and 43 to the intensive care unit (ICU). Elevated TTV loads were observed in ICU patients (median: 3.02 log copies/mL, interquartile range [IQR]: 2.215-3.825), exceeding those in discharged (2.215, [0; 2.962]) or hospitalized patients (2.24, [0; 3.29]) (p = 0.006). Multivariate analysis identified diabetes, obesity, hepatitis, fever, dyspnea, oxygen requirement, and TTV load as predictors of ICU admission. A 2.91 log10 copies/mL TTV threshold independently predicted ICU admission. Nasopharyngeal TTV quantification in SARS-CoV-2 infected patients is linked to the likelihood of ICU admission and might reflect respiratory immunosuppression.
Collapse
Affiliation(s)
- Linda Feghoul
- Virology Department, AP-HP, Hôpital Saint-Louis, Paris, France
| | | | - Olivier Peyrony
- Emergency Department, Hôpital Saint Louis, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Maud Salmona
- Virology Department, AP-HP, Hôpital Saint-Louis, Paris, France
- Inserm U976, INSIGHT Team, Université Paris Cité, Paris, France
| | | | | | - Elie Azoulay
- Medical Intensive Care Unit, Famirea Study Group, Paris, France
| | - Sylvie Chevret
- UMR 1153 CRESS, Biostatistics and Clinical Epidemiology Research Team, Université Paris Cité, Paris, France
| | - Jérôme LeGoff
- Virology Department, AP-HP, Hôpital Saint-Louis, Paris, France
- Inserm U976, INSIGHT Team, Université Paris Cité, Paris, France
| |
Collapse
|
19
|
Benning L, Reineke M, Bundschuh C, Klein JAF, Kühn T, Zeier M, Bartenschlager R, Schnitzler P, Morath C, Speer C. Quantification of Torque Teno Virus Load to Monitor Short-term Changes in Immunosuppressive Therapy in Kidney Transplant Recipients. Transplantation 2023; 107:e363-e369. [PMID: 37798825 DOI: 10.1097/tp.0000000000004816] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
BACKGROUND Quantification of torque teno virus (TTV) has been proposed as a surrogate parameter to monitor immunocompetence in kidney transplant recipients (KTRs) early after transplantation. However, its use in monitoring short-term changes of immunosuppression in KTRs late after transplantation requires further investigation. METHODS In this post hoc analysis, we quantified TTV load in sera of 76 KTRs, with 43 pausing mycophenolic acid (MPA) 1 wk before to 4 wk after COVID-19 vaccination to increase vaccine response. TTV load was quantified before, 4 wk, and 3 mo postvaccination. Results were compared to 33 KTRs with continued standard immunosuppressive therapy and with 18 hemodialysis as well as 18 healthy control subjects. RESULTS TTV load before vaccination was with a median (interquartile range) of 1.39 × 10 4 copies/milliliter (c/mL) (9.17 × 10 1 -2.66 × 10 5 c/mL) highest in KTRs compared to 1.73 × 10 3 c/mL (1.07 × 10 3 -1.31 × 10 4 c/mL) in hemodialysis patients and 1.53 × 10 2 c/mL (6.38-1.29 × 10 3 c/mL) in healthy controls. In KTRs with MPA withdrawal, TTV load decreased significantly from a median (interquartile range) of 1.11 × 10 4 c/mL (4.75 × 10 2 -1.92 × 10 5 c/mL) to 5.24 × 10 3 c/mL (6.92 × 10 2 -6.91 × 10 4 c/mL) 4-5 wk after initiation of MPA withdrawal ( P = 0.003). In patients with MPA withdrawal, TTV load was significantly inversely correlated with COVID-19 or SARS-CoV-2-specific antibodies 4 wk and 3 mo postvaccination ( P = 0.009 and P = 0.004). CONCLUSIONS TTV load reflects changes in immunosuppressive therapy even late after transplantation, supporting its use to monitor immunocompetence in KTRs.
Collapse
Affiliation(s)
- Louise Benning
- Department of Nephrology, Heidelberg University, Heidelberg, Germany
| | - Marvin Reineke
- Department of Nephrology, Heidelberg University, Heidelberg, Germany
| | - Christian Bundschuh
- Department of Infectious Diseases, Virology, Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Julian A F Klein
- Department of Infectious Diseases, Virology, Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Tessa Kühn
- Department of Nephrology, Heidelberg University, Heidelberg, Germany
| | - Martin Zeier
- Department of Nephrology, Heidelberg University, Heidelberg, Germany
| | - Ralf Bartenschlager
- Department of Nephrology, Heidelberg University, Heidelberg, Germany
- Department of Infectious Diseases, Virology, Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany
- Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Diseases Research, Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany
- Division Virus-Associated Carcinogenesis, German Cancer Research Center, Heidelberg, Germany
- German Center for Infection Research, DZIF, Heidelberg Partner Site, Heidelberg, Germany
- Department of Molecular Medicine Partnership Unit Heidelberg, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Paul Schnitzler
- Department of Infectious Diseases, Virology, Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany
- German Center for Infection Research, DZIF, Heidelberg Partner Site, Heidelberg, Germany
| | - Christian Morath
- Department of Nephrology, Heidelberg University, Heidelberg, Germany
- German Center for Infection Research, DZIF, Heidelberg Partner Site, Heidelberg, Germany
| | - Claudius Speer
- Department of Nephrology, Heidelberg University, Heidelberg, Germany
- Department of Molecular Medicine Partnership Unit Heidelberg, European Molecular Biology Laboratory, Heidelberg, Germany
| |
Collapse
|
20
|
Berg R, Clemmensen TS, Petersen MS, Mogensen LJH, Christiansen M, Rolid K, Nytrøen K, Møller BK, Gullestad L, Eiskjær H, Koefoed-Nielsen P. Kinetics of Torque Teno virus in heart transplant patients. Hum Immunol 2023; 84:110720. [PMID: 37867096 DOI: 10.1016/j.humimm.2023.110720] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/13/2023] [Accepted: 10/13/2023] [Indexed: 10/24/2023]
Abstract
End-stage heart failure often requires heart transplantation as a life-prolonging treatment. Immunosuppressive therapy is necessary to avoid rejection, but is associated with serious adverse effects. New approaches are needed to monitor immune function in heart transplant patients. We here report the kinetics of Torque Teno Virus (TTV) after transplantation in a large cohort of heart transplant patients and examine its possible role in predicting rejection. We included 106 patients from Aarhus University Hospital and Oslo University Hospital. Patients were followed for 3 years with clinical assessments, biopsies, TTV measurements, and flowcytometric phenotyping. We observed TTV levels reaching a maximum 3 months after transplantation for all 106 patients, after which levels gradually declined. 38 patients (38 %) had biopsy-proven rejection within the first year. We did not find evidence of an association between TTV and serum trough levels, events of rejection, nor flow cytometric immunophenotype. We report data on a large cohort of heart transplant patients and contribute to the understanding of how TTV behaves in transplant patients. Despite not finding an association with rejection, our results provide important insights into the kinetics of TTV levels after transplantation, which may be useful in future studies of immune function in heart transplant patients.
Collapse
Affiliation(s)
- Randi Berg
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark.
| | - Tor S Clemmensen
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark
| | - Mikkel S Petersen
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark
| | - Lone J H Mogensen
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark
| | - Mette Christiansen
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Katrine Rolid
- Department of Cardiology, Oslo University Hospital, Oslo, Norway
| | - Kari Nytrøen
- Department of Cardiology, Oslo University Hospital, Oslo, Norway
| | - Bjarne K Møller
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark
| | - Lars Gullestad
- Department of Cardiology, Oslo University Hospital, Oslo, Norway; KG Jebsen Center for Cardiac Research, University of Oslo, Oslo, Norway
| | - Hans Eiskjær
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark
| | | |
Collapse
|
21
|
Han HS, Lubetzky ML. Immune monitoring of allograft status in kidney transplant recipients. FRONTIERS IN NEPHROLOGY 2023; 3:1293907. [PMID: 38022723 PMCID: PMC10663942 DOI: 10.3389/fneph.2023.1293907] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023]
Abstract
Kidney transplant patients require careful management of immunosuppression to avoid rejection while minimizing the risk of infection and malignancy for the best long-term outcome. The gold standard for monitoring allograft status and immunosuppression adequacy is a kidney biopsy, but this is invasive and costly. Conventional methods of allograft monitoring, such as serum creatinine level, are non-specific. Although they alert physicians to the need to evaluate graft dysfunction, by the time there is a clinical abnormality, allograft damage may have already occurred. The development of novel and non-invasive methods of evaluating allograft status are important to improving graft outcomes. This review summarizes the available conventional and novel methods for monitoring allograft status after kidney transplant. Novel and less invasive methods include gene expression, cell-free DNA, urinary biomarkers, and the use of artificial intelligence. The optimal method to manage patients after kidney transplant is still being investigated. The development of less invasive methods to assess allograft function has the potential to improve patient outcomes and allow for a more personalized approach to immunosuppression management.
Collapse
Affiliation(s)
- Hwarang S. Han
- Division of Nephrology, Department of Internal Medicine, Dell Medical School, University of Texas at Austin, Austin, TX, United States
| | | |
Collapse
|
22
|
Da Costa AC, Bortoletto P, Spandorfer SD, Tozetto-Mendoza TR, Linhares IM, Mendes-Correa MC, Witkin SS. Association between torquetenovirus in vaginal secretions and infertility: An exploratory metagenomic analysis. Am J Reprod Immunol 2023; 90:e13788. [PMID: 37881119 DOI: 10.1111/aji.13788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 06/20/2023] [Accepted: 10/10/2023] [Indexed: 10/27/2023] Open
Abstract
PROBLEM The association of viruses with infertility remains incompletely evaluated. METHOD OF STUDY Vaginal secretions from 46 women seeking treatment in the Center for Reproductive Medicine and Infertility at Weill Cornell Medicine were tested for viruses by metagenomic analysis by lab personnel blinded to all clinical data. RESULTS Torquetenovirus (TTV) was identified in 16 women, alphapapillomavirus in seven women and most were positive for bacteriophages. Twelve of the subjects were fertile and sought to freeze their oocytes for future implantation. These women were all negative for TTV. In contrast, 16 of the 34 women (47.1%) being treated for infertility were TTV-positive (p = .0035). Evaluating the women by cause of infertility, five of nine women (55.6%) whose male partner had inadequate sperm parameters and six of 14 women (42.9%) with defective ovulation were TTV positive (p = .0062 and p = .0171, respectively, vs. the fertile women). Alphapapillomavirus was identified in one (8.3%) fertile woman, five (35.7%) women with ovulation deficiency, and one (11.1%) woman with male factor infertility. These differences were not statistically significant. There were no differences in bacteriophage families or the presence of Lactobacillus phages between fertile or infertile women or between different causes of infertility. There was a negative association between TTV detection and Lactobacillus crispatus dominance in the vaginal microbiota (p = .0184), but no association between TTV detection and the presence of alphapapillomavirus or Candida species. CONCLUSION Detection of TTV in the vagina might be a biomarker for specific causes of infertility.
