1
|
Tian S, Rong C, Li H, Wu Y, Wu N, Chu Y, Jiang N, Zhang J, Shang H. Genetic microevolution of clinical Candida auris with reduced Amphotericin B sensitivity in China. Emerg Microbes Infect 2024; 13:2398596. [PMID: 39234778 PMCID: PMC11385638 DOI: 10.1080/22221751.2024.2398596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/16/2024] [Accepted: 08/26/2024] [Indexed: 09/06/2024]
Abstract
The global rate of Amphotericin B (AmB) resistance in Candida auris has surpassed 12%. However, there is limited data on available clinical treatments and microevolutionary analyses concerning reduced AmB sensitivity. In this study, we collected 18 C. auris isolates from five patients between 2019 and 2022. We employed clinical data mining, genomic, and transcriptomic analyses to identify genetic evolutionary features linked to reduced AmB sensitivity in these isolates during clinical treatment. We identified six isolates with a minimum inhibitory concentration (MIC) of AmB below 0.5 µg/mL (AmB0.5) and 12 isolates with an AmB-MIC of 1 µg/mL (AmB1) or ≥ 2 µg/mL (AmB2). All five patients received 24-hour AmB (5 mg/L) bladder irrigation treatment. Evolutionary analyses revealed an ERG3 (c923t) mutation in AmB1 C. auris. Additionally, AmB2 C. auris was found to contain a t2831c mutation in the RAD2 gene. In the AmB1 group, membrane lipid-related gene expression (ERG1, ERG2, ERG13, and ERG24) was upregulated, while in the AmB2 group, expression of DNA-related genes (e.g. DNA2 and PRI1) was up-regulated. In a series of C.auris strains with reduced susceptibility to AmB, five key genes were identified: two upregulated (IFF9 and PGA6) and three downregulated (HGT7, HGT13,and PRI32). In this study, we demonstrate the microevolution of reduced AmB sensitivity in vivo and further elucidate the relationship between reduced AmB sensitivity and low-concentration AmB bladder irrigation. These findings offer new insights into potential antifungal drug targets and clinical markers for the "super fungus", C. auris.
Collapse
Affiliation(s)
- Sufei Tian
- National Clinical Research Center for Laboratory Medicine, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Department of Laboratory Medicine, the First Hospital of China Medical University, Shenyang, People's Republic of China
| | - Chen Rong
- National Clinical Research Center for Laboratory Medicine, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Department of Laboratory Medicine, the First Hospital of China Medical University, Shenyang, People's Republic of China
| | - Hailong Li
- National Clinical Research Center for Laboratory Medicine, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Department of Laboratory Medicine, the First Hospital of China Medical University, Shenyang, People's Republic of China
- NHC Key Laboratory of AIDS Prevention and Treatment, The First Hospital of China Medical University, China Medical University, Shenyang, People's Republic of China
| | - Yusheng Wu
- National Clinical Research Center for Laboratory Medicine, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Department of Laboratory Medicine, the First Hospital of China Medical University, Shenyang, People's Republic of China
| | - Na Wu
- Department of Infectious Diseases, the First Hospital of China Medical University, Shenyang, People's Republic of China
| | - Yunzhuo Chu
- National Clinical Research Center for Laboratory Medicine, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Department of Laboratory Medicine, the First Hospital of China Medical University, Shenyang, People's Republic of China
| | - Ning Jiang
- National Clinical Research Center for Laboratory Medicine, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Department of Laboratory Medicine, the First Hospital of China Medical University, Shenyang, People's Republic of China
| | - Jingping Zhang
- Department of Infectious Diseases, the First Hospital of China Medical University, Shenyang, People's Republic of China
| | - Hong Shang
- National Clinical Research Center for Laboratory Medicine, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Department of Laboratory Medicine, the First Hospital of China Medical University, Shenyang, People's Republic of China
- NHC Key Laboratory of AIDS Prevention and Treatment, The First Hospital of China Medical University, China Medical University, Shenyang, People's Republic of China
| |
Collapse
|
2
|
Arendrup MC, Lockhart SR, Wiederhold N. Candida auris MIC testing by EUCAST and CLSI broth microdilution, and gradient diffusion strips; to be or not to be amphotericin B resistant? Clin Microbiol Infect 2024:S1198-743X(24)00492-0. [PMID: 39426481 DOI: 10.1016/j.cmi.2024.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 09/30/2024] [Accepted: 10/13/2024] [Indexed: 10/21/2024]
Abstract
OBJECTIVES Reported amphotericin B resistance rates for Candida auris vary considerably. This may reflect clinically relevant differences in susceptibility, technical issues with testing or adoption of a clinical breakpoint (BP) that bisects the wild-type population. We compared reference methods and two gradient diffusion strips using a shared C. auris strain collection. METHODS Forty C. auris strains from nine US states and ≥3 clades were included. Fourteen MIC data sets were generated using EUCAST E.Def 7.4, CLSI M27Ed4, Etest and MTS (Liofilchem) strip MICs. MICs ≤1 mg/L were classified as susceptible. RESULTS EUCAST and CLSI amphotericin B MIC testing were robust across included method variables. The modal MIC was 1 mg/L, distributions unimodal and narrow with similar GM-MICs (0.745-1.072); however, susceptibility classification varied (0-28% resistance). Gradient diffusion strip testing resulted in wider and bimodal distributions for 8/9 data sets. If adopting, per manufacturer's protocol, double inoculation for the Etest method, the modal MIC increased to 2-4 mg/L and resistance rates to 45-63% versus 25-30% with the single inoculation. The EUCAST, CLSI, Etest and MTS strip MICs correlated to the OD of drug-free control EUCAST wells suggesting that some isolates grew better than others and that this was associated with MIC. CONCLUSIONS The EUCAST and CLSI MIC results were in close agreement, whereas the strip test showed wider and bimodal distributions with reader to reader and centre to centre variation. Our study adds to the concern for commercial MIC testing of amphotericin B against C. auris and suggest the current breakpoint leads to random susceptibility classification.
Collapse
Affiliation(s)
- Maiken Cavling Arendrup
- Unit for Mycology, Statens Serum Institut, Copenhagen, Denmark; Dept Clin Microbiol, Rigshospitalet, Copenhagen University, Copenhagen, Denmark.
