1
|
Hu GN, Liu WL, Chang CH, Ruan SY, Chung KP, Chien JY, Yu CJ. Microbial dynamics, risk factors and outcomes of secondary pneumonia in critically ill patients with COVID-19: A multicenter retrospective cohort study. J Formos Med Assoc 2024; 123:1186-1193. [PMID: 39013749 DOI: 10.1016/j.jfma.2024.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 04/17/2024] [Accepted: 07/09/2024] [Indexed: 07/18/2024] Open
Abstract
BACKGROUND Secondary pneumonia has a significant clinical impact on critically ill patients with COVID-19. AIM Considering potential geographic variations, this study explores the clinical implications of secondary pneumonia within East Asian populations. METHODS This multicenter, retrospective cohort study enrolled critical COVID-19 patients requiring intensive care units (ICUs) admission in Taiwan from December 31, 2020, to June 1, 2022. FINDINGS Among the 187 critical COVID-19 patients, 80 (42.8%) developed secondary pneumonia. The primary causative pathogens were gram-negative bacilli (GNB) (76.8%). Gram-positive cocci and fungi were mainly observed during the initial two weeks of ICU stay. Notably, the incidence of pulmonary aspergillosis was 9.2% during the first week of ICU stay and all Staphylococcus aureus were susceptible to methicillin. Multi-drug resistant organisms (MDROs) were responsible for 28.3% of the cases, exhibiting significantly longer ICU stays compared to the non-MDRO group (median, 27 vs. 14 days, P < 0.001). In the multivariate analysis, Acute Physiology and Chronic Health Evaluation II (APACHE II) and Sequential Organ Failure Assessment (SOFA) scores were associated with a significantly increased risk of secondary pneumonia. In-hospital mortality was significantly higher in patients with secondary pneumonia than in those without (37.7% vs. 16.7%, P = 0.02) and survival analysis demonstrated gram-negative bacilli-related secondary pneumonia contributed to a worse prognosis. CONCLUSION Secondary pneumonia in critical COVID-19 patients significantly raised in-hospital mortality and extended hospital and ICU stays. Moreover, the presence of GNB notably predicted an unfavorable prognosis.
Collapse
Affiliation(s)
- Geng-Ning Hu
- Department of Internal Medicine, National Taiwan University Hospital Hsin-Chu Branch, National Taiwan University College of Medicine, Hsinchu, Taiwan; Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Wei-Lun Liu
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan; Department of Critical Care Medicine, Fu Jen Catholic University Hospital, Fu Jen Catholic University, New Taipei City, Taiwan; Data Science Center, College of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Chia-Hao Chang
- Department of Internal Medicine, National Taiwan University Hospital Hsin-Chu Branch, National Taiwan University College of Medicine, Hsinchu, Taiwan; Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Sheng-Yuan Ruan
- Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Kuei-Pin Chung
- Department of Laboratory Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Jung-Yien Chien
- Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan.
| | - Chong-Jen Yu
- Department of Internal Medicine, National Taiwan University Hospital Hsin-Chu Branch, National Taiwan University College of Medicine, Hsinchu, Taiwan; Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| |
Collapse
|
2
|
Liu B, Dai W, Wei J, Sun S, Chen W, Deng Y. Knowledge framework and emerging trends of invasive pulmonary fungal infection: A bibliometric analysis (2003-2023). Medicine (Baltimore) 2024; 103:e40068. [PMID: 39432658 PMCID: PMC11495717 DOI: 10.1097/md.0000000000040068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/25/2024] [Indexed: 10/23/2024] Open
Abstract
The rising number of immunocompromised people has increased concerns about fungal infections as a severe public health issue. Invasive pulmonary fungal infections (IPFIs) are prevalent and often fatal, particularly for those with weakened immune systems. Understanding IPFIs is crucial. The work aims to offer a concise overview of the field's characteristics, main research areas, development paths, and trends. This study searched the Web of Science Core Collection on June 5, 2024, collecting relevant academic works from 2003 to 2023. Analysis was conducted using CiteSpace, VOSviewer, Bibliometrix Package in R, Microsoft Excel 2019, and Scimago Graphica. The study indicated that the USA, the University of Manchester, and Denning DW led in productivity and impact, while the Journal of Fungi topped the list in terms of publication volume and citations. High-frequency terms include "fungal infection," "invasive," "diagnosis," and "epidemiology." Keyword and trend analysis identified "influenza," "COVID-19," "invasive pulmonary aspergillosis," and "metagenomic next-generation sequencing" as emerging research areas. Over the last 2 decades, research on IPFI has surged, with topics becoming more profound. These insights offer key guidance on current trends, gaps, and the trajectory of IPFI studies.
Collapse
Affiliation(s)
- Ben Liu
- Yancheng No. 1 People’s Hospital, Affiliated Hospital of Medical School, Nanjing University, Yancheng, China
- Pediatric Intensive Care Unit, The First People’s Hospital of Yancheng, Yancheng, China
| | - Wenling Dai
- Yancheng No. 1 People’s Hospital, Affiliated Hospital of Medical School, Nanjing University, Yancheng, China
- Pediatric Intensive Care Unit, The First People’s Hospital of Yancheng, Yancheng, China
| | - Jie Wei
- Yancheng No. 1 People’s Hospital, Affiliated Hospital of Medical School, Nanjing University, Yancheng, China
- Pediatric Intensive Care Unit, The First People’s Hospital of Yancheng, Yancheng, China
| | - Siyuan Sun
- Yancheng No. 1 People’s Hospital, Affiliated Hospital of Medical School, Nanjing University, Yancheng, China
- Pediatric Intensive Care Unit, The First People’s Hospital of Yancheng, Yancheng, China
| | - Wei Chen
- Yancheng No. 1 People’s Hospital, Affiliated Hospital of Medical School, Nanjing University, Yancheng, China
- Pediatric Intensive Care Unit, The First People’s Hospital of Yancheng, Yancheng, China
| | - Yijun Deng
- Yancheng No. 1 People’s Hospital, Affiliated Hospital of Medical School, Nanjing University, Yancheng, China
- President’s Office, The First People’s Hospital of Yancheng, Yancheng, China
| |
Collapse
|
3
|
Wilbourn AC, Tsodikov OV, Garneau-Tsodikova S. Association of COVID-19 risk factors with systemic fungal infections in hospitalized patients. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.10.10.24315254. [PMID: 39417099 PMCID: PMC11482998 DOI: 10.1101/2024.10.10.24315254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Purpose A new category of systemic co-infections that emerged with the COVID-19 pandemic is known as COVID-19-associated (CA) fungal infections, which include pulmonary aspergillosis (CAPA), candidiasis (CAC), and mucormycosis (CAM). We aimed to study the association between patient characteristics of hospitalized COVID-19 patients, COVID-19 comorbidities, and COVID-19 therapies with secondary non-superficial fungal infections. Methods We performed descriptive and regression analyses of data from 4,999 hospitalized COVID-19 patients from the University of Kentucky Healthcare (UKHC) system. Results The patients with secondary systemic fungal infections had a 6-fold higher risk of death than those without such infections. Generally, the risk factors for severe COVID-19 (age, obesity, cardiovascular disease, diabetes, and lack of COVID-19 vaccination) were strong predictors of a secondary fungal infection. However, several characteristics had much higher risks, suggesting that a causative link may be at play: ICU admission, mechanical ventilation, length of hospital stay, and steroid use. Conclusions In sum, this study found that the known risk factors for severe COVID-19 disease, age, diabetes, cardiovascular disease, obesity, ventilation, and high steroid doses were all predictors of a secondary fungal infection. Steroid therapy may need to be modified to account for a risk or a presence of a fungal infection in vulnerable patients.
Collapse
Affiliation(s)
- Abbygail C. Wilbourn
- University of Kentucky, College of Pharmacy, 789 South Limestone St., Lexington, KY, 40536-0596, USA
| | - Oleg V. Tsodikov
- University of Kentucky, College of Pharmacy, 789 South Limestone St., Lexington, KY, 40536-0596, USA
| | - Sylvie Garneau-Tsodikova
- University of Kentucky, College of Pharmacy, 789 South Limestone St., Lexington, KY, 40536-0596, USA
| |
Collapse
|
4
|
Sweeney DA, Póvoa P. What are the clinical and research lessons learned from immunomodulators and other therapies during the COVID-19 pandemic? Curr Opin Crit Care 2024; 30:420-426. [PMID: 39150024 DOI: 10.1097/mcc.0000000000001184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
PURPOSE OF REVIEW The development and use of immunomodulators and other therapies during the coronavirus disease 2019 (COVID-19) pandemic provided several lessons with respect to these therapies, and to how medical researchers and clinicians should approach the next pandemic. RECENT FINDINGS New or repurposed therapies, particularly immunomodulator treatments, for the treatment of an infectious disease will always be associated with inherent patient risk and this was the case during the COVID-19 pandemic. The concomitant development and use of effective antimicrobial therapies along with close monitoring for secondary infections is paramount for patient safety and treatment success. The development of immunomodulators and other therapies during the COVID-19 pandemic further highlighted the importance of maintaining high standards for medical research for all potential treatment with large double-blind placebo-controlled trials and peer review being the best mode of disseminating medical results rather than social media outlets. SUMMARY The next new and emerging pandemic will undoubtedly share many of the same challenges posed by COVID-19. It is important that researchers and clinicians learn from this experience, adhere to tried and true clinical care, all the while conducting high quality research aimed at developing definitive treatments.
Collapse
Affiliation(s)
- Daniel A Sweeney
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of California, San Diego, La Jolla, California, USA
| | - Pedro Póvoa
- NOVA Medical School, CHRH, NOVA University of Lisbon, Lisbon, Portugal
- Center for Clinical Epidemiology and Research Unit of Clinical Epidemiology, OUH Odense University Hospital, Odense, Denmark
- Department of Critical Care Medicine, Hospital de São Francisco Xavier, CHLO, Estrada do Forte do Alto do Duque, Lisbon, Portugal
| |
Collapse
|
5
|
Sedik S, Wolfgruber S, Hoenigl M, Kriegl L. Diagnosing fungal infections in clinical practice: a narrative review. Expert Rev Anti Infect Ther 2024:1-15. [PMID: 39268795 DOI: 10.1080/14787210.2024.2403017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/02/2024] [Accepted: 09/07/2024] [Indexed: 09/15/2024]
Abstract
BACKGROUND Invasive fungal infections (IFI) present a major medical challenge, with an estimated 6.5 million cases annually, resulting in 3.8 million deaths. Pathogens such as Aspergillus spp. Candida spp. Mucorales spp. Cryptococcus spp. and other fungi species contribute to these infections, posing risks to immunocompromised individuals. Early and accurate diagnosis is crucial for effective treatment and better patient outcomes. AREAS COVERED This narrative review provides an overview of the current methods and challenges associated with diagnosing fungal diseases, including invasive aspergillosis and invasive candidiasis, as well as rare and endemic fungal infections. Various diagnostic techniques, including microscopy, culture, molecular diagnostics, and serological tests, are reviewed, highlighting their respective advantages and limitations and role in clinical guidelines. To illustrate, the need for improved diagnostic strategies to overcome existing challenges, such as the low sensitivity and specificity of current tests and the time-consuming nature of traditional culture-based methods, is addressed. EXPERT OPINION Current advancements in fungal infection diagnostics have significant implications for healthcare outcomes. Improved strategies like molecular testing and antigen detection promise early detection of fungal pathogens, enhancing patient management. Challenges include global access to advanced technologies and the need for standardized, user-friendly point-of-care diagnostics to improve diagnosis of fungal infections globally.
Collapse
Affiliation(s)
- Sarah Sedik
- Division of Infectious Diseases, Department of Internal Medicine, Medical University of Graz, ECMM Excellence Center Graz, Austria
- Translational Mycology, Medical University of Graz, Graz, Austria
| | - Stella Wolfgruber
- Division of Infectious Diseases, Department of Internal Medicine, Medical University of Graz, ECMM Excellence Center Graz, Austria
- Translational Mycology, Medical University of Graz, Graz, Austria
| | - Martin Hoenigl
- Division of Infectious Diseases, Department of Internal Medicine, Medical University of Graz, ECMM Excellence Center Graz, Austria
- Translational Mycology, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Lisa Kriegl
- Division of Infectious Diseases, Department of Internal Medicine, Medical University of Graz, ECMM Excellence Center Graz, Austria
- Translational Mycology, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| |
Collapse
|
6
|
Kern WV, Steib-Bauert M, Baumann J, Kramme E, Först G, de With K. Impact of the COVID-19 Pandemic on Inpatient Antibiotic and Antifungal Drug Prescribing Volumes in Germany. Antibiotics (Basel) 2024; 13:837. [PMID: 39335010 PMCID: PMC11429143 DOI: 10.3390/antibiotics13090837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 08/27/2024] [Accepted: 08/30/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Previous studies found that the coronavirus disease 2019 (COVID-19) pandemic had a variable impact on the consumption of antimicrobial drugs in human medicine, with trends in several European countries differing between community and inpatient prescribing. AIM This study analysed changes in the volumes and use density of antibacterial and antifungal drugs dispensed in acute care hospitals in Germany between 2019 and 2022. METHODS Surveillance data for the four years available from 279 hospitals were expressed as the total volumes of daily doses or as use density (daily doses per 100 patient/occupied bed days) per year and analysed descriptively, using recommended hospital-adapted daily dose definitions (RDDs) and (as sensitivity analysis) WHO/ATC-defined daily dose definitions (DDD). Hospitals were stratified according to size (number of beds), university affiliation, and location (East, West, South). RESULTS There were significant decreases in both the total number of patient days and antibacterial drug volumes in 2020 through 2022 compared with 2019. The relative changes between 2019 and 2020, 2021, and 2022 were -12.8%, -13.5%, and -13.3% for patient days, and -9.7%, -11.0%, and -10.1% for antibacterial RDDs, respectively. Broad-spectrum betalactams, notably piperacillin-tazobactam and carbapenems, increased in volume, unlike most other drug classes. The resulting antibacterial drug use density was slightly but significantly increased, with pooled means (and medians) of 43.3 (40.0) RDD/100 in 2019 compared to 44.8 (41.7), 44.5 (40.80), and 44.9 (41.7) RDD/100 in the years 2020 through 2022, respectively. Antifungal drug volumes and use density increased after 2019 and peaked in 2021 (the difference between 2019 and 2021 for total volumes was +6.4%, and that for pooled mean use density values was +22.9%, respectively). These trends were similar in the different hospital strata and comparable when DDDs instead of RDDs were used. CONCLUSIONS Similar to what has been observed in a majority of European countries, the total volume of antibacterial drug use in German acute care hospitals decreased with the pandemic, without a rebound phenomenon in 2022. In association with restricted hospital capacities and presumably more immunocompromised general medicine patients, however, inpatient prescribing of (primarily broad-spectrum) antibacterials and of antifungal drugs increased.
Collapse
Affiliation(s)
- Winfried V Kern
- Division of Infectious Diseases, Department of Medicine II, University Hospital and Medical Centre, and Faculty of Medicine, Albert-Ludwigs-University, 79106 Freiburg, Germany
- Akademie für Infektionsmedizin, 10789 Berlin, Germany
| | - Michaela Steib-Bauert
- Division of Infectious Diseases, Department of Medicine II, University Hospital and Medical Centre, and Faculty of Medicine, Albert-Ludwigs-University, 79106 Freiburg, Germany
| | - Jürgen Baumann
- Central Pharmacy, Medius-Kliniken, 73760 Ostfildern-Ruit, Germany
- ADKA-Bundesverband Deutscher Krankenhausapotheker, 10559 Berlin, Germany
| | - Evelyn Kramme
- Department of Infectious Diseases and Microbiology, University Hospital Schleswig-Holstein Campus Lübeck, University of Lübeck, 23562 Lübeck, Germany
- DGI-Deutsche Gesellschaft für Infektiologie, 10789 Berlin, Germany
| | - Gesche Först
- Division of Infectious Diseases, Department of Medicine II, University Hospital and Medical Centre, and Faculty of Medicine, Albert-Ludwigs-University, 79106 Freiburg, Germany
- ADKA-Bundesverband Deutscher Krankenhausapotheker, 10559 Berlin, Germany
- Institute of Pharmaceutical Sciences, Faculty of Chemistry and Pharmacy, Albert-Ludwigs-University, 79085 Freiburg, Germany
| | - Katja de With
- DGI-Deutsche Gesellschaft für Infektiologie, 10789 Berlin, Germany
- Institute of Infectious Diseases, University Hospital Carl Gustav Carus, Technical University, 01307 Dresden, Germany
| |
Collapse
|
7
|
Feys S, Carvalho A, Clancy CJ, Gangneux JP, Hoenigl M, Lagrou K, Rijnders BJA, Seldeslachts L, Vanderbeke L, van de Veerdonk FL, Verweij PE, Wauters J. Influenza-associated and COVID-19-associated pulmonary aspergillosis in critically ill patients. THE LANCET. RESPIRATORY MEDICINE 2024; 12:728-742. [PMID: 39025089 DOI: 10.1016/s2213-2600(24)00151-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 07/20/2024]
Abstract
Influenza-associated pulmonary aspergillosis (IAPA) and COVID-19-associated pulmonary aspergillosis (CAPA) are increasingly recognised as important complications in patients requiring intensive care for severe viral pneumonia. The diagnosis can typically be made in 10-20% of patients with severe influenza or COVID-19, but only when appropriate diagnostic tools are used. Bronchoalveolar lavage sampling for culture, galactomannan testing, and PCR forms the cornerstone of diagnosis, whereas visual examination of the tracheobronchial tract during bronchoscopy is required to detect invasive Aspergillus tracheobronchitis. Azoles are the first-choice antifungal drugs, with liposomal amphotericin B as an alternative in settings where azole resistance is prevalent. Despite antifungal therapy, IAPA and CAPA are associated with poor outcomes, with fatality rates often exceeding 50%. In this Review, we discuss the mechanistic and clinical aspects of IAPA and CAPA. Moreover, we identify crucial knowledge gaps and formulate directions for future research.
