1
|
Abou Chakra CN, Gagnon A, Lapointe S, Granger MF, Lévesque S, Valiquette L. The Strain and the Clinical Outcome of Clostridioides difficile Infection: A Meta-analysis. Open Forum Infect Dis 2024; 11:ofae085. [PMID: 38524230 PMCID: PMC10960606 DOI: 10.1093/ofid/ofae085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 02/07/2024] [Indexed: 03/26/2024] Open
Abstract
Background The association between bacterial strains and clinical outcomes in Clostridioides difficile infection (CDI) has yielded conflicting results across studies. We conducted a systematic review and meta-analyses to assess the impact of these strains. Methods Five electronic databases were used to identify studies reporting CDI severity, complications, recurrence, or mortality according to strain type from inception to June 2022. Random effect meta-analyses were conducted to assess outcome proportions and risk ratios (RRs). Results A total of 93 studies were included: 44 reported recurrences, 50 reported severity or complications, and 55 reported deaths. Pooled proportions of complications were statistically comparable between NAP1/BI/R027 and R001, R078, and R106. Pooled attributable mortality was 4.8% with a gradation in patients infected with R014/20 (1.7%), R001 (3.8%), R078 (5.3%), and R027 (10.2%). Higher 30-day all-cause mortality was observed in patients infected with R001, R002, R027, and R106 (range, 20%-25%).NAP1/BI/R027 was associated with several unfavorable outcomes: recurrence 30 days after the end of treatment (pooled RR, 1.98; 95% CI, 1.02-3.84); admission to intensive care, colectomy, or CDI-associated death (1.88; 1.09-3.25); and 30-day attributable mortality (1.96; 1.23-3.13). The association between harboring the binary toxin gene and 30-day all-cause mortality did not reach significance (RR, 1.6 [0.9-2.9]; 7 studies). Conclusions Numerous studies were excluded due to discrepancies in the definition of the outcomes and the lack of reporting of important covariates. NAP1/BI/R027, the most frequently reported and assessed strain, was associated with unfavorable outcomes. However, there were not sufficient data to reach significant conclusions on other strains.
Collapse
Affiliation(s)
- Claire Nour Abou Chakra
- Department of Microbiology and Infectious Diseases, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Anthony Gagnon
- Department of Microbiology and Infectious Diseases, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Simon Lapointe
- Department of Microbiology and Infectious Diseases, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Marie-Félixe Granger
- Department of Microbiology and Infectious Diseases, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Simon Lévesque
- Department of Microbiology and Infectious Diseases, Université de Sherbrooke, Sherbrooke, Quebec, Canada
- Laboratoire de Microbiologie, CIUSSS de l’Estrie-CHUS, Sherbrooke, Quebec, Canada
| | - Louis Valiquette
- Department of Microbiology and Infectious Diseases, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| |
Collapse
|
2
|
Antimicrobial-resistant Bacteroides fragilis in Thailand and their inhibitory effect in vitro on the growth of Clostridioides difficile. Anaerobe 2022; 73:102505. [DOI: 10.1016/j.anaerobe.2021.102505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/19/2021] [Accepted: 12/23/2021] [Indexed: 11/21/2022]
|
3
|
Rao K, Dubberke ER. Can prediction scores be used to identify patients at risk of Clostridioides difficile infection? Curr Opin Gastroenterol 2022; 38:7-14. [PMID: 34628418 DOI: 10.1097/mog.0000000000000793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
PURPOSE OF REVIEW To describe the current state of literature on modeling risk of incident and recurrent Clostridioides difficile infection (iCDI and rCDI), to underscore limitations, and to propose a path forward for future research. RECENT FINDINGS There are many published risk factors and models for both iCDI and rCDI. The approaches include scores with a limited list of variables designed to be used at the bedside, but more recently have also included automated tools that take advantage of the entire electronic health record. Recent attempts to externally validate scores have met with mixed success. SUMMARY For iCDI, the performance largely hinges on the incidence, which even for hospitalized patients can be low (often <1%). Most scores fail to achieve high accuracy and/or are not externally validated. A challenge in predicting rCDI is the significant overlap with risk factors for iCDI, reducing the discriminatory ability of models. Automated electronic health record-based tools show promise but portability to other centers is challenging. Future studies should include external validation and consider biomarkers to augment performance.