| | - Shawn R Lockhart
- Mycotic Diseases Branch, Centers for Disease Control and Prevention, CDC, Atlanta, GA, USA
| | - Nathan Wiederhold
- Dept Pathology and Laboratory Medicine, UT Health San Antonio, San Antonio, TX, USA
| |
Collapse
|
3
|
Stolfa S, Caggiano G, Ronga L, Dalfino L, Centrone F, Sallustio A, Sacco D, Mosca A, Stufano M, Saracino A, De Gennaro N, Casulli D, Netti N, Soldano S, Faggiano M, Loconsole D, Tafuri S, Grasso S, Chironna M. First Case of Candida Auris Sepsis in Southern Italy: Antifungal Susceptibility and Genomic Characterisation of a Difficult-to-Treat Emerging Yeast. Microorganisms 2024; 12:1962. [PMID: 39458271 PMCID: PMC11509443 DOI: 10.3390/microorganisms12101962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/06/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024] Open
Abstract
Candida auris is an emerging yeast considered a serious threat to global health. We report the first case of C. auris candidemia in Southern Italy, characterized using whole genome sequencing (WGS), and compared with a second strain isolated from a patient who presented as C. auris-colonized following screening. The C. auris strain was isolated from clinical samples, identified via MALDI-TOF, and subjected to WGS. Antifungal susceptibility testing was performed using commercial broth microdilution plates, and resistance protein sequences were evaluated with TBLASTN-2.15.0. Following the initial C. auris isolation from patient A, active surveillance and environmental investigations were implemented for all ICU patients. Of the 26 ICU surfaces sampled, 46.1% tested positive for C. auris via real-time PCR. Screening identified a second patient (patient B) as C. auris-colonized. The phylogenetic characterization of strains from patients A and B, based on the D1/D2 region of the 28s rDNA and the internal transcribed spacer (ITS) region, showed high similarity with strains from Lebanon. SNP analysis revealed high clonality, assigning both strains to clade I, indicating a significant similarity with Lebanese strains. This case confirms the alarming spread of C. auris infections and highlights the need for stringent infection control measures to manage outbreaks.
Collapse
Affiliation(s)
- Stefania Stolfa
- Microbiology and Virology Unit, Department of Interdisciplinary Medicine, University of Bari “A. Moro”, 70124 Bari, Italy; (S.S.); (L.R.); (A.M.)
| | - Giuseppina Caggiano
- Hygiene Section, Department of Interdisciplinary Medicine, University of Bari “A. Moro”, 70124 Bari, Italy; (G.C.); (D.S.); (D.L.); (S.T.)
- Hygiene Unit, Bari Policlinico University Hospital, 70124 Bari, Italy; (F.C.); (A.S.); (D.C.); (N.N.)
| | - Luigi Ronga
- Microbiology and Virology Unit, Department of Interdisciplinary Medicine, University of Bari “A. Moro”, 70124 Bari, Italy; (S.S.); (L.R.); (A.M.)
| | - Lidia Dalfino
- Intensive Care Unit II, Department of Precision Medicine, Ionic Area, University of Bari “A. Moro”, 70124 Bari, Italy; (L.D.); (M.S.); (S.G.)
| | - Francesca Centrone
- Hygiene Unit, Bari Policlinico University Hospital, 70124 Bari, Italy; (F.C.); (A.S.); (D.C.); (N.N.)
| | - Anna Sallustio
- Hygiene Unit, Bari Policlinico University Hospital, 70124 Bari, Italy; (F.C.); (A.S.); (D.C.); (N.N.)
| | - Davide Sacco
- Hygiene Section, Department of Interdisciplinary Medicine, University of Bari “A. Moro”, 70124 Bari, Italy; (G.C.); (D.S.); (D.L.); (S.T.)
| | - Adriana Mosca
- Microbiology and Virology Unit, Department of Interdisciplinary Medicine, University of Bari “A. Moro”, 70124 Bari, Italy; (S.S.); (L.R.); (A.M.)
| | - Monica Stufano
- Intensive Care Unit II, Department of Precision Medicine, Ionic Area, University of Bari “A. Moro”, 70124 Bari, Italy; (L.D.); (M.S.); (S.G.)
| | - Annalisa Saracino
- Clinic of Infectious Diseases, Department of Biomedical Sciences and Human Oncology, University of Bari “A. Moro”, 70124 Bari, Italy; (A.S.); (N.D.G.)
| | - Nicolo’ De Gennaro
- Clinic of Infectious Diseases, Department of Biomedical Sciences and Human Oncology, University of Bari “A. Moro”, 70124 Bari, Italy; (A.S.); (N.D.G.)
| | - Daniele Casulli
- Hygiene Unit, Bari Policlinico University Hospital, 70124 Bari, Italy; (F.C.); (A.S.); (D.C.); (N.N.)
| | - Nicola Netti
- Hygiene Unit, Bari Policlinico University Hospital, 70124 Bari, Italy; (F.C.); (A.S.); (D.C.); (N.N.)
| | - Savino Soldano
- Policlinico Hospital Sanitary Direction, Bari Policlinico University Hospital, 70124 Bari, Italy;
| | - Maria Faggiano
- Pharmacy Unit, Bari Policlinico University Hospital, 70124 Bari, Italy;
| | - Daniela Loconsole
- Hygiene Section, Department of Interdisciplinary Medicine, University of Bari “A. Moro”, 70124 Bari, Italy; (G.C.); (D.S.); (D.L.); (S.T.)
- Hygiene Unit, Bari Policlinico University Hospital, 70124 Bari, Italy; (F.C.); (A.S.); (D.C.); (N.N.)
| | - Silvio Tafuri
- Hygiene Section, Department of Interdisciplinary Medicine, University of Bari “A. Moro”, 70124 Bari, Italy; (G.C.); (D.S.); (D.L.); (S.T.)
- Hygiene Unit, Bari Policlinico University Hospital, 70124 Bari, Italy; (F.C.); (A.S.); (D.C.); (N.N.)
| | - Salvatore Grasso
- Intensive Care Unit II, Department of Precision Medicine, Ionic Area, University of Bari “A. Moro”, 70124 Bari, Italy; (L.D.); (M.S.); (S.G.)
| | - Maria Chironna
- Microbiology and Virology Unit, Department of Interdisciplinary Medicine, University of Bari “A. Moro”, 70124 Bari, Italy; (S.S.); (L.R.); (A.M.)
- Hygiene Section, Department of Interdisciplinary Medicine, University of Bari “A. Moro”, 70124 Bari, Italy; (G.C.); (D.S.); (D.L.); (S.T.)
- Hygiene Unit, Bari Policlinico University Hospital, 70124 Bari, Italy; (F.C.); (A.S.); (D.C.); (N.N.)
| |
Collapse
|
4
|
Asadzadeh M, Ahmad S, Alfouzan W, Al-Obaid I, Spruijtenburg B, Meijer EFJ, Meis JF, Mokaddas E. Evaluation of Etest and MICRONAUT-AM Assay for Antifungal Susceptibility Testing of Candida auris: Underestimation of Fluconazole Resistance by MICRONAUT-AM and Overestimation of Amphotericin B Resistance by Etest. Antibiotics (Basel) 2024; 13:840. [PMID: 39335013 PMCID: PMC11428412 DOI: 10.3390/antibiotics13090840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/08/2024] [Accepted: 08/26/2024] [Indexed: 09/30/2024] Open
Abstract
Multidrug-resistant Candida auris has recently caused major outbreaks in healthcare facilities. Rapid and accurate antifungal susceptibility testing (AST) of C. auris is crucial for proper management of invasive infections. The Commercial Sensititre Yeast One and Vitek 2 methods underestimate or overestimate the resistance of C. auris to fluconazole and amphotericin B (AMB). This study evaluated the AST results of C. auris against fluconazole and AMB by gradient-MIC-strip (Etest) and broth microdilution-based MICRONAUT-AM-EUCAST (MCN-AM) assays. Clinical C. auris isolates (n = 121) identified by phenotypic and molecular methods were tested. Essential agreement (EA, ±1 two-fold dilution) between the two methods and categorical agreement (CA) based on the Centers for Disease Control and Prevention's (CDC's) tentative resistance breakpoints were determined. Fluconazole resistance-associated mutations were detected by PCR-sequencing of ERG11. All isolates identified as C. auris belonged to South Asian clade I and contained the ERG11 Y132F or K143R mutation. The Etest-MCN-AM EA was poor (33%) for fluconazole and moderate (76%) for AMB. The CA for fluconazole was higher (94.2%, 7 discrepancies) than for AMB (91.7%, 10 discrepancies). Discrepancies were reduced when an MCN-AM upper-limit value of 4 µg/mL for fluconazole-susceptible C. auris and an Etest upper-limit value of 8 µg/mL for the wild type for AMB were used. Our data show that resistance to fluconazole was underestimated by MCN-AM, while resistance to AMB was overestimated by Etest when using the CDC's tentative resistance breakpoints of ≥32 µg/mL for fluconazole and ≥2 µg/mL for AMB. Method-specific resistance breakpoints should be devised for accurate AST of clinical C. auris isolates for proper patient management.
