1
|
Hsu JF, Lu JJ, Chu SM, Lee WJ, Huang HR, Chiang MC, Yang PH, Tsai MH. The Clinical and Genetic Characteristics of Streptococcus agalactiae Meningitis in Neonates. Int J Mol Sci 2023; 24:15387. [PMID: 37895067 PMCID: PMC10607198 DOI: 10.3390/ijms242015387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/10/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Streptococcus agalactiae (Group B Streptococcus, GBS) is an important pathogen of bacterial meningitis in neonates. We aimed to investigate the clinical and genetic characteristics of neonatal GBS meningitis. All neonates with GBS meningitis at a tertiary level medical center in Taiwan between 2003 and 2020 were analyzed. Capsule serotyping, multilocus sequence typing, antimicrobial resistance, and whole-genome sequencing (WGS) were performed on the GBS isolates. We identified 48 neonates with GBS meningitis and 140 neonates with GBS sepsis. Neonates with GBS meningitis had significantly more severe clinical symptoms; thirty-seven neonates (77.8%) had neurological complications; seven (14.6%) neonates died; and 17 (41.5%) survivors had neurological sequelae at discharge. The most common serotypes that caused meningitis in neonates were type III (68.8%), Ia (20.8%), and Ib (8.3%). Sequence type (ST) is highly correlated with serotypes, and ST17/III GBS accounted for more than half of GBS meningitis cases (56.3%, n = 27), followed by ST19/Ia, ST23/Ia, and ST12/Ib. All GBS isolates were sensitive to ampicillin, but a high resistance rates of 72.3% and 70.7% to erythromycin and clindamycin, respectively, were noted in the cohort. The virulence and pilus genes varied greatly between different GBS serotypes. WGS analyses showed that the presence of PezT; BspC; and ICESag37 was likely associated with the occurrence of meningitis and was documented in 60.4%, 77.1%, and 52.1% of the GBS isolates that caused neonatal meningitis. We concluded that GBS meningitis can cause serious morbidity in neonates. Further experimental models are warranted to investigate the clinical and genetic relevance of GBS meningitis. Specific GBS strains that likely cause meningitis requires further investigation and clinical attention.
Collapse
Affiliation(s)
- Jen-Fu Hsu
- Division of Pediatric Neonatology, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (J.-F.H.); (S.-M.C.); (W.-J.L.); (H.-R.H.); (M.-C.C.); (P.-H.Y.)
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan;
| | - Jang-Jih Lu
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan;
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
- Department of Medical Biotechnology and Laboratory Science, Chang Gung University, Taoyuan 333, Taiwan
| | - Shih-Ming Chu
- Division of Pediatric Neonatology, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (J.-F.H.); (S.-M.C.); (W.-J.L.); (H.-R.H.); (M.-C.C.); (P.-H.Y.)
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan;
| | - Wei-Ju Lee
- Division of Pediatric Neonatology, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (J.-F.H.); (S.-M.C.); (W.-J.L.); (H.-R.H.); (M.-C.C.); (P.-H.Y.)
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan;
| | - Hsuan-Rong Huang
- Division of Pediatric Neonatology, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (J.-F.H.); (S.-M.C.); (W.-J.L.); (H.-R.H.); (M.-C.C.); (P.-H.Y.)
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan;
| | - Ming-Chou Chiang
- Division of Pediatric Neonatology, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (J.-F.H.); (S.-M.C.); (W.-J.L.); (H.-R.H.); (M.-C.C.); (P.-H.Y.)
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan;
| | - Peng-Hong Yang
- Division of Pediatric Neonatology, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (J.-F.H.); (S.-M.C.); (W.-J.L.); (H.-R.H.); (M.-C.C.); (P.-H.Y.)