Collapse
Affiliation(s)
- Krishna Rao
- Division of Infectious Diseases, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Erik R Dubberke
- Division of Infectious Diseases, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
4
|
van Prehn J, Reigadas E, Vogelzang EH, Bouza E, Hristea A, Guery B, Krutova M, Norén T, Allerberger F, Coia JE, Goorhuis A, van Rossen TM, Ooijevaar RE, Burns K, Scharvik Olesen BR, Tschudin-Sutter S, Wilcox MH, Vehreschild MJGT, Fitzpatrick F, Kuijper EJ. European Society of Clinical Microbiology and Infectious Diseases: 2021 update on the treatment guidance document for Clostridioides difficile infection in adults. Clin Microbiol Infect 2021; 27 Suppl 2:S1-S21. [PMID: 34678515 DOI: 10.1016/j.cmi.2021.09.038] [Citation(s) in RCA: 281] [Impact Index Per Article: 93.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 09/23/2021] [Accepted: 09/30/2021] [Indexed: 12/13/2022]
Abstract
SCOPE In 2009, the European Society of Clinical Microbiology and Infectious Diseases (ESCMID) published the first treatment guidance document for Clostridioides difficile infection (CDI). This document was updated in 2014. The growing literature on CDI antimicrobial treatment and novel treatment approaches, such as faecal microbiota transplantation (FMT) and toxin-binding monoclonal antibodies, prompted the ESCMID study group on C. difficile (ESGCD) to update the 2014 treatment guidance document for CDI in adults. METHODS AND QUESTIONS Key questions on CDI treatment were formulated by the guideline committee and included: What is the best treatment for initial, severe, severe-complicated, refractory, recurrent and multiple recurrent CDI? What is the best treatment when no oral therapy is possible? Can prognostic factors identify patients at risk for severe and recurrent CDI and is there a place for CDI prophylaxis? Outcome measures for treatment strategy were: clinical cure, recurrence and sustained cure. For studies on surgical interventions and severe-complicated CDI the outcome was mortality. Appraisal of available literature and drafting of recommendations was performed by the guideline drafting group. The total body of evidence for the recommendations on CDI treatment consists of the literature described in the previous guidelines, supplemented with a systematic literature search on randomized clinical trials and observational studies from 2012 and onwards. The Grades of Recommendation Assessment, Development and Evaluation (GRADE) system was used to grade the strength of our recommendations and the quality of the evidence. The guideline committee was invited to comment on the recommendations. The guideline draft was sent to external experts and a patients' representative for review. Full ESCMID endorsement was obtained after a public consultation procedure. RECOMMENDATIONS Important changes compared with previous guideline include but are not limited to: metronidazole is no longer recommended for treatment of CDI when fidaxomicin or vancomycin are available, fidaxomicin is the preferred agent for treatment of initial CDI and the first recurrence of CDI when available and feasible, FMT or bezlotoxumab in addition to standard of care antibiotics (SoC) are preferred for treatment of a second or further recurrence of CDI, bezlotoxumab in addition to SoC is recommended for the first recurrence of CDI when fidaxomicin was used to manage the initial CDI episode, and bezlotoxumab is considered as an ancillary treatment to vancomycin for a CDI episode with high risk of recurrence when fidaxomicin is not available. Contrary to the previous guideline, in the current guideline emphasis is placed on risk for recurrence as a factor that determines treatment strategy for the individual patient, rather than the disease severity.
Collapse
Affiliation(s)
- Joffrey van Prehn
- Department of Medical Microbiology, Centre for Infectious Diseases, Leiden University Medical Center, Leiden, the Netherlands
| | - Elena Reigadas
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Erik H Vogelzang
- Department of Medical Microbiology and Infection Control, Amsterdam University Medical Center, Location VUmc, Amsterdam, the Netherlands
| | - Emilio Bouza
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Adriana Hristea
- University of Medicine and Pharmacy Carol Davila, National Institute for Infectious Diseases Prof Dr Matei Bals, Romania
| | - Benoit Guery
- Infectious Diseases Specialist, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Marcela Krutova
- Department of Medical Microbiology, Charles University in Prague and Motol University Hospital, Czech Republic
| | - Torbjorn Norén
- Faculty of Medicine and Health, Department of Laboratory Medicine, National Reference Laboratory for Clostridioides difficile, Clinical Microbiology, Örebro University Hospital, Örebro, Sweden
| | | | - John E Coia
- Department of Clinical Microbiology, Hospital South West Jutland and Department of Regional Health Research IRS, University of Southern Denmark, Esbjerg, Denmark
| | - Abraham Goorhuis
- Department of Infectious Diseases, Amsterdam University Medical Centers, Academic Medical Center, Amsterdam, the Netherlands
| | - Tessel M van Rossen
- Department of Medical Microbiology and Infection Control, Amsterdam University Medical Center, Location VUmc, Amsterdam, the Netherlands
| | - Rogier E Ooijevaar
- Department of Gastroenterology, Amsterdam University Medical Center, Location VUmc, Amsterdam, the Netherlands
| | - Karen Burns
- Departments of Clinical Microbiology, Beaumont Hospital & Royal College of Surgeons in Ireland, Dublin, Ireland
| | | | - Sarah Tschudin-Sutter
- Department of Infectious Diseases and Infection Control, University Hospital Basel, University Basel, Universitatsspital, Basel, Switzerland
| | - Mark H Wilcox
- Department of Microbiology, Old Medical, School Leeds General Infirmary, Leeds Teaching Hospitals & University of Leeds, Leeds, United Kingdom
| | - Maria J G T Vehreschild
- German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany; Department of Internal Medicine, Infectious Diseases, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Fidelma Fitzpatrick
- Department of Clinical Microbiology, Beaumont Hospital, Dublin, Ireland; Department of Clinical Microbiology, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Ed J Kuijper
- Department of Medical Microbiology, Centre for Infectious Diseases, Leiden University Medical Center, Leiden, the Netherlands; National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands.