Collapse
Affiliation(s)
- A Charlys Da Costa
- Laboratory of Investigative Medicine in Virology (LIM 52), Department of Infectious Diseases, Institute of Tropical Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | - Pietro Bortoletto
- Boston IVF, Waltham, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- Department of Obstetrics and Gynecology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Steven D Spandorfer
- Center for Reproductive Medicine and Infertility, Weill Cornell Medicine, New York, USA
| | - Tania Regina Tozetto-Mendoza
- Laboratory of Investigative Medicine in Virology (LIM 52), Department of Infectious Diseases, Institute of Tropical Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | - Iara M Linhares
- Department of Gynecology and Obstetrics, Faculty of Medicine of the University of Sao Paulo, Sao Paulo, Brazil
| | - Maria Cassia Mendes-Correa
- Faculty of Medicine of the University of São Paulo - São Paulo, Sao Paulo, Brazil
- Laboratory of Investigative Medicine in Virology (LIM-52), Sao Paulo, Brazil
| | - Steven S Witkin
- Laboratory of Investigative Medicine in Virology (LIM-52), Sao Paulo, Brazil
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, USA
- Faculty of Medicine of the University of São Paulo, São Paulo, Brazil
| |
Collapse
|
23
|
Ho QY, Lai CMD, Liew IT, Oon LLE, Lim KL, Chung SJ, Thangaraju S, Tien SYC, Tan CS, Kee T. Immune monitoring of prevalent kidney transplant recipients using Torque Teno Virus: Protocol for a single-centre prospective cohort study. BMJ Open 2023; 13:e076122. [PMID: 37730403 PMCID: PMC10510931 DOI: 10.1136/bmjopen-2023-076122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/29/2023] [Indexed: 09/22/2023] Open
Abstract
INTRODUCTION Kidney transplant recipients (KTRs) suffer from immunosuppression-related adverse events (iRAEs), such as infections and malignancy from chronic immunosuppression, but are also at risk of graft loss from rejection with underimmunosuppression. Biomarkers that predict both iRAEs and rejection while allowing individualisation of immunosuppression exposure are lacking. Although plasma viral DNA levels of torque teno virus (TTV), a widely prevalent, non-pathogenic virus, have been shown to predict both iRAE and rejection in newly transplanted KTRs within the first year after transplant, its role for prevalent KTRs on stable immunosuppression is less clear.This study aims to determine the prognostic value of TTV levels for severe infections (defined as infections requiring hospitalisation) in prevalent KTRs on stable immunosuppression for at least 3 months and compare it against that of other commonly available biomarkers. The study also aims to explore the relationship between TTV levels and factors affecting the 'net state of immunosuppression' as well as other clinical outcomes. METHODS AND ANALYSIS This is a single-centre, prospective, observational cohort study of 172 KTRs on stable immunosuppression for more than 3 months. TTV levels will be measured using the TTV R-GENE kit upon recruitment when study subjects are admitted and when kidney allograft biopsies are performed. Subjects will be monitored for iRAEs and rejection for at least 12 months. The relationship between TTV load and clinical outcomes such as severe infections will be analysed and compared against that from other common biomarkers and previously published predictive scores. ETHICS AND DISSEMINATION The study was approved by the SingHealth Centralised Institutional Review Board (2023/2170). The results will be presented at conferences and submitted for publication in peer-reviewed journals. TRIAL REGISTRATION NUMBER NCT05836636.
Collapse
Affiliation(s)
- Quan Yao Ho
- Department of Renal Medicine, Singapore General Hospital, Singapore
- SingHealth Duke-NUS Transplant Centre, Singapore
| | | | - Ian Tatt Liew
- Department of Renal Medicine, Singapore General Hospital, Singapore
- SingHealth Duke-NUS Transplant Centre, Singapore
| | | | - Kun Lee Lim
- Department of Molecular Pathology, Singapore General Hospital, Singapore
| | - Shimin Jasmine Chung
- SingHealth Duke-NUS Transplant Centre, Singapore
- Department of Infectious Diseases, Singapore General Hospital, Singapore
| | - Sobhana Thangaraju
- Department of Renal Medicine, Singapore General Hospital, Singapore
- SingHealth Duke-NUS Transplant Centre, Singapore
| | - Shan-Yeu Carolyn Tien
- Department of Renal Medicine, Singapore General Hospital, Singapore
- SingHealth Duke-NUS Transplant Centre, Singapore
| | - Chieh Suai Tan
- Department of Renal Medicine, Singapore General Hospital, Singapore
- SingHealth Duke-NUS Transplant Centre, Singapore
| | - Terence Kee
- Department of Renal Medicine, Singapore General Hospital, Singapore
- SingHealth Duke-NUS Transplant Centre, Singapore
| |
Collapse
|
24
|
Forqué L, Albert E, Piñana JL, Pérez A, Hernani R, Solano C, Navarro D, Giménez E. Monitoring of plasma Torque teno virus, total Anelloviridae and Human Pegivirus 1 viral load for the prediction of infectious events and acute graft versus host disease in the allogeneic hematopoietic stem cell transplantation setting. J Med Virol 2023; 95:e29107. [PMID: 37721473 DOI: 10.1002/jmv.29107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 09/19/2023]
Abstract
Anelloviridae and Human Pegivirus 1 (HPgV-1) blood burden have been postulated to behave as surrogate markers for immunosuppression in transplant recipients. Here, we assessed the potential utility plasma Torque teno virus (TTV), total Anelloviridae (TAV), and HPgV-1 load monitoring for the identification of allogeneic hematopoietic stem cell transplantation recipients (allo-HSCT) at increased risk of infectious events or acute graft versus host disease (aGvHD). In this single-center, observational study, plasma TTV DNA, TAV DNA, and HPgV-1 RNA loads were monitored in 75 nonconsecutive allo-HSCT recipients (median age, 54 years). Monitoring was conducted before at baseline or by days +30, +60, +90, +120, and +180 after transplantation. Pneumonia due to different viruses or Pneumocystis jirovecii, BK polyomavirus-associated haemorrhagic cystitis (BKPyV-HC), and Cytomegalovirus DNAemia were the infectious events considered in the current study. Kinetics of plasma TTV, TAV DNA, and HPgV-1 RNA load was comparable, with though and peak levels measured by days +30 and day +90 (+120 for HPgV-1). Forty patients (53%) developed one or more infectious events during the first 180 days after allo-HSCT, whereas 29 patients (39%) had aGvHD (grade II-IV in 18). Neither, TTV, TAV, nor HPgV-1 loads were predictive of overall infection or CMV DNAemia. A TTV DNA load cut-off ≥4.40 log10 (pretransplant) and ≥4.58 log10 (baseline) copies/mL predicted the occurrence of BKPyV-HC (sensitivity ≥89%, negative predictive value, ≥96%). TTV DNA loads ≥3.38 log10 by day +30 anticipated the occurrence of aGvHD (sensitivity, 90%; negative predictive value, 97%). Pretransplant HPgV-1 loads were significantly lower (p = 0.03) in patients who had aGvHD than in those who did not. Monitoring of TTV DNA or HPgV-1 RNA plasma levels either before or early after transplantation may be ancillary to identify allo-HSCT recipients at increased risk of BKPyV-HC or aGvHD.
Collapse
Affiliation(s)
- Lorena Forqué
- Microbiology Service, Clinic University Hospital, INCLIVA Biomedical Research Institute, Valencia, Spain
| | - Eliseo Albert
- Microbiology Service, Clinic University Hospital, INCLIVA Biomedical Research Institute, Valencia, Spain
| | - José L Piñana
- Hematology Service, Clinic University Hospital, INCLIVA Biomedical Research Institute, Valencia, Spain
| | - Ariadna Pérez
- Hematology Service, Clinic University Hospital, INCLIVA Biomedical Research Institute, Valencia, Spain
| | - Rafael Hernani
- Hematology Service, Clinic University Hospital, INCLIVA Biomedical Research Institute, Valencia, Spain
| | - Carlos Solano
- Hematology Service, Clinic University Hospital, INCLIVA Biomedical Research Institute, Valencia, Spain
- Department of Medicine, School of Medicine, University of Valencia, Valencia, Spain
| | - David Navarro
- Microbiology Service, Clinic University Hospital, INCLIVA Biomedical Research Institute, Valencia, Spain
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
- Department of Microbiology, School of Medicine, University of Valencia, Valencia, Spain
| | - Estela Giménez
- Microbiology Service, Clinic University Hospital, INCLIVA Biomedical Research Institute, Valencia, Spain
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
25
|
Park SY, Chang EJ, Ledeboer N, Messacar K, Lindner MS, Venkatasubrahmanyam S, Wilber JC, Vaughn ML, Bercovici S, Perkins BA, Nolte FS. Plasma Microbial Cell-Free DNA Sequencing from over 15,000 Patients Identified a Broad Spectrum of Pathogens. J Clin Microbiol 2023; 61:e0185522. [PMID: 37439686 PMCID: PMC10446866 DOI: 10.1128/jcm.01855-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 06/23/2023] [Indexed: 07/14/2023] Open
Abstract
Microbial cell-free DNA (mcfDNA) sequencing is an emerging infectious disease diagnostic tool which enables unbiased pathogen detection and quantification from plasma. The Karius Test, a commercial mcfDNA sequencing assay developed by and available since 2017 from Karius, Inc. (Redwood City, CA), detects and quantifies mcfDNA as molecules/μL in plasma. The commercial sample data and results for all tests conducted from April 2018 through mid-September 2021 were evaluated for laboratory quality metrics, reported pathogens, and data from test requisition forms. A total of 18,690 reports were generated from 15,165 patients in a hospital setting among 39 states and the District of Columbia. The median time from sample receipt to reported result was 26 h (interquartile range [IQR] 25 to 28), and 96% of samples had valid test results. Almost two-thirds (65%) of patients were adults, and 29% at the time of diagnostic testing had ICD-10 codes representing a diverse array of clinical scenarios. There were 10,752 (58%) reports that yielded at least one taxon for a total of 22,792 detections spanning 701 unique microbial taxa. The 50 most common taxa detected included 36 bacteria, 9 viruses, and 5 fungi. Opportunistic fungi (374 Aspergillus spp., 258 Pneumocystis jirovecii, 196 Mucorales, and 33 dematiaceous fungi) comprised 861 (4%) of all detections. Additional diagnostically challenging pathogens (247 zoonotic and vector-borne pathogens, 144 Mycobacterium spp., 80 Legionella spp., 78 systemic dimorphic fungi, 69 Nocardia spp., and 57 protozoan parasites) comprised 675 (3%) of all detections. This is the largest reported cohort of patients tested using plasma mcfDNA sequencing and represents the first report of a clinical grade metagenomic test performed at scale. Data reveal new insights into the breadth and complexity of potential pathogens identified.
