1
|
Milani G, Belloso Daza MV, Cortimiglia C, Bassi D, Cocconcelli PS. Genome engineering of Stx1-and Stx2-converting bacteriophages unveils the virulence of the dairy isolate Escherichia coli O174:H2 strain UC4224. Front Microbiol 2023; 14:1156375. [PMID: 37426006 PMCID: PMC10326431 DOI: 10.3389/fmicb.2023.1156375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 06/06/2023] [Indexed: 07/11/2023] Open
Abstract
The past decade witnessed the emergence in Shiga toxin-producing Escherichia coli (STEC) infections linked to the consumption of unpasteurized milk and raw milk cheese. The virulence of STEC is primarily attributed to the presence of Shiga toxin genes (stx1 and stx2) carried by Stx-converting bacteriophages, along with the intimin gene eae. Most of the available information pertains to the "Top 7" serotypes associated with STEC infections. The objectives of this study were to characterize and investigate the pathogenicity potential of E. coli UC4224, a STEC O174:H2 strain isolated from semi-hard raw milk cheese and to develop surrogate strains with reduced virulence for use in food-related studies. Complete genome sequence analysis of E. coli UC4224 unveiled the presence of a Stx1a bacteriophage, a Stx2a bacteriophage, the Locus of Adhesion and Autoaggregation (LAA) pathogenicity island, plasmid-encoded virulence genes, and other colonization facilitators. In the Galleria mellonella animal model, E. coli UC4224 demonstrated high pathogenicity potential with an LD50 of 6 CFU/10 μL. Upon engineering E. coli UC4224 to generate single and double mutant derivatives by inactivating stx1a and/or stx2a genes, the LD50 increased by approximately 1 Log-dose in the single mutants and 2 Log-doses in the double mutants. However, infectivity was not completely abolished, suggesting the involvement of other virulence factors contributing to the pathogenicity of STEC O174:H2. Considering the possibility of raw milk cheese serving as a reservoir for STEC, cheesemaking model was developed to evaluate the survival of UC4224 and the adequacy of the respective mutants as reduced-virulence surrogates. All tested strains exhibited the ability to survive the curd cooking step at 48°C and multiplied (3.4 Log CFU) in cheese within the subsequent 24 h. These findings indicate that genomic engineering did not exert any unintended effect on the double stx1-stx2 mutant behaviour, making it as a suitable less-virulent surrogate for conducting studies during food processing.
Collapse
|
2
|
Svendsen AT, Nielsen HL, Bytzer P, Coia JE, Engberg J, Holt HM, Lemming L, Lomborg S, Marmolin ES, Olesen BS, Andersen LP, Ethelberg S, Engsbro AL. The incidence of laboratory-confirmed cases of enteric pathogens in Denmark 2018: a national observational study. Infect Dis (Lond) 2023; 55:340-350. [PMID: 36868794 DOI: 10.1080/23744235.2023.2183253] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/05/2023] Open
Abstract
BACKGROUND Only a subset of enteric pathogens is under surveillance in Denmark, and knowledge on the remaining pathogens detected in acute gastroenteritis is limited. Here, we present the one-year incidence of all enteric pathogens diagnosed in Denmark, a high-income country, in 2018 and an overview of diagnostic methods used for detection. METHODS All 10 departments of clinical microbiology completed a questionnaire on test methods and provided 2018-data of persons with positive stool samples with Salmonella species, Campylobacter jejuni/coli, Yersinia enterocolitica, Aeromonas species, diarrheagenic Escherichia coli (Enteroinvasive (EIEC), Shiga toxin-producing (STEC), Enterotoxigenic (ETEC), Enteropathogenic (EPEC), and intimin-producing/attaching and effacing (AEEC)), Shigella species., Vibrio cholerae, norovirus, rotavirus, sapovirus, adenovirus, Giardia intestinalis, Cryptosporidium species, and Entamoeba histolytica. RESULTS Enteric bacterial infections were diagnosed with an incidence of 229.9 cases/100,000 inhabitants, virus had an incidence of 86/100,000 and enteropathogenic parasites of 12.5/100,000. Viruses constituted more than half of diagnosed enteropathogens for children below 2 years and elderly above 80 years. Diagnostic methods and algorithms differed across the country and in general PCR testing resulted in higher incidences compared to culture (bacteria), antigen-test (viruses), or microscopy (parasites) for most pathogens. CONCLUSIONS In Denmark, the majority of detected infections are bacterial with viral agents primarily detected in the extremes of ages and with few intestinal protozoal infections. Incidence rates were affected by age, clinical setting and local test methods with PCR leading to increased detection rates. The latter needs to be taken into account when interpreting epidemiological data across the country.
