1
|
Vishwakarma A, Sinha N. Additive Manufacturing of Iron Carbide Incorporated Bioactive Glass Scaffolds for Bone Tissue Engineering and Drug Delivery Applications. ACS APPLIED BIO MATERIALS 2024; 7:892-908. [PMID: 38253516 DOI: 10.1021/acsabm.3c00931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
In this study, we have synthesized a bioactive glass with composition 45SiO2-20Na2O-23CaO-6P2O5-2.5B2O3-1ZnO-2MgO-0.5CaF2 (wt %). Further, it has been incorporated with 0.4 wt % iron carbide nanoparticles to prepare magnetic bioactive glass (MBG) with good heat generation capability for potential applications in magnetic field-assisted hyperthermia. The MBG scaffolds have been fabricated using extrusion-based additive manufacturing by mixing MBG powder with 25% Pluronic F-127 solution as the binder. The saturation magnetization of iron carbide nanoparticles in the bioactive glass matrix has been found to be 80 emu/g. The morphological analysis (pore size distribution, porosity, open pore network modeling, tortuosity, and pore interconnectivity) was done using an in-house developed methodology that revealed the suitability of the scaffolds for bone tissue engineering. The compressive strength (14.3 ± 1.6 MPa) of the MBG scaffold was within the range of trabecular bone. The in vitro test using simulated body fluid (SBF) showed the formation of apatite indicating the bioactive nature of scaffolds. Further, the drug delivery behaviors of uncoated and polycaprolactone (PCL) coated MBG scaffolds have been evaluated by loading an anticancer drug (Mitomycin C) onto the scaffolds. While the uncoated scaffold demonstrated the drug's burst release for the initial 80 h, the PCL-coated scaffold showed the gradual release of the drug. These results demonstrate the potential of the proposed MBG for bone tissue engineering and drug delivery applications.
Collapse
Affiliation(s)
- Ashok Vishwakarma
- Department of Mechanical Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Niraj Sinha
- Department of Mechanical Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| |
Collapse
|
2
|
Fanovich MA, Di Maio E, Salerno A. Current Trend and New Opportunities for Multifunctional Bio-Scaffold Fabrication via High-Pressure Foaming. J Funct Biomater 2023; 14:480. [PMID: 37754894 PMCID: PMC10531842 DOI: 10.3390/jfb14090480] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 09/03/2023] [Accepted: 09/11/2023] [Indexed: 09/28/2023] Open
Abstract
Biocompatible and biodegradable foams prepared using the high-pressure foaming technique have been widely investigated in recent decades as porous scaffolds for in vitro and in vivo tissue growth. In fact, the foaming process can operate at low temperatures to load bioactive molecules and cells within the pores of the scaffold, while the density and pore architecture, and, hence, properties of the scaffold, can be finely modulated by the proper selection of materials and processing conditions. Most importantly, the high-pressure foaming of polymers is an ideal choice to limit and/or avoid the use of cytotoxic and tissue-toxic compounds during scaffold preparation. The aim of this review is to provide the reader with the state of the art and current trend in the high-pressure foaming of biomedical polymers and composites towards the design and fabrication of multifunctional scaffolds for tissue engineering. This manuscript describes the application of the gas foaming process for bio-scaffold design and fabrication and highlights some of the most interesting results on: (1) the engineering of porous scaffolds featuring biomimetic porosity to guide cell behavior and to mimic the hierarchical architecture of complex tissues, such as bone; (2) the bioactivation of the scaffolds through the incorporation of inorganic fillers and drugs.
Collapse
Affiliation(s)
- María Alejandra Fanovich
- Institute of Materials Science and Technology (INTEMA), National University of Mar del Plata, National Research Council (CONICET), Mar del Plata 7600, Argentina;
| | - Ernesto Di Maio
- Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, 80125 Naples, Italy;
| | - Aurelio Salerno
- Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, 80125 Naples, Italy;
| |
Collapse
|
3
|
Petryk NM, Haas G, Vakil AU, Monroe MBB. Shape memory polymer foams with tunable interconnectivity using off-the-shelf foaming components. J Biomed Mater Res A 2022; 110:1422-1434. [PMID: 35319810 DOI: 10.1002/jbm.a.37383] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 03/03/2022] [Accepted: 03/13/2022] [Indexed: 12/28/2022]
Abstract
The ability to easily and safety tune pore structures of gas-blown polyurethane shape memory polymer (SMP) foams could improve their outcomes as hemostatic dressings or tissue engineering scaffolds and enable overall commercialization efforts. Incorporating physical blowing agents into the polymer mix can be used to tune pore size and interconnectivity without altering foam chemistry. Enovate (HFC-254fa) is a commonly used physical blowing agent in gas-blown foams, but the Environmental Protection Agency (EPA) considers its use unacceptable because it is a hydrofluorocarbon that contributes to global warming. Here, off-the-shelf solvents accepted for use by the EPA, acetone, dimethyoxymethane (methylal), and methyl formate, were used as physical blowing agents by adding small volumes during foam fabrication. Increasing the physical blowing agent volume resulted in greater pore interconnectivity while maintaining SMP foam chemical and thermal properties. Pore size and interconnectivity also impacted cell and blood interactions with the foams. This work provides a safe and easy method for tuning SMP foam interconnectivity to aid in future commercialization efforts in a range of potential biomedical applications.