Collapse
Affiliation(s)
| | | | | | - Kevin Messacar
- University of Colorado, Children’s Hospital Colorado, Aurora, Colorado, USA
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Querido S, Martins C, Gomes P, Pessanha MA, Arroz MJ, Adragão T, Casqueiro A, Oliveira R, Costa I, Azinheira J, Paixão P, Weigert A. Kinetics of Torque Teno Virus Viral Load Is Associated with Infection and De Novo Donor Specific Antibodies in the First Year after Kidney Transplantation: A Prospective Cohort Study. Viruses 2023; 15:1464. [PMID: 37515152 PMCID: PMC10384556 DOI: 10.3390/v15071464] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 06/25/2023] [Indexed: 07/30/2023] Open
Abstract
Torque teno virus (TTV) was recently identified as a potential biomarker for the degree of immunosuppression, and potentially as a predictor of rejection and infection in solid organ transplant patients. We evaluated TTV viral load in kidney transplant (KT) patients during the first year post-transplant to examine overall kinetics and their relationships with deleterious events, including episodes of infection and the formation of de novo donor-specific antibodies (DSAs). In a single-center, prospective observational cohort study, 81 KT patients were monitored at baseline, week 1, and month 1, 3, 6, 9 and 12, post-KT, and whenever required by clinical events. Kidney function, plasma TTV load, immunoglobulins and lymphocyte subpopulations were assessed at each time point. Twenty-six patients (32.1%) presented a total of 38 infection episodes post-KT. Induction immunosuppression with thymoglobulin, compared to basiliximab, was not associated with more infections (p = 0.8093). Patients with infectious events had lower T-cells (p = 0.0500), CD8+ T-cells (p = 0.0313) and B-cells (p = 0.0009) 1 month post-KT, compared to infection-free patients. Patients with infection also showed higher increases in TTV viral loads between week 1- month 1, post-KT, with TTV viral load variations >2.65 log10 cp/mL predicting the development of infectious events during the 12-month study period (p < 0.0001; sensitivity 99.73%; specificity 83.67%). Patients who developed de novo DSAs had lower TTV DNA viral loads at month 12 after KT, compared to patients who did not develop DSA (3.7 vs. 5.3 log10 cp/mL, p = 0.0023). Briefly, evaluating early TTV viremia is a promising strategy for defining infectious risk in the 1st year post-KT. The availability of standardized commercial real-time PCR assays is crucial to further validate this as an effective tool guiding immunosuppression prescription.
Collapse
Affiliation(s)
- Sara Querido
- Renal Transplantation Unit, Nephrology Department, Hospital de Santa Cruz, Centro Hospitalar de Lisboa Ocidental, 2790-134 Carnaxide, Portugal
- Infection, Sepsis & Antibiotics Resistance Research Group, CHRC-Comprehensive Health Research Center, NOVA Medical School, Faculdade de Ciências Médicas (NMS|FCM), Universidade NOVA de Lisboa, 1150-082 Lisboa, Portugal
| | - Catarina Martins
- Immune Dysregulation from Pregnancy to Adulthood Research Group, CHRC-Comprehensive Health Research Center, NOVA Medical School, Faculdade de Ciências Médicas (NMS|FCM), Universidade NOVA de Lisboa, 1150-082 Lisboa, Portugal
| | - Perpétua Gomes
- Laboratory of Clinical Microbiology and Molecular Biology, Department of Clinical Pathology, Centro Hospitalar de Lisboa Ocidental, 1349-019 Lisboa, Portugal
- Centro de Investigação Interdisciplinar Egas Moniz (CiiEM), IUEM, 2829-511 Almada, Portugal
| | - Maria Ana Pessanha
- Laboratory of Clinical Microbiology and Molecular Biology, Department of Clinical Pathology, Centro Hospitalar de Lisboa Ocidental, 1349-019 Lisboa, Portugal
| | - Maria Jorge Arroz
- Flow Cytometry Laboratory, Department of Clinical Pathology, Centro Hospitalar de Lisboa Ocidental, 1349-019 Lisboa, Portugal
| | - Teresa Adragão
- Renal Transplantation Unit, Nephrology Department, Hospital de Santa Cruz, Centro Hospitalar de Lisboa Ocidental, 2790-134 Carnaxide, Portugal
| | - Ana Casqueiro
- Renal Transplantation Unit, Nephrology Department, Hospital de Santa Cruz, Centro Hospitalar de Lisboa Ocidental, 2790-134 Carnaxide, Portugal
| | - Regina Oliveira
- Renal Transplantation Unit, Nephrology Department, Hospital de Santa Cruz, Centro Hospitalar de Lisboa Ocidental, 2790-134 Carnaxide, Portugal
| | - Inês Costa
- Laboratory of Clinical Microbiology and Molecular Biology, Department of Clinical Pathology, Centro Hospitalar de Lisboa Ocidental, 1349-019 Lisboa, Portugal
| | - Jorge Azinheira
- Laboratory of Biochemistry, Department of Clinical Pathology, Centro Hospitalar de Lisboa Ocidental, 1349-019 Lisboa, Portugal
| | - Paulo Paixão
- Infection, Sepsis & Antibiotics Resistance Research Group, CHRC-Comprehensive Health Research Center, NOVA Medical School, Faculdade de Ciências Médicas (NMS|FCM), Universidade NOVA de Lisboa, 1150-082 Lisboa, Portugal
| | - André Weigert
- Renal Transplantation Unit, Nephrology Department, Hospital de Santa Cruz, Centro Hospitalar de Lisboa Ocidental, 2790-134 Carnaxide, Portugal
- Pharmacology and Neurosciences Institute, Faculdade de Medicina, Universidade de Lisboa, 1649-004 Lisboa, Portugal
| |
Collapse
|
27
|
Mafi S, Essig M, Rerolle JP, Lagathu G, Crochette R, Brodard V, Schvartz B, Gouarin S, Bouvier N, Engelmann I, Garstka A, Bressollette-Bodin C, Cantarovitch D, Germi R, Janbon B, Archimbaut C, Heng AE, Garnier F, Gomes-Mayeras M, Labrunie A, Hantz S, Alain S. Torque teno virus viremia and QuantiFERON ®-CMV assay in prediction of cytomegalovirus reactivation in R+ kidney transplant recipients. Front Med (Lausanne) 2023; 10:1180769. [PMID: 37425298 PMCID: PMC10323437 DOI: 10.3389/fmed.2023.1180769] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/12/2023] [Indexed: 07/11/2023] Open
Abstract
Introduction Cytomegalovirus (CMV) is the most frequent infectious complication following solid organ transplantation. Torque teno viruses (TTV) viremia has been proposed as a biomarker of functional immunity in the management of kidney transplant recipients (KTR). The QuantiFERON®-CMV (QF-CMV) is a commercially available assay that allows the assessment of CD8+ T-cell responses in routine diagnostic laboratories. Methods In a prospective national multicenter cohort of 64 CMV-seropositive (R+) KTR, we analyzed the value of TTV load and the two markers of the QF-CMV assay [QF-Ag (CMV-specific T-cell responses) and QF-Mg (overall T-cell responses)], alone and in combination, in prediction of CMV reactivation (≥3 log10 IU/ ml) in the first post-transplant year. We compared previously published cut-offs and specific cut-offs optimized from ROC curves for our population. Results Using the conventional cut-off (3.45 log10 copies/ml), TTV load at D0 [inclusion visit on the day of transplantation before induction (D0)], or at M1 (1-month post-transplant visit) perform better in predicting CMV viremia control than CMV reactivation. Survival analyses suggest a better performance of our optimized TTV cut-offs (3.78 log10 copies/ml at D0 and 4.23 log10 copies/ml at M1) for risk stratification of CMV reactivation in our R+ KTR cohort. The QF-CMV (QF-Ag = 0.2 IU/ml, and QF-Mg = 0.5 IU/ml) also appears to better predict CMV viremia control than CMV reactivation. Moreover, survival analyses suggest that the QF-Mg would perform better than the QF-Ag in stratifying the risk of CMV reactivation. The use of our optimized QF-Mg cut-off (1.27 IU/ml) at M1 further improved risk stratification of CMV reactivation. Using conventional cut-offs, the combination of TTV load and QF-Ag or TTV load and QF-Mg did not improve prediction of CMV viremia control compared to separate analysis of each marker but resulted in an increase of positive predictive values. The use of our cut-offs slightly improved risk prediction of CMV reactivation. Conclusion The combination of TTV load and QF-Ag or TTV load and QF-Mg could be useful in stratifying the risk of CMV reactivation in R+ KTR during the first post-transplant year and thereby have an impact on the duration of prophylaxis in these patients. Clinical trial registration ClinicalTrials.gov registry, identifier NCT02064699.
Collapse
Affiliation(s)
- Sarah Mafi
- French National Reference Center for Herpesviruses, Bacteriology, Virology, Hygiene Department, Centre Hospitalier Universitaire de Limoges, Limoges, France
- Inserm, RESINFIT, U1092, Université de Limoges, Limoges, France
| | - Marie Essig
- Nephrology and Transplantation Department, Centre Hospitalier Universitaire de Limoges, Limoges, France
| | - Jean-Philippe Rerolle
- Nephrology and Transplantation Department, Centre Hospitalier Universitaire de Limoges, Limoges, France
| | - Gisèle Lagathu
- Virology Department, Centre Hospitalier Universitaire de Rennes, Rennes, France
| | - Romain Crochette
- Nephrology and Transplantation Department, Centre Hospitalier Universitaire de Rennes, Rennes, France
| | - Véronique Brodard
- Virology Department, Centre Hospitalier Universitaire de Reims, Reims, France
| | - Betoul Schvartz
- Nephrology and Transplantation Department, Centre Hospitalier Universitaire de Reims, Reims, France
| | - Stephanie Gouarin
- Virology Department, Centre Hospitalier Universitaire de Caen, Caen, France
| | - Nicolas Bouvier
- Nephrology and Transplantation Department, Centre Hospitalier Universitaire de Caen, Caen, France
| | - Ilka Engelmann
- Virology Department, Centre Hospitalier Universitaire de Lille, Lille, France
| | - Antoine Garstka
- Nephrology and Transplantation Department, Centre Hospitalier Universitaire de Lille, Lille, France
| | | | - Diego Cantarovitch
- Nephrology and Transplantation Department, Centre Hospitalier Universitaire de Nantes, Nantes, France
| | - Raphaële Germi
- Virology Department, Centre Hospitalier Universitaire de Grenoble, Grenoble, France
| | - Benedicte Janbon
- Nephrology and Transplantation Department, Centre Hospitalier Universitaire de Grenoble, Grenoble, France
| | - Christine Archimbaut
- Virology Department, Centre Hospitalier Universitaire de Clermont-Ferrand, Clermont-Ferrand, France
| | - Anne-Elizabeth Heng
- Nephrology and Transplantation Department, Centre Hospitalier Universitaire de Clermont-Ferrand, Clermont-Ferrand, France
| | - Françoise Garnier
- French National Reference Center for Herpesviruses, Bacteriology, Virology, Hygiene Department, Centre Hospitalier Universitaire de Limoges, Limoges, France
- Inserm, RESINFIT, U1092, Université de Limoges, Limoges, France
| | - Melissa Gomes-Mayeras
- French National Reference Center for Herpesviruses, Bacteriology, Virology, Hygiene Department, Centre Hospitalier Universitaire de Limoges, Limoges, France
- Inserm, RESINFIT, U1092, Université de Limoges, Limoges, France
| | - Anaïs Labrunie
- Biostatistics Department, Centre Hospitalier Universitaire de Limoges, Limoges, France
| | - Sébastien Hantz
- French National Reference Center for Herpesviruses, Bacteriology, Virology, Hygiene Department, Centre Hospitalier Universitaire de Limoges, Limoges, France
- Inserm, RESINFIT, U1092, Université de Limoges, Limoges, France
| | - Sophie Alain
- French National Reference Center for Herpesviruses, Bacteriology, Virology, Hygiene Department, Centre Hospitalier Universitaire de Limoges, Limoges, France
- Inserm, RESINFIT, U1092, Université de Limoges, Limoges, France
| |
Collapse
|
28
|
Cebriá-Mendoza M, Beamud B, Andreu-Moreno I, Arbona C, Larrea L, Díaz W, Sanjuán R, Cuevas JM. Human Anelloviruses: Influence of Demographic Factors, Recombination, and Worldwide Diversity. Microbiol Spectr 2023; 11:e0492822. [PMID: 37199659 PMCID: PMC10269794 DOI: 10.1128/spectrum.04928-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 05/05/2023] [Indexed: 05/19/2023] Open
Abstract
Anelloviruses represent the major and most diverse component of the healthy human virome, referred to as the anellome. In this study, we determined the anellome of 50 blood donors, forming two sex- and age-matched groups. Anelloviruses were detected in 86% of the donors. The number of detected anelloviruses increased with age and was approximately twice as high in men as in women. A total of 349 complete or nearly complete genomes were classified as belonging to torque teno virus (TTV), torque teno mini virus (TTMV), and torque teno midi virus (TTMDV) anellovirus genera (197, 88, and 64 sequences, respectively). Most donors had intergenus (69.8%) or intragenus (72.1%) coinfections. Despite the limited number of sequences, intradonor recombination analysis showed 6 intragenus recombination events in ORF1. As thousands of anellovirus sequences have been described recently, we finally analyzed the global diversity of human anelloviruses. Species richness and diversity were close to saturation in each anellovirus genus. Recombination was found to be the main factor promoting diversity, although its effect was significantly lower in TTV than in TTMV and TTMDV. Overall, our results suggest that differences in diversity between genera may be caused by variations in the relative contribution of recombination. IMPORTANCE Anelloviruses are the most common human infectious viruses and are considered essentially harmless. Compared to other human viruses, they are characterized by enormous diversity, and recombination is suggested to play an important role in their diversification and evolution. Here, by analyzing the composition of the plasma anellome of 50 blood donors, we find that recombination is also a determinant of viral evolution at the intradonor level. On a larger scale, analysis of anellovirus sequences currently available in databases shows that their diversity is close to saturation and differs among the three human anellovirus genera and that recombination is the main factor explaining this intergenus variability. Global characterization of anellovirus diversity could provide clues about possible associations between certain virus variants and pathologies, as well as facilitate the implementation of unbiased PCR-based detection protocols, which may be relevant for using anelloviruses as endogenous markers of immune status.