| | | |
Collapse
|
5
|
van Rossen TM, Ooijevaar RE, Vandenbroucke-Grauls CMJE, Dekkers OM, Kuijper EJ, Keller JJ, van Prehn J. Prognostic factors for severe and recurrent Clostridioides difficile infection: a systematic review. Clin Microbiol Infect 2021; 28:321-331. [PMID: 34655745 DOI: 10.1016/j.cmi.2021.09.026] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/24/2021] [Accepted: 09/25/2021] [Indexed: 12/13/2022]
Abstract
OBJECTIVES Clostridioides difficile infection (CDI), its subsequent recurrences (rCDIs), and severe CDI (sCDI) provide a significant burden for both patients and the healthcare system. Identifying patients diagnosed with initial CDI who are at increased risk of developing sCDI/rCDI could lead to more cost-effective therapeutic choices. In this systematic review we aimed to identify clinical prognostic factors associated with an increased risk of developing sCDI or rCDI. METHODS PubMed, Embase, Emcare, Web of Science and COCHRANE Library databases were searched from database inception through March, 2021. The study eligibility criteria were cohort and case-control studies. Participants were patients ≥18 years old diagnosed with CDI, in which clinical or laboratory factors were analysed to predict sCDI/rCDI. Risk of bias was assessed by using the Quality in Prognostic Research (QUIPS) tool and the Grading of Recommendations Assessment, Development and Evaluation (GRADE) tool modified for prognostic studies. Study selection was performed by two independent reviewers. Overview tables of prognostic factors were constructed to assess the number of studies and the respective effect direction and statistical significance of an association. RESULTS 136 studies were included for final analysis. Greater age and the presence of multiple comorbidities were prognostic factors for sCDI. Identified risk factors for rCDI were greater age, healthcare-associated CDI, prior hospitalization, proton pump inhibitors (PPIs) started during or after CDI diagnosis, and previous rCDI. CONCLUSIONS Prognostic factors for sCDI and rCDI could aid clinicians to make treatment decisions based on risk stratification. We suggest that future studies use standardized definitions for sCDI/rCDI and systematically collect and report the risk factors assessed in this review, to allow for meaningful meta-analysis of risk factors using data of high-quality trials.
Collapse
Affiliation(s)
- Tessel M van Rossen
- Amsterdam UMC, VU University Medical Center, Medical Microbiology & Infection Control, Amsterdam Infection & Immunity, Amsterdam, the Netherlands.
| | - Rogier E Ooijevaar
- Amsterdam UMC, VU University Medical Center, Gastroenterology & Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, the Netherlands.
| | - Christina M J E Vandenbroucke-Grauls
- Amsterdam UMC, VU University Medical Center, Medical Microbiology & Infection Control, Amsterdam Infection & Immunity, Amsterdam, the Netherlands; Aarhus University, Clinical Epidemiology, Aarhus, Denmark
| | - Olaf M Dekkers
- Leiden University Medical Center, Clinical Epidemiology, Leiden, the Netherlands
| | - Ed J Kuijper
- Leiden University Medical Center, Center for Infectious Diseases, Medical Microbiology, Leiden, the Netherlands
| | - Josbert J Keller
- Haaglanden Medical Center, Gastroenterology & Hepatology, The Hague, the Netherlands; Leiden University Medical Center, Gastroenterology & Hepatology, Leiden, the Netherlands
| | - Joffrey van Prehn
- Leiden University Medical Center, Center for Infectious Diseases, Medical Microbiology, Leiden, the Netherlands
| |
Collapse
|
6
|
Fu Y, Luo Y, Grinspan AM. Epidemiology of community-acquired and recurrent Clostridioides difficile infection. Therap Adv Gastroenterol 2021; 14:17562848211016248. [PMID: 34093740 PMCID: PMC8141977 DOI: 10.1177/17562848211016248] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 04/19/2021] [Indexed: 02/06/2023] Open
Abstract
Clostridioides difficile infection is a leading cause of healthcare-associated infections with significant morbidity and mortality. For the past decade, the bulk of infection prevention and epidemiologic surveillance efforts have been directed toward mitigating hospital-acquired C. difficile. However, the incidence of community-associated infection is on the rise. Patients with community-associated C. difficile tend to be younger and have lower mortality rate. Rates of recurrent C. difficile infection overall have decreased in the United States, but future research and public health endeavors are needed to standardize and improve disease detection, stratify risk factors in large-scale population studies, and to identify regional and local variations in strain types, reservoirs and transmission routes to help characterize and combat the changing epidemiology of C. difficile.