Collapse
Affiliation(s)
- Mohammad Asadzadeh
- Department of Microbiology, Faculty of Medicine, Kuwait University, Safat 13110, Kuwait
| | - Suhail Ahmad
- Department of Microbiology, Faculty of Medicine, Kuwait University, Safat 13110, Kuwait
| | - Wadha Alfouzan
- Department of Microbiology, Faculty of Medicine, Kuwait University, Safat 13110, Kuwait
- Microbiology Department, Farwaniya Hospital, Farwaniya 81004, Kuwait
| | - Inaam Al-Obaid
- Microbiology Department, Al-Sabah Hospital, Shuwaikh 70031, Kuwait
| | - Bram Spruijtenburg
- Canisius Wilhelmina Hospital (CWZ)/Dicoon, 6532 Nijmegen, The Netherlands
- Radboudumc-CWZ Center of Expertise for Mycology, 6500 Nijmegen, The Netherlands
| | - Eelco F J Meijer
- Canisius Wilhelmina Hospital (CWZ)/Dicoon, 6532 Nijmegen, The Netherlands
- Radboudumc-CWZ Center of Expertise for Mycology, 6500 Nijmegen, The Netherlands
| | - Jacques F Meis
- Radboudumc-CWZ Center of Expertise for Mycology, 6500 Nijmegen, The Netherlands
- Institute of Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) and Excellence Center for Medical Mycology, University of Cologne, 50923 Cologne, Germany
| | - Eiman Mokaddas
- Department of Microbiology, Faculty of Medicine, Kuwait University, Safat 13110, Kuwait
- Microbiology Department, Ibn-Sina Hospital, Shuwaikh 70031, Kuwait
| |
Collapse
|
5
|
Suphavilai C, Ko KKK, Lim KM, Tan MG, Boonsimma P, Chu JJK, Goh SS, Rajandran P, Lee LC, Tan KY, Shaik Ismail BB, Aung MK, Yang Y, Sim JXY, Venkatachalam I, Cherng BPZ, Spruijtenburg B, Chan KS, Oon LLE, Tan AL, Tan YE, Wijaya L, Tan BH, Ling ML, Koh TH, Meis JF, Tsui CKM, Nagarajan N. Detection and characterisation of a sixth Candida auris clade in Singapore: a genomic and phenotypic study. THE LANCET. MICROBE 2024; 5:100878. [PMID: 39008997 DOI: 10.1016/s2666-5247(24)00101-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 03/04/2024] [Accepted: 04/09/2024] [Indexed: 07/17/2024]
Abstract
BACKGROUND The emerging fungal pathogen Candida auris poses a serious threat to global public health due to its worldwide distribution, multidrug resistance, high transmissibility, propensity to cause outbreaks, and high mortality. We aimed to characterise three unusual C auris isolates detected in Singapore, and to determine whether they constitute a novel clade distinct from all previously known C auris clades (I-V). METHODS In this genotypic and phenotypic study, we characterised three C auris clinical isolates, which were cultured from epidemiologically unlinked inpatients at a large tertiary hospital in Singapore. The index isolate was detected in April, 2023. We performed whole-genome sequencing (WGS) and obtained hybrid assemblies of these C auris isolates. The complete genomes were compared with representative genomes of all known C auris clades. To provide a global context, 3651 international WGS data from the National Center for Biotechnology Information (NCBI) database were included in a high-resolution single nucleotide polymorphism (SNP) analysis. Antifungal susceptibility testing was done and antifungal resistance genes, mating-type locus, and chromosomal rearrangements were characterised from the WGS data of the three investigated isolates. We further implemented Bayesian logistic regression models to classify isolates into known clades and simulate the automatic detection of isolates belonging to novel clades as their WGS data became available. FINDINGS The three investigated isolates were separated by at least 37 000 SNPs (range 37 000-236 900) from all existing C auris clades. These isolates had opposite mating-type allele and different chromosomal rearrangements when compared with their closest clade IV relatives. The isolates were susceptible to all tested antifungals. Therefore, we propose that these isolates represent a new clade of C auris, clade VI. Furthermore, an independent WGS dataset from Bangladesh, accessed via the NCBI Sequence Read Archive, was found to belong to this new clade. As a proof-of-concept, our Bayesian logistic regression model was able to flag these outlier genomes as a potential new clade. INTERPRETATION The discovery of a new C auris clade in Singapore and Bangladesh in the Indomalayan zone, showing a close relationship to clade IV members most commonly found in South America, highlights the unknown genetic diversity and origin of C auris, particularly in under-resourced regions. Active surveillance in clinical settings, along with effective sequencing strategies and downstream analysis, will be essential in the identification of novel strains, tracking of transmission, and containment of adverse clinical effects of C auris infections. FUNDING Duke-NUS Academic Medical Center Nurturing Clinician Researcher Scheme, and the Genedant-GIS Innovation Program.