Collapse
Affiliation(s)
- Anna Tølbøll Svendsen
- Department of Medicine, Zealand University Hospital, Køge, Denmark.,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.,Department of Infectious Disease Epidemiology and Prevention, Statens Serum Institut, Copenhagen, Denmark
| | - Hans Linde Nielsen
- Department of Clinical Microbiology, Aalborg University Hospital, Aalborg, Denmark.,Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Peter Bytzer
- Department of Medicine, Zealand University Hospital, Køge, Denmark.,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - John Eugenio Coia
- Department of Clinical Microbiology, Sydvestjysk Sygehus, Esbjerg, Denmark.,Department of Regional Health Research, University of Southern, Odense, Denmark
| | - Jørgen Engberg
- Department of Clinical Microbiology, Zealand University Hospital, Slagelse, Denmark
| | - Hanne Marie Holt
- Department of Clinical Microbiology, Odense University Hospital, Odense, Denmark
| | - Lars Lemming
- Department of Clinical Microbiology, Aarhus University Hospital, Denmark
| | - Steen Lomborg
- Department of Clinical Microbiology, Sygehus Sønderjylland, Aabenraa, Denmark
| | - Ea Sofie Marmolin
- Department of Clinical Microbiology, Sygehus Lillebælt, Vejle, Denmark
| | - Bente Scharvik Olesen
- Department of Clinical Microbiology, Copenhagen University Hospital Herlev, Copenhagen, Denmark
| | - Leif Percival Andersen
- Department of Clinical Microbiology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Steen Ethelberg
- Department of Infectious Disease Epidemiology and Prevention, Statens Serum Institut, Copenhagen, Denmark.,Department of Public Health, Global Health Section, University of Copenhagen, Copenhagen, Denmark
| | - Anne Line Engsbro
- Department of Clinical Microbiology, Zealand University Hospital, Slagelse, Denmark.,Copenhagen University Hospital Hvidovre, Copenhagen, Denmark
| |
Collapse
|
3
|
Friesema IHM, Kuiling S, Igloi Z, Franz E. Optimization of Notification Criteria for Shiga Toxin-Producing Escherichia coli Surveillance, the Netherlands. Emerg Infect Dis 2021; 27:258-261. [PMID: 33350915 PMCID: PMC7774539 DOI: 10.3201/eid2701.200339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
We describe the consequences of 2 major changes in notification criteria for Shiga toxin–producing Escherichia coli surveillance in the Netherlands. The change to reporting acute, more severe infections appears to be a good compromise between workload, redundancy, and public health relevance, provided isolates remain available for typing and sequencing.
Collapse
|
4
|
Varga C, John P, Cooke M, Majowicz SE. Area-Level Clustering of Shiga Toxin-Producing Escherichia coli Infections and Their Socioeconomic and Demographic Factors in Ontario, Canada: An Ecological Study. Foodborne Pathog Dis 2021; 18:438-447. [PMID: 33978473 DOI: 10.1089/fpd.2020.2918] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) infections are an important health burden for human populations in Ontario and worldwide. We assessed 452 STEC cases that were reported to Ontario's reportable disease surveillance system between 2015 and 2017. A retrospective scan statistic using a Poisson model was used to detect high-rate STEC clusters at the forward sortation area (FSA; the first three digits of a postal code) level. A significant spatial cluster in the southwest region of Ontario was identified. A case-case logistic regression analysis was applied to compare FSA-level socioeconomic and demographic characteristics among STEC cases included inside the spatial cluster with cases outside of the cluster. Cases included in the spatial cluster had higher odds of living in FSAs with a low median family income, low proportion of lone-parent families, and low proportion of the visible minority population. In addition, STEC cases inside the cluster had higher odds of coming from rural FSAs. Our study demonstrated that STEC cases were spatially clustered in Ontario and their clustering was associated with FSA-level socioeconomic and demographic determinants of cases.