Collapse
Affiliation(s)
- Simon Feys
- Medical Intensive Care Unit, University Hospitals Leuven, Leuven, Belgium; Department of Internal Medicine, University Hospitals Leuven, Leuven, Belgium; Department of Microbiology, Immunology, and Transplantation, KU Leuven, Leuven, Belgium.
| | - Agostinho Carvalho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's Associate Laboratory, Braga/ Guimarães, Portugal
| | - Cornelius J Clancy
- Division of Infectious Diseases, University of Pittsburgh, PA, USA; VA Pittsburgh Healthcare System, Pittsburgh, PA, USA
| | - Jean-Pierre Gangneux
- Université de Rennes, CHU Rennes, INSERM, EHESP, IRSET, UMR_S 1085, Rennes, France; Centre Hospitalier Universitaire de Rennes, Laboratoire de Parasitologie-Mycologie, ECMM Excellence Center in Medical Mycology, French National Reference Center on Mycoses and Antifungals (CNRMA-LA AspC), Rennes, France
| | - Martin Hoenigl
- Division of Infectious Diseases, ECMM Excellence Center in Medical Mycology, Department of Internal Medicine, Medical University of Graz, Graz, Austria; Translational Medical Mycology Research Group, Medical University of Graz, Graz, Austria; Bio TechMed-Graz, Graz, Austria
| | - Katrien Lagrou
- Department of Microbiology, Immunology, and Transplantation, KU Leuven, Leuven, Belgium; Department of Laboratory Medicine and National Reference Center for Mycosis, University Hospitals Leuven, Leuven, Belgium
| | - Bart J A Rijnders
- Department of Internal Medicine, Section of Infectious Diseases and Department of Medical Microbiology and Infectious Diseases, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| | | | - Lore Vanderbeke
- Department of Internal Medicine, University Hospitals Leuven, Leuven, Belgium
| | | | - Paul E Verweij
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, Netherlands; Center of Expertise for Mycology, Radboud University Medical Center/Canisius Wilhelmina Hospital, Nijmegen, Netherlands
| | - Joost Wauters
- Medical Intensive Care Unit, University Hospitals Leuven, Leuven, Belgium; Department of Internal Medicine, University Hospitals Leuven, Leuven, Belgium; Department of Microbiology, Immunology, and Transplantation, KU Leuven, Leuven, Belgium
| |
Collapse
|
8
|
Machado M, Fortún J, Muñoz P. Invasive aspergillosis: A comprehensive review. Med Clin (Barc) 2024; 163:189-198. [PMID: 38714471 DOI: 10.1016/j.medcli.2024.01.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/27/2024] [Accepted: 01/30/2024] [Indexed: 05/09/2024]
Abstract
Invasive aspergillosis (IA) is a severe fungal infection caused by Aspergillus species, particularly Aspergillus fumigatus, although new species, sometimes resistant to antifungals are becoming more common. IA predominantly affects immunocompromised patients, such as those with haematological malignancies, solid organ transplant recipients, and critically ill patients. However, new at-risk populations have emerged in recent years, such as IA associated with severe viral infections. Advanced diagnostic methods are crucial, especially considering the rising concern of antifungal resistance. Early detection is critical for successful treatment, typically involving antifungal medications like voriconazole or amphotericin B, but new antifungals are arriving to complete the therapeutic strategies. Despite advancements, mortality rates remain high, underscoring the importance of timely interventions and ongoing research. Healthcare providers should maintain a high index of suspicion, especially in immunocompromised patients and other new risk factors that are arising, to promptly diagnose and manage invasive aspergillosis.
Collapse
Affiliation(s)
- Marina Machado
- Clinical Microbiology and Infectious Diseases Department, Hospital General Universitario Gregorio Marañón, Madrid, Spain; Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain; Universidad de Alcalá, Escuela de Doctorado, Alcalá de Henares, Spain.
| | - Jesús Fortún
- Infectious Diseases Department, Hospital Ramón y Cajal, Madrid, Spain; Universidad de Alcalá, Escuela de Doctorado, Alcalá de Henares, Spain; IRYCIS: Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain; CIBER de Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
| | - Patricia Muñoz
- Clinical Microbiology and Infectious Diseases Department, Hospital General Universitario Gregorio Marañón, Madrid, Spain; Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain; CIBER de Enfermedades Respiratorias - CIBERES (CB06/06/0058), Madrid, Spain; Medicine Department, Faculty of Medicine, Universidad Complutense de Madrid, Spain
| |
Collapse
|
9
|
Imoto W, Ihara Y, Imai T, Kawai R, Yamada K, Kaneko Y, Shintani A, Kakeya H. Incidence and risk factors for coronavirus disease 2019-associated pulmonary aspergillosis using administrative claims data. Mycoses 2024; 67:e13773. [PMID: 39090076 DOI: 10.1111/myc.13773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/26/2024] [Accepted: 07/19/2024] [Indexed: 08/04/2024]
Abstract
BACKGROUND Coronavirus disease 2019 (COVID-19)-associated pulmonary aspergillosis (CAPA) is one of the noticeable complications of COVID-19 and its incidence varies widely. In Japan, research on the incidence, risk factors and mortality associated with CAPA is limited. OBJECTIVES This study aimed to explore the incidence and potential risk factors for CAPA in patients with severe or critical COVID-19 and evaluate the relationship between CAPA and mortality of patients with severe or critical COVID-19. METHODS We investigated the incidence of CAPA in patients with severe and critical COVID-19 using administrative claims data from acute care hospitals in Japan. We employed multivariable regression models to explore potential risk factors for CAPA and their contribution to mortality in patients with severe and critical COVID-19. RESULTS The incidence of CAPA was 0.4%-2.7% in 33,136 patients with severe to critical COVID-19. Age, male sex, chronic lung disease, steroids, immunosuppressants, intensive care unit admission, blood transfusion and dialysis were potential risk factors for CAPA in patients with severe to critical COVID-19. CAPA was an independent factor associated with mortality. CONCLUSIONS CAPA is a serious complication in patients with severe and critical COVID-19 and may increase mortality.
Collapse
Affiliation(s)
- Waki Imoto
- Department of Infection Control Science, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
- Department of Infectious Disease Medicine, Osaka Metropolitan University Hospital, Osaka, Japan
- Department of Infection Control and Prevention, Osaka Metropolitan University Hospital, Osaka, Japan
- Research Center for Infectious Disease Sciences (RCIDS), Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
- Osaka International Research for Infectious Diseases (OIRCID), Osaka Metropolitan University, Osaka, Japan
| | - Yasutaka Ihara
- Department of Medical Statistics, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
- Data Intelligence Department, Global DX, Daiichi Sankyo Co., Ltd, Tokyo, Japan
| | - Takumi Imai
- Department of Medical Statistics, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Ryota Kawai
- Department of Medical Statistics, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Koichi Yamada
- Department of Infection Control Science, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
- Department of Infectious Disease Medicine, Osaka Metropolitan University Hospital, Osaka, Japan
- Department of Infection Control and Prevention, Osaka Metropolitan University Hospital, Osaka, Japan
- Research Center for Infectious Disease Sciences (RCIDS), Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
- Osaka International Research for Infectious Diseases (OIRCID), Osaka Metropolitan University, Osaka, Japan
| | - Yukihiro Kaneko
- Research Center for Infectious Disease Sciences (RCIDS), Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
- Osaka International Research for Infectious Diseases (OIRCID), Osaka Metropolitan University, Osaka, Japan
- Department of Bacteriology, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Ayumi Shintani
- Department of Medical Statistics, Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
| | - Hiroshi Kakeya
- Department of Infection Control Science, Graduate School of Medicine, Osaka Metropolitan University, Osaka, Japan
- Department of Infectious Disease Medicine, Osaka Metropolitan University Hospital, Osaka, Japan
- Department of Infection Control and Prevention, Osaka Metropolitan University Hospital, Osaka, Japan
- Research Center for Infectious Disease Sciences (RCIDS), Osaka Metropolitan University Graduate School of Medicine, Osaka, Japan
- Osaka International Research for Infectious Diseases (OIRCID), Osaka Metropolitan University, Osaka, Japan
| |
Collapse
|
10
|
Sahin M, Yilmaz M, Mert A, Emecen AN, Rahman S. Al Maslamani MA, Mahmoud A. Hashim S, Ittaman AV, Wadi Al Ramahi J, Gergely Szabo B, Konopnicki D, Baskol Elik D, Lakatos B, Sipahi OR, Khedr R, Jalal S, Pshenichnaya N, Magdalena DI, El-Kholy A, Khan EA, Alkan S, Hakamifard A, Sincan G, Esmaoglu A, Makek MJ, Gurbuz E, Liskova A, Albayrak A, Stebel R, Unver Ulusoy T, Ripon RK, Moroti R, Dascalu C, Rashid N, Cortegiani A, Bahadir Z, Erdem H. Factors affecting mortality in COVID-19-associated pulmonary aspergillosis: An international ID-IRI study. Heliyon 2024; 10:e34325. [PMID: 39082033 PMCID: PMC11284427 DOI: 10.1016/j.heliyon.2024.e34325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 07/07/2024] [Accepted: 07/08/2024] [Indexed: 08/02/2024] Open
Abstract
Background This study aimed to identify factors that influence the mortality rate of patients with coronavirus disease (COVID-19)-associated pulmonary aspergillosis (CAPA). Methods In this cross-sectional study, data from 23 centers across 15 countries, spanning the period of March 2020 to December 2021, were retrospectively collected. The study population comprised patients who developed invasive pulmonary aspergillosis while being treated for COVID-19 in the intensive care unit. Cox regression and decision tree analyses were used to identify factors associated with mortality in patients with CAPA. Results A total of 162 patients (males, 65.4 %; median age: 64 [25th-75th: 54.0-73.8] years) were included in the study, of whom 113 died during the 90-day follow-up period. The median duration from CAPA diagnosis to death was 12 (25th-75th: 7-19) days. In the multivariable Cox regression model, an age of ≥65 years (hazard ratio [HR]: 2.05, 95 % confidence interval [CI]: 1.37-3.07), requiring vasopressor therapy at the time of CAPA diagnosis (HR: 1.80, 95 % CI: 1.17-2.76), and receiving renal replacement therapy at the time of CAPA diagnosis (HR: 2.27, 95 % CI: 1.35-3.82) were identified as predictors of mortality. Decision tree analysis revealed that patients with CAPA aged ≥65 years who received corticosteroid treatment for COVID-19 displayed higher mortality rates (estimated rate: 1.6, observed in 46 % of patients). Conclusion This study concluded that elderly patients with CAPA who receive corticosteroids are at a significantly higher risk of mortality, particularly if they experience multiorgan failure.
Collapse
Affiliation(s)
- Meyha Sahin
- Istanbul Medipol University, Infectious Diseases and Clinical Microbiology, Istanbul, Turkey
| | - Mesut Yilmaz
- Istanbul Medipol University, Infectious Diseases and Clinical Microbiology, Istanbul, Turkey
| | - Ali Mert
- Istanbul Medipol University, Infectious Diseases and Clinical Microbiology, Istanbul, Turkey
| | - Ahmet Naci Emecen
- Dokuz Eylul University, Research and Application Hospital, Izmir, Turkey
| | | | - Samar Mahmoud A. Hashim
- Communicable Disease Center / Infectious Disease – Medicine Department, Hamad Medical Corporation, Doha, Qatar
| | | | | | - Balint Gergely Szabo
- South Pest Central Hospital, National Institute of Hematology and Infectious Diseases, Budapest, Hungary
| | - Deborah Konopnicki
- Université Libre de Bruxelles, Saint-Pierre University Hospital, Infectious Diseases Department, Bruxelles, Belgium
| | - Dilsah Baskol Elik
- Ege University, Faculty of Medicine, Department of Infectious Diseases and Clinical Microbiology, Izmir, Turkey
| | - Botond Lakatos
- South Pest Central Hospital, National Institute of Hematology and Infectious Diseases, Budapest, Hungary
| | - Oguz Resat Sipahi
- Ege University, Faculty of Medicine, Department of Infectious Diseases and Clinical Microbiology, Izmir, Turkey
| | - Reham Khedr
- National Cancer Institute - Cairo University / Children's Cancer Hospital Egypt, Department of Pediatric Oncology, Cairo, Egypt
| | | | - Natalia Pshenichnaya
- Central Research Institute of Epidemiology, Department of Infectious Diseases, Moscow, Russia
| | | | - Amani El-Kholy
- Cairo University, Faculty of Medicine, Department of Clinical Pathology, Cairo, Egypt
| | - Ejaz Ahmed Khan
- Shifa Tameer-e-Millat University and Shifa International Hospital, Infectious Diseases Division, Islamabad, Pakistan
| | - Sevil Alkan
- Canakkale Onsekiz Mart University, Faculty of Medicine, Department of Infectious Diseases and Clinical Microbiology, Canakkale, Turkey
| | - Atousa Hakamifard
- Department of Infectious Diseases, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Gulden Sincan
- Ataturk University, Faculty of Medicine, Department of Haematology, Erzurum, Turkey
| | - Aliye Esmaoglu
- Erciyes University, Faculty of Medicine, Department of Anesthesiology and Reanimation, Kayseri, Turkey
| | - Mateja Jankovic Makek
- University of Zagreb School of Medicine, Zagreb, Croatia
- Clinic for Lung Diseases, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Esra Gurbuz
- University of Health Sciences, Van Training and Research Hospital, Van, Turkey
| | - Anna Liskova
- Hospital Nitra, Department of Clinical Microbiology, St. Elizabeth University of Health and Social Sciences Bratislava, Slovakia
| | - Ayse Albayrak
- Ataturk University, Faculty of Medicine, Department of Infectious Diseases and Clinical Microbiology, Erzurum, Turkey
| | - Roman Stebel
- University Hospital Brno and Faculty of Medicine, Masaryk University, Department of Infectious Diseases, Brno, Czech Republic
| | - Tulay Unver Ulusoy
- University of Health Sciences, Diskapi Yildirim Beyazit Training and Research Hospital, Infectious Diseases and Clinical Microbiology, Ankara, Turkey
| | - Rezaul Karim Ripon
- Jahangirnagar University, Department of Public Health and Informatics, Savar, Dhaka, Bangladesh
| | - Ruxandra Moroti
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
- National Institute for Infectious Diseases Matei Bals, Bucharest, Romania
| | - Cosmin Dascalu
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Naveed Rashid
- Shifa Tameer-e-Millat University and Shifa International Hospital, Infectious Diseases Division, Islamabad, Pakistan
| | - Andrea Cortegiani
- Department of Surgical Oncological and Oral Science (Di.Chir.On.S.), University of Palermo. Department of Anesthesia Intensive Care and Emergency, University Hospital Policlinico “Paolo Giaccone”, Palermo, Italy
| | - Zeynep Bahadir
- Istanbul Medipol University Medical School, Istanbul, Turkey
| | - Hakan Erdem
- University of Health Sciences, Gulhane School of Medicine, Department of Infectious Diseases and Clinical Microbiology, Ankara, Turkey
| |
Collapse
|
11
|
Bassetti M, Vena A, Bavastro M, Giacobbe DR. Optimizing Antifungal Treatment Strategies to Prevent Invasive Pulmonary Aspergillosis Infection-Related Deaths in Intensive Care Unit Patients: The Need for Standardization of Research Definitions. Mycopathologia 2024; 189:69. [PMID: 39066809 PMCID: PMC11283379 DOI: 10.1007/s11046-024-00879-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 07/18/2024] [Indexed: 07/30/2024]
Abstract
The clinical spectrum of invasive pulmonary aspergillosis (IPA) has expanded in recent decades. A large group of patients admitted to intensive care units (ICU) is indeed susceptible to the development of IPA. Although timely diagnosis and antifungal therapy of IPA in this expanding population is crucial to prevent IPA-related deaths, the magnitude of the favorable prognostic impact of antifungal therapy is difficult to measure precisely. In our opinion, the development of standardized research definitions could have favorable implications for further improving our ability both to measure the favorable effect of antifungal treatment and to prevent IPA-related death in ICU patients.
Collapse
Affiliation(s)
- Matteo Bassetti
- Infectious Diseases Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Health Sciences (DISSAL), University of Genoa, Via A. Pastore 1, 16132, Genoa, Italy
| | - Antonio Vena
- Infectious Diseases Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Health Sciences (DISSAL), University of Genoa, Via A. Pastore 1, 16132, Genoa, Italy
| | - Martina Bavastro
- Infectious Diseases Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Health Sciences (DISSAL), University of Genoa, Via A. Pastore 1, 16132, Genoa, Italy
| | - Daniele Roberto Giacobbe
- Infectious Diseases Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy.
- Department of Health Sciences (DISSAL), University of Genoa, Via A. Pastore 1, 16132, Genoa, Italy.
| |
Collapse
|
12
|
Sedik S, Boyer J, Egger M, Dichtl K, Prattes J, Prüller F, Hoenigl M. Comparative Analysis of the Clarus Aspergillus Galactomannan Enzyme Immunoassay Prototype for the Diagnosis of Invasive Pulmonary Aspergillosis in Bronchoalveolar Lavage Fluid. Mycopathologia 2024; 189:67. [PMID: 39023825 PMCID: PMC11258175 DOI: 10.1007/s11046-024-00876-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 07/04/2024] [Indexed: 07/20/2024]
Abstract
BACKGROUND Galactomannan (GM) testing using Platelia Aspergillus enzyme immunoassay (Platelia AGM) from bronchoalveolar lavage fluid (BALF) aids in early diagnosis of invasive pulmonary aspergillosis (IPA). Globally, only a minority of laboratories have the capability to perform on-site GM testing, necessitating accessible and affordable alternatives. Hence, we conducted a comparative evaluation of the new clarus Aspergillus GM enzyme immunoassay prototype (clarus AGM prototype) with Platelia AGM using BALF samples. METHODS This is a single-center, prospective, cross-sectional study, where Platelia AGM testing was routinely performed followed by clarus AGM prototype testing in those with true positive or true negative AGM test results according to the 2020 EORTC/MSG and the 2024 FUNDICU consensus definitions. Descriptive statistics, ROC curve analysis, and Spearman's correlation analysis were used to evaluate analytical performance of the clarus AGM prototype assay. RESULTS This study enrolled 259 adult patients, of which 53 (20%) were classified as probable IPA, while 206 did not fulfill IPA-criteria. Spearman's correlation analysis revealed a strong correlation between the two assays (rho = 0.727, p < 0.001). The clarus AGM prototype had a sensitivity of 96% (51/53) and a specificity of 74% (153/206) for differentiating probable versus no IPA when using the manufacturer recommended cut-off. ROC curve analysis showed an AUC of 0.936 (95% CI 0.901-0.971) for the clarus AGM prototype, while the Platelia AGM yielded an AUC of 0.918 (95% CI 0.876-0.959). CONCLUSIONS Clarus AGM prototype demonstrated a strong correlation and promising test performance, comparable to Platelia AGM, rendering it a viable alternative in patients at risk of IPA.
Collapse
Affiliation(s)
- Sarah Sedik
- Division of Infectious Diseases, Department of Internal Medicine, Medical University of Graz, ECMM Excellence Center, Auenbruggerplatz 15, 8036, Graz, Austria
- Translational Mycology, Medical University of Graz, Graz, Austria
| | - Johannes Boyer
- Division of Infectious Diseases, Department of Internal Medicine, Medical University of Graz, ECMM Excellence Center, Auenbruggerplatz 15, 8036, Graz, Austria
- Translational Mycology, Medical University of Graz, Graz, Austria
| | - Matthias Egger
- Division of Infectious Diseases, Department of Internal Medicine, Medical University of Graz, ECMM Excellence Center, Auenbruggerplatz 15, 8036, Graz, Austria
- Translational Mycology, Medical University of Graz, Graz, Austria
| | - Karl Dichtl
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Graz, Austria
| | - Juergen Prattes
- Division of Infectious Diseases, Department of Internal Medicine, Medical University of Graz, ECMM Excellence Center, Auenbruggerplatz 15, 8036, Graz, Austria.
- Translational Mycology, Medical University of Graz, Graz, Austria.
| | - Florian Prüller
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Martin Hoenigl
- Division of Infectious Diseases, Department of Internal Medicine, Medical University of Graz, ECMM Excellence Center, Auenbruggerplatz 15, 8036, Graz, Austria.