Collapse
Affiliation(s)
- Yichun Fu
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yuying Luo
- Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | |
Collapse
|
7
|
Henson MA. Computational modeling of the gut microbiota reveals putative metabolic mechanisms of recurrent Clostridioides difficile infection. PLoS Comput Biol 2021; 17:e1008782. [PMID: 33617526 PMCID: PMC7932513 DOI: 10.1371/journal.pcbi.1008782] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 03/04/2021] [Accepted: 02/05/2021] [Indexed: 12/16/2022] Open
Abstract
Approximately 30% of patients who have Clostridioides difficile infection (CDI) will suffer at least one incident of reinfection. While the underlying causes of CDI recurrence are poorly understood, interactions between C. difficile and commensal gut bacteria are thought to play an important role. In this study, an in silico pipeline was used to process 16S rRNA gene amplicon sequence data of 225 stool samples from 93 CDI patients into sample-specific models of bacterial community metabolism. Clustered metabolite production rates generated from post-diagnosis samples generated a high Enterobacteriaceae abundance cluster containing disproportionately large numbers of recurrent samples and patients. This cluster was predicted to have significantly reduced capabilities for secondary bile acid synthesis but elevated capabilities for aromatic amino acid catabolism. When applied to 16S sequence data of 40 samples from fecal microbiota transplantation (FMT) patients suffering from recurrent CDI and their stool donors, the community modeling method generated a high Enterobacteriaceae abundance cluster with a disproportionate large number of pre-FMT samples. This cluster also was predicted to exhibit reduced secondary bile acid synthesis and elevated aromatic amino acid catabolism. Collectively, these in silico predictions suggest that Enterobacteriaceae may create a gut environment favorable for C. difficile spore germination and/or toxin synthesis.
Collapse
Affiliation(s)
- Michael A. Henson
- Department of Chemical Engineering and Institute for Applied Life Sciences, University of Massachusetts, Amherst, Massachusetts, United States of America
| |
Collapse
|
8
|
van Rossen TM, van Dijk LJ, Heymans MW, Dekkers OM, Vandenbroucke-Grauls CMJE, van Beurden YH. External validation of two prediction tools for patients at risk for recurrent Clostridioides difficile infection. Therap Adv Gastroenterol 2021; 14:1756284820977385. [PMID: 33456500 PMCID: PMC7797589 DOI: 10.1177/1756284820977385] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 11/03/2020] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND One in four patients with primary Clostridioides difficile infection (CDI) develops recurrent CDI (rCDI). With every recurrence, the chance of a subsequent CDI episode increases. Early identification of patients at risk for rCDI might help doctors to guide treatment. The aim of this study was to externally validate published clinical prediction tools for rCDI. METHODS The validation cohort consisted of 129 patients, diagnosed with CDI between 2018 and 2020. rCDI risk scores were calculated for each individual patient in the validation cohort using the scoring tools described in the derivation studies. Per score value, we compared the average predicted risk of rCDI with the observed number of rCDI cases. Discrimination was assessed by calculating the area under the receiver operating characteristic curve (AUC). RESULTS Two prediction tools were selected for validation (Cobo 2018 and Larrainzar-Coghen 2016). The two derivation studies used different definitions for rCDI. Using Cobo's definition, rCDI occurred in 34 patients (26%) of the validation cohort: using the definition of Larrainzar-Coghen, we observed 19 recurrences (15%). The performance of both prediction tools was poor when applied to our validation cohort. The estimated AUC was 0.43 [95% confidence interval (CI); 0.32-0.54] for Cobo's tool and 0.42 (95% CI; 0.28-0.56) for Larrainzar-Coghen's tool. CONCLUSION Performance of both prediction tools was disappointing in the external validation cohort. Currently identified clinical risk factors may not be sufficient for accurate prediction of rCDI.