Collapse
Affiliation(s)
- Csaba Varga
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,School of Public Health and Health Systems, University of Waterloo, Waterloo, Canada
| | - Patience John
- School of Public Health and Health Systems, University of Waterloo, Waterloo, Canada
| | - Martin Cooke
- School of Public Health and Health Systems, University of Waterloo, Waterloo, Canada.,Department of Sociology and Legal Studies, University of Waterloo, Waterloo, Canada
| | - Shannon E Majowicz
- School of Public Health and Health Systems, University of Waterloo, Waterloo, Canada
| |
Collapse
|
5
|
Rapid culture-based identification of Shiga toxin-producing Escherichia coli and Shigella spp./Enteroinvasive E. coli using the eazyplex® EHEC complete assay. Eur J Clin Microbiol Infect Dis 2019; 39:151-158. [PMID: 31529306 DOI: 10.1007/s10096-019-03704-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 09/04/2019] [Indexed: 12/14/2022]
Abstract
Shiga toxin-producing Escherichia coli (STEC) and Shigella spp./enteroinvasive E. coli (EIEC) are common diarrheagenic bacteria that cause sporadic diseases and outbreaks. Clinical manifestations vary from mild symptoms to severe complications. For microbiological diagnosis, culture confirmation of a positive stool screening PCR test is challenging because of time-consuming methods for isolation of strains, wide variety of STEC pathotypes, and increased emergence of non-classical strains with unusual serotypes. Therefore, molecular assays for the rapid identification of suspect colonies growing on selective media are very useful. In this study, the performance of the newly introduced eazyplex® EHEC assay based on loop-mediated isothermal amplification (LAMP) was evaluated using 18 representative STEC and Shigella strains and 31 isolates or positive-enrichment broths that were collected from clinical stool samples following screening by BD MAX™ EBP PCR. Results were compared to real-time PCR as a reference standard. Overall, sensitivities and specificities of the eazyplex® EHEC were as follows: 94.7% and 100% for Shiga toxin 1 (stx1), 100% and 100% for stx2, 93.3% and 97.1% for intimin (eae), 100% and 100% for enterohemolysin A (ehlyA), and 100% and 100% for invasion-associated plasmid antigen H (ipaH) as Shigella spp./EIEC target, respectively. Sample preparation for LAMP took only some minutes, and the time to result of the assay ranged from 8.5 to 13 min. This study shows that eazyplex® EHEC is a very fast and easy to perform molecular assay that provides reliable results as a culture confirmation assay for the diagnosis of STEC and Shigella spp./EIEC infections.
Collapse
|
6
|
Jenssen GR, Veneti L, Lange H, Vold L, Naseer U, Brandal LT. Implementation of multiplex PCR diagnostics for gastrointestinal pathogens linked to increase of notified Shiga toxin-producing Escherichia coli cases in Norway, 2007-2017. Eur J Clin Microbiol Infect Dis 2019; 38:801-809. [PMID: 30680573 PMCID: PMC6424946 DOI: 10.1007/s10096-019-03475-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 01/02/2019] [Indexed: 12/15/2022]
Abstract
The aim of this study was to investigate implementation of multiplex PCR assays (broad screening PCR) on the distribution and characteristics of notified Shiga toxin-producing Escherichia coli (STEC) cases in Norway, 2007-2017. We described STEC cases notified to the Norwegian Surveillance System for Communicable Diseases (MSIS), 2007-2017 and categorised cases as high-virulent, low-virulent or unclassifiable STEC infections based on guidelines for follow-up of STEC cases. We conducted descriptive analysis and time series analysis allowing for trends and seasonality, and calculated adjusted incidence rate ratios (aIRR) using negative binomial regression for laboratories with and without broad screening PCR. A total of 1458 STEC cases were notified to MSIS (2007-2017), median age 21 years, 51% female. Cases were categorised as having 475 (33%) high-virulent, 652 (45%) low-virulent, and 331 (23%) unclassifiable STEC infections. We observed a higher increasing monthly trend in cases (aIRR = 1.020; 95% CI 1.016-1.024) notified from laboratories with broad screening PCR (n = 4) compared to laboratories (n = 17) without (aIRR = 1.011; 95% CI 1.007-1.014). Notification of low-virulent STEC infections increased from laboratories with broad screening PCR. The increase in notified STEC cases was prominent in cases categorised with a low-virulent STEC infection and largely attributable to unselective screening methods. We recommend NIPH to maintain differentiated control measures for STEC cases to avoid follow-up of low-virulent STEC infections. We recommend microbiological laboratories in Norway to consider a more cost-effective broad screening PCR strategy that enables differentiation of high-virulent STEC infections.