- Translational Mycology, Medical University of Graz, Graz, Austria.
- BioTechMed-Graz, Graz, Austria.
| |
Collapse
|
13
|
Monzó-Gallo P, Lopera C, Badía-Tejero AM, Machado M, García-Rodríguez J, Vidal-Cortés P, Merino E, Calderón J, Fortún J, Palacios-Baena ZR, Pemán J, Sanchis JR, Aguilar-Guisado M, Gudiol C, Ramos JC, Sánchez-Romero I, Martin-Davila P, López-Cortés LE, Salavert M, Ruiz-Camps I, Chumbita M, Aiello TF, Peyrony O, Puerta-Alcalde P, Soriano A, Marco F, Garcia-Vidal C. Safety and effectiveness of isavuconazole in real-life non-neutropenic patients. Int J Infect Dis 2024; 144:107070. [PMID: 38663477 DOI: 10.1016/j.ijid.2024.107070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/09/2024] [Accepted: 04/22/2024] [Indexed: 05/19/2024] Open
Abstract
OBJECTIVES Information is scarce on clinical experiences with non-neutropenic patients with invasive fungal infection (IFI) receiving isavuconazole. We aimed to report the safety and effectiveness of this drug as a first-line treatment or rescue in real life. METHODS A retrospective, observational multicentric study of non-neutropenic patients who received isavuconazole as an IFI treatment at 12 different university hospitals (January 2018-2022). All patients met criteria for proven, probable or possible IFI according to EORTC-MSG. RESULTS A total of 238 IFIs were treated with isavuconazole during the study period. Combination therapy was administered in 27.7% of cases. The primary IFI was aspergillosis (217, 91.2%). Other IFIs treated with isavuconazole were candidemia (n = 10), mucormycosis (n = 8), histoplasmosis (n = 2), cryptococcosis (n = 2), and others (n = 4). Median time of isavuconazole treatment was 29 days. Only 5.9% (n = 14) of cases developed toxicity, mainly hepatic-related (10 patients, 4.2%). Nine patients (3.8%) had treatment withdrawn. Successful clinical response at 12 weeks was documented in 50.5% of patients. CONCLUSION Isavuconazole is an adequate treatment for non-neutropenic patients with IFIs. Toxicity rates were low and its effectiveness was comparable to other antifungal therapies previously reported.
Collapse
Affiliation(s)
- Patricia Monzó-Gallo
- Department of Infectious Diseases, Hospital Clinic of Barcelona-IDIBAPS, University of Barcelona, Barcelona, Spain; Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), c. Casanova, 143, 08036 Barcelona, Spain
| | - Carlos Lopera
- Department of Infectious Diseases, Hospital Clinic of Barcelona-IDIBAPS, University of Barcelona, Barcelona, Spain; Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), c. Casanova, 143, 08036 Barcelona, Spain
| | - Ana M Badía-Tejero
- Department of Infectious Diseases, Hospital of Bellvitge, Barcelona, Spain
| | - Marina Machado
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid - Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
| | - Julio García-Rodríguez
- Infectious Diseases Unit, University Hospital La Paz, Instituto de Investigación Sanitaria del Hospital Universitario La Paz (IdiPAZ), Madrid, Spain; CIBER Enfermedades Infecciosas (CIBERINFEC), ISCIII, Madrid, Spain
| | | | - Esperanza Merino
- Department of Infectious Diseases, Hospital General Universitario Dr. Balmis - Instituto, Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain
| | - Jorge Calderón
- Department of Infectious Diseases, University Hospital Puerta de Hierro, Madrid, Spain
| | - Jesús Fortún
- Department of Infectious Diseases, University Hospital Ramon y Cajal, Madrid, Spain
| | - Zaira R Palacios-Baena
- Infectious Diseases and Microbiology Clinical Unit, University Hospital Virgen Macarena, Institute of Biomedicine of Seville (IBiS) and CSIC, Seville, Spain; CIBER Enfermedades Infecciosas (CIBERINFEC), ISCIII, Madrid, Spain
| | - Javier Pemán
- Infectious Diseases Unit (Medical Clinical Department), University and Polytechnic Hospital La Fe, La Fe Health Research Institute (IIS-La Fe), Valencia, Spain
| | - Joan Roig Sanchis
- Department of Infectious Diseases, University Hospital Vall d'Hebron, Barcelona, Spain
| | - Manuela Aguilar-Guisado
- Unit of Infectious Diseases, Microbiology and Parasitology, Virgen del Rocío University Hospital, Seville, Spain; CIBER Enfermedades Infecciosas (CIBERINFEC), ISCIII, Madrid, Spain
| | - Carlota Gudiol
- Department of Infectious Diseases, Hospital of Bellvitge, Barcelona, Spain; CIBER Enfermedades Infecciosas (CIBERINFEC), ISCIII, Madrid, Spain
| | - Juan C Ramos
- Infectious Diseases Unit, University Hospital La Paz, Instituto de Investigación Sanitaria del Hospital Universitario La Paz (IdiPAZ), Madrid, Spain; CIBER Enfermedades Infecciosas (CIBERINFEC), ISCIII, Madrid, Spain
| | - Isabel Sánchez-Romero
- Department of Infectious Diseases, University Hospital Puerta de Hierro, Madrid, Spain
| | - Pilar Martin-Davila
- Department of Infectious Diseases, University Hospital Ramon y Cajal, Madrid, Spain
| | - Luis E López-Cortés
- Infectious Diseases and Microbiology Clinical Unit, University Hospital Virgen Macarena, Institute of Biomedicine of Seville (IBiS) and CSIC, Seville, Spain; CIBER Enfermedades Infecciosas (CIBERINFEC), ISCIII, Madrid, Spain
| | - Miguel Salavert
- Infectious Diseases Unit (Medical Clinical Department), University and Polytechnic Hospital La Fe, La Fe Health Research Institute (IIS-La Fe), Valencia, Spain
| | - Isabel Ruiz-Camps
- Department of Infectious Diseases, University Hospital Vall d'Hebron, Barcelona, Spain
| | - Mariana Chumbita
- Department of Infectious Diseases, Hospital Clinic of Barcelona-IDIBAPS, University of Barcelona, Barcelona, Spain; Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), c. Casanova, 143, 08036 Barcelona, Spain
| | - Tommaso Francesco Aiello
- Department of Infectious Diseases, Hospital Clinic of Barcelona-IDIBAPS, University of Barcelona, Barcelona, Spain; Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), c. Casanova, 143, 08036 Barcelona, Spain
| | - Olivier Peyrony
- Department of Infectious Diseases, Hospital Clinic of Barcelona-IDIBAPS, University of Barcelona, Barcelona, Spain; Emergency Department, Hôpital Saint Louis, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Pedro Puerta-Alcalde
- Department of Infectious Diseases, Hospital Clinic of Barcelona-IDIBAPS, University of Barcelona, Barcelona, Spain
| | - Alex Soriano
- Department of Infectious Diseases, Hospital Clinic of Barcelona-IDIBAPS, University of Barcelona, Barcelona, Spain; Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), c. Casanova, 143, 08036 Barcelona, Spain.; CIBER Enfermedades Infecciosas (CIBERINFEC), ISCIII, Madrid, Spain
| | - Francesc Marco
- Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), c. Casanova, 143, 08036 Barcelona, Spain.; Department of Microbiology, Hospital Clinic of Barcelona, Barcelona, Spain
| | - Carolina Garcia-Vidal
- Department of Infectious Diseases, Hospital Clinic of Barcelona-IDIBAPS, University of Barcelona, Barcelona, Spain; Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona (UB), c. Casanova, 143, 08036 Barcelona, Spain.; CIBER Enfermedades Infecciosas (CIBERINFEC), ISCIII, Madrid, Spain.
| |
Collapse
|
14
|
Permpalung N, Chiang TPY, Manothummetha K, Ostrander D, Datta K, Segev DL, Durand CM, Mostafa HH, Zhang SX, Massie AB, Marr KA, Avery RK. Invasive Fungal Infections in Inpatient Solid Organ Transplant Recipients With COVID-19: A Multicenter Retrospective Cohort. Transplantation 2024; 108:1613-1622. [PMID: 38419156 DOI: 10.1097/tp.0000000000004947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
BACKGROUND The prevalence and outcomes of COVID-19-associated invasive fungal infections (CAIFIs) in solid organ transplant recipients (SOTRs) remain poorly understood. METHODS A retrospective cohort study of SOTRs with COVID-19 admitted to 5 hospitals within Johns Hopkins Medicine was performed between March 2020 and March 2022. Cox regression multilevel mixed-effects ordinal logistic regression was used. RESULTS In the cohort of 276 SOTRs, 22 (8%) developed IFIs. The prevalence of CAIFIs was highest in lung transplant recipients (20%), followed by recipients of heart (2/28; 7.1%), liver (3/46; 6.5%), and kidney (7/149; 4.7%) transplants. In the overall cohort, only 42 of 276 SOTRs (15.2%) required mechanical ventilation; these included 11 of 22 SOTRs (50%) of the CAIFI group and 31 of 254 SOTRs (12.2%) of the no-CAIFI group. Compared with those without IFIs, SOTs with IFIs had worse outcomes and required more advanced life support (high-flow oxygen, vasopressor, and dialysis). SOTRs with CAIFIs had higher 1-y death-censored allograft failure (hazard ratio 1.6 5.1 16.4 , P = 0.006) and 1-y mortality adjusting for oxygen requirement (adjusted hazard ratio 1.1 2.4 5.1 , P < 0.001), compared with SOTRs without CAIFIs. CONCLUSIONS The prevalence of CAIFIs in inpatient SOTRs with COVID-19 is substantial. Clinicians should be alert to the possibility of CAIFIs in SOTRs with COVID-19, particularly those requiring supplemental oxygen, regardless of their intubation status.
Collapse
Affiliation(s)
- Nitipong Permpalung
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Teresa Po-Yu Chiang
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Surgery, NYU Grossman School of Medicine, NYU Langone Health, New York, NY
| | - Kasama Manothummetha
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Darin Ostrander
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD
| | | | - Dorry L Segev
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Surgery, NYU Grossman School of Medicine, NYU Langone Health, New York, NY
- Department of Epidemiology, Johns Hopkins School of Public Health, Baltimore, MD
| | - Christine M Durand
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Heba H Mostafa
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Sean X Zhang
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Allan B Massie
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Surgery, NYU Grossman School of Medicine, NYU Langone Health, New York, NY
- Department of Epidemiology, Johns Hopkins School of Public Health, Baltimore, MD
| | - Kieren A Marr
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
- Pearl Diagnostics, Baltimore, MD
| | - Robin K Avery
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
15
|
Koulenti D, Paramythiotou E, Almyroudi MP, Karvouniaris M, Markou N, Paranos P, Routsi C, Meletiadis J, Blot S. Severe mold fungal infections in critically ill patients with COVID-19. Future Microbiol 2024; 19:825-840. [PMID: 38700287 PMCID: PMC11290760 DOI: 10.2217/fmb-2023-0261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/20/2024] [Indexed: 05/05/2024] Open
Abstract
The SARS-CoV-2 pandemic put an unprecedented strain on modern societies and healthcare systems. A significantly higher incidence of invasive fungal co-infections was noted compared with the pre-COVID-19 era, adding new diagnostic and therapeutic challenges in the critical care setting. In the current narrative review, we focus on invasive mold infections caused by Aspergillus and Mucor species in critically ill COVID-19 patients. We discuss up-to-date information on the incidence, pathogenesis, diagnosis and treatment of these mold-COVID-19 co-infections, as well as recommendations on preventive and prophylactic interventions. Traditional risk factors were often not recognized in COVID-19-associated aspergillosis and mucormycosis, highlighting the role of other determinant risk factors. The associated patient outcomes were worse compared with COVID-19 patients without mold co-infection.
Collapse
Affiliation(s)
- Despoina Koulenti
- Department of Critical Care Medicine, King's College Hospital NHS Foundation Trust, London, UK
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | | | - Maria Panagiota Almyroudi
- Emergency Department, Attikon University Hospital, National & Kapodistrian University of Athens, Greece
| | | | - Nikolaos Markou
- Intensive Care Unit of Latseio Burns Centre, Thriasio General Hospital of Elefsina, Greece
| | - Paschalis Paranos
- Clinical Microbiology Laboratory, Attikon University Hospital, National & Kapodistrian Uni-versity of Athens, Greece
| | - Christina Routsi
- First Department of Intensive Care, School of Medicine, National & Kapodistrian University of Athens, Evangelismos General Hospital, Athens, Greece
| | - Joseph Meletiadis
- Clinical Microbiology Laboratory, Attikon University Hospital, National & Kapodistrian Uni-versity of Athens, Greece
| | - Stijn Blot
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Australia
- Department of Internal Medicine & Pediatrics, Ghent University, Ghent, Belgium
| |
Collapse
|
16
|
Gonçalves SM, Pereira I, Feys S, Cunha C, Chamilos G, Hoenigl M, Wauters J, van de Veerdonk FL, Carvalho A. Integrating genetic and immune factors to uncover pathogenetic mechanisms of viral-associated pulmonary aspergillosis. mBio 2024; 15:e0198223. [PMID: 38651925 PMCID: PMC11237550 DOI: 10.1128/mbio.01982-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024] Open
Abstract
Invasive pulmonary aspergillosis is a severe fungal infection primarily affecting immunocompromised patients. Individuals with severe viral infections have recently been identified as vulnerable to developing invasive fungal infections. Both influenza-associated pulmonary aspergillosis (IAPA) and COVID-19-associated pulmonary aspergillosis (CAPA) are linked to high mortality rates, emphasizing the urgent need for an improved understanding of disease pathogenesis to unveil new molecular targets with diagnostic and therapeutic potential. The recent establishment of animal models replicating the co-infection context has offered crucial insights into the mechanisms that underlie susceptibility to disease. However, the development and progression of human viral-fungal co-infections exhibit a significant degree of interindividual variability, even among patients with similar clinical conditions. This observation implies a significant role for host genetics, but information regarding the genetic basis for viral-fungal co-infections is currently limited. In this review, we discuss how genetic factors known to affect either antiviral or antifungal immunity could potentially reveal pathogenetic mechanisms that predispose to IAPA or CAPA and influence the overall disease course. These insights are anticipated to foster further research in both pre-clinical models and human patients, aiming to elucidate the complex pathophysiology of viral-associated pulmonary aspergillosis and contributing to the identification of new diagnostic and therapeutic targets to improve the management of these co-infections.
Collapse
Affiliation(s)
- Samuel M Gonçalves
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Guimarães/Braga, Portugal
| | - Inês Pereira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Guimarães/Braga, Portugal
| | - Simon Feys
- Medical Intensive Care Unit, Department of General Internal Medicine, University Hospitals Leuven, Leuven, Belgium
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Cristina Cunha
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Guimarães/Braga, Portugal
| | - Georgios Chamilos
- Laboratory of Clinical Microbiology and Microbial Pathogenesis, School of Medicine, University of Crete, Heraklion, Crete, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Heraklion, Crete, Greece
| | - Martin Hoenigl
- Division of Infectious Diseases, ECMM Excellence Center for Medical Mycology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
- BioTechMed, Graz, Austria
| | - Joost Wauters
- Medical Intensive Care Unit, Department of General Internal Medicine, University Hospitals Leuven, Leuven, Belgium
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Frank L van de Veerdonk
- Department of Internal Medicine, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands
- Radboud Center for Infectious Diseases (RCI), Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands
| | - Agostinho Carvalho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Guimarães/Braga, Portugal
| |
Collapse
|
17
|
Trápaga MR, Poester VR, Basso RP, Blan BDS, Munhoz LS, Pasqualotto AC, Werner TDF, Figurelli ML, Stevens DA, von Groll A, Xavier MO. Aspergillosis in Critically Ill Patients with and Without COVID-19 in a Tertiary Hospital in Southern Brazil. Mycopathologia 2024; 189:48. [PMID: 38847987 DOI: 10.1007/s11046-024-00862-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/18/2024] [Indexed: 06/20/2024]
Abstract
The impact of invasive pulmonary aspergillosis (IPA) on non-neutropenic critically ill patients in intensive care units (ICU) has been demonstrated in recent decades. Furthermore, after the start of the COVID-19 pandemic, COVID-19 associated with pulmonary aspergillosis (CAPA) has become a major concern in ICUs. However, epidemiological data from different regions are scarce. We evaluated the prevalence and clinical-epidemiological data of IPA in patients with COVID-19 requiring mechanical ventilation (MV) in the ICU ("severe COVID-19") and non-COVID ICU patients in MV of a tertiary hospital in the southern region of Brazil. Eighty-seven patients admitted between June 2020 and August 2022 were included; 31 with severe COVID-19. For the diagnosis of IPA or CAPA, algorithms including host factors and mycological criteria (positive culture for Aspergillus spp., immunoassay for galactomannan detection, and/or qPCR) were utilized. The overall incidence of IPA and CAPA in our ICU was 73 cases/1000 ICU hospitalizations. Aspergillosis occurred in 13% (4/31) of the COVID-19 patients, and in 16% (9/56) of the critically ill patients without COVID-19, with mortality rates of 75% (3/4) and 67% (6/9), respectively. Our results highlight the need for physicians enrolled in ICU care to be aware of aspergillosis and for more access of the patients to sensitive and robust diagnostic tests by biomarkers detection.
Collapse
Affiliation(s)
- Mariana Rodrigues Trápaga
- Programa de Pós-Graduação em Ciências da Saúde, Faculdade de Medicina, Universidade Federal do Rio Grande, Rio Grande, RS, Brazil
- Laboratório de Micologia, Faculdade de Medicina, Universidade Federal do Rio Grande, Rio Grande, RS, Brazil
| | - Vanice Rodrigues Poester
- Programa de Pós-Graduação em Ciências da Saúde, Faculdade de Medicina, Universidade Federal do Rio Grande, Rio Grande, RS, Brazil
- Laboratório de Micologia, Faculdade de Medicina, Universidade Federal do Rio Grande, Rio Grande, RS, Brazil
| | - Rossana Patrícia Basso
- Laboratório de Micologia, Faculdade de Medicina, Universidade Federal do Rio Grande, Rio Grande, RS, Brazil
- Hospital Universitário Dr. Miguel Riet Correa Jr., Universidade Federal do Rio Grande, Rio Grande, RS, Brazil
| | - Bianca Dos Santos Blan
- Programa de Pós-Graduação em Ciências da Saúde, Faculdade de Medicina, Universidade Federal do Rio Grande, Rio Grande, RS, Brazil
- Laboratório de Micologia, Faculdade de Medicina, Universidade Federal do Rio Grande, Rio Grande, RS, Brazil
| | - Lívia Silveira Munhoz
- Laboratório de Micologia, Faculdade de Medicina, Universidade Federal do Rio Grande, Rio Grande, RS, Brazil
| | - Alessandro C Pasqualotto
- Laboratório de Biologia Molecular, Santa Casa de Misericórdia, Porto Alegre, RS, Brazil
- Programa de Pós-Graduação em Patologia, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| | - Talita da Fontoura Werner
- Hospital Universitário Dr. Miguel Riet Correa Jr., Universidade Federal do Rio Grande, Rio Grande, RS, Brazil
| | - Maria Letícia Figurelli
- Hospital Universitário Dr. Miguel Riet Correa Jr., Universidade Federal do Rio Grande, Rio Grande, RS, Brazil
| | - David A Stevens
- California Institute for Medical Research, San Jose, CA, USA
- Division of Infectious Diseases and Geographic Medicine, Stanford University Medical School, Stanford, CA, USA
| | - Andrea von Groll
- Programa de Pós-Graduação em Ciências da Saúde, Faculdade de Medicina, Universidade Federal do Rio Grande, Rio Grande, RS, Brazil
- Núcleo de Pesquisa em Microbiologia Médica, Universidade Federal do Rio Grande, Rio Grande, RS, Brazil
| | - Melissa Orzechowski Xavier
- Programa de Pós-Graduação em Ciências da Saúde, Faculdade de Medicina, Universidade Federal do Rio Grande, Rio Grande, RS, Brazil.