Collapse
Affiliation(s)
- María Cebriá-Mendoza
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Valencia, Spain
| | - Beatriz Beamud
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Valencia, Spain
- FISABIO-Salud Pública, Generalitat Valenciana, Valencia, Spain
| | - Iván Andreu-Moreno
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Valencia, Spain
| | - Cristina Arbona
- Centro de Transfusión de la Comunidad Valenciana, Valencia, Spain
| | - Luís Larrea
- Centro de Transfusión de la Comunidad Valenciana, Valencia, Spain
| | - Wladimiro Díaz
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Valencia, Spain
- Genomic and Health Area, Foundation for the Promotion of Sanitary and Biomedical Research of the Valencia Region (FISABIO), Valencia, Spain
- Centro de Investigación Biomédica en Red en Epidemiología y Salud Pública (CIBEResp), Madrid, Spain
| | - Rafael Sanjuán
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Valencia, Spain
- Department of Genetics, Universitat de València, Valencia, Spain
| | - José M. Cuevas
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Valencia, Spain
- Centro de Investigación Biomédica en Red en Epidemiología y Salud Pública (CIBEResp), Madrid, Spain
| |
Collapse
|
29
|
Gore EJ, Gard L, Niesters HGM, Van Leer Buter CC. Understanding torquetenovirus (TTV) as an immune marker. Front Med (Lausanne) 2023; 10:1168400. [PMID: 37384041 PMCID: PMC10296770 DOI: 10.3389/fmed.2023.1168400] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/02/2023] [Indexed: 06/30/2023] Open
Abstract
Torquetenovirus (TTV), a small, single stranded anellovirus, is currently being explored as a marker of immunocompetence in patients with immunological impairment and inflammatory disorders. TTV has an extremely high prevalence and is regarded as a part of the human virome, the replication of which is controlled by a functioning immune system. The viral load of TTV in plasma of individuals is thought to reflect the degree of immunosuppression. Measuring and quantifying this viral load is especially promising in organ transplantation, as many studies have shown a strong correlation between high TTV loads and increased risk of infection on one side, and low TTV loads and an increased risk of rejection on the other side. As clinical studies are underway, investigating if TTV viral load measurement is superior for gauging antirejection therapy compared to medication-levels, some aspects nevertheless have to be considered. In contrast with medication levels, TTV loads have to be interpreted bearing in mind that viruses have properties including transmission, tropism, genotypes and mutations. This narrative review describes the potential pitfalls of TTV measurement in the follow-up of solid organ transplant recipients and addresses the questions which remain to be answered.
Collapse
|
30
|
Butkovic A, Kraberger S, Smeele Z, Martin DP, Schmidlin K, Fontenele RS, Shero MR, Beltran RS, Kirkham AL, Aleamotu’a M, Burns JM, Koonin EV, Varsani A, Krupovic M. Evolution of anelloviruses from a circovirus-like ancestor through gradual augmentation of the jelly-roll capsid protein. Virus Evol 2023; 9:vead035. [PMID: 37325085 PMCID: PMC10266747 DOI: 10.1093/ve/vead035] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/15/2023] [Accepted: 05/22/2023] [Indexed: 06/17/2023] Open
Abstract
Anelloviruses are highly prevalent in diverse mammals, including humans, but so far have not been linked to any disease and are considered to be part of the 'healthy virome'. These viruses have small circular single-stranded DNA (ssDNA) genomes and encode several proteins with no detectable sequence similarity to proteins of other known viruses. Thus, anelloviruses are the only family of eukaryotic ssDNA viruses currently not included in the realm Monodnaviria. To gain insights into the provenance of these enigmatic viruses, we sequenced more than 250 complete genomes of anelloviruses from nasal and vaginal swab samples of Weddell seal (Leptonychotes weddellii) from Antarctica and a fecal sample of grizzly bear (Ursus arctos horribilis) from the USA and performed a comprehensive family-wide analysis of the signature anellovirus protein ORF1. Using state-of-the-art remote sequence similarity detection approaches and structural modeling with AlphaFold2, we show that ORF1 orthologs from all Anelloviridae genera adopt a jelly-roll fold typical of viral capsid proteins (CPs), establishing an evolutionary link to other eukaryotic ssDNA viruses, specifically, circoviruses. However, unlike CPs of other ssDNA viruses, ORF1 encoded by anelloviruses from different genera display remarkable variation in size, due to insertions into the jelly-roll domain. In particular, the insertion between β-strands H and I forms a projection domain predicted to face away from the capsid surface and function at the interface of virus-host interactions. Consistent with this prediction and supported by recent experimental evidence, the outermost region of the projection domain is a mutational hotspot, where rapid evolution was likely precipitated by the host immune system. Collectively, our findings further expand the known diversity of anelloviruses and explain how anellovirus ORF1 proteins likely diverged from canonical jelly-roll CPs through gradual augmentation of the projection domain. We suggest assigning Anelloviridae to a new phylum, 'Commensaviricota', and including it into the kingdom Shotokuvirae (realm Monodnaviria), alongside Cressdnaviricota and Cossaviricota.
Collapse
Affiliation(s)
- Anamarija Butkovic
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Archaeal Virology Unit, 25 rue du Dr Roux, Paris 75015, France
| | - Simona Kraberger
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, 1001 S. McAllister Ave, Tempe, AZ 85287, USA
| | - Zoe Smeele
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, 1001 S. McAllister Ave, Tempe, AZ 85287, USA
| | - Darren P Martin
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, 1001 S. McAllister Ave, Tempe, AZ 85287, USA
| | - Kara Schmidlin
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, 1001 S. McAllister Ave, Tempe, AZ 85287, USA
| | - Rafaela S Fontenele
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, 1001 S. McAllister Ave, Tempe, AZ 85287, USA
| | - Michelle R Shero
- Biology Department, Woods Hole Oceanographic Institution, 266 Woods Hole Rd, Woods Hole, MA 02543, USA
| | - Roxanne S Beltran
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, 130 McAllister Way, Santa Cruz, CA 95060, USA
| | - Amy L Kirkham
- U.S. Fish and Wildlife Service, Marine Mammals Management, 1011 E, Tudor Road, Anchorage, AK 99503, USA
| | - Maketalena Aleamotu’a
- School of Environmental and Life Sciences, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia
| | - Jennifer M Burns
- Department of Biological Sciences, Texas Tech University, 2500 Broadway, Lubbock, TX 79409, USA
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, 8600 Rockville Pike, Bethesda, MD 20894, USA
| | - Arvind Varsani
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, 1001 S. McAllister Ave, Tempe, AZ 85287, USA
- Computational Biology Division, Department of Integrative Biomedical Sciences, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Observatory, 1 Anzio Road, Cape Town 7925, South Africa
| | - Mart Krupovic
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Archaeal Virology Unit, 25 rue du Dr Roux, Paris 75015, France
| |
Collapse
|
31
|
Megremis S, Constantinides B, Xepapadaki P, Yap CF, Sotiropoulos AG, Bachert C, Finotto S, Jartti T, Tapinos A, Vuorinen T, Andreakos E, Robertson DL, Papadopoulos NG. Respiratory eukaryotic virome expansion and bacteriophage deficiency characterize childhood asthma. Sci Rep 2023; 13:8319. [PMID: 37221274 PMCID: PMC10205716 DOI: 10.1038/s41598-023-34730-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 05/06/2023] [Indexed: 05/25/2023] Open
Abstract
Asthma development and exacerbation is linked to respiratory virus infections. There is limited information regarding the presence of viruses during non-exacerbation/infection periods. We investigated the nasopharyngeal/nasal virome during a period of asymptomatic state, in a subset of 21 healthy and 35 asthmatic preschool children from the Predicta cohort. Using metagenomics, we described the virome ecology and the cross-species interactions within the microbiome. The virome was dominated by eukaryotic viruses, while prokaryotic viruses (bacteriophages) were independently observed with low abundance. Rhinovirus B species consistently dominated the virome in asthma. Anelloviridae were the most abundant and rich family in both health and asthma. However, their richness and alpha diversity were increased in asthma, along with the co-occurrence of different Anellovirus genera. Bacteriophages were richer and more diverse in healthy individuals. Unsupervised clustering identified three virome profiles that were correlated to asthma severity and control and were independent of treatment, suggesting a link between the respiratory virome and asthma. Finally, we observed different cross-species ecological associations in the healthy versus the asthmatic virus-bacterial interactome, and an expanded interactome of eukaryotic viruses in asthma. Upper respiratory virome "dysbiosis" appears to be a novel feature of pre-school asthma during asymptomatic/non-infectious states and merits further investigation.