Collapse
Affiliation(s)
- Tessel M. van Rossen
- Amsterdam UMC, Vrije Universiteit Amsterdam, Medical Microbiology and Infection Control, Amsterdam Infection and Immunity Institute, Amsterdam UMC location VUmc, PK 2X132, De Boelelaan 1117, Amsterdam, 1081 HV, The Netherlands
| | - Laura J. van Dijk
- Amsterdam UMC, Vrije Universiteit Amsterdam, Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism Institute, Amsterdam, The Netherlands
| | - Martijn W. Heymans
- Amsterdam UMC, Vrije Universiteit Amsterdam, Epidemiology and Data Science, Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - Olaf M. Dekkers
- Leiden University Medical Center, Clinical Epidemiology, Leiden, The Netherlands
| | - Christina M. J. E. Vandenbroucke-Grauls
- Amsterdam UMC, Vrije Universiteit Amsterdam, Medical Microbiology and Infection Control, Amsterdam Infection and Immunity Institute, Amsterdam, The Netherlands
| | - Yvette H. van Beurden
- Amsterdam UMC, Vrije Universiteit Amsterdam, Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism Institute, Amsterdam, The Netherlands
| |
Collapse
|
9
|
Martínez-Meléndez A, Morfin-Otero R, Villarreal-Treviño L, Baines SD, Camacho-Ortíz A, Garza-González E. Molecular epidemiology of predominant and emerging Clostridioides difficile ribotypes. J Microbiol Methods 2020; 175:105974. [PMID: 32531232 DOI: 10.1016/j.mimet.2020.105974] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/05/2020] [Accepted: 06/05/2020] [Indexed: 12/18/2022]
Abstract
There has been an increase in the incidence and severity of Clostridioides difficile infection (CDI) worldwide, and strategies to control, monitor, and diminish the associated morbidity and mortality have been developed. Several typing methods have been used for typing of isolates and studying the epidemiology of CDI; serotyping was the first typing method, but then was replaced by pulsed-field gel electrophoresis (PFGE). PCR ribotyping is now the gold standard method; however, multi locus sequence typing (MLST) schemes have been developed. New sequencing technologies have allowed comparing whole bacterial genomes to address genetic relatedness with a high level of resolution and discriminatory power to distinguish between closely related strains. Here, we review the most frequent C. difficile ribotypes reported worldwide, with a focus on their epidemiology and genetic characteristics.
Collapse
Affiliation(s)
- Adrián Martínez-Meléndez
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Químicas, Pedro de Alba S/N, Ciudad Universitaria, CP 66450 San Nicolás de los Garza, Nuevo Leon, Mexico
| | - Rayo Morfin-Otero
- Hospital Civil de Guadalajara "Fray Antonio Alcalde" e Instituto de Patología Infecciosa y Experimental, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara. Sierra Mojada 950, Col. Independencia, CP 44350 Guadalajara, Jalisco, Mexico
| | - Licet Villarreal-Treviño
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Biológicas, Departamento de Microbiología e Inmunología, Pedro de Alba S/N, Ciudad Universitaria, CP 66450 San Nicolás de los Garza, Nuevo Leon, Mexico
| | - Simon D Baines
- University of Hertfordshire, School of Life and Medical Sciences, Department of Biological and Environmental Sciences, Hatfield AL10 9AB, UK
| | - Adrián Camacho-Ortíz
- Universidad Autónoma de Nuevo León, Hospital Universitario "Dr. José Eleuterio González", Servicio de Infectología. Av. Francisco I. Madero Pte. S/N y Av. José E. González. Col. Mitras Centro, CP 64460 Monterrey, Nuevo Leon, Mexico
| | - Elvira Garza-González
- Universidad Autónoma de Nuevo León, Hospital Universitario "Dr. José Eleuterio González", Servicio de Infectología. Av. Francisco I. Madero Pte. S/N y Av. José E. González. Col. Mitras Centro, CP 64460 Monterrey, Nuevo Leon, Mexico.
| |
Collapse
|
10
|
Feuerstadt P, Stong L, Dahdal DN, Sacks N, Lang K, Nelson WW. Healthcare resource utilization and direct medical costs associated with index and recurrent Clostridioides difficile infection: a real-world data analysis. J Med Econ 2020; 23:603-609. [PMID: 31999199 DOI: 10.1080/13696998.2020.1724117] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Aims: This study aimed to evaluate all-cause economic outcomes, healthcare resource utilization (HRU), and costs in patients with Clostridioides difficile infection (CDI) and recurrent CDI (rCDI) using commercial claims from a large database representing various healthcare settings.Materials and methods: A retrospective analysis of commercial claims data from the IQVIA PharMetrics Plus database was conducted for patients aged 18-64 years with CDI episodes requiring inpatient stay with CDI diagnosis code or an outpatient medical claim for CDI plus a CDI treatment. Index CDI episodes occurred between 1 January 2010 and 30 June 2017, including only those where patients were observable 6 months before and 12 months after the index episode. Each CDI episode was followed by a 14-d claim-free period. rCDI was defined as another CDI episode within an 8-week window following the claim-free period. HRU, all-cause direct medical costs and time to rCDI were calculated over 12 months and stratified by number of rCDI episodes.Results: A total of 46,571 patients with index CDI were included. Mean time from one CDI episode to the next was approximately 1 month. In the 12-month follow-up period, those with no recurrence had 1.4 inpatient visits per person and those with 3 or more recurrences had 5.8. Most patients with 3 or more recurrences had 2 or more hospital admissions. The mean annual, total all-cause direct medical costs per patient were $71,980 for those with no recurrence and $207,733 for those with 3 or more recurrences.Limitations: The study included individuals 18-64 years only. A stringent definition of rCDI was used, which may have underestimated the incidence of rCDI.Conclusions: CDI and rCDI are associated with substantial healthcare resource utilization and direct medical costs. Timing of recurrences can be predictable, providing a window of opportunity for interventions. Prevention of multiple rCDI appears essential to reduce healthcare costs.