Collapse
Affiliation(s)
- Chayaporn Suphavilai
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore
| | - Karrie Kwan Ki Ko
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore; Department of Microbiology, Singapore General Hospital, Singapore; Duke-NUS Medical School, Singapore; Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| | - Kar Mun Lim
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore
| | - Mei Gie Tan
- Department of Microbiology, Singapore General Hospital, Singapore
| | - Patipan Boonsimma
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore
| | - Joash Jun Keat Chu
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore
| | - Sui Sin Goh
- Department of Microbiology, Singapore General Hospital, Singapore
| | | | - Lai Chee Lee
- Department of Infection Prevention and Epidemiology, Singapore General Hospital, Singapore
| | - Kwee Yuen Tan
- Department of Infection Prevention and Epidemiology, Singapore General Hospital, Singapore
| | | | - May Kyawt Aung
- Department of Infection Prevention and Epidemiology, Singapore General Hospital, Singapore
| | - Yong Yang
- Department of Infection Prevention and Epidemiology, Singapore General Hospital, Singapore
| | - Jean Xiang Ying Sim
- Department of Infection Prevention and Epidemiology, Singapore General Hospital, Singapore; Department of Infectious Diseases, Singapore General Hospital, Singapore
| | - Indumathi Venkatachalam
- Department of Infection Prevention and Epidemiology, Singapore General Hospital, Singapore; Department of Infectious Diseases, Singapore General Hospital, Singapore; Duke-NUS Medical School, Singapore
| | - Benjamin Pei Zhi Cherng
- Department of Infectious Diseases, Singapore General Hospital, Singapore; Duke-NUS Medical School, Singapore
| | - Bram Spruijtenburg
- Department of Medical Microbiology and Infectious Diseases, Canisius-Wilhelmina Hospital, Nijmegen, Netherlands; Center of Expertise in Mycology of Radboud University Medical Center, Nijmegen, Netherlands
| | - Kian Sing Chan
- Department of Microbiology, Singapore General Hospital, Singapore; Duke-NUS Medical School, Singapore
| | - Lynette Lin Ean Oon
- Department of Microbiology, Singapore General Hospital, Singapore; Duke-NUS Medical School, Singapore
| | - Ai Ling Tan
- Department of Microbiology, Singapore General Hospital, Singapore; Duke-NUS Medical School, Singapore
| | - Yen Ee Tan
- Department of Microbiology, Singapore General Hospital, Singapore; Duke-NUS Medical School, Singapore
| | - Limin Wijaya
- Department of Infectious Diseases, Singapore General Hospital, Singapore; Duke-NUS Medical School, Singapore
| | - Ban Hock Tan
- Department of Infectious Diseases, Singapore General Hospital, Singapore; Duke-NUS Medical School, Singapore
| | - Moi Lin Ling
- Department of Infection Prevention and Epidemiology, Singapore General Hospital, Singapore; Duke-NUS Medical School, Singapore
| | - Tse Hsien Koh
- Department of Microbiology, Singapore General Hospital, Singapore; Duke-NUS Medical School, Singapore
| | - Jacques F Meis
- Department of Medical Microbiology and Infectious Diseases, Canisius-Wilhelmina Hospital, Nijmegen, Netherlands; Center of Expertise in Mycology of Radboud University Medical Center, Nijmegen, Netherlands; Institute of Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, Excellence Center for Medical Mycology, University of Cologne, Cologne, Germany
| | - Clement Kin Ming Tsui
- Infectious Diseases Research Laboratory, National Centre for Infectious Diseases, Tan Tock Seng Hospital, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore; Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Niranjan Nagarajan
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore; Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
6
|
Subhi A, Alshamsi S, Vitus A, Harazeen A. Prevalence and Outcomes of Candida auris Infections in a Tertiary Hospital in the United Arab Emirates (UAE). Cureus 2024; 16:e69988. [PMID: 39445294 PMCID: PMC11497757 DOI: 10.7759/cureus.69988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2024] [Indexed: 10/25/2024] Open
Abstract
Background Candida auris (C. auris) is an emerging serious threat to healthcare settings, with an average mortality of 45% in cases of bloodstream infections. This study aimed to determine the prevalence of C. auris in a single center in the UAE during the year 2022 and understand risk factors related to poor outcomes. Methods This retrospective cohort chart review at Al-Qassimi Hospital encompassed all confirmed Candida infections, including C. auris, from January to December 2022. The study involved male and female patients aged 13 years and older, using comprehensive data extracted from the hospital's electronic healthcare records. The analysis included clinical, laboratory, and epidemiological data. Adhering to the 2011 Declaration of Helsinki and Good Pharmacoepidemiology Practices, the study received Institutional Review Board approval, with informed consent waived due to its retrospective design. Data were summarized using appropriate statistical methods, including the unpaired t-test, Mann-Whitney U test, Chi-square test, and Fisher exact test. A significance level of 95% (p<0.05) was maintained throughout the statistical analyses. Results Of the 75 confirmed Candidainfections, 53 (70.7%) were C. auris-positive cases. About 23 (43.4%) of the C. auris group were above 65 years old. Most cases of C. auris group were hospital-acquired (49, 92.5%). The highest number of positive cases were found in urine samples. The demographic and clinical profiles of the C. auris and non-auris groups candidemia were largely similar, except for differences in antifungal use history and ICU requirements. Notably, the C. auris group had a significantly lower history of antifungal use and a lower ICU requirement compared to the non-auris group. The study also highlighted the higher mortality rate associated with candidemia. While mortality was higher in the non-auris group, the difference was not statistically significant. Conclusions The findings of the study suggest that while C. auris poses a serious threat, particularly in hospital settings; the clinical and demographic factors influencing its spread and impact are complex and warrant further investigation. Understanding these factors is crucial for developing effective strategies to prevent and manage C. auris infections, particularly in vulnerable patient populations.
Collapse
Affiliation(s)
- Ahmad Subhi
- Department of Infectious Diseases, Al-Qassimi Hospital, Sharjah, ARE
| | - Salma Alshamsi
- Department of Infectious Diseases, Al-Qassimi Hospital, Sharjah, ARE
| | - Aulin Vitus
- Department of Prevention and Control of Infection, Al-Qassimi Hospital, Sharjah, ARE
| | - Akram Harazeen
- Department of Internal Medicine, Al-Qassimi Hospital, Sharjah, ARE
| |
Collapse
|
7
|
Navarro-Mendoza MI, Pérez-Arques C, Parker J, Xu Z, Kelly S, Heitman J. Alternative ergosterol biosynthetic pathways confer antifungal drug resistance in the human pathogens within the Mucor species complex. mBio 2024; 15:e0166124. [PMID: 38980037 PMCID: PMC11323496 DOI: 10.1128/mbio.01661-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 06/18/2024] [Indexed: 07/10/2024] Open
Abstract
Mucormycoses are emerging fungal infections caused by a variety of heterogeneous species within the Mucorales order. Among the Mucor species complex, Mucor circinelloides is the most frequently isolated pathogen in mucormycosis patients and despite its clinical significance, there is an absence of established genome manipulation techniques to conduct molecular pathogenesis studies. In this study, we generated a spontaneous uracil auxotrophic strain and developed a genetic transformation procedure to analyze molecular mechanisms conferring antifungal drug resistance. With this new model, phenotypic analyses of gene deletion mutants were conducted to define Erg3 and Erg6a as key biosynthetic enzymes in the M. circinelloides ergosterol pathway. Erg3 is a C-5 sterol desaturase involved in growth, sporulation, virulence, and azole susceptibility. In other fungal pathogens, erg3 mutations confer azole resistance because Erg3 catalyzes the production of a toxic diol upon azole exposure. Surprisingly, M. circinelloides produces only trace amounts of this toxic diol and yet, it is still susceptible to posaconazole and isavuconazole due to alterations in membrane sterol composition. These alterations are severely aggravated by erg3Δ mutations, resulting in ergosterol depletion and, consequently, hypersusceptibility to azoles. We also identified Erg6a as the main C-24 sterol methyltransferase, whose activity may be partially rescued by the paralogs Erg6b and Erg6c. Loss of Erg6a function diverts ergosterol synthesis to the production of cholesta-type sterols, resulting in resistance to amphotericin B. Our findings suggest that mutations or epimutations causing loss of Erg6 function may arise during human infections, resulting in antifungal drug resistance to first-line treatments against mucormycosis. IMPORTANCE The Mucor species complex comprises a variety of opportunistic pathogens known to cause mucormycosis, a potentially lethal fungal infection with limited therapeutic options. The only effective first-line treatments against mucormycosis consist of liposomal formulations of amphotericin B and the triazoles posaconazole and isavuconazole, all of which target components within the ergosterol biosynthetic pathway. This study uncovered M. circinelloides Erg3 and Erg6a as key enzymes to produce ergosterol, a vital constituent of fungal membranes. Absence of any of those enzymes leads to decreased ergosterol and consequently, resistance to ergosterol-binding polyenes such as amphotericin B. Particularly, losing Erg6a function poses a higher threat as the ergosterol pathway is channeled into alternative sterols similar to cholesterol, which maintain membrane permeability. As a result, erg6a mutants survive within the host and disseminate the infection, indicating that Erg6a deficiency may arise during human infections and confer resistance to the most effective treatment against mucormycoses.