Collapse
Affiliation(s)
- Spyridon Megremis
- University of Manchester, Manchester, UK.
- University of Leicester, Leicester, UK.
| | | | | | | | | | | | - Susetta Finotto
- Friedrich Alexander University Erlangen-Nurnberg, Erlangen, Germany
| | - Tuomas Jartti
- University of Turku, Turku, Finland
- University of Oulu, Oulu, Finland
| | | | | | | | | | - Nikolaos G Papadopoulos
- University of Manchester, Manchester, UK.
- National and Kapodistrian University of Athens, Athens, Greece.
| |
Collapse
|
32
|
Prediction of humoral and cellular immune response to COVID-19 mRNA vaccination by TTV load in kidney transplant recipients and hemodialysis patients. J Clin Virol 2023; 162:105428. [PMID: 36989730 PMCID: PMC10036154 DOI: 10.1016/j.jcv.2023.105428] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/14/2023] [Accepted: 03/19/2023] [Indexed: 03/25/2023]
Abstract
Background Immunosuppressed individuals such as kidney transplant recipients (KTR) and hemodialysis patients (DP) show impaired immune responses to COVID-19 vaccination. Plasma Torque Teno Virus (TTV) DNA load is used as surrogate for the individual degree of immunosuppression. We now assessed the association of TTV load at time of COVID-19 vaccination with humoral and cellular immune response rates to vaccination in KTR, DP, and healthy medical personnel (MP). Methods A total of 100 KTR, 115 DP and 54 MP were included. All were SARS-CoV-2 seronegative at the time of vaccination with either BNT162b2 or mRNA-1273. Plasma TTV loads were assessed at the time of first vaccination. After two-dose vaccination, seroconversion (de novo detection of SARS-CoV-2 S1-IgA and/or IgG) was determined. In addition, cellular responses as assessed by interferon γ release and neutralizing antibodies were assessed in a subset of participants. ROC analyses were performed to define TTV load cut-offs predicting specific immune responses to vaccination. Results Plasma TTV loads at the time of first vaccination were negatively associated with seroconversion after two-dose vaccination in KTR (OR 0.87, 95% CI 0.76-0.99). TTV loads were significantly lower in KTR who developed humoral and cellular immune responses to vaccination compared to non-responders (p=0.0411 and 0.0030, respectively). Of patients with TTV loads above 106 copies/ml, none developed cellular immune responses against SARS-CoV-2, and only 2 of 17 (12%) seroconverted in response to vaccination. Conclusion Plasma TTV loads at the time of first vaccination in immunosuppressed individuals may be useful to predict individual vaccine-specific immune responses.
Collapse
|
33
|
Lasagna A, Piralla A, Borgetto S, Quaccini M, Baldanti F, Pedrazzoli P. Torque teno virus and cancers: current knowledge. Future Virol 2023. [DOI: 10.2217/fvl-2022-0111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
Aim: The aim of this systematic review is to assess the current knowledge about the relationship between Torque teno virus (TTV) and cancer in different settings. Methods: A systematic search was conducted in Medline via PubMed, Embase and Cochrane Library from the inception to the end of January 2023. Results: 34 articles were included in the qualitative synthesis of this review and 2145 patients with solid tumors have been analyzed. The most prevalent cancer types were hepatocellular carcinoma (HCC) and lung cancer. Conclusion: TTV has proven its role as a marker of functional immune competence in the setting of hematopoietic stem cell transplantation (HSCT), but in the oncological field is yet to be defined.
Collapse
Affiliation(s)
- Angioletta Lasagna
- Medical Oncology Unit, Fondazione IRCCS Policlinico San Matteo, Viale Camillo Golgi 19, 27100, Pavia, Italy
| | - Antonio Piralla
- Microbiology & Virology Department, Fondazione IRCCS Policlinico San Matteo, Viale Camillo Golgi 19, 27100, Pavia, Italy
| | - Sabrina Borgetto
- Medical Oncology Unit, Fondazione IRCCS Policlinico San Matteo, Viale Camillo Golgi 19, 27100, Pavia, Italy
| | - Mattia Quaccini
- Medical Oncology Unit, Fondazione IRCCS Policlinico San Matteo, Viale Camillo Golgi 19, 27100, Pavia, Italy
| | - Fausto Baldanti
- Microbiology & Virology Department, Fondazione IRCCS Policlinico San Matteo, Viale Camillo Golgi 19, 27100, Pavia, Italy
- Dept. of Clinical Surgical Diagnostic & Pediatric Sciences, University of Pavia, Viale Camillo Golgi 19, 27100, Pavia, Italy
| | - Paolo Pedrazzoli
- Medical Oncology Unit, Fondazione IRCCS Policlinico San Matteo, Viale Camillo Golgi 19, 27100, Pavia, Italy
- Dept. of Internal Medicine & Medical Therapy, University of Pavia, Viale Camillo Golgi 19, 27100, Pavia, Italy
| |
Collapse
|
34
|
del Rosal T, García-García ML, Casas I, Iglesias-Caballero M, Pozo F, Alcolea S, Bravo B, Rodrigo-Muñoz JM, del Pozo V, Calvo C. Torque Teno Virus in Nasopharyngeal Aspirate of Children With Viral Respiratory Infections. Pediatr Infect Dis J 2023; 42:184-188. [PMID: 36729788 PMCID: PMC9935559 DOI: 10.1097/inf.0000000000003796] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/01/2022] [Indexed: 02/03/2023]
Abstract
BACKGROUND Torque teno virus (TTV) is a ubiquitous anellovirus responsible for persistent infections and is considered a marker of immune function. The role of TTV as a facilitator of respiratory infections (RIs) is unknown. OBJECTIVES Our aim was to estimate, in a prospective study, the prevalence of TTV in the nasopharyngeal aspirate (NPA) of hospitalized children <5 years old, with RIs and correlate them with outcomes and immune response. PATIENTS AND METHODS NPA was taken for testing of 16 respiratory viruses by reverse transcription-polymerase chain reaction (PCR), TTV PCR, and immunologic study. RESULTS Sixty hospitalized children with an RI were included. A total of 51/60 patients had positive common respiratory viral (CRV) identification. A total of 23/60 (38.3%) children were TTV+ in NPA. TTV+ patients had other CRVs in 100% of cases versus 78.3% in TTV- ( P = 0.029). The TTV+ patients tended to be older, have fever, and to need pediatric intensive care unit admission more often than TTV- patients. Abnormal chest radiograph was more frequent in the TTV+ patients, odds ratios 2.6 (95% CI: 1.3-5.2). The genetic expression of filaggrin (involved in epithelial barrier integrity) was lower in TTV+ patients; however, the levels of filaggrin in the NPA were increased. CONCLUSIONS TTV infection is common in children with RI and could be associated with abnormal imaging in radiograph, greater severity and an alteration in filaggrin gene expression and protein release.
Collapse
Affiliation(s)
- Teresa del Rosal
- From the Paediatric Infectious Diseases Department, La Paz University Hospital, Madrid, Spain
- Hospital La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
- Translational Research Network in Pediatric Infectious Diseases (RITIP), Madrid, Spain
- CIBER de Enfermedades raras, CIBERER, ISCIII, Madrid, Spain
| | - Mª Luz García-García
- CIBER de Enfermedades raras, CIBERER, ISCIII, Madrid, Spain
- Pediatric Department, Severo Ochoa University Hospital, Leganés, Madrid, Spain
- CIBER de Enfermedades Infecciosas, CIBERINFEC, ISCIII, Madrid, Spain
| | - Inmaculada Casas
- Respiratory Viruses and Influenza Unit at the National Center for Microbiology (ISCIII), Madrid, Spain
| | - María Iglesias-Caballero
- Respiratory Viruses and Influenza Unit at the National Center for Microbiology (ISCIII), Madrid, Spain
| | - Francisco Pozo
- Respiratory Viruses and Influenza Unit at the National Center for Microbiology (ISCIII), Madrid, Spain
| | - Sonia Alcolea
- From the Paediatric Infectious Diseases Department, La Paz University Hospital, Madrid, Spain
- Hospital La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
- Pediatric Department, Severo Ochoa University Hospital, Leganés, Madrid, Spain
- CIBER de Enfermedades Infecciosas, CIBERINFEC, ISCIII, Madrid, Spain
| | - Blanca Bravo
- From the Paediatric Infectious Diseases Department, La Paz University Hospital, Madrid, Spain
- Hospital La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
| | - José M. Rodrigo-Muñoz
- Department of Immunology, IIS-Fundación Jiménez Díaz, Madrid, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Victoria del Pozo
- Department of Immunology, IIS-Fundación Jiménez Díaz, Madrid, Spain
- CIBER de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Cristina Calvo
- From the Paediatric Infectious Diseases Department, La Paz University Hospital, Madrid, Spain
- Hospital La Paz Institute for Health Research (IdiPAZ), Madrid, Spain
- Translational Research Network in Pediatric Infectious Diseases (RITIP), Madrid, Spain
- CIBER de Enfermedades Infecciosas, CIBERINFEC, ISCIII, Madrid, Spain
| |
Collapse
|
35
|
Patterson CM, Jolly EC, Burrows F, Ronan NJ, Lyster H. Conventional and Novel Approaches to Immunosuppression in Lung Transplantation. Clin Chest Med 2023; 44:121-136. [PMID: 36774159 DOI: 10.1016/j.ccm.2022.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Most therapeutic advances in immunosuppression have occurred over the past few decades. Although modern strategies have been effective in reducing acute cellular rejection, excess immunosuppression comes at the price of toxicity, opportunistic infection, and malignancy. As our understanding of the immune system and allograft rejection becomes more nuanced, there is an opportunity to evolve immunosuppression protocols to optimize longer term outcomes while mitigating the deleterious effects of traditional protocols.
Collapse
Affiliation(s)
- Caroline M Patterson
- Transplant Continuing Care Unit, Royal Papworth Hospital NHS Foundation Trust, Cambridge, United Kingdom
| | - Elaine C Jolly
- Division of Renal Medicine, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Fay Burrows
- Department of Pharmacy, St Vincent's Hospital, Sydney, New South Wales, Australia
| | - Nicola J Ronan
- Transplant Continuing Care Unit, Royal Papworth Hospital NHS Foundation Trust, Cambridge, United Kingdom
| | - Haifa Lyster
- Cardiothoracic Transplant Unit, Royal Brompton and Harefield Hospitals, Part of Guy's & St Thomas' NHS Foundation Trust, London, United Kingdom; Kings College, London, United Kingdom; Pharmacy Department, Royal Brompton and Harefield Hospitals, Part of Guy's & St Thomas' NHS Foundation Trust, London, United Kingdom.
| |
Collapse
|
36
|
Roberto P, Cinti L, Napoli A, Paesani D, Riveros Cabral RJ, Maggi F, Garofalo M, Pretagostini R, Centofanti A, Carillo C, Venuta F, Gaeta A, Antonelli G. Torque teno virus (TTV): A gentle spy virus of immune status, predictive marker of seroconversion to COVID-19 vaccine in kidney and lung transplant recipients. J Med Virol 2023; 95:e28512. [PMID: 36661060 PMCID: PMC10108096 DOI: 10.1002/jmv.28512] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/11/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023]
Abstract
To date, no comprehensive marker to monitor the immune status of patients is available. Given that Torque teno virus (TTV), a known human virome component, has previously been identified as a marker of immunocompetence, it was retrospectively investigated whether TTV viral load may also represent a marker of ability to develop antibody in response to COVID-19-BNT162B2 vaccine in solid organ transplant recipients (SOT). Specifically, 273 samples from 146 kidney and 26 lung transplant recipients after successive doses of vaccine were analyzed. An inverse correlation was observed within the TTV copy number and anti-Spike IgG antibody titer with a progressive decrease in viremia the further away from the transplant date. Analyzing the data obtained after the second dose, a significant difference in TTV copy number between responsive and nonresponsive patients was observed, considering a 5 log10 TTV copies/mL threshold to discriminate between the two groups. Moreover, for 86 patients followed in their response to the second and third vaccination doses a 6 log10 TTV copies/mL threshold was used to predict responsivity to the booster dose. Although further investigation is necessary, possibly extending the analysis to other patient categories, this study suggests that TTV can be used as a good marker of vaccine response in transplant patients.