- Laboratório de Micologia, Faculdade de Medicina, Universidade Federal do Rio Grande, Rio Grande, RS, Brazil.
| |
Collapse
|
18
|
Boyer J, Sedik S, Egger M, Dichtl K, Prattes J, Kriegl L, Krause R, Prüller F, Hoenigl M. Performance of the clarus Aspergillus galactomannan enzyme immunoassay prototype for the diagnosis of invasive pulmonary aspergillosis in serum. Mycoses 2024; 67:e13756. [PMID: 38886163 DOI: 10.1111/myc.13756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/05/2024] [Accepted: 06/10/2024] [Indexed: 06/20/2024]
Abstract
BACKGROUND Serum galactomannan (GM) testing is essential for diagnosing invasive aspergillosis (IA), particularly in immunocompromised individuals. The global lack of on-site GM testing capacities necessitates cost-effective alternatives, such as .the clarus Aspergillus GM enzyme immunoassay prototype (clarus AGM prototype). METHODS This single-centre, cross-sectional study compared the diagnostic performance of the clarus AGM prototype (IMMY, Norman, Oklahoma) with the serological gold standard (=Platelia AGM assay; Bio-Rad, Marnes-la-Cocquette, France). IA was classified according to modified 2020 EORTC/MSG consensus and 2024 FUNDICU criteria. In total, 300 prospectively (May-Dec 2023) and retrospectively (2012-2015) collected samples were included. RESULTS Among 300 samples from 232 patients, 49 (16%) were classified as proven (n = 1) or probable IA (n = 48). In non-IA cases (n = 250), one patient was classified as possible IA. With the manufacturer recommended cut-off of ≥0.2, sensitivity and specificity of the clarus AGM prototype were 27% (13/49; 95% confidence interval [CI]: 15%-41%) and 99% (248/250; 95% CI: 97%-100%), respectively, while sensitivity and specificity were 78% and 79% when using the optimised Youden's cut-off of 0.0045 ODI. ROC curve analysis demonstrated an area under the curve (AUC) of 0.829 (95% CI: 0.760-0.898) for the clarus AGM prototype in distinguishing between proven/probable IA and non-IA. The AUC for the Platelia AGM was 0.951 (95% CI: 0.909-994). Spearman's correlation analysis showed a weak correlation between the two assays (0.382; p < .001). CONCLUSIONS The weak correlation between the clarus AGM prototype and Platelia AGM highlights the need for further investigation into the clinical performance of the clarus AGM prototype, giving the different antigen epitopes addressed.
Collapse
Affiliation(s)
- Johannes Boyer
- Division of Infectious Diseases, Department of Internal Medicine, Medical University of Graz, ECMM Excellence Center, Graz, Austria
- Translational Mycology, Medical University of Graz, Graz, Austria
| | - Sarah Sedik
- Division of Infectious Diseases, Department of Internal Medicine, Medical University of Graz, ECMM Excellence Center, Graz, Austria
- Translational Mycology, Medical University of Graz, Graz, Austria
| | - Matthias Egger
- Division of Infectious Diseases, Department of Internal Medicine, Medical University of Graz, ECMM Excellence Center, Graz, Austria
- Translational Mycology, Medical University of Graz, Graz, Austria
| | - Karl Dichtl
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University of Graz, Graz, Austria
| | - Juergen Prattes
- Division of Infectious Diseases, Department of Internal Medicine, Medical University of Graz, ECMM Excellence Center, Graz, Austria
- Translational Mycology, Medical University of Graz, Graz, Austria
| | - Lisa Kriegl
- Division of Infectious Diseases, Department of Internal Medicine, Medical University of Graz, ECMM Excellence Center, Graz, Austria
- Translational Mycology, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Robert Krause
- Division of Infectious Diseases, Department of Internal Medicine, Medical University of Graz, ECMM Excellence Center, Graz, Austria
- Translational Mycology, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Florian Prüller
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Martin Hoenigl
- Division of Infectious Diseases, Department of Internal Medicine, Medical University of Graz, ECMM Excellence Center, Graz, Austria
- Translational Mycology, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| |
Collapse
|
19
|
Jenks JD, Hoenigl M, Thompson GR. Study protocol: A randomized, double-blind, placebo-controlled trial of isavuconazole prophylaxis for the prevention of covid-19-associated pulmonary aspergillosis. Contemp Clin Trials Commun 2024; 39:101310. [PMID: 38832095 PMCID: PMC11144754 DOI: 10.1016/j.conctc.2024.101310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/28/2024] [Accepted: 05/16/2024] [Indexed: 06/05/2024] Open
Abstract
Background During the early stages of the coronavirus disease 2019 (COVID-19) pandemic, those with severe COVID-19 infection were at risk for a number of opportunistic infections including COVID-19-associated pulmonary aspergillosis (CAPA). We initiated a randomized clinical trial to evaluate whether isavuconazole, a triazole antifungal, could prevent CAPA and improve survival in patients admitted to the ICU with severe COVID-19 infection. Methods We designed a phase III/IV randomized, double-blind, two-arm, placebo-controlled trial evaluating standard of care (SOC) plus isavuconazole versus SOC plus placebo and were to enroll participants admitted to the ICU with severe COVID-19 infection at three medical centers in California, United States. The projected sample size was 162 participants. Results Due to poor enrollment and the declining number of COVID-19 cases over time, the study was terminated after 7 participants were enrolled, all enrolled at one study site (UC San Diego Health). CAPA was suspected in two participants and they were started on open-label isavuconazole. One was withdrawn due to possible isavuconazole-related adverse side effects. Conclusion Enrollment was slower-than-expected due to multiple factors, including competing COVID-19-related studies and hesitancy from potential study participants or their families to join the study. Our experience highlights some of the difficulties in planning and running a clinical trial focused on fungal superinfections involving severely ill patients during the height of the COVID-19 pandemic. Lessons learned from this study will help in the design of proposed studies examining antifungal prophylaxis against aspergillosis following other severe respiratory viral infections.
Collapse
Affiliation(s)
- Jeffrey D. Jenks
- Durham County Department of Public Health, Durham, NC, USA
- Division of Infectious Diseases, Department of Medicine, Duke University, Durham, NC, USA
| | - Martin Hoenigl
- Division of Infectious Diseases, ECMM Excellence Center for Medical Mycology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
- BioTechMed, Graz, Austria
| | - George R. Thompson
- University of California Davis Center for Valley Fever, Sacramento, CA, USA
- Department of Internal Medicine, Division of Infectious Diseases, University of California Davis Medical Center, Sacramento, CA, USA
- Department of Medical Microbiology and Immunology, University of California Davis, Davis, CA, USA
| |
Collapse
|
20
|
Al Dhaheri F, Thomsen J, Everett D, Denning DW. Mapping the Burden of Fungal Diseases in the United Arab Emirates. J Fungi (Basel) 2024; 10:353. [PMID: 38786708 PMCID: PMC11121979 DOI: 10.3390/jof10050353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/09/2024] [Accepted: 04/23/2024] [Indexed: 05/25/2024] Open
Abstract
The United Arab Emirates has very little data on the incidence or prevalence of fungal diseases. Using total and underlying disease risk populations and likely affected proportions, we have modelled the burden of fungal disease for the first time. The most prevalent serious fungal conditions are recurrent vulvovaginitis (~190,000 affected) and fungal asthma (~34,000 affected). Given the UAE's low prevalence of HIV, we estimate an at-risk population of 204 with respect to serious fungal infections with cryptococcal meningitis estimated at 2 cases annually, 15 cases of Pneumocystis pneumonia (PCP) annually, and 20 cases of esophageal candidiasis in the HIV population. PCP incidence in non-HIV patients is estimated at 150 cases annually. Likewise, with the same low prevalence of tuberculosis in the country, we estimate a total chronic pulmonary aspergillosis prevalence of 1002 cases. The estimated annual incidence of invasive aspergillosis is 505 patients, based on local data on rates of malignancy, solid organ transplantation, and chronic obstructive pulmonary disease (5.9 per 100,000). Based on the 2022 annual report of the UAE's national surveillance database, candidaemia annual incidence is 1090 (11.8/100,000), of which 49.2% occurs in intensive care. Fungal diseases affect ~228,695 (2.46%) of the population in the UAE.
Collapse
Affiliation(s)
- Fatima Al Dhaheri
- Department of Pediatrics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Jens Thomsen
- Department of Public Health and Epidemiology, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates; (J.T.); (D.E.)
| | - Dean Everett
- Department of Public Health and Epidemiology, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates; (J.T.); (D.E.)
- Infection Research Unit, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates
| | - David W. Denning
- Manchester Fungal Infection Group, The University of Manchester, Manchester Academic Health Science Centre, Grafton Street, Manchester M13 9NT, UK
| |
Collapse
|
21
|
Hoenigl M, Enoch DA, Wichmann D, Wyncoll D, Cortegiani A. Exploring European Consensus About the Remaining Treatment Challenges and Subsequent Opportunities to Improve the Management of Invasive Fungal Infection (IFI) in the Intensive Care Unit. Mycopathologia 2024; 189:41. [PMID: 38704761 PMCID: PMC11070387 DOI: 10.1007/s11046-024-00852-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 04/12/2024] [Indexed: 05/07/2024]
Abstract
BACKGROUND The global prevalence of invasive fungal infections (IFI) is increasing, particularly within Intensive Care Units (ICU), where Candida spp. and Aspergillus spp. represent the most important pathogens. Diagnosis and management of IFIs becomes progressively challenging, with increasing antifungal resistance and the emergence of rare fungal species. Through a consensus survey focused on assessing current views on how IFI should be managed, the aim of this project was to identify challenges around diagnosing and managing IFIs in the ICU. The current status in different countries and perceived challenges to date amongst a multidisciplinary cohort of healthcare professionals involved in the care of IFI in the ICU was assessed. METHODS Using a modified Delphi approach, an expert panel developed 44 Likert-scale statements across 6 key domains concerning patient screening and minimal standards for diagnosis of IFIs in ICU; initiation and termination of antifungal treatments and how to minimise their side effects and insights for future research on this topic. These were used to develop an online survey which was distributed on a convenience sampling basis utilising the subscriber list held by an independent provider (M3 Global). This survey was distributed to intensivists, infectious disease specialists, microbiologists and antimicrobial/ICU pharmacists within the UK, Germany, Spain, France and Italy. The threshold for consensus was set at 75%. RESULTS A total of 335 responses were received during the five-month collection period. From these, 29/44 (66%) statements attained very high agreement (≥ 90%), 11/44 (25%) high agreement (< 90% and ≥ 75%), and 4/44 (9%) did not meet threshold for consensus (< 75%). CONCLUSION The results outline the need for physicians to be aware of the local incidence of IFI and the associated rate of azole resistance in their ICUs. Where high clinical suspicion exists, treatment should start immediately and prior to receiving the results from any diagnostic test. Beta-D-glucan testing should be available to all ICU centres, with results available within 48 h to inform the cessation of empirical antifungal therapy. These consensus statements and proposed measures may guide future areas for further research to optimise the management of IFIs in the ICU.
Collapse
Affiliation(s)
- Martin Hoenigl
- Division of Infectious Diseases, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria.
- BioTechMed-Graz, Graz, Austria.
- ECMM Excellence Center for Medical Mycology, Translational Medical Mycology Research Unit, Medical University of Graz, Graz, Austria.
| | - David A Enoch
- Clinical Microbiology & Public Health Laboratory, UK Health Security Agency, Cambridge University Hospital NHS Foundation Trust, Addenbrookes Hospital, Cambridge, UK
| | - Dominic Wichmann
- Department of Intensive Care Medicine, University Medical Center of Hamburg-Eppendorf, Hamburg, Germany
| | - Duncan Wyncoll
- Department of Intensive Care, Guy's and St Thomas' Hospital, London, UK
| | - Andrea Cortegiani
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, Palermo, Italy
- Department of Anesthesia Intensive Care and Emergency, University Hospital Policlinico 'Paolo Giaccone, Palermo, Italy
| |
Collapse
|
22
|
van Grootveld R, van Paassen J, Claas ECJ, Heerdink L, Kuijper EJ, de Boer MGJ, van der Beek MT. Prospective and systematic screening for invasive aspergillosis in the ICU during the COVID-19 pandemic, a proof of principle for future pandemics. Med Mycol 2024; 62:myae028. [PMID: 38544330 PMCID: PMC11095538 DOI: 10.1093/mmy/myae028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/07/2024] [Accepted: 03/26/2024] [Indexed: 05/16/2024] Open
Abstract
The diagnostic performance of a prospective, systematic screening strategy for COVID-19 associated pulmonary aspergillosis (CAPA) during the COVID-19 pandemic was investigated. Patients with COVID-19 admitted to the ICU were screened for CAPA twice weekly by collection of tracheal aspirate (TA) for Aspergillus culture and PCR. Subsequently, bronchoalveolar lavage (BAL) sampling was performed in patients with positive screening results and clinical suspicion of infection. Patient data were collected from April 2020-February 2022. Patients were classified according to 2020 ECMM/ISHAM consensus criteria. In total, 126/370 (34%) patients were positive in screening and CAPA frequency was 52/370 (14%) (including 13 patients negative in screening). CAPA was confirmed in 32/43 (74%) screening positive patients who underwent BAL sampling. ICU mortality was 62% in patients with positive screening and confirmed CAPA, and 31% in CAPA cases who were screening negative. The sensitivity, specificity, positive and negative predictive value (PPV & NPV) of screening for CAPA were 0.71, 0.73, 0.27, and 0.95, respectively. The PPV was higher if screening was culture positive compared to PCR positive only, 0.42 and 0.12 respectively. CAPA was confirmed in 74% of screening positive patients, and culture of TA had a better diagnostic performance than PCR. Positive screening along with clinical manifestations appeared to be a good indication for BAL sampling since diagnosis of CAPA was confirmed in most of these patients. Prospective, systematic screening allowed to quickly gain insight into the epidemiology of fungal superinfections during the pandemic and could be applicable for future pandemics.
Collapse
Affiliation(s)
- Rebecca van Grootveld
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Medical Microbiology, Albert Schweitzer Hospital, Dordrecht, The Netherlands
| | - Judith van Paassen
- Department of Intensive Care, Leiden University Medical Center, Leiden, The Netherlands
| | - Eric C J Claas
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Laura Heerdink
- Directorate of Education (DOO), Leiden University Medical Center, Leiden, The Netherlands
| | - Ed J Kuijper
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Mark G J de Boer
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Martha T van der Beek
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| | | |
Collapse
|
23
|
Bienvenu AL, Leray V, Guichon C, Bourget S, Chapuis C, Duréault A, Pavese P, Roux S, Kahale E, Chaabane W, Subtil F, Maucort-Boulch D, Talbot F, Dode X, Ghesquières H, Leboucher G. ANTIFON-CLIC®, a new clinical decision support system for the treatment of invasive aspergillosis: is it clinically relevant? ANNALES PHARMACEUTIQUES FRANÇAISES 2024; 82:514-521. [PMID: 38000506 DOI: 10.1016/j.pharma.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 11/26/2023]
Abstract
BACKGROUND Invasive aspergillosis (IA) is increasing especially in new groups of patients. Despite advances in management, morbidity and mortality related to IA remain high. Thus, Clinical Decision Support System (CDSS) dedicated to IA are needed to promote the optimal antifungal for each group of patients. PATIENTS AND METHODS This was a retrospective multicenter cohort study involving intensive care units and medical units. Adult patients who received caspofungin, isavuconazole, itraconazole, liposomal amphotericin B, posaconazole, or voriconazole, for the treatment of IA were eligible for enrollment. The primary objective was the concordance between the clinician's prescription and the prescription recommended by the CDSS. The secondary objective was the concordance according to different hospitals, departments, and indications. RESULTS Eighty-eight patients (n=88) from three medical hospitals were included. The overall concordance was 97% (85/88) including 100% (41/41) for center A, 92% (23/25) for center B, and 95% (21/22) for center C. There was no significant difference in concordance among the hospitals (P=0.973), the departments (P=1.000), and the indications (P=0.799). The concordance was 70% (7/10) for isavuconazole due to its use as an empirical treatment and 100% (78/78) for the other antifungals. DISCUSSION The concordance rate was high whatever the hospital, the department, and the indication. The only discrepancy was attributed to the use of isavuconazole as an empirical treatment which is a therapeutic option not included in the CDSS. CONCLUSIONS This new CDSS dedicated to IA is meeting the clinical practice. Its implementation in routine will help to support antifungal stewardship.