Collapse
Affiliation(s)
- María Isabel Navarro-Mendoza
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Carlos Pérez-Arques
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Josie Parker
- Molecular Biosciences Division, School of Biosciences, Cardiff University, Cardiff, Wales, United Kingdom
| | - Ziyan Xu
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Steven Kelly
- Institute of Life Science, Swansea University Medical School, Swansea, Wales, United Kingdom
| | - Joseph Heitman
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
8
|
Li C, Wang J, Li H, Wang Y, Wu H, Wei W, Wu D, Shao J, Wang T, Wang C. Suppressing the virulence factors of Candida auris with baicalein through multifaceted mechanisms. Arch Microbiol 2024; 206:349. [PMID: 38992278 DOI: 10.1007/s00203-024-04038-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/01/2024] [Accepted: 06/08/2024] [Indexed: 07/13/2024]
Abstract
Candida auris, a rapidly spreading multi-drug-resistant fungus, is causing lethal infections under certain conditions globally. Baicalin (BE), an active ingredient extracted from the dried root of Scutellaria baicalensis Georgi, exhibits antifungal activity. However, studies have shown the distinctive advantages of Traditional Chinese medicine in combating fungal infections, while the effect of BE, an active ingredient extracted from the dried roots of Scutellaria baicalensis Georgi, on C. auris, remains unknown. Therefore, this study aims to evaluate the potential of BE as an antifungal agent against the emerging multidrug-resistant C. auris. Various assays and models, including microbroth dilution, time growth curve analysis, spot assays, adhesion tests, flocculation test, cell surface hydrophobicity assay, hydrolase activity assays, XTT assay, violet crystal assay, scanning electron microscope (SEM), confocal laser scanning microscope (CLSM), flow cytometry, Live/dead fluorescent staining, reactive oxygen species (ROS), cell wall assay, aggregation assay, porcine skin model, Galleria mellonella larvae (G. mellonella larvae) infection model, and reverse transcription-quantitative polymerase chain reaction (RT-PCR) were utilized to investigate how baicalein suppresses C. auris through possible multifaceted mechanisms. The findings indicate that BE strongly inhibited C. auris growth, adhesion, and biofilm formation. It also effectively reduced drug resistance and aggregation by disrupting the cell membrane and cell wall while reducing colonization and invasion of the host. Transcriptome analysis showed significant modulation in gene expression related to different virulence factors post-BE treatment. In conclusion, BE exhibits significant effectiveness against C. auris, suggesting its potential as a viable treatment option due to its multifaceted suppression mechanisms.
Collapse
Affiliation(s)
- Can Li
- Department of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, China
- Institute of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Jun Wang
- Anhui Provincial Institute for Food and Drug Control, Hefei, China
| | - Hao Li
- Department of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, China
- Institute of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Yemei Wang
- Department of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, China
- Institute of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Hui Wu
- Department of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, China
- Institute of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Wenfan Wei
- Department of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, China
- Institute of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Daqiang Wu
- Department of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, China
- Institute of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Jing Shao
- Department of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, China
- Institute of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Tianming Wang
- Department of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, China
- Institute of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China
| | - Changzhong Wang
- Department of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, China.
- Institute of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, China.
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, Hefei, China.
| |
Collapse
|
9
|
Navarro-Mendoza MI, Pérez-Arques C, Parker J, Xu Z, Kelly S, Heitman J. Alternative ergosterol biosynthetic pathways confer antifungal drug resistance in the human pathogens within the Mucor species complex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.01.569667. [PMID: 38076934 PMCID: PMC10705545 DOI: 10.1101/2023.12.01.569667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Mucormycoses are emerging fungal infections caused by a variety of heterogeneous species within the Mucorales order. Among the Mucor species complex, Mucor circinelloides is the most frequently isolated pathogen in mucormycosis patients and despite its clinical significance, there is an absence of established genome manipulation techniques to conduct molecular pathogenesis studies. In this study, we generated a spontaneous uracil auxotrophic strain and developed a genetic transformation procedure to analyze molecular mechanisms conferring antifungal drug resistance. With this new model, phenotypic analyses of gene deletion mutants were conducted to define Erg3 and Erg6a as key biosynthetic enzymes in the M. circinelloides ergosterol pathway. Erg3 is a C-5 sterol desaturase involved in growth, sporulation, virulence, and azole susceptibility. In other fungal pathogens, erg3 mutations confer azole resistance because Erg3 catalyzes the production of a toxic diol upon azole exposure. Surprisingly, M. circinelloides produces only trace amounts of this toxic diol and yet, it is still susceptible to posaconazole and isavuconazole due to alterations in membrane sterol composition. These alterations are severely aggravated by erg3Δ mutations, resulting in ergosterol depletion and consequently, hypersusceptibility to azoles. We also identified Erg6a as the main C-24 sterol methyltransferase, whose activity may be partially rescued by the paralogs Erg6b and Erg6c. Loss of Erg6a function diverts ergosterol synthesis to the production of cholesta-type sterols, resulting in resistance to amphotericin B. Our findings suggest that mutations or epimutations causing loss of Erg6 function may arise during human infections, resulting in antifungal drug resistance to first-line treatments against mucormycosis.
Collapse
|
10
|
Al Ajmi JA, B. Malik A, Nafady-Hego H, Hanana F, Abraham J, G. Garcell H, Hudaib G, Al-Wali W, Eltayeb F, Shams S, G. Thomas A, Saleem S, Abou-Samra AB, Butt AA. Spectrum of infection and outcomes in individuals with Candida auris infection in Qatar. PLoS One 2024; 19:e0302629. [PMID: 38781160 PMCID: PMC11115301 DOI: 10.1371/journal.pone.0302629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 04/05/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND We investigated the spectrum of infection and risk factors for invasive fungal disease due to Candida auris (CA) in Qatar. METHODS We performed structured chart reviews on individuals with any positive CA culture between May 2019 and December 2022 at three tertiary care hospitals in Qatar. Invasive CA disease (ICAD) was defined as a positive sterile site culture, or any positive culture for CA with appropriate antifungal prescription. Main outcomes included proportion of individuals who developed ICAD among those with positive cultures, and 30-day/in-hospital mortality. RESULTS Among 331 eligible individuals, median age was 56 years, 83.1% were male, 70.7% were non-Qataris, and 37.5% had ≥ 3 comorbidities at baseline. Overall, 86.4% were deemed to have colonization and 13.6% developed ICAD. Those with ICAD were more likely to have invasive central venous or urinary catheterization and mechanical ventilation. Individuals with ICAD had longer prior ICU stay (16 vs 26 days, P = 0.002), and longer hospital length of stay (63 vs. 43 days; P = 0.003), and higher 30-day mortality (38% vs. 14%; P<0.001). In multivariable regression analysis, only mechanical ventilation was associated with a higher risk of ICAD (OR 3.33, 95% CI 1.09-10.17). CONCLUSION Invasive Candida auris Disease is associated with longer hospital stay and higher mortality. Severely ill persons on mechanical ventilation should be especially monitored for development of ICAD.