Collapse
Affiliation(s)
- Piergiorgio Roberto
- Department of Molecular Medicine, Laboratory of Microbiology and Virology, Sapienza University of Rome, Rome, Italy
| | - Lilia Cinti
- Department of Molecular Medicine, Laboratory of Microbiology and Virology, Sapienza University of Rome, Rome, Italy
| | - Anna Napoli
- Department of Molecular Medicine, Laboratory of Microbiology and Virology, Sapienza University of Rome, Rome, Italy
| | | | - Rodolfo J Riveros Cabral
- Department of Molecular Medicine, Laboratory of Microbiology and Virology, Sapienza University of Rome, Rome, Italy
| | - Fabrizio Maggi
- Laboratory of Virology, National Institute for Infectious Diseases, Lazzaro Spallanzani IRCCS, Rome, Italy
| | - Manuela Garofalo
- General Surgery and Organ Transplantation Unit, Sapienza University of Rome, Rome, Italy
| | - Renzo Pretagostini
- General Surgery and Organ Transplantation Unit, Sapienza University of Rome, Rome, Italy
| | - Anastasia Centofanti
- Department of General and Specialistic Surgery "Paride Stefanini", Sapienza University of Rome, Rome, Italy
| | - Carolina Carillo
- Department of General and Specialistic Surgery "Paride Stefanini", Sapienza University of Rome, Rome, Italy
| | - Federico Venuta
- Department of General and Specialistic Surgery "Paride Stefanini", Sapienza University of Rome, Rome, Italy
| | - Aurelia Gaeta
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Guido Antonelli
- Department of Molecular Medicine, Laboratory of Microbiology and Virology, Sapienza University of Rome, Rome, Italy.,Microbiology and Virology Unit, Sapienza University Hospital Policlinico Umberto I, Rome, Italy
| |
Collapse
|
37
|
Dynamics of Human Anelloviruses in Plasma and Clinical Outcomes Following Kidney Transplantation. Transplantation 2023; 107:511-520. [PMID: 36042550 DOI: 10.1097/tp.0000000000004292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
BACKGROUND Torque teno virus, the major member of the genus Alphatorquevirus , is an emerging biomarker of the net state of immunosuppression after kidney transplantation. Genetic diversity constitutes a main feature of the Anelloviridae family, although its posttransplant dynamics and clinical correlates are largely unknown. METHODS The relative abundance of Alphatorquevirus , Betatorquevirus , and Gammatorquevirus genera was investigated by high-throughput sequencing in plasma specimens obtained at various points during the first posttransplant year (n = 91 recipients). Total loads of all members of the Anelloviridae family were also quantified by an "in-house" polymerase chain reaction assay targeting conserved DNA sequences (n = 195 recipients). In addition to viral kinetics, clinical study outcomes included serious infection, immunosuppression-related adverse event (opportunistic infection and cancer)' and acute rejection. RESULTS Alphatorquevirus DNA was detected in all patients at every point, with an increase from pretransplantation to month 1. A variable proportion of recipients had detectable Betatorquevirus and Gammatorquevirus at lower frequencies. At least 1 change in the predominant genus (mainly as early transition to Alphatorquevirus predominance) was shown in 35.6% of evaluable patients. Total anelloviruses DNA levels increased from baseline to month 1, to peak by month 3 and decrease thereafter, and were higher in patients treated with T-cell depleting agents. There was a significant albeit weak-to-moderate correlation between total anelloviruses and TTV DNA levels. No associations were found between the predominant Anelloviridae genus or total anelloviruses DNA levels and clinical outcomes. CONCLUSIONS Our study provides novel insight into the evolution of the anellome after kidney transplantation.
Collapse
|
38
|
Rabelo NN, Yoshikawa MH, Telles JPM, Coelho G, de Souza CS, de Oliveira NPG, Mendoza TRT, Braz-Silva PH, Boechat AL, Teixeira MJ, Figueiredo EG. Torque Teno virus DNA is found in the intracranial aneurysm wall-Is there a causative role? Front Med (Lausanne) 2023; 10:1047310. [PMID: 36744144 PMCID: PMC9894622 DOI: 10.3389/fmed.2023.1047310] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 01/06/2023] [Indexed: 01/20/2023] Open
Abstract
Objective Torque Teno virus (TTV) is a recently discovered virus with high prevalence worldwide, that has been associated with vascular diseases. The aim of this study is to investigate the prevalence of TTV molecular DNA in the intracranial aneurysm (IA) artery walls. Method Samples of IA walls were collected after microsurgical clipping from 35 patients with IA (22 ruptured/13 unruptured cases). The samples were submitted to molecular DNA extraction using the EasyMag automatized extractor and performed with Qiagen DNA extraction Minikit 250. The samples underwent PCR examination with primers for β-globin as internal control using the Nanodrop ® 2000 spectrophotometer. A quantitative (real-time) PCR with TTV-specific primers was performed. Clinical and radiological data of patients included was collected. Results TTV was detected in 15 (42.85%) cases, being 10 (45.4%) ruptured and 5 (38.4%) unruptured (p = 0.732) lesions. Multiple IAs accounted for 14 (40%) cases. Five cases (17.2%) had TTV+ and multiple aneurysms (p = 0.73). Association between presence of virus and aneurysm rupture was not statistically significant (p = 0.96). Conclusion This study demonstrated a relatively high prevalence of viral DNA in the walls of IAs. This is the first study to identify the presence of TTV DNA in IA's samples, which was found more often in ruptured lesions. This is an exploratory study, therefore, larger studies are required to clarify the relationships between inflammation, viral infection, IA formation and rupture.
Collapse
Affiliation(s)
- Nícollas Nunes Rabelo
- Department of Neurosurgery, University of São Paulo, São Paulo, SP, Brazil,*Correspondence: Nícollas Nunes Rabelo,
| | | | | | - Giselle Coelho
- Department of Neurosurgery, University of São Paulo, São Paulo, SP, Brazil
| | | | | | | | - Paulo Henrique Braz-Silva
- Laboratory of Virology (LIM-52), University of São Paulo, São Paulo, SP, Brazil,Department of Stomatology, University of São Paulo, São Paulo, SP, Brazil
| | | | | | | |
Collapse
|
39
|
Ottmann M. [These viruses that inhabit and visit us: The human virome]. Med Sci (Paris) 2022; 38:1028-1038. [PMID: 36692282 DOI: 10.1051/medsci/2022161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Recent advances in new sequencing technologies have opened the way to the deciphering of human virome. So far, human virome is defined as the complete list of viruses found in human body. Those viruses could be endogenous, prokaryotic, archaeal and eukaryotic. In addition, each compartment of the human body constitutes a different microenvironment with its own virome. Viral infections can be categorized according to the outcome of the acute phase and until recently, only symptomatic and pathological infections were studied. It is now well established that a healthy person has an extremely diverse virome. This review summarizes the current state of our knowledge and also proposes another classification of the human virome based on principles of ecology.
Collapse
Affiliation(s)
- Michèle Ottmann
- Centre international de recherche en infectiologie (CIRI), université Claude Bernard-Lyon 1, université de Lyon, Inserm U1111 - CNRS UMR 5308 - ENS, Laboratoire de virologie et pathologies humaines, Faculté de médecine RTH Laennec, 7 rue Guillaume Paradin, 69372 Lyon cedex 08, France
| |
Collapse
|
40
|
Redondo N, Rodríguez-Goncer I, Parra P, Albert E, Giménez E, Ruiz-Merlo T, López-Medrano F, San Juan R, González E, Sevillano Á, Andrés A, Navarro D, Aguado JM, Fernández-Ruiz M. Impact of polymorphisms in genes orchestrating innate immune responses on replication kinetics of Torque teno virus after kidney transplantation. Front Genet 2022; 13:1069890. [DOI: 10.3389/fgene.2022.1069890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/09/2022] [Indexed: 11/23/2022] Open
Abstract
Background: Torque teno virus (TTV) DNAemia has been proposed as a surrogate marker of immunosuppression after kidney transplantation (KT), under the assumption that the control of viral replication is mainly exerted by T-cell-mediated immunity. However, Tthe impact on post-transplant TTV kinetics of single genetic polymorphisms (SNPs) in genes orchestrating innate responses remains unknown. We aimed to characterize the potential association between 14 of these SNPs and TTV DNA levels in a single-center cohort of KT recipients.Methods: Plasma TTV DNAemia was quantified by real-time PCR in 221 KT recipients before transplantation (baseline) and regularly through the first 12 post-transplant months. We performed genotyping of the following SNPs: CTLA4 (rs5742909, rs231775), TLR3 (rs3775291), TLR9 (rs5743836, rs352139), CD209 (rs735240, rs4804803), IFNL3 (rs12979860, rs8099917), TNF (rs1800629), IL10 (rs1878672, rs1800872), IL12B (rs3212227) and IL17A (rs2275913).Results: The presence of the minor G allele of CD209 (rs4804803) in the homozygous state was associated with undetectable TTV DNAemia at the pre-transplant assessment (adjusted odds ratio: 36.96; 95% confidence interval: 4.72–289.67; p-value = 0.001). After applying correction for multiple comparisons, no significant differences across SNP genotypes were observed for any of the variables of post-transplant TTV DNAemia analyzed (mean and peak values, areas under the curve during discrete periods, or absolute increments from baseline to day 15 and months 1, 3, 6 and 12 after transplantation).Conclusion: The minor G allele of CD209 (rs4804803) seems to exert a recessive protective effect against TTV infection in non-immunocompromised patients. However, no associations were observed between the SNPs analyzed and post-transplant kinetics of TTV DNAemia. These negative results would suggest that post-transplant TTV replication is mainly influenced by immunosuppressive therapy rather than by underlying genetic predisposition, reinforcing its clinical application as a biomarker of adaptive immunity.
