1
|
Wu J, Huang Y, Ding X, Kang L, Wang X, Li D, Cheng W, Liu G, Xue J, Ding S. CPA-Cas12a-based lateral flow strip for portable assay of Methicillin-resistant Staphylococcus aureus in clinical sample. J Nanobiotechnology 2023; 21:234. [PMID: 37481551 PMCID: PMC10362775 DOI: 10.1186/s12951-023-02002-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 07/13/2023] [Indexed: 07/24/2023] Open
Abstract
The rapid and accurate identification of methicillin-resistant Staphylococcus aureus at an early antibiotic therapy stage would be benefit to disease diagnosis and antibiotic selection. Herein, we integrated cross-priming amplification (CPA) and CRISPR/Cas 12a (designated as CPA-Cas 12a) systems to establish a sensitive and efficient lateral flow assay to detect methicillin-resistant Staphylococcus aureus. This assay relies on the CPA isothermal nucleic acid amplification strategy which can amplify the DNA extracted from Staphylococcus aureus and accompanying the indiscriminately trans-cleavage process of Cas 12a/CrRNA duplex after recognizing specific sequence. Taking the advantage of reporter and high turnover Cas 12a activity, a dramatic change in response was achieved to produce a significant increase in the analytical sensitivity. The signal conversion and output were realized using a lateral flow strip to achieve field-deployable detection. Furthermore, this bioassay was accommodated with a microfluidic device to realize automatically portable detection. This proposed assay completed within 30 min with the detection limit of 5 CFU mL-1, was verified by testing bacterial suspension and 202 clinical samples. Given the high sensitivity, specificity and efficiency, this colorimetric readout assay through strip could be further promoted to the clinical diagnosis, clinical medication of multidrug-resistant bacteria.
Collapse
Affiliation(s)
- Jiangling Wu
- Department of Clinical Laboratory, Medical Sciences Research Center, University-Town Hospital of Chongqing Medical University, Chongqing, 401331, China
| | - Yu Huang
- Chongqing Key Laboratory of Multi-scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
- Chongqing School, University of Chinese Academy of Science, Chongqing, 400714, China
| | - Xiaojuan Ding
- Department of Clinical Laboratory, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 401331, China
| | - Lina Kang
- Department of Clinical Laboratory, Medical Sciences Research Center, University-Town Hospital of Chongqing Medical University, Chongqing, 401331, China
| | - Xiaoliang Wang
- Department of Clinical Laboratory, Medical Sciences Research Center, University-Town Hospital of Chongqing Medical University, Chongqing, 401331, China
| | - Dandan Li
- Department of Clinical Laboratory, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 401331, China
| | - Wei Cheng
- The Center for Clinical Molecular Medical Detection, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| | - Gang Liu
- Department of Critical Care Medicine, University-Town Hospital of Chongqing Medical University, Chongqing, 401331, China.
| | - Jianjiang Xue
- Department of Clinical Laboratory, Medical Sciences Research Center, University-Town Hospital of Chongqing Medical University, Chongqing, 401331, China.
| | - Shijia Ding
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), college of laboratory medicine, Chongqing Medical University, Chongqing, 400016, China
| |
Collapse
|
2
|
Bhattacharjee B, Ikbal AMA, Farooqui A, Sahu RK, Ruhi S, Syed A, Miatmoko A, Khan D, Khan J. Superior possibilities and upcoming horizons for nanoscience in COVID-19: noteworthy approach for effective diagnostics and management of SARS-CoV-2 outbreak. CHEMICKE ZVESTI 2023; 77:1-24. [PMID: 37362791 PMCID: PMC10072050 DOI: 10.1007/s11696-023-02795-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 03/18/2023] [Indexed: 04/07/2023]
Abstract
The outbreak of COVID-19 has caused great havoc and affected many parts of the world. It has imposed a great challenge to the medical and health fraternity with its ability to continue mutating and increasing the transmission rate. Some challenges include the availability of current knowledge of active drugs against the virus, mode of delivery of the medicaments, its diagnosis, which are relatively limited and do not suffice for further prognosis. One recently developed drug delivery system called nanoparticles is currently being utilized in combating COVID-19. This article highlights the existing methods for diagnosis of COVID-19 such as computed tomography scan, reverse transcription-polymerase chain reaction, nucleic acid sequencing, immunoassay, point-of-care test, detection from breath, nanotechnology-based bio-sensors, viral antigen detection, microfluidic device, magnetic nanosensor, magnetic resonance platform and internet-of-things biosensors. The latest detection strategy based on nanotechnology, biosensor, is said to produce satisfactory results in recognizing SARS-CoV-2 virus. It also highlights the successes in the research and development of COVID-19 treatments and vaccines that are already in use. In addition, there are a number of nanovaccines and nanomedicines currently in clinical trials that have the potential to target COVID-19.