Collapse
Affiliation(s)
- A-L Bienvenu
- Service pharmacie, groupement hospitalier nord, hospices civils de Lyon, Lyon, France; Univ Lyon, Malaria Research Unit, SMITh, ICBMS UMR 5246, Lyon, France.
| | - V Leray
- Service d'anesthésie-réanimation, groupement hospitalier centre, hospices civils de Lyon, Lyon, France
| | - C Guichon
- Service d'anesthésie-réanimation, groupement hospitalier nord, Hospices civils de Lyon, Lyon, France
| | - S Bourget
- Service pharmacie, CH de Valence, Valence, France
| | - C Chapuis
- Service de pharmacie, CHU de Grenoble, Grenoble-Alpes, France
| | - A Duréault
- Service des maladies infectieuses, centre hospitalier de Valence, Valence, France
| | - P Pavese
- Service des maladies infectieuses, CHU de Grenoble, Grenoble-Alpes, France
| | - S Roux
- Service des maladies infectieuses et tropicales, hospices civils de Lyon, Lyon, France
| | - E Kahale
- Direction de l'innovation, hospices civils de Lyon, Lyon, France
| | - W Chaabane
- Direction des services numériques, hospices civils de Lyon, Lyon, France
| | - F Subtil
- Service de biostatistique-bioinformatique, hospices civils de Lyon, Lyon, France
| | - D Maucort-Boulch
- Service de biostatistique-bioinformatique, hospices civils de Lyon, Lyon, France
| | - F Talbot
- Direction des services numériques, hospices civils de Lyon, Lyon, France
| | - X Dode
- Service pharmacie, groupement hospitalier est, hospices civils de Lyon, Lyon, France
| | - H Ghesquières
- Service d'hématologie, groupement hospitalier sud, hospices civils de Lyon, Lyon, France
| | - G Leboucher
- Service pharmacie, groupement hospitalier nord, hospices civils de Lyon, Lyon, France
| |
Collapse
|
24
|
Muthu V, Agarwal R, Rudramurthy SM, Thangaraju D, Shevkani MR, Patel AK, Shastri PS, Tayade A, Bhandari S, Gella V, Savio J, Madan S, Hallur V, Maturu VN, Srinivasan A, Sethuraman N, Sibia RPS, Pujari S, Mehta R, Singhal T, Saxena P, Gupta V, Nagvekar V, Prayag P, Patel D, Xess I, Savaj P, Sehgal IS, Panda N, Rajagopal GD, Parwani RS, Patel K, Deshmukh A, Vyas A, Gandra RR, Sistla SK, Padaki PA, Ramar D, Panigrahi MK, Sarkar S, Rachagulla B, Vallandaramam P, Premachandran KP, Pawar S, Gugale P, Hosamani P, Dutt SN, Nair S, Kalpakkam H, Badhwar S, Kompella KK, Singla N, Navlakhe M, Prayag A, Singh G, Dhakecha P, Chakrabarti A. Prevalence of co-existent COVID-19-associated pulmonary aspergillosis (CAPA) and its impact on early mortality in patients with COVID-19-associated pulmonary mucormycosis (CAPM). Mycoses 2024; 67:e13745. [PMID: 38767273 DOI: 10.1111/myc.13745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/25/2024] [Accepted: 05/03/2024] [Indexed: 05/22/2024]
Abstract
BACKGROUND Data on mixed mould infection with COVID-19-associated pulmonary aspergillosis (CAPA) and COVID-19-associated pulmonary mucormycosis (CAPM) are sparse. OBJECTIVES To ascertain the prevalence of co-existent CAPA in CAPM (mixed mould infection) and whether mixed mould infection is associated with early mortality (≤7 days of diagnosis). METHODS We retrospectively analysed the data collected from 25 centres across India on COVID-19-associated mucormycosis. We included only CAPM and excluded subjects with disseminated or rhino-orbital mucormycosis. We defined co-existent CAPA if a respiratory specimen showed septate hyphae on smear, histopathology or culture grew Aspergillus spp. We also compare the demography, predisposing factors, severity of COVID-19, and management of CAPM patients with and without CAPA. Using a case-control design, we assess whether mixed mould infection (primary exposure) were associated with early mortality in CAPM. RESULTS We included 105 patients with CAPM. The prevalence of mixed mould infection was 20% (21/105). Patients with mixed mould infection experienced early mortality (9/21 [42.9%] vs. 15/84 [17.9%]; p = 0.02) and poorer survival at 6 weeks (7/21 [33.3] vs. 46/77 [59.7%]; p = 0.03) than CAPM alone. On imaging, consolidation was more commonly encountered with mixed mould infections than CAPM. Co-existent CAPA (odds ratio [95% confidence interval], 19.1 [2.62-139.1]) was independently associated with early mortality in CAPM after adjusting for hypoxemia during COVID-19 and other factors. CONCLUSION Coinfection of CAPA and CAPM was not uncommon in our CAPM patients and portends a worse prognosis. Prospective studies from different countries are required to know the impact of mixed mould infection.
Collapse
Affiliation(s)
- Valliappan Muthu
- Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Ritesh Agarwal
- Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | | | | | | | | | | | | | | | - Vishwanath Gella
- Asian Institute of Gastroenterology, Hyderabad, Telangana, India
| | - Jayanthi Savio
- St. John's Medical College and Hospital, Bangalore, Karnataka, India
| | - Surabhi Madan
- Care Institute of Medical Sciences, Ahmedabad, Gujarat, India
| | | | | | | | | | | | - Sanjay Pujari
- Poona Hospital and Research Centre, Pune, Maharashtra, India
| | | | - Tanu Singhal
- Kokilaben Dhirubhai Ambani Hospital and Medical Research Institute, Mumbai, India
| | - Puneet Saxena
- Army Hospital (Research and Referral), New Delhi, India
| | | | | | | | - Dharmesh Patel
- City Clinic and Bhailal Amin General Hospital, Vadodara, Gujarat, India
| | | | - Pratik Savaj
- Institute of Infectious Disease and Critical Care Hospital, Surat, Gujarat, India
| | | | - Naresh Panda
- Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | | | | | | | | | - Aruna Vyas
- Sawai Man Singh Medical College, Jaipur, Rajasthan, India
| | | | | | | | - Dharshni Ramar
- Care Institute of Medical Sciences, Ahmedabad, Gujarat, India
| | | | - Saurav Sarkar
- All India Institute of Medical Science Bhubaneswar, Odisha, India
| | | | | | | | - Sunil Pawar
- Government Medical College, Patiala, Punjab, India
| | - Piyush Gugale
- Poona Hospital and Research Centre, Pune, Maharashtra, India
| | | | | | - Satish Nair
- Apollo Hospitals, Bengaluru, Karnataka, India
| | | | - Sanjiv Badhwar
- Kokilaben Dhirubhai Ambani Hospital and Medical Research Institute, Mumbai, India
| | | | | | | | | | | | - Poorvesh Dhakecha
- Institute of Infectious Disease and Critical Care Hospital, Surat, Gujarat, India
| | | |
Collapse
|
25
|
Iacovelli A, Oliva A, Mirabelli FM, Giannone S, Laguardia M, Morviducci M, Nicolardi ML, Repaci E, Sanzari MT, Leanza C, Raponi G, Mastroianni C, Palange P. Risk factors for COVID-19 associated pulmonary aspergillosis and outcomes in patients with acute respiratory failure in a respiratory sub-intensive care unit. BMC Infect Dis 2024; 24:392. [PMID: 38605300 PMCID: PMC11007928 DOI: 10.1186/s12879-024-09283-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 04/03/2024] [Indexed: 04/13/2024] Open
Abstract
BACKGROUND COVID-19-associated pulmonary aspergillosis (CAPA) is burdened by high mortality. Data are lacking about non-ICU patients. Aims of this study were to: (i) assess the incidence and prevalence of CAPA in a respiratory sub-intensive care unit, (ii) evaluate its risk factors and (iii) impact on in-hospital mortality. Secondary aims were to: (i) assess factors associated to mortality, and (ii) evaluate significant features in hematological patients. MATERIALS AND METHODS This was a single-center, retrospective study of COVID-19 patients with acute respiratory failure. A cohort of CAPA patients was compared to a non-CAPA cohort. Among patients with CAPA, a cohort of hematological patients was further compared to another of non-hematological patients. RESULTS Three hundred fifty patients were included in the study. Median P/F ratio at the admission to sub-intensive unit was 225 mmHg (IQR 155-314). 55 (15.7%) developed CAPA (incidence of 5.5%). Eighteen had probable CAPA (37.3%), 37 (67.3%) possible CAPA and none proven CAPA. Diagnosis of CAPA occurred at a median of 17 days (IQR 12-31) from SARS-CoV-2 infection. Independent risk factors for CAPA were hematological malignancy [OR 1.74 (95%CI 0.75-4.37), p = 0.0003], lymphocytopenia [OR 2.29 (95%CI 1.12-4.86), p = 0.02], and COPD [OR 2.74 (95%CI 1.19-5.08), p = 0.014]. Mortality rate was higher in CAPA cohort (61.8% vs 22.7%, p < 0.0001). CAPA resulted an independent risk factor for in-hospital mortality [OR 2.92 (95%CI 1.47-5.89), p = 0.0024]. Among CAPA patients, age > 65 years resulted a predictor of mortality [OR 5.09 (95% CI 1.20-26.92), p = 0.035]. No differences were observed in hematological cohort. CONCLUSION CAPA is a life-threatening condition with high mortality rates. It should be promptly suspected, especially in case of hematological malignancy, COPD and lymphocytopenia.
Collapse
Affiliation(s)
- Alessandra Iacovelli
- Department of Public Health and Infectious Diseases, Sapienza University of Rome Italy Pulmonology Respiratory and Critical Care Unit, Policlinico Umberto I Hospital Rome, Rome, Italy.
| | - Alessandra Oliva
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Flavio Marco Mirabelli
- Department of Public Health and Infectious Diseases, Sapienza University of Rome Italy Pulmonology Respiratory and Critical Care Unit, Policlinico Umberto I Hospital Rome, Rome, Italy
| | - Silvia Giannone
- Department of Public Health and Infectious Diseases, Sapienza University of Rome Italy Pulmonology Respiratory and Critical Care Unit, Policlinico Umberto I Hospital Rome, Rome, Italy
| | - Marianna Laguardia
- Department of Public Health and Infectious Diseases, Sapienza University of Rome Italy Pulmonology Respiratory and Critical Care Unit, Policlinico Umberto I Hospital Rome, Rome, Italy
| | - Matteo Morviducci
- Department of Public Health and Infectious Diseases, Sapienza University of Rome Italy Pulmonology Respiratory and Critical Care Unit, Policlinico Umberto I Hospital Rome, Rome, Italy
| | - Maria Luisa Nicolardi
- Department of Public Health and Infectious Diseases, Sapienza University of Rome Italy Pulmonology Respiratory and Critical Care Unit, Policlinico Umberto I Hospital Rome, Rome, Italy
| | - Emma Repaci
- Department of Public Health and Infectious Diseases, Sapienza University of Rome Italy Pulmonology Respiratory and Critical Care Unit, Policlinico Umberto I Hospital Rome, Rome, Italy
| | - Maria Teresa Sanzari
- Department of Public Health and Infectious Diseases, Sapienza University of Rome Italy Pulmonology Respiratory and Critical Care Unit, Policlinico Umberto I Hospital Rome, Rome, Italy
| | - Cristiana Leanza
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Giammarco Raponi
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Claudio Mastroianni
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Paolo Palange
- Department of Public Health and Infectious Diseases, Sapienza University of Rome Italy Pulmonology Respiratory and Critical Care Unit, Policlinico Umberto I Hospital Rome, Rome, Italy
| |
Collapse
|
26
|
Bassetti M, Giacobbe DR, Agvald-Ohman C, Akova M, Alastruey-Izquierdo A, Arikan-Akdagli S, Azoulay E, Blot S, Cornely OA, Cuenca-Estrella M, de Lange DW, De Rosa FG, De Waele JJ, Dimopoulos G, Garnacho-Montero J, Hoenigl M, Kanj SS, Koehler P, Kullberg BJ, Lamoth F, Lass-Flörl C, Maertens J, Martin-Loeches I, Muñoz P, Poulakou G, Rello J, Sanguinetti M, Taccone FS, Timsit JF, Torres A, Vazquez JA, Wauters J, Asperges E, Cortegiani A, Grecchi C, Karaiskos I, Le Bihan C, Mercier T, Mortensen KL, Peghin M, Rebuffi C, Tejada S, Vena A, Zuccaro V, Scudeller L, Calandra T. Invasive Fungal Diseases in Adult Patients in Intensive Care Unit (FUNDICU): 2024 consensus definitions from ESGCIP, EFISG, ESICM, ECMM, MSGERC, ISAC, and ISHAM. Intensive Care Med 2024; 50:502-515. [PMID: 38512399 PMCID: PMC11018656 DOI: 10.1007/s00134-024-07341-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/31/2024] [Indexed: 03/23/2024]
Abstract
PURPOSE The aim of this document was to develop standardized research definitions of invasive fungal diseases (IFD) in non-neutropenic, adult patients without classical host factors for IFD, admitted to intensive care units (ICUs). METHODS After a systematic assessment of the diagnostic performance for IFD in the target population of already existing definitions and laboratory tests, consensus definitions were developed by a panel of experts using the RAND/UCLA appropriateness method. RESULTS Standardized research definitions were developed for proven invasive candidiasis, probable deep-seated candidiasis, proven invasive aspergillosis, probable invasive pulmonary aspergillosis, and probable tracheobronchial aspergillosis. The limited evidence on the performance of existing definitions and laboratory tests for the diagnosis of IFD other than candidiasis and aspergillosis precluded the development of dedicated definitions, at least pending further data. The standardized definitions provided in the present document are aimed to speed-up the design, and increase the feasibility, of future comparative research studies.
Collapse
Affiliation(s)
- Matteo Bassetti
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy.
- Infectious Diseases Unit, IRCCS Ospedale Policlinico San Martino, L.go R. Benzi 10, 16132, Genoa, Italy.
| | - Daniele R Giacobbe
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
- Infectious Diseases Unit, IRCCS Ospedale Policlinico San Martino, L.go R. Benzi 10, 16132, Genoa, Italy
| | - Christina Agvald-Ohman
- Anaesthesiology and Intensive Care, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Murat Akova
- Department of Infectious Diseases and Clinical Microbiology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Ana Alastruey-Izquierdo
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
- Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Infecciosas-CIBERINFEC, Madrid, Spain
| | - Sevtap Arikan-Akdagli
- Department of Medical Microbiology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Elie Azoulay
- Université de Paris, Paris, France
- Service de Médecine Intensive Et Réanimation, Hôpital Saint-Louis, AP-HP, Paris, France
| | - Stijn Blot
- Department of Internal Medicine and Pediatrics, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Oliver A Cornely
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD) and Excellence Center for Medical Mycology (ECMM), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Faculty of Medicine and University Hospital Cologne, Institute of Translational Research, Cologne Excellence Cluster On Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Faculty of Medicine and University Hospital Cologne, Clinical Trials Centre Cologne (ZKS Köln), University of Cologne, Cologne, Germany
- German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
| | - Manuel Cuenca-Estrella
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Dylan W de Lange
- Department of Intensive Care Medicine, University Medical Center, University Utrecht, Utrecht, The Netherlands
| | - Francesco G De Rosa
- Department of Medical Sciences, Infectious Diseases, University of Turin, Turin, Italy
| | - Jan J De Waele
- Department of Critical Care Medicine, Ghent University Hospital, Ghent, Belgium
| | - George Dimopoulos
- Department of Critical Care, University Hospital Attikon, Attikon Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Martin Hoenigl
- Division of Infectious Diseases, Department of Internal Medicine, Medical University of Graz, Graz, Austria
- BioTechMed, Graz, Austria
- Translational Mycology Working Group, ECMM Excellence Center for Clinical Mycology, Medical University of Graz, Graz, Austria
| | - Souha S Kanj
- Division of Infectious Diseases, and Center for Infectious Diseases Research, American University of Beirut Medical Center, Beirut, Lebanon
| | - Philipp Koehler
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD) and Excellence Center for Medical Mycology (ECMM), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Medical Faculty and University Hospital Cologne, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Bart J Kullberg
- Department of Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Frédéric Lamoth
- Institute of Microbiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Service of Immunology and Allergy and Center of Human Immunology Lausanne, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Department of Laboratory Medicine and Pathology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Cornelia Lass-Flörl
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Ignacio Martin-Loeches
- Department of Intensive Care Medicine, Multidisciplinary Intensive Care Research Organization (MICRO), St James' Hospital, Dublin, Ireland
| | - Patricia Muñoz
- Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Respiratorias-CIBERES (CB06/06/0058), Madrid, Spain
- Medicine Department, Faculty of Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Garyphallia Poulakou
- Third Department of Internal Medicine, School of Medicine, Sotiria General Hospital, National and Kapodistrian University, Athens, Greece
| | - Jordi Rello
- Clinical Research/Epidemiology in Pneumonia and Sepsis (CRIPS), Vall d'Hebron Institut of Research (VHIR), Barcelona, Spain
- Clinical Research in the ICU, CHU Nimes, Universite de Nimes-Montpellier, Nimes, France
- Medicine Department, Universitat Internacional de Catalunya (UIC), Sant Cugat, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Maurizio Sanguinetti
- Dipartimento di Scienze di Laboratorio E Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Fabio S Taccone
- Department of Intensive Care, Hôpital Universitaire de Bruxelles (HUB), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Jean-François Timsit
- Medical and Infectious Diseases Intensive Care Unit, AP-HP, Bichat Claude Bernard University Hospital, Paris, France
- IAME UMR 1137, Université Paris-Cité, Paris, France
| | - Antoni Torres
- Department of Pneumology, Hospital Clinic of Barcelona, Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), University of Barcelona, Barcelona, Spain
- Biomedical Research Networking Centres in Respiratory Diseases (CIBERES), Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Jose A Vazquez
- Department of Medicine/Division of Infectious Disease, Medical College of Georgia/Augusta University, Augusta, GA, USA
| | - Joost Wauters
- Medical Intensive Care Unit, University Hospitals Leuven, Louvain, Belgium
| | - Erika Asperges
- Infectious Diseases Unit, IRCCS San Matteo, Pavia, Italy
| | - Andrea Cortegiani
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, Palermo, Italy
- Department of Anesthesia Intensive Care and Emergency, University Hospital Policlinico Paolo Giaccone, Palermo, Italy
| | - Cecilia Grecchi
- Malattie Infettive, Azienda Socio Sanitaria Territoriale (ASST) di Lodi, Lodi, Italy
| | - Ilias Karaiskos
- 1st Department of Internal Medicine-Infectious Diseases, Hygeia General Hospital, Athens, Greece
| | - Clément Le Bihan
- Saint Eloi Department of Anesthesiology and Critical Care Medicine, Montpellier University Health Care Center, Montpellier, France
| | - Toine Mercier
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Louvain, Belgium
- Department of Hematology, University Hospitals Leuven, Louvain, Belgium
| | - Klaus L Mortensen
- Department of Medicine, Regional Hospital West Jutland, Herning, Denmark
| | - Maddalena Peghin
- Infectious and Tropical Diseases Unit, Department of Medicine and Surgery, University of Insubria-ASST-Sette Laghi, Varese, Italy
| | - Chiara Rebuffi
- Scientific Direction, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Sofia Tejada
- Clinical Research/Epidemiology in Pneumonia and Sepsis (CRIPS), Vall d'Hebron Institut of Research (VHIR), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Antonio Vena
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
- Infectious Diseases Unit, IRCCS Ospedale Policlinico San Martino, L.go R. Benzi 10, 16132, Genoa, Italy
| | | | - Luigia Scudeller
- Research and Innovation Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Thierry Calandra
- Service of Immunology and Allergy and Center of Human Immunology Lausanne, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Department of Laboratory Medicine and Pathology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
27
|
Zuniga-Moya JC, Papadopoulos B, Mansoor AER, Mazi PB, Rauseo AM, Spec A. Incidence and Mortality of COVID-19-Associated Invasive Fungal Infections Among Critically Ill Intubated Patients: A Multicenter Retrospective Cohort Analysis. Open Forum Infect Dis 2024; 11:ofae108. [PMID: 38567199 PMCID: PMC10986750 DOI: 10.1093/ofid/ofae108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 02/21/2024] [Indexed: 04/04/2024] Open
Abstract
Background An association between coronavirus disease 2019 (COVID-19)-associated invasive fungal infections (CAIFIs) and high mortality among intubated patients has been suggested in previous research. However, some of the current evidence was derived from small case series and multicenter studies conducted during different waves of the COVID-19 pandemic. We examined the incidence of CAIFIs and their associated mortality using a large, multicenter COVID-19 database built throughout the pandemic. Methods We conducted a retrospective analysis of the National COVID Cohort Collaborative (N3C) database collected from 76 medical centers in the United States between January 2020 and August 2022. Patients were 18 years or older and intubated after severe acute respiratory syndrome coronavirus 2 infection. The primary outcomes were incidence and all-cause mortality at 90 days. To assess all-cause mortality, we fitted Cox proportional hazard models after adjusting for confounders via inverse probability weighting. Results Out of the 4 916 229 patients with COVID-19 diagnosed during the study period, 68 383 (1.4%) met our cohort definition. The overall incidence of CAIFI was 2.80% (n = 1934/68 383). Aspergillus (48.2%; n = 933/1934) and Candida (41.0%; n = 793/1934) were the most common causative organisms. The incidence of CAIFIs associated with Aspergillus among patients who underwent BAL was 6.2% (n = 83/1328). Following inverse probability weighting, CAIFIs caused by Aspergillus (hazard ratio [HR], 2.0; 95% CI, 1.8-2.2) and Candida (HR, 1.7; 95% CI, 1.5-1.9) were associated with increased all-cause mortality. Systemic antifungals reduced mortality in 17% of patients with CAIFI with Aspergillus and 24% of patients with CAIFI with Candida. Conclusions The incidence of CAIFI was modest but associated with higher 90-day all-cause mortality among intubated patients. Systemic antifungals modified mortality.