Collapse
Affiliation(s)
- Paul Feuerstadt
- Gastroenterology Center of Connecticut, Hamden, CT, USA
- Division of Gastroenterology, Yale University School of Medicine, New Haven, CT, USA
| | - Laura Stong
- Ferring Pharmaceuticals Inc, Parsippany, NJ, USA
| | | | - Naomi Sacks
- Precision Health Economics and Outcomes Research, Boston, MA, USA
- Department of Public Health, Tufts University School of Medicine, Boston, MA, USA
| | - Kathleen Lang
- Precision Health Economics and Outcomes Research, Boston, MA, USA
| | | |
Collapse
|
11
|
Genetic Association Reveals Protection against Recurrence of Clostridium difficile Infection with Bezlotoxumab Treatment. mSphere 2020; 5:5/3/e00232-20. [PMID: 32376702 PMCID: PMC7203456 DOI: 10.1128/msphere.00232-20] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Clostridium difficile infection is associated with significant clinical morbidity and mortality; antibacterial treatments are effective, but recurrence of C. difficile infection is common. In this genome-wide association study, we explored whether host genetic variability affected treatment responses to bezlotoxumab, a human monoclonal antibody that binds C. difficile toxin B and is indicated for the prevention of recurrent C. difficile infection. Using data from the MODIFY I/II phase 3 clinical trials, we identified three genetic variants associated with reduced rates of C. difficile infection recurrence in bezlotoxumab-treated participants. The effects were most pronounced in participants at high risk of C. difficile infection recurrence. All three variants are located in the extended major histocompatibility complex on chromosome 6, suggesting the involvement of a host-driven immunological mechanism in the prevention of C. difficile infection recurrence. Bezlotoxumab is a human monoclonal antibody against Clostridium difficile toxin B, indicated to prevent recurrence of C. difficile infection (rCDI) in high-risk adults receiving antibacterial treatment for CDI. An exploratory genome-wide association study investigated whether human genetic variation influences bezlotoxumab response. DNA from 704 participants who achieved initial clinical cure in the phase 3 MODIFY I/II trials was genotyped. Single nucleotide polymorphisms (SNPs) and human leukocyte antigen (HLA) imputation were performed using IMPUTE2 and HIBAG, respectively. A joint test of genotype and genotype-by-treatment interaction in a logistic regression model was used to screen genetic variants associated with response to bezlotoxumab. The SNP rs2516513 and the HLA alleles HLA-DRB1*07:01 and HLA-DQA1*02:01, located in the extended major histocompatibility complex on chromosome 6, were associated with the reduction of rCDI in bezlotoxumab-treated participants. Carriage of a minor allele (homozygous or heterozygous) at any of the identified loci was related to a larger difference in the proportion of participants experiencing rCDI versus placebo; the effect was most prominent in the subgroup at high baseline risk for rCDI. Genotypes associated with an improved bezlotoxumab response showed no association with rCDI in the placebo cohort. These data suggest that a host-driven, immunological mechanism may impact bezlotoxumab response. Trial registration numbers are as follows: NCT01241552 (MODIFY I) and NCT01513239 (MODIFY II). IMPORTANCEClostridium difficile infection is associated with significant clinical morbidity and mortality; antibacterial treatments are effective, but recurrence of C. difficile infection is common. In this genome-wide association study, we explored whether host genetic variability affected treatment responses to bezlotoxumab, a human monoclonal antibody that binds C. difficile toxin B and is indicated for the prevention of recurrent C. difficile infection. Using data from the MODIFY I/II phase 3 clinical trials, we identified three genetic variants associated with reduced rates of C. difficile infection recurrence in bezlotoxumab-treated participants. The effects were most pronounced in participants at high risk of C. difficile infection recurrence. All three variants are located in the extended major histocompatibility complex on chromosome 6, suggesting the involvement of a host-driven immunological mechanism in the prevention of C. difficile infection recurrence.