Collapse
|
41
|
Detection of Torquetenovirus and Redondovirus DNA in Saliva Samples from SARS-CoV-2-Positive and -Negative Subjects. Viruses 2022; 14:v14112482. [PMID: 36366580 PMCID: PMC9695164 DOI: 10.3390/v14112482] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022] Open
Abstract
OBJECTIVES Torquetenovirus (TTV) and Redondovirus (ReDoV) are the most prevalent viruses found in the human respiratory virome in viral metagenomics studies. A large-scale epidemiological study was performed to investigate their prevalence and loads in saliva samples according to SARS-CoV-2 status. METHODS Saliva samples from 448 individuals (73% SARS-CoV-2 negative and 27% SARS-CoV-2 positive) aged 23-88 years were tested. SARS-CoV-2 and TTV were determined in saliva by specific qualitative and quantitative real-time PCRs, respectively. A sub-cohort of 377 subjects was additionally tested for the presence and load of ReDoV in saliva, and a different sub-cohort of 120 subjects for which paired saliva and plasma samples were available was tested for TTV and ReDoV viremia at the same timepoints as saliva. RESULTS TTV in saliva was 72% prevalent in the entire cohort, at a mean DNA load of 4.6 log copies/mL, with no difference regardless of SARS-CoV-2 status. ReDoV was found in saliva from 61% of the entire cohort and was more prevalent in the SARS-CoV-2-negative subgroup (65% vs. 52%, respectively). In saliva, the total mean load of ReDoV was very similar to the one of TTV, with a value of 4.4 log copies/mL. The mean viral loads in subjects infected with a single virus, namely, those infected with TTV or ReDoV alone, was lower than in dually infected samples, and Tukey's multiple-comparison test showed that ReDoV single-infected samples resulted in the only true outlier (p = 0.004). Differently from TTV, ReDoV was not detected in any blood samples. CONCLUSIONS This study establishes the prevalence and mean value of TTV and ReDoV in saliva samples and demonstrates the existence of differences between these two components of the human virome.
Collapse
|
42
|
Iša P, Taboada B, García-López R, Boukadida C, Ramírez-González JE, Vázquez-Pérez JA, Hernández-Terán A, Romero-Espinoza JÁ, Muñoz-Medina JE, Grajales-Muñiz C, Rincón-Rubio A, Matías-Florentino M, Sanchez-Flores A, Mendieta-Condado E, Barrera-Badillo G, López S, Hernández-Rivas L, López-Martínez I, Ávila-Ríos S, Arias CF. Metagenomic analysis reveals differences in the co-occurrence and abundance of viral species in SARS-CoV-2 patients with different severity of disease. BMC Infect Dis 2022; 22:792. [PMID: 36261802 PMCID: PMC9580447 DOI: 10.1186/s12879-022-07783-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 10/06/2022] [Indexed: 11/22/2022] Open
Abstract
Background SARS-CoV-2 infections have a wide spectrum of clinical manifestations whose causes are not completely understood. Some human conditions predispose to severe outcome, like old age or the presence of comorbidities, but many other facets, including coinfections with other viruses, remain poorly characterized.
Methods In this study, the eukaryotic fraction of the respiratory virome of 120 COVID-19 patients was characterized through whole metagenomic sequencing. Results Genetic material from respiratory viruses was detected in 25% of all samples, whereas human viruses other than SARS-CoV-2 were found in 80% of them. Samples from hospitalized and deceased patients presented a higher prevalence of different viruses when compared to ambulatory individuals. Small circular DNA viruses from the Anneloviridae (Torque teno midi virus 8, TTV-like mini virus 19 and 26) and Cycloviridae families (Human associated cyclovirus 10), Human betaherpesvirus 6, were found to be significantly more abundant in samples from deceased and hospitalized patients compared to samples from ambulatory individuals. Similarly, Rotavirus A, Measles morbillivirus and Alphapapilomavirus 10 were significantly more prevalent in deceased patients compared to hospitalized and ambulatory individuals. Conclusions Results show the suitability of using metagenomics to characterize a broader peripheric virological landscape of the eukaryotic virome in SARS-CoV-2 infected patients with distinct disease outcomes. Identified prevalent viruses in hospitalized and deceased patients may prove important for the targeted exploration of coinfections that may impact prognosis. Supplementary Information The online version contains supplementary material available at 10.1186/s12879-022-07783-8.
Collapse
Affiliation(s)
- Pavel Iša
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico.
| | - Blanca Taboada
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Rodrigo García-López
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Celia Boukadida
- Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | | | | | | | | | - José Esteban Muñoz-Medina
- Coordinación de Calidad de Insumos y Laboratorios Especializados, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Concepción Grajales-Muñiz
- Coordinación de Calidad de Insumos y Laboratorios Especializados, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Alma Rincón-Rubio
- Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Margarita Matías-Florentino
- Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Alejandro Sanchez-Flores
- Unidad Universitaria de Secuenciación Masiva y Bioinformática, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Edgar Mendieta-Condado
- Instituto de Diagnóstico y Referencia Epidemiológicos, Dirección General de Epidemiología, Ciudad de Mexico, Mexico
| | - Gisela Barrera-Badillo
- Instituto de Diagnóstico y Referencia Epidemiológicos, Dirección General de Epidemiología, Ciudad de Mexico, Mexico
| | - Susana López
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Lucía Hernández-Rivas
- Instituto de Diagnóstico y Referencia Epidemiológicos, Dirección General de Epidemiología, Ciudad de Mexico, Mexico
| | - Irma López-Martínez
- Instituto de Diagnóstico y Referencia Epidemiológicos, Dirección General de Epidemiología, Ciudad de Mexico, Mexico
| | - Santiago Ávila-Ríos
- Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Carlos F Arias
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| |
Collapse
|
43
|
Integrated Immunologic Monitoring in Solid Organ Transplantation: The Road Toward Torque Teno Virus-guided Immunosuppression. Transplantation 2022; 106:1940-1951. [PMID: 35509090 PMCID: PMC9521587 DOI: 10.1097/tp.0000000000004153] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Potent immunosuppressive drugs have been introduced into clinical care for solid organ transplant recipients. It is now time to guide these drugs on an individual level to optimize their efficacy. An ideal tool simultaneously detects overimmunosuppression and underimmunosuppression, is highly standardized, and is straightforward to implement into routine. Randomized controlled interventional trials are crucial to demonstrate clinical value. To date, proposed assays have mainly focused on the prediction of rejection and were based on the assessment of few immune compartments. Recently, novel tools have been introduced based on a more integrated approach to characterize the immune function and cover a broader spectrum of the immune system. In this respect, the quantification of the plasma load of a highly prevalent and apathogenic virus that might reflect the immune function of its host has been proposed: the torque teno virus (TTV). Although TTV control is driven by T cells, other major immune compartments might contribute to the hosts' response. A standardized in-house polymerase chain reaction and a conformité européenne-certified commercially available polymerase chain reaction are available for TTV quantification. TTV load is associated with rejection and infection in solid organ transplant recipients, and cutoff values for risk stratification of such events have been proposed for lung and kidney transplantation. Test performance of TTV load does not allow for the diagnosis of rejection and infection but is able to define at-risk patients. Hitherto TTV load has not been used in interventional settings, but two interventional randomized controlled trials are currently testing the safety and efficacy of TTV-guided immunosuppression.
Collapse
|
44
|
Gaggl M, Aschauer C, Aigner C, Bond G, Vychytil A, Strassl R, Wagner L, Sunder-Plassmann G, Schmidt A. SARS-CoV-2 IgG spike protein antibody response in mRNA-1273 Moderna® vaccinated patients on maintenance immunoapheresis – a cohort study. Front Immunol 2022; 13:969193. [PMID: 36225921 PMCID: PMC9549982 DOI: 10.3389/fimmu.2022.969193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/30/2022] [Indexed: 11/22/2022] Open
Abstract
Background The SARS-CoV-2 pandemic increased mortality and morbidity among immunocompromised populations. Vaccination is the most important preventive measure, however, its effectiveness among patients depending on maintenance immunoglobulin G (IgG) apheresis to control autoimmune disease activity is unknown. We aimed to examine the humoral immune response after mRNA-1273 Moderna® vaccination in immunoapheresis patients. Methods We prospectively monitored SARS-CoV-2 IgG spike (S) protein antibody levels before and after each IgG (exposure) or lipid (LDL) apheresis (controls) over 12 weeks and once after 24 weeks. Primary outcome was the difference of change of SARS-CoV-2 IgG S antibody levels from vaccination until week 12, secondary outcome was the difference of change of SARS-CoV-2 IgG S antibody levels by apheresis treatments across groups. Results We included 6 IgG and 18 LDL apheresis patients. After 12 weeks the median SARS-CoV-2 IgG S antibody level was 115 (IQR: 0.74, 258) in the IgG and 1216 (IQR: 788, 2178) in the LDL group (p=0.03). Median SARS-CoV-2 IgG S antibody reduction by apheresis was 76.4 vs. 23.7% in the IgG and LDL group (p=0.04). The average post- vs. pre-treatment SARS-CoV-2 IgG S antibody rebound in the IgG group vs. the LDL group was 46.1 and 6.44%/week from prior until week 12 visit. Conclusions IgG apheresis patients had lower SARS-CoV-2 IgG S antibody levels compared to LDL apheresis patients, but recovered appropriately between treatment sessions. We believe that IgG apheresis itself probably has less effect on maintaining the immune response compared to concomitant immunosuppressive drugs. Immunization is recommended independent of apheresis treatment.
Collapse
Affiliation(s)
- Martina Gaggl
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
- *Correspondence: Martina Gaggl,
| | - Constantin Aschauer
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Christof Aigner
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Gregor Bond
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Andreas Vychytil
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Robert Strassl
- Division of Clinical Virology, Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Ludwig Wagner
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Gere Sunder-Plassmann
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Alice Schmidt
- Division of Nephrology and Dialysis, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
45
|
Human Virome in Cervix Controlled by the Domination of Human Papillomavirus. Viruses 2022; 14:v14092066. [PMID: 36146871 PMCID: PMC9503738 DOI: 10.3390/v14092066] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 12/24/2022] Open
Abstract
Although other co-viral infections could also be considered influencing factors, cervical human papillomavirus (HPV) infection is the main cause of cervical cancer. Metagenomics have been employed in the NGS era to study the microbial community in each habitat. Thus, in this investigation, virome capture sequencing was used to examine the virome composition in the HPV-infected cervix. Based on the amount of HPV present in each sample, the results revealed that the cervical virome of HPV-infected individuals could be split into two categories: HPV-dominated (HD; ≥60%) and non-HPV-dominated (NHD; <60%). Cervical samples contained traces of several human viral species, including the molluscum contagiosum virus (MCV), human herpesvirus 4 (HHV4), torque teno virus (TTV), and influenza A virus. When compared to the HD group, the NHD group had a higher abundance of several viruses. Human viral diversity appears to be influenced by HPV dominance. This is the first proof that the diversity of human viruses in the cervix is impacted by HPV abundance. However, more research is required to determine whether human viral variety and the emergence of cancer are related.