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan;
| | - Ming-Horng Tsai
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan;
- Division of Neonatology and Pediatric Hematology-Oncology, Department of Pediatrics, Chang Gung Memorial Hospital, Yunlin 638, Taiwan
| |
Collapse
|
2
|
Sokkar MF, Mosaad RM, Khalil M, Kamal L. MBL2 gene variants and susceptibility to meningitis in Egyptian patients. Gene 2023; 872:147442. [PMID: 37121343 DOI: 10.1016/j.gene.2023.147442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/12/2023] [Accepted: 04/18/2023] [Indexed: 05/02/2023]
Abstract
BACKGROUND Meningitis is inflammation of the membranes enclosing the brain and spinal cord. It is a fatal disease with severe morbidity and mortality. Mannose binding lectin (MBL) encoded by MBL2 gene activates complement system through lectin pathway in innate immunity to defense against the infections. OBJECTIVE the current study aimed to investigate the promoter and exon 1 variants of MBL2 gene among Egyptian patients having meningitis to explore their role in disease susceptibility. PATIENTS AND METHODS This case-control study, included 53 patients and 50 sex and age matched controls. MBL2 genotyping was done using Sanger sequencing. RESULTS The frequency of one promoter (c.-290C>G) and four in exon 1 (c.161G>A, c.170G>A, c.154C>T and c.132C>T) as well as another one located in its 5'utranslated part (c.-66C>T) variants were estimated. The incidence of the four individual exonic variants was not significantly different between cases and healthy individuals (all P> 0.05). The promoter variant, c.-290C>G was found in all examined patients (84.9% of the patients in homozygote state and 15.1% of patients in heterozygous state) with a highly significant variance in the prevalence of this variant between cases and control group (p=0.0001). Additionally, UTR variant (c.-66C>T) was also significantly higher in patients than controls (P=0.033).In comparison with clinical outcome, it was found that c.170G>A variant named C allele was associated with favorable outcome in the studied patients (P=0.025). CONCLUSION The results obtained showed that the Promoter (c.-290C>G) and UTR (c.-66 C>T) variants of MBL2 gene may be potential risk factors for disease susceptibility in Egyptian cases with meningitis. Our results also proposed that c.170G>A (C allele and CC genotype) could affect the severity and play a protective role in these patients. The other genetic variants of MBL2 gene, including c.132C>T, c.161G>A (A>B), and c.154C>T (A>D) that were investigated, did not show any association with susceptibility or severity of meningitis.
Collapse
Affiliation(s)
- Mona F Sokkar
- Molecular Genetics and Enzymology department, Human Genetics and Genome Research Institute (HGGR), National Research Centre (NRC), Cairo, Egypt
| | - Rehab M Mosaad
- Infection disease department, National Hepatology and Tropical Medicine Research Institute, Cairo, Egypt.
| | - Mahmoud Khalil
- Infection disease department, National Hepatology and Tropical Medicine Research Institute, Cairo, Egypt
| | - Lamyaa Kamal
- Clinical and chemical pathology department, Elsahel Teaching Hospital, Cairo, Egypt
| |
Collapse
|
3
|
Tsinda EK, Mmbando GS. Recent updates on the possible reasons for the low incidence and morbidity of COVID-19 cases in Africa. BULLETIN OF THE NATIONAL RESEARCH CENTRE 2021; 45:133. [PMID: 34335014 PMCID: PMC8300982 DOI: 10.1186/s42269-021-00589-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 07/11/2021] [Indexed: 05/03/2023]
Abstract
BACKGROUND The COVID-19 respiratory illness caused by the SARS-CoV-2 has been a major cause of morbidity and mortality worldwide since the first reported case in Wuhan, China. A year has passed since pandemic began, and the reasons for different COVID-19 burden variation across continents keep puzzling the general public. MAIN BODY OF THE ABSTRACT Since the COVID-19 pandemic started, published research articles have addressed the epidemiological risk factors, host factors, susceptibility and immunity. To ascertain possible reasons for the different rates of COVID-19 infections between Africa and other continents, we summarized the up-to-date scientific literature to identify possible arguments in this regard. Available literature suggests that demographic, epidemiological, sociological, genetic and immunological factors contribute in the COVID-19 severity and the susceptibly to SARS-CoV-2. SHORT CONCLUSION This review summarizes existing data and discusses reasons for differential COVID-19 burden across continents. The arguments mentioned herein will be helpful to guide future experimental studies to test different hypotheses.
Collapse
|
4
|
Zheng K, He FB, Liu H, He Q. Genetic variations of toll-like receptors: Impact on susceptibility, severity and prognosis of bacterial meningitis. INFECTION GENETICS AND EVOLUTION 2021; 93:104984. [PMID: 34214672 DOI: 10.1016/j.meegid.2021.104984] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 06/24/2021] [Accepted: 06/27/2021] [Indexed: 01/24/2023]
Abstract
Bacterial meningitis (BM) is a serious infectious disease of the central nervous system,which is mainly caused by Streptococcus pneumoniae, Neisseria meningitidis, Haemophilus influenzae, Group B Streptococcus and Listeria monocytogenes. Throughout the world, BM has become one of the most lethal diseases that commonly occurs in children. Toll like receptors (TLRs) are one of the most important immune defense lines in infectious diseases, and play an essential role in host defense. Accumulating evidence shows that genetic variations in TLRs are associated with host responses in BM. This review aims to summarize the role of different TLRs and their genetic variations in the susceptibility, severity and prognosis of BM and discuss the identified risk factors for better treatment and improvement of the course and outcome of BM.