Collapse
|
12
|
Kachlíková M, Sabaka P, Koščálová A, Bendžala M, Dovalová Z, Stankovič I. Comorbid status and the faecal microbial transplantation failure in treatment of recurrent Clostridioides difficile infection - pilot prospective observational cohort study. BMC Infect Dis 2020; 20:52. [PMID: 31948404 PMCID: PMC6966799 DOI: 10.1186/s12879-020-4773-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 01/07/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Faecal microbial transplantation (FMT) is currently the most effective treatment of recurrent Clostridioides difficile infection (CDI). However, up to 20% of patients experience further recurrences after single FMT. The mechanisms that lead to FMT failure and its risk factors are poorly understood. Comorbidity is one of the risk factors of the failure of standard antibiotic therapy of recurrent CDI. It is not known if comorbidity is also associated with the risk of FMT failure. METHODS We conducted a prospective observational cohort study in order to elucidate if comorbid status is associated with FMT failure. Patients with microbiologically proven recurrent CDI were recruited and underwent FMT via retention enema. Patients were followed up for 12 weeks after FMT for signs and symptoms of CDI recurrence. Single FMT failure was defined as recurrence of diarrhoea and a positive stool test for the presence of C. difficile antigen or toxin at any time point during the 12 weeks of follow-up. We assessed the association of single FMT failure with possible manageable and unmanageable risk factors. As a surrogate of comorbid status, we used Charlson Comorbidity Index (CCI) ≥ 7. RESULTS A total of 60 patients that underwent single FMT (34 women, 26 men) were included in the study. Overall, 15 patients (25%) experienced single FMT failure. 24 patients (40%) had CCI ≥ 7, and 45.0% patients with CCI ≥ 7 experienced failure of single FMT. Patients who experienced single FMT failure had a significantly higher CCI and significantly lower albumin concentration as compared to patients who experienced single FMT success. There was no difference in age, C-reactive protein concentration, leukocyte count and time from FMT to first defecation. In multivariate analysis, CCI ≥ 7 was positively associated with the failure of single FMT. Analysis was controlled for sex, age, time from FMT to first defecation, concomitant PPI therapy, severe CDI, hospital-acquired infection and albumin concentration. CONCLUSIONS Comorbid status surrogated by CCI is positively associated with the failure of single FMT in the treatment of recurrent CDI.
Collapse
Affiliation(s)
- M. Kachlíková
- 0000000109409708grid.7634.6Department of Infectology and Geographical Medicine, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovak Republic
| | - P. Sabaka
- 0000000109409708grid.7634.6Department of Infectology and Geographical Medicine, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovak Republic
| | - A. Koščálová
- 0000000095755967grid.9982.aDepartment of Infectology and Geographical Medicine, Faculty of Medicine, Slovak Medical University, Bratislava, Slovak Republic
| | - M. Bendžala
- 0000000109409708grid.7634.6Department of Infectology and Geographical Medicine, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovak Republic
| | - Z. Dovalová
- 0000000109409708grid.7634.6Department of Infectology and Geographical Medicine, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovak Republic
| | - I. Stankovič
- 0000000109409708grid.7634.6Department of Infectology and Geographical Medicine, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovak Republic
| |
Collapse
|
13
|
Erickson SL, Alston L, Nieves K, Chang TKH, Mani S, Flannigan KL, Hirota SA. The xenobiotic sensing pregnane X receptor regulates tissue damage and inflammation triggered by C difficile toxins. FASEB J 2019; 34:2198-2212. [PMID: 31907988 PMCID: PMC7027580 DOI: 10.1096/fj.201902083rr] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 11/18/2019] [Accepted: 11/20/2019] [Indexed: 12/14/2022]
Abstract
Clostridioides difficile (formerly Clostridium difficile; C difficile), the leading cause of nosocomial antibiotic‐associated colitis and diarrhea in the industrialized world, triggers colonic disease through the release two toxins, toxin A (TcdA) and toxin B (TcdB), glucosyltransferases that modulate monomeric G‐protein function and alter cytoskeletal function. The initial degree of the host immune response to C difficile and its pathogenic toxins is a common indicator of disease severity and infection recurrence. Thus, targeting the intestinal inflammatory response during infection could significantly decrease disease morbidity and mortality. In the current study, we sought to interrogate the influence of the pregnane X receptor (PXR), a modulator of xenobiotic and detoxification responses, which can sense and respond to microbial metabolites and modulates inflammatory activity, during exposure to TcdA and TcdB. Following intrarectal exposure to TcdA/B, PXR‐deficient mice (Nr1i2−/−) exhibited reduced survival, an effect that was associated with increased levels of innate immune cell influx. This exacerbated response was associated with a twofold increase in the expression of Tlr4. Furthermore, while broad‐spectrum antibiotic treatment (to deplete the intestinal microbiota) did not alter the responses in Nr1i2−/− mice, blocking TLR4 signaling significantly reduced TcdA/B‐induced disease severity and immune responses in these mice. Lastly, to assess the therapeutic potential of targeting the PXR, we activated the PXR with pregnenolone 16α‐carbonitrile (PCN) in wild‐type mice, which greatly reduced the severity of TcdA/B‐induced damage and intestinal inflammation. Taken together, these data suggest that the PXR plays a role in the host's response to TcdA/B and may provide a novel target to dampen the inflammatory tissue damage in C difficile infections.