Collapse
Affiliation(s)
- Gaute Reier Jenssen
- Department of Zoonotic, Food- and Waterborne Infections, Division for Infection Control and Environmental Health, Norwegian Institute of Public Health (NIPH), Postboks 4404, Nydalen, NO-0403, Oslo, Norway.
- Faculty of Medicine, University of Oslo, Oslo, Norway.
- Oslo University Hospital, Oslo, Norway.
| | - Lamprini Veneti
- Department of Zoonotic, Food- and Waterborne Infections, Division for Infection Control and Environmental Health, Norwegian Institute of Public Health (NIPH), Postboks 4404, Nydalen, NO-0403, Oslo, Norway
| | - Heidi Lange
- Department of Zoonotic, Food- and Waterborne Infections, Division for Infection Control and Environmental Health, Norwegian Institute of Public Health (NIPH), Postboks 4404, Nydalen, NO-0403, Oslo, Norway
| | - Line Vold
- Department of Zoonotic, Food- and Waterborne Infections, Division for Infection Control and Environmental Health, Norwegian Institute of Public Health (NIPH), Postboks 4404, Nydalen, NO-0403, Oslo, Norway
| | - Umaer Naseer
- Department of Zoonotic, Food- and Waterborne Infections, Division for Infection Control and Environmental Health, Norwegian Institute of Public Health (NIPH), Postboks 4404, Nydalen, NO-0403, Oslo, Norway
| | - Lin T Brandal
- Department of Zoonotic, Food- and Waterborne Infections, Division for Infection Control and Environmental Health, Norwegian Institute of Public Health (NIPH), Postboks 4404, Nydalen, NO-0403, Oslo, Norway
| |
Collapse
|
7
|
Bai X, Mernelius S, Jernberg C, Einemo IM, Monecke S, Ehricht R, Löfgren S, Matussek A. Shiga Toxin-Producing Escherichia coli Infection in Jönköping County, Sweden: Occurrence and Molecular Characteristics in Correlation With Clinical Symptoms and Duration of stx Shedding. Front Cell Infect Microbiol 2018; 8:125. [PMID: 29765909 PMCID: PMC5939558 DOI: 10.3389/fcimb.2018.00125] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 04/13/2018] [Indexed: 11/13/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) cause bloody diarrhea (BD), hemorrhagic colitis (HC), and even hemolytic uremic syndrome (HUS). In Nordic countries, STEC are widely spread and usually associated with gastrointestinal symptoms and HUS. The objective of this study was to investigate the occurrence of STEC in Swedish patients over 10 years of age from 2003 through 2015, and to analyze the correlation of critical STEC virulence factors with clinical symptoms and duration of stx shedding. Diarrheal stool samples were screened for presence of stx by real-time PCR. All STEC isolates were characterized by DNA microarray assay and PCR to determine serogenotypes, stx subtypes, and presence of intimin gene eae and enterohaemolysin gene ehxA. Multilocus sequencing typing (MLST) was used to assess phylogenetic relationships. Clinical features were collected and analyzed using data from the routine infection control measures in the county. A total of 14,550 samples were enrolled in this 12-years period study, and 175 (1.2%) stools were stx positive by real-time PCR. The overall incidence of STEC infection was 4.9 cases per 100,000 person-years during the project period. Seventy-five isolates, with one isolate per sample were recovered, among which 43 were from non-bloody stools, 32 from BD, and 3 out of the 75 STEC positive patients developed HUS. The presence of stx2 in both stools and isolates were associated with BD (p = 0.008, p = 0.05), and the presence of eae in isolates was related to BD (p = 0.008). The predominant serogenotypes associated with BD were O157:H7, O26:H11, O121:H19, and O103:H2. Isolates from HUS were O104:H4 and O98: H21 serotypes. Phylogenetic analysis revealed our strains were highly diverse, and showed close relatedness to HUS-associated STEC collection strains. In conclusion, the presence of stx2 in stool was related to BD already at the initial diagnostic procedure, thus could be used as risk predictor at an early stage. STEC isolates with stx2 and eae were significantly associated with BD. The predominant serotypes associated with BD were O157:H7, O26:H11, O121:H19, and O103:H2. Nevertheless, the pathogenic potential of other serotypes and genotypes should not be neglected.