Collapse
Affiliation(s)
- Jameela A. Al Ajmi
- Corporate Quality and Patient Safety Department, Hamad Medical Corporation, Doha, Qatar
| | - Aimon B. Malik
- Corporate Quality and Patient Safety Department, Hamad Medical Corporation, Doha, Qatar
| | - Hanaa Nafady-Hego
- Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Fathima Hanana
- Corporate Quality and Patient Safety Department, Hamad Medical Corporation, Doha, Qatar
| | - Joji Abraham
- Corporate Quality and Patient Safety Department, Hamad Medical Corporation, Doha, Qatar
| | - Humberto G. Garcell
- Infection Prevention and Control Department, The Cuban Hospital, Dukhan, Qatar
| | - Ghada Hudaib
- Corporate Quality and Patient Safety Department, Hamad Medical Corporation, Doha, Qatar
| | - Walid Al-Wali
- Department of Microbiology and Laboratory Medicine, Hamad Medical Corporation, Doha, Qatar
| | - Faiha Eltayeb
- Department of Microbiology and Laboratory Medicine, Hamad Medical Corporation, Doha, Qatar
| | - Sherin Shams
- Corporate Quality and Patient Safety Department, Hamad Medical Corporation, Doha, Qatar
| | - Anil G. Thomas
- Corporate Quality and Patient Safety Department, Hamad Medical Corporation, Doha, Qatar
| | - Samah Saleem
- Corporate Quality and Patient Safety Department, Hamad Medical Corporation, Doha, Qatar
| | - Abdul-Badi Abou-Samra
- Corporate Quality and Patient Safety Department, Hamad Medical Corporation, Doha, Qatar
| | - Adeel A. Butt
- Corporate Quality and Patient Safety Department, Hamad Medical Corporation, Doha, Qatar
- Department of Medicine and Population Health Sciences, Weill Cornell Medicine, New York, NY, United States of America
- Department of Medicine and Population Health Sciences, Weill Cornell Medicine, Education City, Qatar
| |
Collapse
|
11
|
Siopi M, Pachoulis I, Leventaki S, Spruijtenburg B, Meis JF, Pournaras S, Vrioni G, Tsakris A, Meletiadis J. Evaluation of the Vitek 2 system for antifungal susceptibility testing of Candida auris using a representative international panel of clinical isolates: overestimation of amphotericin B resistance and underestimation of fluconazole resistance. J Clin Microbiol 2024; 62:e0152823. [PMID: 38501836 PMCID: PMC11005389 DOI: 10.1128/jcm.01528-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/21/2024] [Indexed: 03/20/2024] Open
Abstract
Although the Vitek 2 system is broadly used for antifungal susceptibility testing of Candida spp., its performance against Candida auris has been assessed using limited number of isolates recovered from restricted geographic areas. We therefore compared Vitek 2 system with the reference Clinical and Laboratory Standards Institute (CLSI) broth microdilution method using an international collection of 100 C. auris isolates belonging to different clades. The agreement ±1 twofold dilution between the two methods and the categorical agreement (CA) based on the Centers for Disease Control and Prevention's (CDC's) tentative resistance breakpoints and Vitek 2-specific wild-type upper limit values (WT-ULVs) were determined. The CLSI-Vitek 2 agreement was poor for 5-flucytosine (0%), fluconazole (16%), and amphotericin B (29%), and moderate for voriconazole (61%), micafungin (67%), and caspofungin (81%). Significant interpretation errors were recorded using the CDC breakpoints for amphotericin B (31% CA, 69% major errors; MaEs) and fluconazole (69% CA, 31% very major errors; VmEs), but not for echinocandins (99% CA, 1% MaEs for both micafungin and caspofungin) for which the Vitek 2 allowed correct categorization of echinocandin-resistant FKS1 mutant isolates. Discrepancies were reduced when the Vitek 2 WT-ULV of 16 mg/L for amphotericin B (98% CA, 2% MaEs) and of 4 mg/L for fluconazole (96% CA, 1% MaEs, 3% VmEs) were used. In conclusion, the Vitek 2 system performed well for echinocandin susceptibility testing of C .auris. Resistance to fluconazole was underestimated whereas resistance to amphotericin B was overestimated using the CDC breakpoints of ≥32 and ≥2 mg/L, respectively. Vitek 2 minimun inhibitory concentrations (MICs) >4 mg/L indicated resistance to fluconazole and Vitek 2 MICs ≤16 mg/L indicated non-resistance to amphotericin B.
Collapse
Affiliation(s)
- Maria Siopi
- Clinical Microbiology Laboratory, “Attikon” University General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- Molecular Microbiology and Immunology Laboratory, Department of Biomedical Sciences, University of West Attica, Athens, Greece
| | - Ioannis Pachoulis
- Clinical Microbiology Laboratory, “Attikon” University General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- Molecular Microbiology and Immunology Laboratory, Department of Biomedical Sciences, University of West Attica, Athens, Greece
| | - Sevasti Leventaki
- Clinical Microbiology Laboratory, “Attikon” University General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- Molecular Microbiology and Immunology Laboratory, Department of Biomedical Sciences, University of West Attica, Athens, Greece
| | - Bram Spruijtenburg
- Canisius-Wilhelmina Hospital (CWZ)/Dicoon, Nijmegen, the Netherlands
- Radboudumc-CWZ Center of Expertise for Mycology, Nijmegen, the Netherlands
| | - Jacques F. Meis
- Radboudumc-CWZ Center of Expertise for Mycology, Nijmegen, the Netherlands
- Institute of Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Excellence Center for Medical Mycology (ECMM), University of Cologne, Cologne, Germany
| | - Spyros Pournaras
- Clinical Microbiology Laboratory, “Attikon” University General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Georgia Vrioni
- Department of Microbiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Athanasios Tsakris
- Department of Microbiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Joseph Meletiadis
- Clinical Microbiology Laboratory, “Attikon” University General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
12
|
Thomsen J, Abdulrazzaq NM, Oulhaj A, Nyasulu PS, Alatoom A, Denning DW, Al Dhaheri F, Menezes GA, Moubareck CA, Senok A, Everett DB. Emergence of highly resistant Candida auris in the United Arab Emirates: a retrospective analysis of evolving national trends. Front Public Health 2024; 11:1244358. [PMID: 38292390 PMCID: PMC10826512 DOI: 10.3389/fpubh.2023.1244358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 11/08/2023] [Indexed: 02/01/2024] Open
Abstract
Introduction The Centers for Disease Prevention and Control lists Candida auris, given its global emergence, multidrug resistance, high mortality, and persistent transmissions in health care settings as one of five urgent threats. As a new threat, the need for surveillance of C. auris is critical. This is particularly important for a cosmopolitan setting and global hub such as the United Arab Emirates (UAE) where continued introduction and emergence of resistant variant strains is a major concern. Methods The United Arab Emirates has carried out a 12 years of antimicrobial resistance surveillance (2010-2021) across the country, spanning all seven Emirates. A retrospective analysis of C. auris emergence from 2018-2021 was undertaken, utilising the demographic and microbiological data collected via a unified WHONET platform for AMR surveillance. Results Nine hundred eight non-duplicate C. auris isolates were reported from 2018-2021. An exponential upward trend of cases was found. Most isolates were isolated from urine, blood, skin and soft tissue, and the respiratory tract. UAE nationals nationals comprised 29% (n = 186 of 632) of all patients; the remainder were from 34 other nations. Almost all isolates were from inpatient settings (89.0%, n = 809). The cases show widespread distribution across all reporting sites in the country. C. auris resistance levels remained consistently high across all classes of antifungals used. C. auris in this population remains highly resistant to azoles (fluconazole, 72.6% in 2021) and amphotericin. Echinocandin resistance has now emerged and is increasing annually. There was no statistically significant difference in mortality between Candida auris and Candida spp. (non-auris) patients (p-value: 0.8179), however Candida auris patients had a higher intensive care unit (ICU) admission rate (p-value <0.0001) and longer hospital stay (p < 0.0001) compared to Candida spp. (non-auris) patients. Conclusion The increasing trend of C. auris detection and associated multidrug resistant phenotypes in the UAE is alarming. Continued C. auris circulation in hospitals requires enhanced infection control measures to prevent continued dissemination.