Collapse
Affiliation(s)
- Sarah L Erickson
- Department of Physiology & Pharmacology, University of Calgary, Calgary, AB, Canada
| | - Laurie Alston
- Department of Physiology & Pharmacology, University of Calgary, Calgary, AB, Canada
| | - Kristoff Nieves
- Department of Physiology & Pharmacology, University of Calgary, Calgary, AB, Canada
| | - Thomas K H Chang
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Sridhar Mani
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Kyle L Flannigan
- Department of Physiology & Pharmacology, University of Calgary, Calgary, AB, Canada
| | - Simon A Hirota
- Department of Physiology & Pharmacology, University of Calgary, Calgary, AB, Canada.,Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
14
|
Major G, Bradshaw L, Boota N, Sprange K, Diggle M, Montgomery A, Jawhari A, Spiller RC. Follow-on RifAximin for the Prevention of recurrence following standard treatment of Infection with Clostridium Difficile (RAPID): a randomised placebo controlled trial. Gut 2019; 68:1224-1231. [PMID: 30254135 PMCID: PMC6582824 DOI: 10.1136/gutjnl-2018-316794] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 08/28/2018] [Accepted: 08/29/2018] [Indexed: 12/21/2022]
Abstract
BACKGROUND Clostridium difficile infection (CDI) recurs after initial treatment in approximately one in four patients. A single-centre pilot study suggested that this could be reduced using 'follow-on' rifaximin treatment. We aimed to assess the efficacy of rifaximin treatment in preventing recurrence. METHODS A multisite, parallel group, randomised, placebo controlled trial recruiting patients aged ≥18 years immediately after resolution of CDI through treatment with metronidazole or vancomycin. Participants received either rifaximin 400 mg three times a day for 2 weeks, reduced to 200 mg three times a day for a further 2 weeks or identical placebo. The primary endpoint was recurrence of CDI within 12 weeks of trial entry. RESULTS Between December 2012 and March 2016, 151 participants were randomised to either rifaximin or placebo. Primary outcome data were available on 130. Mean age was 71.9 years (SD 15.3). Recurrence within 12 weeks was 29.5% (18/61) among participants allocated to placebo compared with 15.9% (11/69) among those allocated to rifaximin, a difference between groups of 13.7% (95% CI -28.1% to 0.7%, p=0.06). The risk ratio was 0.54 (95% CI 0.28 to 1.05, p=0.07). During 6-month safety follow-up, nine participants died in each group (12%). Adverse event rates were similar between groups. CONCLUSION While 'follow-on' rifaximin after CDI appeared to halve recurrence rate, we failed to reach our recruitment target in this group of frail elderly patients, so the estimated effect of rifaximin lacks precision. A meta-analysis including a previous trial suggests that rifaximin may be effective; however, further, larger confirmatory studies are needed.
Collapse
Affiliation(s)
- Giles Major
- Nottingham Digestive Diseases Centre and NIHR Nottingham Biomedical Research Centre at Nottingham University Hospitals NHS Trust, the University of Nottingham, Nottingham, Notts, UK
| | - Lucy Bradshaw
- Nottingham Clinical Trials Unit (NCTU), University of Nottingham, Nottingham, UK
| | - Nafisa Boota
- Leicester Clinical Trials Unit, University of Leicester, Leicester, UK
| | - Kirsty Sprange
- Nottingham Clinical Trials Unit (NCTU), University of Nottingham, Nottingham, UK
| | - Mathew Diggle
- Clinical Microbiology Department, Nottingham University Hospitals NHS Trust, Nottingham, Nottinghamshire, UK
| | - Alan Montgomery
- Nottingham Clinical Trials Unit (NCTU), University of Nottingham, Nottingham, UK
| | - Aida Jawhari
- Clinical Microbiology Department, Nottingham University Hospitals NHS Trust, Nottingham, Nottinghamshire, UK
| | - Robin C Spiller
- Nottingham Digestive Diseases Centre and NIHR Nottingham Biomedical Research Centre at Nottingham University Hospitals NHS Trust, the University of Nottingham, Nottingham, Notts, UK
| | | |
Collapse
|
15
|
Response to Enoch et al. J Hosp Infect 2018; 100:147-148. [DOI: 10.1016/j.jhin.2018.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 06/13/2018] [Indexed: 11/19/2022]
|