Collapse
Affiliation(s)
- Kai Zheng
- Department of Medical Microbiology, Capital Medical University, Beijing 100069, China; Department of Neurorehabilitation, Wuxi Tongren Rehabilitation Hospital, Wuxi 214151, Jiangsu, China
| | - Felix B He
- Institute of Biomedicine, University of Turku, 20520 Turku, Finland
| | - Hongshan Liu
- Department of Medical Microbiology, Capital Medical University, Beijing 100069, China
| | - Qiushui He
- Department of Medical Microbiology, Capital Medical University, Beijing 100069, China; Institute of Biomedicine, University of Turku, 20520 Turku, Finland.
| |
Collapse
|
5
|
Zhang J, Chen N, Chen Z, Liu Y, Zheng K, Qiu Y, Zhang N, Zhu J, Yu H, He Q. Low Mannose Binding Lectin, but Not L-Ficolin, Is Associated With Spontaneous Clearance of Hepatitis C Virus After Infection. Front Immunol 2020; 11:587669. [PMID: 33262767 PMCID: PMC7686574 DOI: 10.3389/fimmu.2020.587669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/13/2020] [Indexed: 11/23/2022] Open
Abstract
Some individuals can spontaneously clear the hepatitis C virus (HCV) after infection, whereas others develop a chronic infection. The exact mechanism of this phenomenon is unknown. We aimed to evaluate the association of plasma levels of MBL, L-ficolin, and cytokines with outcome of HCV infections in two groups of patients who cleared HCV spontaneously (CHS), and who developed chronic HCV infections (CHC). Altogether, 86 patients and 183 healthy controls were included. Of 86 patients, 36 had CHS and 50 had CHC. Concentrations of plasma MBL and L-ficolin were measured in patients and controls. Twenty plasma cytokines and adhesion molecules, including GM-CSF, ICAM-1, IFN-γ, IFN-α, IL-1α, IL-1β, IL-10, IL-12p70, IL-13, IL-17A, IL-4, IL-8, IP-10, MCP-1, IL-6, MIP-1α, MIP-1β, sE-Selectin, sP-Selectin, and TNF-α, were determined in all patients and randomly selected 45 controls. The level of MBL was significantly lower in subjects with CHS than in healthy controls (median: 293.10 vs. 482.64 ng/ml, p = 0.008), whereas the level of MBL was significantly higher in patients with CHC than in controls (median: 681.32 vs. 482.64 ng/ml, p = 0.001). No such differences in plasma L-ficolin were observed. Plasma levels of all cytokines and adhesion molecules, except ICAM-1, were significantly higher in patients than in controls. Moreover, patients with CHC had significantly higher levels of IFN-γ, IFN-α, IL-1α, IL-10, IL-13, IL-4, IL-6, and TNF-α than those with CHS. These findings implicate that lower levels of plasma MBL, together with lower levels of above mentioned cytokines may play a part in virus clearance of HCV infection.
Collapse
Affiliation(s)
- Jing Zhang
- The Third Unit, Department of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Ning Chen
- Department of Medical Microbiology, Capital Medical University, Beijing, China
| | - Zhiyun Chen
- Department of Medical Microbiology, Capital Medical University, Beijing, China
| | - Yali Liu
- The Third Unit, Department of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Kai Zheng
- Department of Medical Microbiology, Capital Medical University, Beijing, China
| | - Yundong Qiu
- Department of Traditional Chinese Medicine, Gu’an Hospital of Traditional Chinese Medicine, Gu’an, China
| | - Nan Zhang
- Department of Medical Microbiology, Capital Medical University, Beijing, China
| | - Junping Zhu
- Department of Medical Microbiology, Capital Medical University, Beijing, China
| | - Haibin Yu
- The Third Unit, Department of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Qiushui He
- Department of Medical Microbiology, Capital Medical University, Beijing, China
- Department of Medical Microbiology, University of Turku, Turku, Finland
| |
Collapse
|