Collapse
Affiliation(s)
| | | | | | - Patrick B Mazi
- St Louis School of Medicine, Washington University, St Louis, Missouri, USA
| | - Adriana M Rauseo
- St Louis School of Medicine, Washington University, St Louis, Missouri, USA
| | - Andrej Spec
- St Louis School of Medicine, Washington University, St Louis, Missouri, USA
| |
Collapse
|
28
|
Gioia F, Walti LN, Orchanian-Cheff A, Husain S. Risk factors for COVID-19-associated pulmonary aspergillosis: a systematic review and meta-analysis. THE LANCET. RESPIRATORY MEDICINE 2024; 12:207-216. [PMID: 38185135 DOI: 10.1016/s2213-2600(23)00408-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 10/17/2023] [Accepted: 10/25/2023] [Indexed: 01/09/2024]
Abstract
BACKGROUND COVID-19-associated pulmonary aspergillosis (CAPA) has been reported to be an emerging and potentially fatal complication of severe COVID-19. However, risk factors for CAPA have not been systematically addressed to date. METHODS In this systematic review and meta-analysis to identify factors associated with CAPA, we comprehensively searched five medical databases: Ovid MEDLINE; Ovid Embase; the Cochrane Database of Systematic Reviews; the Cochrane Central Register of Controlled Trials; and the WHO COVID-19 Database. All case-control and cohort studies in adults (aged >18 years) that described at least six cases of CAPA and evaluated any risk factors for CAPA, published from Dec 1, 2019, to July 27, 2023, were screened and assessed for inclusion. Only studies with a control population of COVID-19-positive individuals without aspergillosis were included. Two reviewers independently screened search results and extracted outcome data as summary estimates from eligible studies. The primary outcome was to identify the factors associated with CAPA. Meta-analysis was done with random-effects models, with use of the Mantel-Haenszel method to assess dichotomous outcomes as potential risk factors, or the inverse variance method to assess continuous variables for potential association with CAPA. Publication bias was assessed with funnel plots for factors associated with CAPA. The study is registered with PROSPERO, CRD42022334405. FINDINGS Of 3561 records identified, 27 articles were included in the meta-analysis. 6848 patients with COVID-19 were included, of whom 1324 (19·3%) were diagnosed with CAPA. Diagnosis rates of CAPA ranged from 2·5% (14 of 566 patients) to 47·2% (58 of 123). We identified eight risk factors for CAPA. These factors included pre-existing comorbidities of chronic liver disease (odds ratio [OR] 2·70 [95% CI 1·21-6·04], p=0·02; I2=53%), haematological malignancies (OR 2·47 [1·27-4·83], p=0·008; I2=50%), chronic obstructive pulmonary disease (OR 2·00 [1·42-2·83], p<0·0001; I2=26%), and cerebrovascular disease (OR 1·31 [1·01-1·71], p=0·05; I2=46%). Use of invasive mechanical ventilation (OR 2·83; 95% CI 1·88-4·24; p<0·0001; I2=69%), use of renal replacement therapy (OR 2·26 [1·76-2·90], p<0·0001; I2=14%), treatment of COVID-19 with interleukin-6 inhibitors (OR 2·88 [1·52-5·43], p=0·001; I2=89%), and treatment of COVID-19 with corticosteroids (OR 1·88 [1·28-2·77], p=0·001; I2=66%) were also associated with CAPA. Patients with CAPA were typically older than those without CAPA (mean age 66·6 years [SD 3·6] vs 63·5 years [5·3]; mean difference 2·90 [1·48-4·33], p<0·0001; I2=86%). The duration of mechanical ventilation in patients with CAPA was longer than in those without CAPA (n=7 studies; mean duration 19·3 days [8·9] vs 13·5 days [6·8]; mean difference 5·53 days [1·30-9·77], p=0·01; I2=88%). In post-hoc analysis, patients with CAPA had higher all-cause mortality than those without CAPA (n=20 studies; OR 2·65 [2·04-3·45], p<0·0001; I2=51%). INTERPRETATION The identified risk factors for CAPA could eventually be addressed with targeted antifungal prophylaxis in patients with severe COVID-19. FUNDING None.
Collapse
Affiliation(s)
- Francesca Gioia
- Ajmera Transplant Centre, Division of Infectious Diseases, University Health Network, University of Toronto, Toronto, ON, Canada; Infectious Diseases Department, Hospital Ramón y Cajal, Consorcio Centro de Investigación Biomédica en Red (CB21/13/00084), Instituto de Salud Carlos III, Ministerio de Ciencia e Innovación, Madrid, Spain
| | - Laura N Walti
- Ajmera Transplant Centre, Division of Infectious Diseases, University Health Network, University of Toronto, Toronto, ON, Canada; Department of Infectious Diseases, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Ani Orchanian-Cheff
- Library and Information Services, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Shahid Husain
- Ajmera Transplant Centre, Division of Infectious Diseases, University Health Network, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
29
|
Bradbury JD, Chesshyre E, Orenti A, Jung A, Warris A. A multinational report on SARS-CoV-2 infection outcomes in people with CF and Aspergillus infection or ABPA. J Cyst Fibros 2024; 23:354-363. [PMID: 37925255 DOI: 10.1016/j.jcf.2023.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/01/2023] [Accepted: 10/28/2023] [Indexed: 11/06/2023]
Abstract
BACKGROUND Aspergillus infection is known to be associated with worse respiratory outcomes in people with CF (pwCF) and is a well-recognised complication of severe SARS-CoV-2 infection. The aim of this observational cross-sectional study was to examine the association of pre-existing Aspergillus infection and/or allergic bronchopulmonary aspergillosis (ABPA) in pwCF and severity of COVID-19. METHODS Data on SARS-CoV-2 infections in pwCF from January 2020 to June 2021 were collected by the European Cystic Fibrosis Society Patient Registry. The primary outcome was COVID-19 severity measured by hospitalisation comparing those with Aspergillus infection and/or ABPA in the 12 months preceding COVID-19 and those without. RESULTS In total, 1095 pwCF were diagnosed with SARS-CoV-2 and information on pre-existing Aspergillus/ABPA status was available from 807. PwCF and SARS-CoV-2 in the Aspergillus/ABPA group (n = 153), in comparison to the non-Aspergillus/ABPA group (n = 654), were more likely to be hospitalised (adjusted OR 1.79 (1.19 to 2.85); p = 0.005) and their disease course was more likely to be complicated by sepsis (adjusted OR 7.78 (1.78 to 49.43); p = 0.008). The association with hospital admission was no longer significant after excluding patients with ABPA. Secondary analysis comparing pwCF who received antifungal treatment (n = 18), versus those who did not (n = 474) during COVID-19, showed a higher rate of hospitalisation (p < 0.001); intensive care unit admission (p < 0.001), and requirement for invasive ventilation (p < 0.001) in the antifungal treated group. CONCLUSION We show that pre-existing Aspergillus/ABPA is associated with increased rates of hospitalisation and sepsis during COVID-19 in pwCF.
Collapse
Affiliation(s)
- Jacob D Bradbury
- MRC Centre for Medical Mycology, University of Exeter, EX4 4QD, UK; Department of Pharmacology, University of Oxford, OX1 3QT, UK
| | - Emily Chesshyre
- MRC Centre for Medical Mycology, University of Exeter, EX4 4QD, UK; Department of Paediatrics, Royal Devon University Healthcare NHS Foundation Trust, EX2 5DW, UK
| | - Annalisa Orenti
- Department of Clinical Sciences and Community Health, Laboratory of Medical Statistics, Biometry and Epidemiology G.A. Maccacaro, University of Milan, Milan 20122, Italy
| | - Andreas Jung
- Paediatric Pulmonology, University Children's Hospital Zurich, Ramistrasse 102, Stadtkreis 7 8006, Zurich, Switzerland
| | - Adilia Warris
- MRC Centre for Medical Mycology, University of Exeter, EX4 4QD, UK; Department of Paediatric Infectious Diseases, Great Ormond Street Hospital, London, WC1N 3JH, UK
| |
Collapse
|
30
|
Hoenigl M, Prattes J. Risk of COVID-19-associated pulmonary aspergillosis: time for a nuanced approach to antifungal prophylaxis? THE LANCET. RESPIRATORY MEDICINE 2024; 12:183-185. [PMID: 38185136 DOI: 10.1016/s2213-2600(23)00435-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 11/13/2023] [Indexed: 01/09/2024]
Affiliation(s)
- Martin Hoenigl
- Division of Infectious Diseases, ECMM Excellence Center for Medical Mycology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria; BioTechMed, Graz, Austria.
| | - Juergen Prattes
- Division of Infectious Diseases, ECMM Excellence Center for Medical Mycology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria
| |
Collapse
|
31
|
Shekhova E, Salazar F, Da Silva Dantas A, Chakraborty T, Wooding EL, White PL, Warris A. Age difference of patients with and without invasive aspergillosis: a systematic review and meta-analysis. BMC Infect Dis 2024; 24:220. [PMID: 38373908 PMCID: PMC10875810 DOI: 10.1186/s12879-024-09109-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 02/06/2024] [Indexed: 02/21/2024] Open
Abstract
BACKGROUND Invasive Aspergillosis (IA) is a life-threatening fungal disease with significant mortality rates. Timely diagnosis and treatment greatly enhance patient outcomes. This study aimed to explore the association between patient age and the development of IA, as well as the potential implications for risk stratification strategies. METHODS We searched National Center for Biotechnology Information (NCBI) databases for publications until October 2023 containing age characteristics of patients with and without IA. A random-effects model with the application of inverse-variance weighting was used to pool reported estimates from each study, and meta-regression and subgroup analyses were utilized to assess sources of heterogeneity. RESULTS A systematic review was conducted, resulting in the inclusion of 55 retrospective observational studies with a total of 13,983 patients. Meta-analysis revealed that, on average, patients with IA were approximately two and a half years older (95% Confidence Interval [CI] 1.84-3.31 years; I2 = 26.1%) than those without the disease (p < 0.0001). No significant moderators could explain the observed heterogeneity in age difference. However, subgroup analysis revealed that age differences were more pronounced within particular patient groups compared to others. For example, patients with and without IA who had primary severe lung infections exhibited a greater difference in mean age than other patient cohorts. CONCLUSIONS Further research, such as individual patient data meta-analysis, is necessary to better understand the potential relationship between increasing age and the likelihood of IA. Improved risk stratification strategies based on patient age could potentially enhance the early detection and treatment of IA, ultimately improving patient outcomes.
Collapse
Affiliation(s)
- Elena Shekhova
- Medical Research Council Centre for Medical Mycology, Geoffrey Pope Building, University of Exeter, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK.
| | - Fabián Salazar
- Medical Research Council Centre for Medical Mycology, Geoffrey Pope Building, University of Exeter, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
| | | | - Tanmoy Chakraborty
- Medical Research Council Centre for Medical Mycology, Geoffrey Pope Building, University of Exeter, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
| | - Eva L Wooding
- Medical Research Council Centre for Medical Mycology, Geoffrey Pope Building, University of Exeter, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
- Royal Devon and Exeter Hospital, Exeter, EX2 5DW, UK
| | - P Lewis White
- Public Health Wales Microbiology Cardiff, Cardiff University, UHW, Cardiff, UK
- Centre for Trials Research, Division of Infection and Immunity, Cardiff University, UHW, Cardiff, UK
| | - Adilia Warris
- Medical Research Council Centre for Medical Mycology, Geoffrey Pope Building, University of Exeter, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
| |
Collapse
|
32
|
Khodavaisy S, Sarrafnia H, Abdollahi A. Outcomes of Patients with COVID-19 and Fungal Coinfections: A Systematic Review and Meta-Analysis Study. IRANIAN JOURNAL OF PATHOLOGY 2024; 19:136-147. [PMID: 39118795 PMCID: PMC11304463 DOI: 10.30699/ijp.2024.2010087.3160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 11/16/2023] [Indexed: 08/10/2024]
Abstract
Background & Objective Fungal co-infections increase the incidence and mortality of viral respiratory tract infections. This study systematically reviews and conducts a meta-analysis to evaluate the prevalence of COVID-19 patients with fungal coinfections. The aim is to provide a concise overview of the impact of these infections on patient outcomes especially association with risk of mortality, informing future research and optimizing patient management strategies. Methods To identify relevant studies on COVID-19 patients, we conducted a systematic search of databases from the beginning of the year until July 2023, including fungal co-infections, mortality, and sequelae. Eligibility criteria were developed using the PICO framework, and data extraction was carried out separately by two authors using standard techniques. Statistical analysis was performed using the correlation model and differences between studies were evaluated using the I2 test. R and RStudio were used for statistical analysis and visualization. Results We initially identified 6,764 studies, and after checking for equivalence and consistency, 41 studies were included in the final analysis. The overall COVID-19 odds ratio for people who died from fungal infections was 2.65, indicating that patients infected with both COVID-19 and fungal infections had a higher risk of death compared to patients with COVID-19 alone. Specifically, COVID-19-associated pulmonary aspergillosis (CAPA) has a higher odds ratio of 3.36, while COVID-19-associated candidiasis (CAC) has an odds ratio of 1.84, and both are much more associated with death. However, coinfection of the fungus with other fungal species did not show a significant difference in the risk of mortality. Conclusion This study identified CAPA and CAC as the most common infections acquired in healthcare settings. Fungal coinfections may be associated with an increased risk of death in COVID-19 patients.
Collapse
Affiliation(s)
- Sadegh Khodavaisy
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Research center for antibiotic stewardship and antimicrobial resistance, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Haleh Sarrafnia
- Faculty of Biological Sciences, Islamic Azad University, Tehran-North Branch, Tehran, Iran
| | - Alireza Abdollahi
- Department of Pathology, School of Medicine, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
33
|
Asperges E, Pesare R, Bassoli C, Calia M, Lerta S, Citiolo F, Albi G, Cavanna C, Sacchi P, Bruno R. The Prognostic Role of Diagnostic Criteria for COVID-19-Associated Pulmonary Aspergillosis: A Cross-Sectional Retrospective Study. Antibiotics (Basel) 2024; 13:150. [PMID: 38391536 PMCID: PMC10886222 DOI: 10.3390/antibiotics13020150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/27/2024] [Accepted: 02/01/2024] [Indexed: 02/24/2024] Open
Abstract
Several criteria exist to diagnose pulmonary aspergillosis with varying degrees of certainty in specific populations, including oncohaematological patients (EORTC/MSG), ICU patients (mAspICU) and COVID-19 patients (ECMM). At the beginning of the pandemic, however, the diagnosis of COVID-19-Associated Pulmonary Aspergillosis (CAPA) could not be performed easily, and the decision to treat (DTT) was empirical. In this cross-sectional retrospective study including patients with SARS-CoV-2 infection and suspicion of CAPA, we studied the concordance between the DTT and the three diagnostic criteria using Cohen's coefficient, and then we identified the factors associated with the DTT and corrected them by treatment to study the influence of the diagnostic criteria on survival. We showed good concordance of the DTT and mAspICU and ECMM criteria, with "compatible signs", "positive culture" and "positive galactomannan" influencing the DTT. Treatment also showed a positive effect on survival once corrected for a putative, possible or probable diagnosis of CAPA using mAspICU and ECMM criteria. We conclude that EORTC/MSGERC are not considered applicable in clinical practice due to the lack of inclusion of signs and symptoms and do not lead to improved survival. mAspICU and ECMM criteria showed a good degree of agreement with the DTT and a positive correlation with patient recovery.
Collapse
Affiliation(s)
- Erika Asperges
- S.C. Malattie Infettive I, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Rebecca Pesare
- S.C. Malattie Infettive I, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
- Department of Clinical-Surgical, Diagnostic, and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
| | - Cecilia Bassoli
- S.C. Malattie Infettive I, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
- Department of Clinical-Surgical, Diagnostic, and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
| | - Matteo Calia
- S.C. Malattie Infettive I, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
- Department of Clinical-Surgical, Diagnostic, and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
| | - Sonia Lerta
- S.C. Malattie Infettive I, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
- Department of Clinical-Surgical, Diagnostic, and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
| | - Francesco Citiolo
- Department of Clinical-Surgical, Diagnostic, and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
| | - Giuseppe Albi
- Department of Electrical, Computer and Biomedical Engineering, University of Pavia, 27100 Pavia, Italy
| | - Caterina Cavanna
- Microbiology and Virology Department, IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Paolo Sacchi
- S.C. Malattie Infettive I, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Raffaele Bruno
- S.C. Malattie Infettive I, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
- Department of Clinical-Surgical, Diagnostic, and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
34
|
Heylen J, Vanbiervliet Y, Maertens J, Rijnders B, Wauters J. Acute Invasive Pulmonary Aspergillosis: Clinical Presentation and Treatment. Semin Respir Crit Care Med 2024; 45:69-87. [PMID: 38211628 DOI: 10.1055/s-0043-1777769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Among all clinical manifestations of pulmonary aspergillosis, invasive pulmonary aspergillosis (IPA) is the most acute presentation. IPA is caused by Aspergillus hyphae invading the pulmonary tissue, causing either tracheobronchitis and/or bronchopneumonia. The degree of fungal invasion into the respiratory tissue can be seen as a spectrum, going from colonization to deep tissue penetration with angio-invasion, and largely depends on the host's immune status. Patients with prolonged, severe neutropenia and patients with graft-versus-host disease are at particularly high risk. However, IPA also occurs in other groups of immunocompromised and nonimmunocompromised patients, like solid organ transplant recipients or critically ill patients with severe viral disease. While a diagnosis of proven IPA is challenging and often warranted by safety and feasibility, physicians must rely on a combination of clinical, radiological, and mycological features to assess the likelihood for the presence of IPA. Triazoles are the first-choice regimen, and the choice of the drug should be made on an individual basis. Adjunctive therapy such as immunomodulatory treatment should also be taken into account. Despite an improving and evolving diagnostic and therapeutic armamentarium, the burden and mortality of IPA still remains high. This review aims to give a comprehensive and didactic overview of the current knowledge and best practices regarding the epidemiology, clinical presentation, diagnosis, and treatment of acute IPA.