Collapse
Affiliation(s)
- Jens Thomsen
- Department of Environmental and Occupational Health and Safey, Abu Dhabi Publich Health Center, Abu Dhabi, United Arab Emirates
- Department of Pathology and Infectious Diseases, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Najiba M. Abdulrazzaq
- Al Kuwait Hospital Dubai, Emirates Health Services Establishment (EHS), Dubai, United Arab Emirates
| | - Abderrahim Oulhaj
- Department of Epidemiology and Public Health, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Peter S. Nyasulu
- Department of Global Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Adnan Alatoom
- Department of Pathology, Sheikh Shakhbout Medical City, Abu Dhabi, United Arab Emirates
| | - David W. Denning
- Manchester Fungal Infection Group, The University of Manchester, Manchester, United Kingdom
| | - Fatima Al Dhaheri
- Department of Pediatrics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | | | - Godfred Antony Menezes
- Department of Medical Microbiology and Immunology, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates
| | | | - Abiola Senok
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
- School of Dentistry, Cardiff University, Cardiff, United Kingdom
| | - Dean B. Everett
- Department of Pathology and Infectious Diseases, Khalifa University, Abu Dhabi, United Arab Emirates
- Biotechnology Research Center, Khalifa University, Abu Dhabi, United Arab Emirates
- Infection Research Unit, Khalifa University, Abu Dhabi, United Arab Emirates
| |
Collapse
|
13
|
Ahmadi B, Naeimi B, Ahmadipour MJ, Morovati H, de Groot T, Spruijtenburg B, Badali H, Meis JF. An Autochthonous Susceptible Candida auris Clade I Otomycosis Case in Iran. J Fungi (Basel) 2023; 9:1101. [PMID: 37998906 PMCID: PMC10671974 DOI: 10.3390/jof9111101] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 11/25/2023] Open
Abstract
Candida auris is a newly emerging multidrug-resistant fungal pathogen considered to be a serious global health threat. Due to diagnostic challenges, there is no precise estimate for the prevalence rate of this pathogen in Iran. Since 2019, only six culture-proven C. auris cases have been reported from Iran, of which, five belonged to clade V and one to clade I. Herein, we report a case of otomycosis due to C. auris from 2017 in a 78-year-old man with diabetes mellitus type II without an epidemiological link to other cases or travel history. Short tandem repeat genotyping and whole genome sequencing (WGS) analysis revealed that this isolate belonged to clade I of C. auris (South Asian Clade). The WGS single nucleotide polymorphism calling demonstrated that the C. auris isolate from 2017 is not related to a previously reported clade I isolate from Iran. The presence of this retrospectively recognized clade I isolate also suggests an early introduction from other regions or an autochthonous presence. Although the majority of reported C. auris isolates worldwide are resistant to fluconazole and, to a lesser extent, to echinocandins and amphotericin B, the reported clade I isolate from Iran was susceptible to all antifungal drugs.
Collapse
Affiliation(s)
- Bahram Ahmadi
- Department of Medical Laboratory Sciences, Faculty of Paramedical, Bushehr University of Medical Sciences, Bushehr 75187-59577, Iran; (B.A.); (B.N.)
| | - Behrouz Naeimi
- Department of Medical Laboratory Sciences, Faculty of Paramedical, Bushehr University of Medical Sciences, Bushehr 75187-59577, Iran; (B.A.); (B.N.)
| | | | - Hamid Morovati
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran;
| | - Theun de Groot
- Department of Medical Microbiology and Infectious Diseases, Canisius-Wilhelmina Hospital, 6532 SZ Nijmegen, The Netherlands; (T.d.G.); (B.S.)
- Center of Expertise for Mycology, Radboud University Medical Center/Canisius-Wilhelmina Hospital, 6532 SZ Nijmegen, The Netherlands
| | - Bram Spruijtenburg
- Department of Medical Microbiology and Infectious Diseases, Canisius-Wilhelmina Hospital, 6532 SZ Nijmegen, The Netherlands; (T.d.G.); (B.S.)
- Center of Expertise for Mycology, Radboud University Medical Center/Canisius-Wilhelmina Hospital, 6532 SZ Nijmegen, The Netherlands
| | - Hamid Badali
- Department of Molecular Microbiology & Immunology, South Texas Center for Emerging Infectious Diseases, The University of Texas, San Antonio, TX 78249, USA
| | - Jacques F. Meis
- Center of Expertise for Mycology, Radboud University Medical Center/Canisius-Wilhelmina Hospital, 6532 SZ Nijmegen, The Netherlands
- Institute of Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Excellence Center for Medical Mycology (ECMM), University of Cologne, 50923 Cologne, Germany
| |
Collapse
|
14
|
Douglas AP, Stewart AG, Halliday CL, Chen SCA. Outbreaks of Fungal Infections in Hospitals: Epidemiology, Detection, and Management. J Fungi (Basel) 2023; 9:1059. [PMID: 37998865 PMCID: PMC10672668 DOI: 10.3390/jof9111059] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/17/2023] [Accepted: 10/26/2023] [Indexed: 11/25/2023] Open
Abstract
Nosocomial clusters of fungal infections, whilst uncommon, cannot be predicted and are associated with significant morbidity and mortality. Here, we review reports of nosocomial outbreaks of invasive fungal disease to glean insight into their epidemiology, risks for infection, methods employed in outbreak detection including genomic testing to confirm the outbreak, and approaches to clinical and infection control management. Both yeasts and filamentous fungi cause outbreaks, with each having general and specific risks. The early detection and confirmation of the outbreak are essential for diagnosis, treatment of affected patients, and termination of the outbreak. Environmental sampling, including the air in mould outbreaks, for the pathogen may be indicated. The genetic analysis of epidemiologically linked isolates is strongly recommended through a sufficiently discriminatory approach such as whole genome sequencing or a method that is acceptably discriminatory for that pathogen. An analysis of both linked isolates and epidemiologically unrelated strains is required to enable genetic similarity comparisons. The management of the outbreak encompasses input from a multi-disciplinary team with epidemiological investigation and infection control measures, including screening for additional cases, patient cohorting, and strict hygiene and cleaning procedures. Automated methods for fungal infection surveillance would greatly aid earlier outbreak detection and should be a focus of research.