Collapse
Affiliation(s)
- Xiangning Bai
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, Karolinska University Hospital, Huddinge, Sweden
- State Key Laboratory of Infectious Disease Prevention and Control, Chinese Center for Disease Control and Prevention, National Institute for Communicable Disease Control and Prevention, Beijing, China
| | | | | | | | - Stefan Monecke
- Abbott (Alere Technologies GmbH), Jena, Germany
- Institute for Medical Microbiology and Hygiene, Technische Universität Dresden, Dresden, Germany
- InfectoGnostics Research Campus, Jena, Germany
| | - Ralf Ehricht
- Institute for Medical Microbiology and Hygiene, Technische Universität Dresden, Dresden, Germany
- InfectoGnostics Research Campus, Jena, Germany
| | - Sture Löfgren
- Department of Laboratory Medicine, Jönköping, Sweden
| | - Andreas Matussek
- Division of Clinical Microbiology, Department of Laboratory Medicine, Karolinska Institute, Karolinska University Hospital, Huddinge, Sweden
- Department of Laboratory Medicine, Jönköping, Sweden
- Karolinska University Laboratory, Stockholm, Sweden
| |
Collapse
|
8
|
Chinchilla-López P, Cruz-Ramón V, Ramírez-Pérez O, Méndez-Sánchez N. Gastroenteritis in an adult female revealing hemolytic uremic syndrome: Case report. World J Gastroenterol 2018; 24:763-766. [PMID: 29456415 PMCID: PMC5807679 DOI: 10.3748/wjg.v24.i6.763] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 12/15/2017] [Accepted: 12/20/2017] [Indexed: 02/06/2023] Open
Abstract
Nowadays acute gastroenteritis infection caused by Escherichia coli (E. coli) O157:H7 is frequently associated with hemolytic uremic syndrome (HUS), which usually developed after prodromal diarrhea that is often bloody. The abdominal pain accompanied by failure kidney is a suspicious symptom to develop this disorder. Their pathological characteristic is vascular damage which manifested as arteriolar and capillary thrombosis with abnormalities in the endothelium and vessel walls. The major etiological agent of HUS is enterohemorragic (E coli) strain belonging to serotype O157:H7. The lack of papers about HUS associated to gastroenteritis lead us to report this case for explain the symptoms that are uncommon. Furthermore, this report provides some strategies to suspect and make an early diagnosis, besides treatment approach to improving outcomes and prognosis for patients with this disorder.
Collapse
Affiliation(s)
| | - Vania Cruz-Ramón
- Liver Research Unit, Medica Sur Clinic and Foundation, Mexico City 14050, Mexico
| | - Oscar Ramírez-Pérez
- Liver Research Unit, Medica Sur Clinic and Foundation, Mexico City 14050, Mexico
| | - Nahum Méndez-Sánchez
- Liver Research Unit, Medica Sur Clinic and Foundation, Mexico City 14050, Mexico
| |
Collapse
|