Collapse
Affiliation(s)
- Bedanta Bhattacharjee
- Girijananda Chowdhury Institute of Pharmaceutical Science, Tezpur, Assam 784501 India
| | - Abu Md Ashif Ikbal
- Department of Pharmaceutical Sciences, Assam University (A Central University), Silchar, 788011 India
| | - Atika Farooqui
- The Deccan College of Medical Sciences, Kanchan Bagh, Hyderabad, Telangana 500058 India
| | - Ram Kumar Sahu
- Department of Pharmaceutical Sciences, Hemvati Nandan Bahuguna Garhwal University (A Central University), Chauras Campus, Tehri Garhwal, Uttarakhand 249161 India
| | - Sakina Ruhi
- Department of Biochemistry, IMS, Management and Science University, University Drive, Off Persiaran Olahraga, 40100 Shah Alam, Selangor Malaysia
| | - Ayesha Syed
- International Medical School, Management and Science University, University Drive, Off Persiaran Olahraga, 40100 Shah Alam, Selangor Malaysia
| | - Andang Miatmoko
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Surabaya, East Java 60115 Indonesia
| | - Danish Khan
- Panineeya Institute of Dental Science and Research Centre, Kalonji Narayana Rao University of Health Sciences, Warangal, Telangana 506007 India
| | - Jiyauddin Khan
- School of Pharmacy, Management and Science University, 40100 Shah Alam, Selangor Malaysia
| |
Collapse
|
3
|
Abstract
Coronavirus disease 2019 (COVID-19) emerged in December 2019 in Wuhan, China; it has since caused a pandemic, with more than 10,000 confirmed cases (> 800,000 tests) in Korea as of May 2020. Real-time reverse transcription polymerase chain reaction (RT-PCR) is currently the most commonly used method for the diagnosis of COVID-19 worldwide. The Korean Society for Laboratory Medicine and Korea Centers for Disease Prevention and Control regularly update the guidelines for COVID-19 diagnosis. Emergency use authorization for some laboratory diagnostic kits has been granted, enabling the timely diagnosis and treatment of COVID-19, and the isolation of infected patients. Due to the collective efforts of the government, medical professionals, local authorities, and the public, Korea's response to the COVID-19 outbreak has been accepted widely as a model. Here, we summarize the currently available laboratory tests for COVID-19 diagnosis. Although RT-PCR tests are used widely to confirm COVID-19, antibody tests could provide information about immune responses to the virus.
Collapse
Affiliation(s)
- Jihyang Lim
- Department of Laboratory Medicine, Eunpyeong St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jehoon Lee
- Department of Laboratory Medicine, Eunpyeong St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Correspondence to Jehoon Lee, M.D. Department of Laboratory Medicine, Eunpyeong St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, 1021 Tongil-ro, Eunpyeong-gu, Seoul 03312, Korea Tel: +82-2-2030-3160 Fax: +82-2-2030-3161 E-mail:
| |
Collapse
|
4
|
Chiappell F. Putative Natural History of CoViD-19. Bioinformation 2020; 16:398-403. [PMID: 32831521 PMCID: PMC7434958 DOI: 10.6026/97320630016398] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 04/20/2020] [Indexed: 12/22/2022] Open
Abstract
The Severe Acute Respiratory Syndrome Corona Virus2 (SARS-CoV2) is responsible for Corona Virus Disease 2019 (CoViD-19), the pandemic that has afflicted close to two million people worldwide, and has taken the lives of over 120,000 patients since its first report in late December 2019. Per million people globally, the infection rate is close to 250 with a death rate of close to 14 (death rate average global death rate: 6.06%; for comparison, revised estimate of the 1918 influenza pandemic had an average global death rate of 5.4% [1]). About 400,000 SARS-CoV2-positive patients have been declared 'recovered', although it is not clear to date what exactly that entails. To be clear, the natural history of SARS-CoV2 infection and of the patho-physiology of CoViD-19 remains shrouded in relative confusion, in part due to the exceedingly virulent nature of the virus, as manifest by its elevated morbidity and mortality, and the fast accumulation of clinical observations and research evidence. Many pieces of a complex puzzle are emerging all at once and their organization into a coherent and cogent picture of the natural history of CoViD-19 is arduous and still wanting. Here, we discuss the recent findings in the context of the available evidence. We propose a putative prediction model of the natural history of CoViD-19. We highlight putative loci and modes of therapeutic intervention that may become beneficial preventive and treatment modalities for individuals at risk of SARS-CoV2 infection and CoViD-19 patients.
Collapse
|
5
|
Peters R, Stevenson M. Immunological detection of Zika virus: A summary in the context of general viral diagnostics. J Microbiol Methods 2020. [DOI: 10.1016/bs.mim.2019.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|