Collapse
Affiliation(s)
- Jannes Heylen
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Yuri Vanbiervliet
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
- Department of Haematology, University Hospitals Leuven, Leuven, Belgium
| | - Johan Maertens
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
- Department of Haematology, University Hospitals Leuven, Leuven, Belgium
| | - Bart Rijnders
- Department of Internal Medicine and Infectious Diseases, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | - Joost Wauters
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| |
Collapse
|
35
|
Reisinger AC, Hatzl S, Prattes J, Hackl G, Schilcher G, Eisner F, Niedrist T, Raggam R, Krause R, Eller P. Soluble urokinase plasminogen activator receptor (suPAR) in bronchoalveolar fluid and blood in critically ill patients-a prospective cohort study. Infection 2024; 52:249-252. [PMID: 37973717 PMCID: PMC10811150 DOI: 10.1007/s15010-023-02127-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 10/26/2023] [Indexed: 11/19/2023]
Abstract
INTRODUCTION Soluble urokinase plasminogen activator receptor (suPAR) is a biologically active protein and increased levels are associated with worse outcomes in critically ill patients. suPAR in bronchoalveolar fluid (BALF) may be helpful to differentiate between types of acute respiratory distress syndrome (ARDS) and may have potential for early detection of fungal infection. METHODS We prospectively investigated levels of suPAR in BALF and serum in critically ill patients who underwent bronchoscopy for any reason at the ICU of the Department of Internal Medicine, Medical University of Graz, Graz, Austria. RESULTS Seventy-five patients were available for analyses. Median age was 60 [25th-75th percentile: 50-69] years, 27% were female, and median SOFA score was 12 [11-14] points. Serum suPAR levels were significantly associated with ICU mortality in univariable logistic regression analysis. There was no correlation between BALF and serum suPAR. Serum suPAR was higher in ARDS patients at 11.2 [8.0-17.2] ng/mL compared to those without ARDS at 7.1 [3.7-10.1] (p < 0.001). BALF-suPAR was significantly higher in patients with evidence of fungal lung infection compared to patients without fungal infection both in the general cohort (7.6 [3.2-9.4] vs 2.5 [1.1-5.3], p = 0.013) and in the subgroup of ARDS (7.2 [3.1-39.2] vs 2.5 [1.0-5.2], p = 0.022). All patients were classified as putative/probable invasive aspergillosis. CONCLUSION We found significant higher levels of serum suPAR in ARDS patients compared to those not fulfilling ARDS criteria. Serum and BALF-suPAR were significantly higher in those patients with evidence for invasive pulmonary aspergillosis. These findings may suggest testing this biomarker for early diagnosis of fungal infection in a greater cohort.
Collapse
Affiliation(s)
- Alexander C Reisinger
- Intensive Care Unit, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria
| | - Stefan Hatzl
- Intensive Care Unit, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria
| | - Juergen Prattes
- Division of Infectious Diseases, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Gerald Hackl
- Intensive Care Unit, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria
| | - Gernot Schilcher
- Intensive Care Unit, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria
| | - Florian Eisner
- Intensive Care Unit, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria
| | - Tobias Niedrist
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | - Reinhard Raggam
- Division of Angiology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Robert Krause
- Division of Infectious Diseases, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Philipp Eller
- Intensive Care Unit, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria.
| |
Collapse
|
36
|
Dessauer A, Hussey D, Khan SF, McLean CA, Gardiner BJ. Cytomegalovirus and Aspergillus co-infection in an immunocompetent patient with severe COVID-19. Pathology 2024; 56:110-114. [PMID: 37586979 DOI: 10.1016/j.pathol.2023.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 05/04/2023] [Accepted: 05/22/2023] [Indexed: 08/18/2023]
Affiliation(s)
- Adina Dessauer
- Department of Infectious Disease, Alfred Health, Melbourne, Vic, Australia.
| | - Daniel Hussey
- Department of Anatomical Pathology, Alfred Health, Melbourne, Vic, Australia
| | - Sadid F Khan
- Department of Infectious Disease, Alfred Health, Melbourne, Vic, Australia; Department of Microbiology, Alfred Health, Melbourne, Vic, Australia
| | - Catriona A McLean
- Department of Anatomical Pathology, Alfred Health, Melbourne, Vic, Australia; Central Clinical School, Monash University, Melbourne, Vic, Australia
| | - Bradley J Gardiner
- Department of Infectious Disease, Alfred Health, Melbourne, Vic, Australia; Central Clinical School, Monash University, Melbourne, Vic, Australia
| |
Collapse
|
37
|
Frost J, Gornicec M, Reisinger AC, Eller P, Hoenigl M, Prattes J. COVID-19 associated Pulmonary Aspergillosis in Patients Admitted to the Intensive Care Unit: Impact of Antifungal Prophylaxis. Mycopathologia 2024; 189:3. [PMID: 38217742 PMCID: PMC10787678 DOI: 10.1007/s11046-023-00809-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 10/07/2023] [Indexed: 01/15/2024]
Abstract
Early after the beginning of the coronavirus disease 2019 (COVID-19)-pandemic, it was observed that critically ill patients in the intensive care unit (ICU) were susceptible to developing secondary fungal infections, particularly COVID-19 associated pulmonary aspergillosis (CAPA). Here we report our local experience on the impact of mold active antifungal prophylaxis on CAPA occurrence in critically ill COVID-19 patients. This is a monocentric, prospective cohort study including all consecutive patients with COVID-19 associated acute respiratory failure who were admitted to our local medical ICU. Based on the treating physician's discretion, patients may have received antifungal prophylaxis or not. All patients were retrospectively characterized as having CAPA according to the 2020 ECMM/ISHAM consensus definitions. Seventy-seven patients were admitted to our medical ICU during April 2020 and May 2021 and included in the study. The majority of patients received invasive-mechanical ventilation (61%). Fifty-three patients (68.8%) received posaconazole prophylaxis. Six cases of probable CAPA were diagnosed within clinical routine management. All six cases were diagnosed in the non-prophylaxis group. The incidence of CAPA in the overall study cohort was 0.57 events per 100 ICU days and 2.20 events per 100 ICU days in the non-prophylaxis group. No difference of cumulative 84-days survival could be observed between the two groups (p = 0.115). In this monocentric cohort, application of posaconazole prophylaxis in patients with COVID-19 associated respiratory failure did significantly reduce the rate of CAPA.
Collapse
Affiliation(s)
- Jonas Frost
- Division of Infectious Diseases, Department of Internal Medicine, Medical University of Graz, ECMM Excellence Center, Graz, Austria
| | - Maximilian Gornicec
- Division of Infectious Diseases, Department of Internal Medicine, Medical University of Graz, ECMM Excellence Center, Graz, Austria
| | - Alexander C Reisinger
- Intensive Care Unit, Department of Internal Medicine, Medical University Graz, Graz, Austria
| | - Philipp Eller
- Intensive Care Unit, Department of Internal Medicine, Medical University Graz, Graz, Austria
| | - Martin Hoenigl
- Division of Infectious Diseases, Department of Internal Medicine, Medical University of Graz, ECMM Excellence Center, Graz, Austria
- BioTechMed Graz, Graz, Austria
| | - Juergen Prattes
- Division of Infectious Diseases, Department of Internal Medicine, Medical University of Graz, ECMM Excellence Center, Graz, Austria.
- BioTechMed Graz, Graz, Austria.
| |
Collapse
|
38
|
Hernández-Silva G, Corzo-León DE, Becerril-Vargas E, Peralta-Prado AB, Odalis RG, Morales-Villarreal F, Ríos-Ayala MA, Alonso TG, Agustín FLD, Ramón AF, Hugo ATV. Clinical characteristics, bacterial coinfections and outcomes in COVID-19-associated pulmonary aspergillosis in a third-level Mexican hospital during the COVID-19 pre-vaccination era. Mycoses 2024; 67:e13693. [PMID: 38214372 DOI: 10.1111/myc.13693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 01/13/2024]
Abstract
BACKGROUND Damage due to respiratory viruses increases the risk of bacterial and fungal coinfections and superinfections. High rates of invasive aspergillosis are seen in severe influenza and COVID-19. This report describes CAPA cases diagnosed during the first wave in the biggest reference centre for severe COVID-19 in Mexico. OBJECTIVES To describe the clinical, microbiological and radiological characteristics of patients with invasive pulmonary aspergillosis associated with critical COVID-19, as well as to describe the variables associated with mortality. METHODS This retrospective study identified CAPA cases among individuals with COVID-19 and ARDS, hospitalised from 1 March 2020 to 31 March 2021. CAPA was defined according to ECMM/ISHAM consensus criteria. Prevalence was estimated. Clinical and microbiological characteristics including bacterial superinfections, antifungal susceptibility testing and outcomes were documented. RESULTS Possible CAPA was diagnosed in 86 patients among 2080 individuals with severe COVID-19, representing 4.13% prevalence. All CAPA cases had a positive respiratory culture for Aspergillus species. Aspergillus fumigatus was the most frequent isolate (64%, n = 55/86). Seven isolates (9%, n = 7/80) were resistant to amphotericin B (A. fumigatus n = 5/55, 9%; A. niger, n = 2/7, 28%), two A. fumigatus isolates were resistant to itraconazole (3.6%, n = 2/55). Tracheal galactomannan values ranged between 1.2 and 4.05, while serum galactomannan was positive only in 11% (n = 3/26). Bacterial coinfection were documented in 46% (n = 40/86). Gram negatives were the most frequent cause (77%, n = 31/40 isolates), from which 13% (n = 4/31) were reported as multidrug-resistant bacteria. Mortality rate was 60% and worse prognosis was seen in older persons, high tracheal galactomannan index and high HbA1c level. CONCLUSIONS One in 10 individuals with CAPA carry a resistant Aspergillus isolate and/or will be affected by a MDR bacteria. High mortality rates are seen in this population.
Collapse
Affiliation(s)
- Graciela Hernández-Silva
- Infectious Diseases Department, Instituto Nacional de Enfermedades Respiratorias, Mexico City, Mexico
| | | | - Eduardo Becerril-Vargas
- Microbiology Clinical Laboratory, Instituto Nacional de Enfermedades Respiratorias, Mexico City, Mexico
| | - Amy Bethel Peralta-Prado
- Research Centre of Infectious Diseases, Instituto Nacional de Enfermedades Respiratorias, Mexico City, Mexico
| | - Rodríguez-Ganes Odalis
- Pharmacology Department, Instituto Nacional de Enfermedades Respiratorias, Mexico City, Mexico
| | | | | | | | | | - Avilez-Félix Ramón
- Pneumology Service, Instituto Nacional de Enfermedades Respiratorias, Mexico City, Mexico
| | | |
Collapse
|
39
|
Chaudhari V, Vairagade V, Thakkar A, Shende H, Vora A. Nanotechnology-based fungal detection and treatment: current status and future perspective. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:77-97. [PMID: 37597093 DOI: 10.1007/s00210-023-02662-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/02/2023] [Indexed: 08/21/2023]
Abstract
Fungal infections impose a significant impact on global health and encompass major expenditures in medical treatments. Human mycoses, a fungal co-infection associated with SARS-CoV-2, is caused by opportunistic fungal pathogens and is often overlooked or misdiagnosed. Recently, there is increasing threat about spread of antimicrobial resistance in fungus, mostly in hospitals and other healthcare facilities. The diagnosis and treatment of fungal infections are associated with several issues, including tedious and non-selective detection methods, the growth of drug-resistant bacteria, severe side effects, and ineffective drug delivery. Thus, a rapid and sensitive diagnostic method and a high-efficacy and low-toxicity therapeutic approach are needed. Nanomedicine has emerged as a viable option for overcoming these limitations. Due to the unique physicochemical and optical properties of nanomaterials and newer biosensing techniques, nanodiagnostics play an important role in the accurate and prompt differentiation and detection of fungal diseases. Additionally, nano-based drug delivery techniques can increase drug permeability, reduce adverse effects, and extend systemic circulation time and drug half-life. This review paper is aimed at highlighting recent, promising, and unique trends in nanotechnology to design and develop diagnostics and treatment methods for fungal diseases.
Collapse
Affiliation(s)
- Vinay Chaudhari
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's Narsee Monjee Institute of Management Studies, Mumbai, India
| | - Vaishnavi Vairagade
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's Narsee Monjee Institute of Management Studies, Mumbai, India
| | - Ami Thakkar
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's Narsee Monjee Institute of Management Studies, Mumbai, India
| | - Himani Shende
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's Narsee Monjee Institute of Management Studies, Mumbai, India
| | - Amisha Vora
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's Narsee Monjee Institute of Management Studies, Mumbai, India.
| |
Collapse
|
40
|
Walsh TJ, Alastruey-Izquierdo A. A view of excellence for the future of medical mycology in Clinical Microbiology and Infection. Clin Microbiol Infect 2024; 30:1-3. [PMID: 37678508 DOI: 10.1016/j.cmi.2023.08.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 08/29/2023] [Accepted: 08/31/2023] [Indexed: 09/09/2023]
Affiliation(s)
- Thomas J Walsh
- Center for Innovative Therapeutics and Diagnostics, Richmond, VA, USA; University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Ana Alastruey-Izquierdo
- Mycology Reference Laboratory, Spanish National Centre for Microbiology, Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
41
|
Eryilmaz-Eren E, Ture Z, Kilinç-Toker A, Korkmaz S, Çelik İ. The course of COVID-19 in patients with hematological malignancies and risk factors affecting mortality: A cross-sectional study. Hematol Transfus Cell Ther 2024; 46:3-7. [PMID: 36474859 PMCID: PMC9715489 DOI: 10.1016/j.htct.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 10/19/2022] [Accepted: 10/25/2022] [Indexed: 12/05/2022] Open
Abstract
OBJECTIVE This study aimed to determine the clinical outcomes and risk factors affecting mortality in patients with COVID-19 following hematological malignancy (HM). METHODS Patients diagnosed with HM and hospitalized for COVID-19 were included in this retrospective study. The age, demographic and clinical characteristics, prognosis and treatment of surviving and non-surviving patients were compared. RESULTS A total of 49 patients were included in this study, 17 (34.6%) of whom died within 28 days of being diagnosed with COVID-19. Older age (p = 0.001), diabetes (p = 0.001), chronic obstructive pulmonary disease (p = 0.002), secondary infection (p < 0.001) and secondary bacterial infection (p = 0.005) were statistically significantly higher in non-survivors. The remission status of HM was higher in surviving patients (p < 0.001). In multivariate regression analysis, age (OR: 1.102, p = 0.035) and secondary infection (OR: 16.677, p = 0.024) were risk factors increasing mortality, the remission status of HM (OR: 0.093, p = 0.047) was a protective factor from mortality. CONCLUSION The older age, the remission status of HM and secondary infection due to COVID-19 were determined as prognostic factors predicting mortality in HM patients with following COVID-19.
Collapse
Affiliation(s)
| | - Zeynep Ture
- Erciyes University, Faculty of Medicine, Kayseri, Turkey
| | | | - Serdal Korkmaz
- Kayseri City Education and Research Hospital, Kayseri, Turkey
| | - İlhami Çelik
- Kayseri City Education and Research Hospital, Kayseri, Turkey
| |
Collapse
|
42
|
Kosmidis C, Hoenigl M. COVID-19-associated pulmonary aspergillosis in mechanically ventilated patients: a deadly complication. Thorax 2023; 79:9-10. [PMID: 37940199 DOI: 10.1136/thorax-2023-220621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2023] [Indexed: 11/10/2023]
Affiliation(s)
- Chris Kosmidis
- National Aspergillosis Centre, Manchester University NHS Foundation Trust, Manchester, UK
| | - Martin Hoenigl
- Division of Infectious Diseases, Department of Internal Medicine, Medical University of Graz, Graz, Austria
- Translational Medical Mycology Research Group, ECMM Excellence Center for Clinical Mycology, Medical University of Graz, Graz, Austria
- BioTechMed, Graz, Austria
| |
Collapse
|
43
|
Hurt W, Youngs J, Ball J, Edgeworth J, Hopkins P, Jenkins DR, Leaver S, Mazzella A, Molloy SF, Schelenz S, Wise MP, White PL, Yusuff H, Wyncoll D, Bicanic T. COVID-19-associated pulmonary aspergillosis in mechanically ventilated patients: a prospective, multicentre UK study. Thorax 2023; 79:75-82. [PMID: 37657925 PMCID: PMC10804023 DOI: 10.1136/thorax-2023-220002] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 06/22/2023] [Indexed: 09/03/2023]
Abstract
BACKGROUND Invasive pulmonary aspergillosis is a complication of severe COVID-19, with regional variation in reported incidence and mortality. We describe the incidence, risk factors and mortality associated with COVID-19-associated pulmonary aspergillosis (CAPA) in a prospective, multicentre UK cohort. METHODS From March 2020 to March 2021, 266 mechanically ventilated adults with COVID-19 were enrolled across 5 UK hospital intensive care units (ICUs). CAPA was defined using European Confederation for Medical Mycology and the International Society for Human and Animal Mycology criteria and fungal diagnostics performed on respiratory and serum samples. RESULTS Twenty-nine of 266 patients (10.9%) had probable CAPA, 14 (5.2%) possible CAPA and none proven CAPA. Probable CAPA was diagnosed a median of 9 (IQR 7-16) days after ICU admission. Factors associated with probable CAPA after multivariable logistic regression were cumulative steroid dose given within 28 days prior to ICU admission (adjusted OR (aOR) 1.16; 95% CI 1.01 to 1.43 per 100 mg prednisolone-equivalent), receipt of an interleukin (IL)-6 inhibitor (aOR 2.79; 95% CI 1.22 to 6.48) and chronic obstructive pulmonary disease (COPD) (aOR 4.78; 95% CI 1.13 to 18.13). Mortality in patients with probable CAPA was 55%, vs 46% in those without. After adjustment for immortal time bias, CAPA was associated with an increased risk of 90-day mortality (HR 1.85; 95% CI 1.07 to 3.19); however, this association did not remain statistically significant after further adjustment for confounders (adjusted HR 1.57; 95% CI 0.88 to 2.80). There was no difference in mortality between patients with CAPA prescribed antifungals (9 of 17; 53%) and those who were not (7 of 12; 58%) (p=0.77). INTERPRETATION In this first prospective UK study, probable CAPA was associated with corticosteroid use, receipt of IL-6 inhibitors and pre-existing COPD. CAPA did not impact mortality following adjustment for prognostic variables.