Collapse
|
46
|
Kaczorowska J, Cicilionytė A, Wahdaty AF, Deijs M, Jebbink MF, Bakker M, van der Hoek L. Transmission of anelloviruses to HIV-1 infected children. Front Microbiol 2022; 13:951040. [PMID: 36187966 PMCID: PMC9523257 DOI: 10.3389/fmicb.2022.951040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
Anelloviruses (AVs) are widespread in the population and infect humans at the early stage of life. The mode of transmission of AVs is still unknown, however, mother-to-child transmission, e.g., via breastfeeding, is one of the likely infection routes. To determine whether the mother-to-child transmission of AVs may still occur despite the absence of natural birth and breastfeeding, 29 serum samples from five HIV-1-positive mother and child pairs were Illumina-sequenced. The Illumina reads were mapped to an AV lineage database “Anellometrix” containing 502 distinct ORF1 sequences. Although the majority of lineages from the mother were not shared with the child, the mother and child anellomes did display a significant similarity. These findings suggest that AVs may be transmitted from mothers to their children via different routes than delivery or breastfeeding.
Collapse
Affiliation(s)
- Joanna Kaczorowska
- Laboratory of Experimental Virology, Department of Medical Microbiology and Infection Prevention, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Aurelija Cicilionytė
- Laboratory of Experimental Virology, Department of Medical Microbiology and Infection Prevention, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Annet Firouzi Wahdaty
- Laboratory of Experimental Virology, Department of Medical Microbiology and Infection Prevention, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Martin Deijs
- Laboratory of Experimental Virology, Department of Medical Microbiology and Infection Prevention, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Maarten F. Jebbink
- Laboratory of Experimental Virology, Department of Medical Microbiology and Infection Prevention, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Margreet Bakker
- Laboratory of Experimental Virology, Department of Medical Microbiology and Infection Prevention, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
| | - Lia van der Hoek
- Laboratory of Experimental Virology, Department of Medical Microbiology and Infection Prevention, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, Netherlands
- *Correspondence: Lia van der Hoek,
| |
Collapse
|
47
|
Morselli S, Foschi C, Laghi L, Zagonari S, Patuelli G, Camboni T, Ceccarani C, Consolandi C, Djusse ME, Pedna MF, Marangoni A, Severgnini M, Sambri V. Torquetenovirus in pregnancy: Correlation with vaginal microbiome, metabolome and pro-inflammatory cytokines. Front Microbiol 2022; 13:998849. [PMID: 36160242 PMCID: PMC9501707 DOI: 10.3389/fmicb.2022.998849] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Torquetenovirus (TTV) is a negative sense, single-stranded DNA virus present in many body fluids of apparently healthy individuals. At present, it is considered a non-pathogenic endogenous virus. TTV can be detected in the vagina of pregnant women, its abundance being modulated with the extent of immune system activation. Until now, there is only scarce information regarding the association between TTV and the composition of the vaginal environment. Therefore, this study aimed to assess the presence of TTV in the vaginal ecosystem of a cohort of white women with a normal pregnancy (n = 60) at different gestational stages (first, second and third trimester) and in 9 subjects suffering a first trimester miscarriage. For each woman, we determined (i) the presence and titer of TTV, (ii) the vaginal bacterial composition by means of Nugent score and 16S rRNA gene sequencing, (iii) the vaginal metabolic profiles through 1H-NMR spectroscopy, and (iv) the vaginal concentration of two pro-inflammatory cytokines (IL-6 and IL-8). More than one third of women were found negative for TTV at all gestational stages. Although not statistically significant, the positivity for TTV dropped from 53.3% in the first to 36.6% in the third trimester. TTV loads varied greatly among vaginal samples, ranging between 2 × 101 and 2 × 105 copies/reaction. No difference in TTV prevalence and loads was observed between women with normal pregnancies and miscarriages. The presence of TTV was more common in women with a higher vaginal leucocyte count (p = 0.02). The levels of IL-6 (p = 0.02), IL-8 (p = 0.03), propionate (p = 0.001) and cadaverine (p = 0.006) were significantly higher in TTV-positive samples. TTV titer was positively correlated with the concentrations of 4-hydroxyphenyllactate (p < 0.0001), isoleucine (p = 0.01) and phenylalanine (p = 0.04). TTV-positive samples were characterized by a higher relative abundance of Sneathia (p = 0.04) and Shuttleworthia (p = 0.0009). In addition, a trend toward a decrease of Lactobacillus crispatus and Lactobacillus jensenii, and an increase of Lactobacillus iners was observed for TTV-positive samples. In conclusion, we found that TTV is quite common in women with normal pregnancy outcomes, representing a possible predictor of local immune status.
Collapse
Affiliation(s)
- Sara Morselli
- Microbiology Unit, Department of Specialized, Experimental and Diagnostic Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Claudio Foschi
- Microbiology Unit, Department of Specialized, Experimental and Diagnostic Medicine (DIMES), University of Bologna, Bologna, Italy
- Microbiology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Luca Laghi
- Department of Agricultural and Food Sciences (DISTAL), Centre of Foodomics, University of Bologna, Cesena, Italy
- Interdepartmental Centre for Agri-Food Industrial Research (CIRI Agrifood), University of Bologna, Cesena, Italy
| | | | | | - Tania Camboni
- Institute of Biomedical Technologies, National Research Council, Segrate, Italy
| | - Camilla Ceccarani
- Institute of Biomedical Technologies, National Research Council, Segrate, Italy
| | - Clarissa Consolandi
- Institute of Biomedical Technologies, National Research Council, Segrate, Italy
| | - Marielle Ezekielle Djusse
- Microbiology Unit, Department of Specialized, Experimental and Diagnostic Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Maria Federica Pedna
- Great Romagna Hub Laboratory, Unit of Microbiology, Pievesestina di Cesena, Italy
| | - Antonella Marangoni
- Microbiology Unit, Department of Specialized, Experimental and Diagnostic Medicine (DIMES), University of Bologna, Bologna, Italy
- *Correspondence: Antonella Marangoni
| | - Marco Severgnini
- Institute of Biomedical Technologies, National Research Council, Segrate, Italy
| | - Vittorio Sambri
- Microbiology Unit, Department of Specialized, Experimental and Diagnostic Medicine (DIMES), University of Bologna, Bologna, Italy
- Great Romagna Hub Laboratory, Unit of Microbiology, Pievesestina di Cesena, Italy
| |
Collapse
|
48
|
Detection of human feces pecovirus in newly diagnosed HIV patients in Brazil. PLoS One 2022; 17:e0272067. [PMID: 36067165 PMCID: PMC9447917 DOI: 10.1371/journal.pone.0272067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 07/12/2022] [Indexed: 12/04/2022] Open
Abstract
Circular single stranded DNA viruses (CRESS DNA) encoding a homologous replication-associated protein (REP) have been identified in most of eukaryotic groups. It is not clear yet the role in human diseases or details of the life cycle of these viruses. Recently, much interest has been raised in the evolutionary history of CRESS DNA owing to the increasing number of new sequences obtained by Next-Generation Sequencing (NGS) in distinct host species. In this study we describe two full-length CRESS DNA genomes obtained of two newly diagnosed HIV patients from São Paulo State, Brazil. The initial BLASTx search indicated that both sequences (named SP-FFB/2020 and SP-MJMS/2020) are highly similar (98%) to a previous CRESS DNA sequence detected in human fecal sample from Peru in 2016 and designated as pecovirus (Peruvian stool-associated circo-like virus). This study reported for the first time the Human feces pecovirus in the feces of two newly diagnosed HIV patients in Brazil. Our comparative analysis showed that although pecoviruses in South America share an identical genome structure they diverge and form distinct clades. Thus, we suggest the circulation of different species of pecoviruses in Latin America. Nevertheless, further studies must be done to examine the pathogenicity of this virus.
Collapse
|
49
|
Taylo LJ, Keeler EL, Bushman FD, Collman RG. The enigmatic roles of Anelloviridae and Redondoviridae in humans. Curr Opin Virol 2022; 55:101248. [PMID: 35870315 DOI: 10.1016/j.coviro.2022.101248] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/06/2022] [Accepted: 06/09/2022] [Indexed: 12/26/2022]
Abstract
Anelloviridae and Redondoviridae are virus families with small, circular, single-stranded DNA genomes that are common components of the human virome. Despite their small genome size of less than 5000 bases, they are remarkably successful - anelloviruses colonize over 90% of adult humans, while the recently discovered redondoviruses have been found at up to 80% prevalence in some populations. Anelloviruses are present in blood and many organs, while redondoviruses are found mainly in the ororespiratory tract. Despite their high prevalence, little is known about their biology or pathogenic potential. In this review, we discuss anelloviruses and redondoviruses and explore their enigmatic roles in human health and disease.
Collapse
Affiliation(s)
- Louis J Taylo
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Emma L Keeler
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Frederic D Bushman
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ronald G Collman
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Medicine, Pulmonary, Allergy and Critical Care Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
50
|
Väisänen E, Kuisma I, Mäkinen M, Ilonen J, Veijola R, Toppari J, Hedman K, Söderlund-Venermo M. Torque Teno Virus Primary Infection Kinetics in Early Childhood. Viruses 2022; 14:v14061277. [PMID: 35746748 PMCID: PMC9231046 DOI: 10.3390/v14061277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/25/2022] [Accepted: 06/09/2022] [Indexed: 02/05/2023] Open
Abstract
Human torque teno viruses (TTVs) are a diverse group of small nonenveloped viruses with circular, single-stranded DNA genomes. These elusive anelloviruses are harbored in the blood stream of most humans and have thus been considered part of the normal flora. Whether the primary infection as a rule take(s) place before or after birth has been debated. The aim of our study was to determine the time of TTV primary infection and the viral load and strain variations during infancy and follow-up for up to 7 years. TTV DNAs were quantified in serial serum samples from 102 children by a pan-TTV quantitative PCR, and the amplicons from representative time points were cloned and sequenced to disclose the TTV strain diversity. We detected an unequivocal rise in TTV-DNA prevalence, from 39% at 4 months of age to 93% at 2 years; all children but one, 99%, became TTV-DNA positive before age 4 years. The TTV-DNA quantities ranged from 5 × 101 to 4 × 107 copies/mL, both within and between the children. In conclusion, TTV primary infections occur mainly after birth, and increase during the first two years with high intra- and interindividual variation in both DNA quantities and virus strains.
Collapse
Affiliation(s)
- Elina Väisänen
- Department of Virology, University of Helsinki, 00290 Helsinki, Finland; (E.V.); (I.K.); (K.H.)
| | - Inka Kuisma
- Department of Virology, University of Helsinki, 00290 Helsinki, Finland; (E.V.); (I.K.); (K.H.)
| | | | - Jorma Ilonen
- Immunogenetics Laboratory, Institute of Biomedicine, University of Turku, 20520 Turku, Finland;
| | - Riitta Veijola
- PEDEGO Research Unit, Medical Research Center, Department of Pediatrics, Oulu University Hospital and University of Oulu, 90220 Oulu, Finland;
| | - Jorma Toppari
- Centre for Population Health Research and Research Centre for Integrated Physiology and Pharmacology, Institute of Biomedicine, University of Turku, 20520 Turku, Finland;
- Department of Pediatrics, Turku University Hospital, 20520 Turku, Finland
| | - Klaus Hedman
- Department of Virology, University of Helsinki, 00290 Helsinki, Finland; (E.V.); (I.K.); (K.H.)
- Helsinki University Hospital Laboratory (HUSLAB), 00290 Helsinki, Finland
| | - Maria Söderlund-Venermo
- Department of Virology, University of Helsinki, 00290 Helsinki, Finland; (E.V.); (I.K.); (K.H.)
- Correspondence:
| |
Collapse
|