Collapse
Affiliation(s)
- Abby P. Douglas
- National Centre for Infections in Cancer, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Department of Infectious Diseases, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC 3000, Australia
- Department of Infectious Diseases, Austin Health, Heidelberg, VIC 3084, Australia
| | - Adam G. Stewart
- Centre for Clinical Research, Faculty of Medicine, Royal Brisbane and Women’s Hospital Campus, The University of Queensland, Herston, QLD 4006, Australia;
| | - Catriona L. Halliday
- Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research, New South Wales Health Pathology, Westmead Hospital, Sydney, NSW 2145, Australia; (C.L.H.); (S.C.-A.C.)
| | - Sharon C.-A. Chen
- Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research, New South Wales Health Pathology, Westmead Hospital, Sydney, NSW 2145, Australia; (C.L.H.); (S.C.-A.C.)
- Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2050, Australia
| |
Collapse
|
15
|
AlMaghrabi RS, Al-Musawi T, Albaksami O, Subhi AL, Fakih RE, Stone NR. Challenges in the Management of Invasive Fungal Infections in the Middle East: Expert Opinion to Optimize Management Using a Multidisciplinary Approach. Cureus 2023; 15:e44356. [PMID: 37779746 PMCID: PMC10539715 DOI: 10.7759/cureus.44356] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/26/2023] [Indexed: 10/03/2023] Open
Abstract
Invasive fungal infection (IFI) is a significant global healthcare concern among critically ill and immunocompromised patients. In Middle Eastern countries, IFI has been steadily increasing among hospitalized patients in the past two decades. Diagnosis of IFI at an early stage is crucial for efficient management. Invasive fungal infection management is complex and requires the involvement of physicians from different specialties. There are several challenges associated with IFI management in the countries in the Middle East. This review aims to understand the key challenges associated with IFI management in the Middle East, encompassing epidemiology, diagnosis, therapeutic options, and optimizing a multidisciplinary approach. In addition, this review aims to incorporate expert opinions from multidisciplinary fields for optimizing IFI management in different Middle Eastern countries by addressing key decision points throughout the patient's journey. Lack of epidemiological data on fungal infections, slow and poorly sensitive conventional culture-based diagnostic tests, limited availability of biomarker testing, lack of awareness of clinical symptoms of the disease, limited knowledge on fungal infections, lack of local practice guidelines, and complicated disease management are the major challenges associated with IFI diagnosis and management in the Middle Eastern countries. Implementation of a multidisciplinary approach, antifungal stewardship, improved knowledge of fungal infections, the use of rapid diagnostic tests, and enhanced epidemiological research are warranted to lower the IFI burden in the Middle East.
Collapse
Affiliation(s)
- Reem S AlMaghrabi
- Department of Medicine, Organ Transplant Center, King Faisal Specialist Hospital and Research Centre, Riyadh, SAU
| | - Tariq Al-Musawi
- Department of Critical Care Medicine, Al Salam Hospital, Al-Khobar, SAU
- Department of Medicine, Royal College of Surgeons in Ireland - Bahrain, Busaiteen, BHR
| | - Osama Albaksami
- Department of Infectious Diseases, Infectious Disease Hospital, Kuwait City, KWT
| | - Ahmad L Subhi
- Department of Infectious Diseases, Al-Qassimi Hospital, Sharjah, ARE
| | - Riad E Fakih
- Department of Hematology, King Faisal Specialist Hospital and Research Centre, Riyadh, SAU
- Department of Clinical Research, Alfaisal University, Riyadh, SAU
| | - Neil R Stone
- Department of Microbiology, Hospital for Tropical Diseases, London, GBR
- Department of Microbiology, University College London Hospitals, London, GBR
| |
Collapse
|
16
|
Oliva A, De Rosa FG, Mikulska M, Pea F, Sanguinetti M, Tascini C, Venditti M. Invasive Candida infection: epidemiology, clinical and therapeutic aspects of an evolving disease and the role of rezafungin. Expert Rev Anti Infect Ther 2023; 21:957-975. [PMID: 37494128 DOI: 10.1080/14787210.2023.2240956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/21/2023] [Accepted: 07/21/2023] [Indexed: 07/28/2023]
Abstract
INTRODUCTION Invasive Candida Infections (ICIs) have undergone a series of significant epidemiological, pathophysiological, and clinical changes during the last decades, with a shift toward non-albicans species, an increase in the rate of exogenous infections and clinical manifestations ranging from candidemia to an array of highly invasive and life-threatening clinical syndromes. The long-acting echinocandin rezafungin exhibits potent in-vitro activity against most wild-type and azole-resistant Candida spp. including C.auris. AREAS COVERED The following topics regarding candidemia only and ICIs were reviewed and addressed: i) pathogenesis; ii) epidemiology and temporal evolution of Candida species; iii) clinical approach; iv) potential role of the novel long-acting rezafungin in the treatment of ICIs. EXPERT OPINION Authors' expert opinion focused on considering the potential role of rezafungin in the evolving context of ICIs. Rezafungin, which combines a potent in-vitro activity against Candida species, including azole-resistant strains and C.auris, with a low likelihood of drug-drug interactions and a good safety profile, may revolutionize the treatment of candidemia/ICI. Indeed, it may shorten the length of hospital stays when clinical conditions allow and extend outpatient access to treatment of invasive candidiasis, especially when prolonged treatment duration is expected.
Collapse
Affiliation(s)
- Alessandra Oliva
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Francesco Giuseppe De Rosa
- Department of Medical Sciences, University of Turin, Infectious Diseases, City of Health and Sciences, Turin, Italy
| | - Malgorzata Mikulska
- Division of Infectious Diseases Department of Health Sciences (DISSAL), University of Genoa IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Federico Pea
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
- Clinical Pharmacology Unit, Department for Integrated Infectious Risk Management, IRCCS Azienda Ospedaliero Universitaria di Bologna, Bologna, Italy
| | - Maurizio Sanguinetti
- Department of Laboratory Sciences and Infectious Diseases, Fondazione Policlinico Universitario "A. Gemelli"; IRCCS, Università Cattolica Del Sacro Cuore, Rome, Italy
| | - Carlo Tascini
- Infectious Diseases Clinic: Department of Medical Area (DAME), University of Udine, Udine, Italy
| | - Mario Venditti
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| |
Collapse
|