Collapse
Affiliation(s)
- William Hurt
- Institute of Infection and Immunity, St George's University of London, London, UK
- Clinical Infection Unit, St George's University Hospitals NHS Foundation Trust, London, UK
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Jonathan Youngs
- Institute of Infection and Immunity, St George's University of London, London, UK
- Clinical Infection Unit, St George's University Hospitals NHS Foundation Trust, London, UK
| | - Jonathan Ball
- Adult Critical Care, St George's University Hospitals NHS Foundation Trust, London, UK
| | - Jonathan Edgeworth
- Clinical Infection and Microbiology, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Philip Hopkins
- Adult Critical Care, King's College Hospital NHS Foundation Trust, London, UK
| | - David R Jenkins
- Clinical Microbiology, University Hospitals of Leicester NHS Trust, Leicester, UK
| | - Susannah Leaver
- Adult Critical Care, St George's University Hospitals NHS Foundation Trust, London, UK
| | - Andrea Mazzella
- Institute of Infection and Immunity, St George's University of London, London, UK
| | - Síle F Molloy
- Institute of Infection and Immunity, St George's University of London, London, UK
| | - Silke Schelenz
- Medical Microbiology, King's College Hospital NHS Foundation Trust, London, UK
| | - Matt P Wise
- Adult Critical Care, University of Wales Hospital, Cardiff, UK
| | | | - Hakeem Yusuff
- Adult Critical Care, University Hospitals of Leicester NHS Trust, Leicester, UK
| | - Duncan Wyncoll
- Adult Critical Care, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Tihana Bicanic
- Institute of Infection and Immunity, St George's University of London, London, UK
- Clinical Infection Unit, St George's University Hospitals NHS Foundation Trust, London, UK
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, UK
| |
Collapse
|
44
|
Jansen AME, Mertens B, Spriet I, Verweij PE, Schouten J, Wauters J, Debaveye Y, Ter Heine R, Brüggemann RJM. Population Pharmacokinetics of Total and Unbound Isavuconazole in Critically Ill Patients: Implications for Adaptive Dosing Strategies. Clin Pharmacokinet 2023; 62:1701-1711. [PMID: 37819503 PMCID: PMC10684418 DOI: 10.1007/s40262-023-01305-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2023] [Indexed: 10/13/2023]
Abstract
BACKGROUND AND OBJECTIVES Isavuconazole is a broad-spectrum antifungal agent for the management of invasive fungal disease. Optimised drug exposure is critical for patient outcomes, specifically in the critically ill population. Solid information on isavuconazole pharmacokinetics including protein binding in patients in the intensive care unit is scarce. We aimed to describe the total and unbound isavuconazole pharmacokinetics and subsequently propose a dosage optimisation strategy. METHODS A prospective multi-centre study in adult intensive care unit patients receiving isavuconazole was performed. Blood samples were collected on eight timepoints over one dosing interval between days 3-7 of treatment and optionally on one timepoint after discontinuation. Total and unbound isavuconazole pharmacokinetics were analysed by means of population pharmacokinetic modelling using NONMEM. The final model was used to perform simulations to assess exposure described by the area under the concentration-time curve and propose an adaptive dosing approach. RESULTS Population pharmacokinetics of total and unbound isavuconazole were best described by an allometrically scaled two-compartment model with a saturable protein-binding model and interindividual variability on clearance and the maximum binding capacity. The median (range) isavuconazole unbound fraction was 1.65% (0.83-3.25%). After standard dosing, only 35.8% of simulated patients reached a total isavuconazole area under the concentration-time curve > 60 mg·h/L at day 14. The proposed adaptive dosing strategy resulted in an increase to 62.3% of patients at adequate steady-state exposure. CONCLUSIONS In critically ill patients, total isavuconazole exposure is reduced and protein binding is highly variable. We proposed an adaptive dosing approach to enhance early treatment optimisation in this high-risk population. CLINICAL TRIAL REGISTRATION ClinicalTrials.gov identifier: NCT04777058.
Collapse
Affiliation(s)
- Anouk M E Jansen
- Department of Pharmacy, Radboud University Medical Center, Radboud Institute for Medical Innovations, Postbox 9101, 6500 HB, Nijmegen, Geert Grooteplein Zuid 10, The Netherlands.
- Radboud University Medical Center-Canisius Wilhelmina Ziekenhuis Center of Expertise for Mycology, Nijmegen, The Netherlands.
| | - Beatrijs Mertens
- Department of Pharmacy, University Hospitals Leuven, Leuven, Belgium
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Isabel Spriet
- Department of Pharmacy, University Hospitals Leuven, Leuven, Belgium
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Paul E Verweij
- Radboud University Medical Center-Canisius Wilhelmina Ziekenhuis Center of Expertise for Mycology, Nijmegen, The Netherlands
- Department of Medical Microbiology, Radboud University Medical Center, Radboud Institute for Medical Innovations, Nijmegen, The Netherlands
| | - Jeroen Schouten
- Department of Intensive Care, Radboud University Medical Center, Radboud Institute for Medical Innovations, Nijmegen, The Netherlands
| | - Joost Wauters
- Department of Intensive Care, University Hospitals Leuven, Leuven, Belgium
| | - Yves Debaveye
- Department of Intensive Care, University Hospitals Leuven, Leuven, Belgium
| | - Rob Ter Heine
- Department of Pharmacy, Radboud University Medical Center, Radboud Institute for Medical Innovations, Postbox 9101, 6500 HB, Nijmegen, Geert Grooteplein Zuid 10, The Netherlands
| | - Roger J M Brüggemann
- Department of Pharmacy, Radboud University Medical Center, Radboud Institute for Medical Innovations, Postbox 9101, 6500 HB, Nijmegen, Geert Grooteplein Zuid 10, The Netherlands
- Radboud University Medical Center-Canisius Wilhelmina Ziekenhuis Center of Expertise for Mycology, Nijmegen, The Netherlands
| |
Collapse
|
45
|
Lockhart SR, Chowdhary A, Gold JAW. The rapid emergence of antifungal-resistant human-pathogenic fungi. Nat Rev Microbiol 2023; 21:818-832. [PMID: 37648790 DOI: 10.1038/s41579-023-00960-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2023] [Indexed: 09/01/2023]
Abstract
During recent decades, the emergence of pathogenic fungi has posed an increasing public health threat, particularly given the limited number of antifungal drugs available to treat invasive infections. In this Review, we discuss the global emergence and spread of three emerging antifungal-resistant fungi: Candida auris, driven by global health-care transmission and possibly facilitated by climate change; azole-resistant Aspergillus fumigatus, driven by the selection facilitated by azole fungicide use in agricultural and other settings; and Trichophyton indotineae, driven by the under-regulated use of over-the-counter high-potency corticosteroid-containing antifungal creams. The diversity of the fungi themselves and the drivers of their emergence make it clear that we cannot predict what might emerge next. Therefore, vigilance is critical to monitoring fungal emergence, as well as the rise in overall antifungal resistance.
Collapse
Affiliation(s)
- Shawn R Lockhart
- Mycotic Diseases Branch, Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| | - Anuradha Chowdhary
- Medical Mycology Unit, Department of Microbiology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
- National Reference Laboratory for Antimicrobial Resistance in Fungal Pathogens, Medical Mycology Unit, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
| | - Jeremy A W Gold
- Mycotic Diseases Branch, Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| |
Collapse
|
46
|
Ramonfaur D, Salto-Quintana JN, Aguirre-García GM, Hernández-Mata NM, Villanueva-Lozano H, Torre-Amione G, Martínez-Reséndez MF. Cumulative steroid dose in hospitalized patients and COVID-19-associated pulmonary aspergillosis. J Hosp Infect 2023; 142:26-31. [PMID: 37499762 DOI: 10.1016/j.jhin.2023.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 07/04/2023] [Accepted: 07/17/2023] [Indexed: 07/29/2023]
Abstract
BACKGROUND Severe COVID-19 elicits a hyperimmune response frequently amenable to steroids, which in turn increase the risk for opportunistic infections. COVID-19 associated pulmonary aspergillosis (CAPA) is a complication known to be associated with immunomodulatory treatment. The role of cumulative steroid dose in the development of CAPA is unclear. This study evaluates the relationship between cumulative steroid dose in hospitalized individuals with COVID-19 pneumonia and the risk for CAPA. METHODS This retrospective cohort study includes 135 hospitalized patients with PCR-confirmed COVID-19 pneumonia at a tertiary centre in north Mexico. Patients who developed CAPA were matched by age and gender to two controls with COVID-19 pneumonia who did not develop CAPA defined and classified as possible, probable, or proven according to 2020 ECMM/ISHAM criteria. Cumulative steroid dose in dexamethasone equivalents was obtained from admission until death, discharge, or diagnosis of CAPA (whichever occurred first). The risk of CAPA by the continuous cumulative steroid dose was assessed using a logistic regression model. RESULTS Forty-five patients were diagnosed with CAPA and matched to 90 controls. Mean age was 61 ± 14 years, and 72% were male. Mean cumulative steroid dose was 66 ± 75 mg in patients without CAPA vs 195 ± 226 mg in patients with CAPA (P<0.001). The risk for CAPA increased with higher cumulative dose of steroids (OR 1.0075, 95% CI: 1.0033-1.0116). CONCLUSIONS Patients who developed CAPA had a history of higher cumulative steroid dose during hospitalization. The risk for CAPA increases ∼8% for every 10 mg of dexamethasone used.
Collapse
Affiliation(s)
- D Ramonfaur
- Division of Postgraduate Medical Education, Harvard Medical School, Boston, MA, USA
| | - J N Salto-Quintana
- School of Medicine and Health Sciences, Instituto Tecnológico y de Estudios Superiores de Monterrey, Monterrey, Nuevo Leon, Mexico
| | - G M Aguirre-García
- School of Medicine and Health Sciences, Instituto Tecnológico y de Estudios Superiores de Monterrey, Monterrey, Nuevo Leon, Mexico
| | - N M Hernández-Mata
- School of Medicine and Health Sciences, Instituto Tecnológico y de Estudios Superiores de Monterrey, Monterrey, Nuevo Leon, Mexico
| | - H Villanueva-Lozano
- Department of Infectious Diseases, ISSSTE Regional Monterrey, Monterrey, Nuevo Leon, Mexico
| | - G Torre-Amione
- School of Medicine and Health Sciences, Instituto Tecnológico y de Estudios Superiores de Monterrey, Monterrey, Nuevo Leon, Mexico; The Methodist Hospital, Cornell University, Houston, TX, USA
| | - M F Martínez-Reséndez
- School of Medicine and Health Sciences, Instituto Tecnológico y de Estudios Superiores de Monterrey, Monterrey, Nuevo Leon, Mexico; Epidemiological Surveillance Unit, Hospital San Jose-Tec Salud, Monterrey, Nuevo Leon, Mexico.
| |
Collapse
|
47
|
Earle K, Valero C, Conn DP, Vere G, Cook PC, Bromley MJ, Bowyer P, Gago S. Pathogenicity and virulence of Aspergillus fumigatus. Virulence 2023; 14:2172264. [PMID: 36752587 PMCID: PMC10732619 DOI: 10.1080/21505594.2023.2172264] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 12/16/2022] [Indexed: 02/09/2023] Open
Abstract
Pulmonary infections caused by the mould pathogen Aspergillus fumigatus are a major cause of morbidity and mortality globally. Compromised lung defences arising from immunosuppression, chronic respiratory conditions or more recently, concomitant viral or bacterial pulmonary infections are recognised risks factors for the development of pulmonary aspergillosis. In this review, we will summarise our current knowledge of the mechanistic basis of pulmonary aspergillosis with a focus on emerging at-risk populations.
Collapse
Affiliation(s)
- Kayleigh Earle
- Manchester Fungal Infection Group, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Clara Valero
- Manchester Fungal Infection Group, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Daniel P. Conn
- MRC Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - George Vere
- MRC Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Peter C. Cook
- MRC Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Michael J. Bromley
- Manchester Fungal Infection Group, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Paul Bowyer
- Manchester Fungal Infection Group, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Sara Gago
- Manchester Fungal Infection Group, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| |
Collapse
|
48
|
Zhou X, Wu X, Chen Z, Cui X, Cai Y, Liu Y, Weng B, Zhan Q, Huang L. Risk factors and the value of microbiological examinations of COVID-19 associated pulmonary aspergillosis in critically ill patients in intensive care unit: the appropriate microbiological examinations are crucial for the timely diagnosis of CAPA. Front Cell Infect Microbiol 2023; 13:1287496. [PMID: 38076456 PMCID: PMC10703051 DOI: 10.3389/fcimb.2023.1287496] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/30/2023] [Indexed: 12/18/2023] Open
Abstract
Introduction During the Omicron pandemic in China, a significant proportion of patients with Coronavirus Disease 2019 (COVID-19) associated pulmonary aspergillosis (CAPA) necessitated admission to intensive care unit (ICU) and experienced a high mortality. To explore the clinical risk factors and the application/indication of microbiological examinations of CAPA in ICU for timely diagnosis are very important. Methods This prospective study included patients with COVID-19 admitted to ICU between December 1, 2022, and February 28, 2023. The clinical data of influenza-associated pulmonary aspergillosis (IAPA) patients from the past five consecutive influenza seasons (November 1, 2017, to March 31, 2022) were collected for comparison. The types of specimens and methods used for microbiological examinations were also recorded to explore the efficacy in early diagnosis. Results Among 123 COVID-19 patients, 36 (29.3%) were diagnosed with probable CAPA. CAPA patients were more immunosuppressed, in more serious condition, required more advanced respiratory support and had more other organ comorbidities. Solid organ transplantation, APACHEII score ≥20 points, 5 points ≤SOFA score <10 points were independent risk factors for CAPA. Qualified lower respiratory tract specimens were obtained from all patients, and 84/123 (68.3%) patients underwent bronchoscopy to obtain bronchoalveolar lavage fluid (BALF) specimens. All patients' lower respiratory tract specimens underwent fungal smear and culture; 79/123 (64.2%) and 69/123 (56.1%) patients underwent BALF galactomannan (GM) and serum GM detection, respectively; metagenomic next-generation sequencing (mNGS) of the BALF was performed in 62/123 (50.4%) patients. BALF GM had the highest diagnostic sensitivity (84.9%), the area under the curve of the mNGS were the highest (0.812). Conclusion The incidence of CAPA was extremely high in patients admitted to the ICU. CAPA diagnosis mainly depends on microbiological evidence owing to non-specific clinical manifestations, routine laboratory examinations, and CT findings. The bronchoscopy should be performed and the BALF should be obtained as soon as possible. BALF GM are the most suitable microbiological examinations for the diagnosis of CAPA. Due to the timely and accuracy result of mNGS, it could assist in early diagnosis and might be an option in critically ill CAPA patients.
Collapse
Affiliation(s)
- Xiaoyi Zhou
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Xiaojing Wu
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Ziying Chen
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Xiaoyang Cui
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Ying Cai
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Youfang Liu
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
- Bejing University of Chinese Medicine, Beijing, China
| | - Bingbing Weng
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
- Bejing University of Chinese Medicine, Beijing, China
| | - Qingyuan Zhan
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
- Bejing University of Chinese Medicine, Beijing, China
| | - Linna Huang
- National Center for Respiratory Medicine, State Key Laboratory of Respiratory Health and Multimorbidity, National Clinical Research Center for Respiratory Diseases, Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
49
|
Hashim Z, Nath A, Khan A, Gupta M, Kumar A, Chatterjee R, Dhiman RK, Hoenigl M, Tripathy NK. Effect of glucocorticoids on the development of COVID-19-associated pulmonary aspergillosis: A meta-analysis of 21 studies and 5174 patients. Mycoses 2023; 66:941-952. [PMID: 37551043 DOI: 10.1111/myc.13637] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/27/2023] [Indexed: 08/09/2023]
Abstract
COVID-19-associated pulmonary aspergillosis (CAPA) remains a high mortality mycotic infection throughout the pandemic, and glucocorticoids (GC) may be its root cause. Our aim was to evaluate the effect of systemic GC treatment on the development of CAPA. We systematically searched the PubMed, Google Scholar, Scopus and Embase databases to collect eligible studies published until 31 December 2022. The pooled outcome of CAPA development was calculated as the log odds ratio (LOR) with 95% confidence intervals (CI) using a random effect model. A total of 21 studies with 5174 patients were included. Of these, 20 studies with 4675 patients consisting of 2565 treated with GC but without other immunomodulators (GC group) and 2110 treated without GC or other immunomodulators (controls) were analysed. The pooled LOR of CAPA development was higher for the GC group than for the controls (0.54; 95% CI: 0.22, 0.86; p < .01). In the subgroups, the pooled LOR was higher for high-dose GC (0.90; 95% CI: 0.17, 1.62: p = .01) and dexamethasone (0.71; 95% CI: 0.35, 1.07; p < .01) but had no significant difference for low-dose GC (0.41; 95% CI: -0.07, 0.89; p = .09), and non-dexamethasone GC (0.21; 95% CI: -0.36, 0.79; p = .47), treated patients versus controls. GC treatment increases the risk of CAPA development, and this risk is particularly associated with the use of high-dose GC or dexamethasone treatment.
Collapse
Affiliation(s)
- Zia Hashim
- Department of Pulmonary Medicine, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Alok Nath
- Department of Pulmonary Medicine, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Ajmal Khan
- Department of Pulmonary Medicine, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Mansi Gupta
- Department of Pulmonary Medicine, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Anup Kumar
- Department of Biostatistics and Health Informatics, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Riksoam Chatterjee
- Department of Pulmonary Medicine, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Radha Krishan Dhiman
- Department of Hepatology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Martin Hoenigl
- Division of Infectious Diseases, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Naresh Kumar Tripathy
- Department of Hematology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| |
Collapse
|
50
|
Gaffney S, Kelly DM, Rameli PM, Kelleher E, Martin-Loeches I. Invasive pulmonary aspergillosis in the intensive care unit: current challenges and best practices. APMIS 2023; 131:654-667. [PMID: 37022291 DOI: 10.1111/apm.13316] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 04/02/2023] [Indexed: 04/07/2023]
Abstract
The prevalence of invasive pulmonary aspergillosis (IPA) is growing in critically ill patients in the intensive care unit (ICU). It is increasingly recognized in immunocompetent hosts and immunocompromised ones. IPA frequently complicates both severe influenza and severe coronavirus disease 2019 (COVID-19) infection. It continues to represent both a diagnostic and therapeutic challenge and can be associated with significant morbidity and mortality. In this narrative review, we describe the epidemiology, risk factors and disease manifestations of IPA. We discuss the latest evidence and current published guidelines for the diagnosis and management of IPA in the context of the critically ill within the ICU. Finally, we review influenza-associated pulmonary aspergillosis (IAPA), COVID-19-associated pulmonary aspergillosis (CAPA) as well as ongoing and future areas of research.
Collapse
Affiliation(s)
- Sarah Gaffney
- Department of Intensive Care Medicine, Multidisciplinary Intensive Care Research Organization (MICRO), St. James's Hospital, Dublin, Ireland
| | - Dearbhla M Kelly
- Department of Intensive Care Medicine, Multidisciplinary Intensive Care Research Organization (MICRO), St. James's Hospital, Dublin, Ireland
| | - Puteri Maisarah Rameli
- Department of Intensive Care Medicine, Multidisciplinary Intensive Care Research Organization (MICRO), St. James's Hospital, Dublin, Ireland
| | - Eoin Kelleher
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Ignacio Martin-Loeches
- Department of Intensive Care Medicine, Multidisciplinary Intensive Care Research Organization (MICRO), St. James's Hospital, Dublin, Ireland
- Department of Clinical Medicine, School of Medicine, Trinity College Dublin, Dublin, Ireland
- Hospital Clinic, Institut D'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Universidad de Barcelona, Barcelona, Spain
| |
Collapse
|