Collapse
Affiliation(s)
- Natalie Marie Petryk
- Department of Biomedical and Chemical Engineering, BioInspired Syracuse, Syracuse University, Syracuse, New York, 13244, USA
| | - Grace Haas
- Department of Biomedical and Chemical Engineering, BioInspired Syracuse, Syracuse University, Syracuse, New York, 13244, USA
| | - Anand Utpal Vakil
- Department of Biomedical and Chemical Engineering, BioInspired Syracuse, Syracuse University, Syracuse, New York, 13244, USA
| | - Mary Beth Browning Monroe
- Department of Biomedical and Chemical Engineering, BioInspired Syracuse, Syracuse University, Syracuse, New York, 13244, USA
| |
Collapse
|
4
|
Buzmakov AV, Dunaev AG, Krivonosov YS, Zolotov DA, Dyachkova IG, Krotova LI, Volkov VV, Bodey AJ, Asadchikov VE, Popov VK. Wide-Ranging Multitool Study of Structure and Porosity of PLGA Scaffolds for Tissue Engineering. Polymers (Basel) 2021; 13:polym13071021. [PMID: 33806130 PMCID: PMC8037117 DOI: 10.3390/polym13071021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/19/2021] [Accepted: 03/23/2021] [Indexed: 01/14/2023] Open
Abstract
In this study, the nanoscale transformation of the polylactic-co-glycolic acid (PLGA) internal structure, before and after its supercritical carbon dioxide (sc-CO2) swelling and plasticization, followed by foaming after a CO2 pressure drop, was studied by small-angle X-ray scattering (SAXS) for the first time. A comparative analysis of the internal structure data and porosity measurements for PLGA scaffolds, produced by sc-CO2 processing, on a scale ranging from 0.02 to 1000 μm, was performed by SAXS, helium pycnometry (HP), mercury intrusion porosimetry (MIP) and both “lab-source” and synchrotron X-ray microtomography (micro-CT). This approach opens up possibilities for the wide-scale evaluation, computer modeling, and prediction of the physical and mechanical properties of PLGA scaffolds, as well as their biodegradation behavior in the body. Hence, this study targets optimizing the process parameters of PLGA scaffold fabrication for specific biomedical applications.
Collapse
Affiliation(s)
- Alexey V. Buzmakov
- Institute of Photon Technologies of Federal Scientific Research Centre “Crystallography and Photonics” of Russian Academy of Sciences, Pionerskaya 2, Troitsk, 108840 Moscow, Russia; (A.V.B.); (A.G.D.); (Y.S.K.); (D.A.Z.); (L.I.K.); (V.V.V.); (V.E.A.)
| | - Andrey G. Dunaev
- Institute of Photon Technologies of Federal Scientific Research Centre “Crystallography and Photonics” of Russian Academy of Sciences, Pionerskaya 2, Troitsk, 108840 Moscow, Russia; (A.V.B.); (A.G.D.); (Y.S.K.); (D.A.Z.); (L.I.K.); (V.V.V.); (V.E.A.)
| | - Yuriy S. Krivonosov
- Institute of Photon Technologies of Federal Scientific Research Centre “Crystallography and Photonics” of Russian Academy of Sciences, Pionerskaya 2, Troitsk, 108840 Moscow, Russia; (A.V.B.); (A.G.D.); (Y.S.K.); (D.A.Z.); (L.I.K.); (V.V.V.); (V.E.A.)
| | - Denis A. Zolotov
- Institute of Photon Technologies of Federal Scientific Research Centre “Crystallography and Photonics” of Russian Academy of Sciences, Pionerskaya 2, Troitsk, 108840 Moscow, Russia; (A.V.B.); (A.G.D.); (Y.S.K.); (D.A.Z.); (L.I.K.); (V.V.V.); (V.E.A.)
| | - Irina G. Dyachkova
- Institute of Photon Technologies of Federal Scientific Research Centre “Crystallography and Photonics” of Russian Academy of Sciences, Pionerskaya 2, Troitsk, 108840 Moscow, Russia; (A.V.B.); (A.G.D.); (Y.S.K.); (D.A.Z.); (L.I.K.); (V.V.V.); (V.E.A.)
- Correspondence: (I.G.D.); (V.K.P.)
| | - Larisa I. Krotova
- Institute of Photon Technologies of Federal Scientific Research Centre “Crystallography and Photonics” of Russian Academy of Sciences, Pionerskaya 2, Troitsk, 108840 Moscow, Russia; (A.V.B.); (A.G.D.); (Y.S.K.); (D.A.Z.); (L.I.K.); (V.V.V.); (V.E.A.)
| | - Vladimir V. Volkov
- Institute of Photon Technologies of Federal Scientific Research Centre “Crystallography and Photonics” of Russian Academy of Sciences, Pionerskaya 2, Troitsk, 108840 Moscow, Russia; (A.V.B.); (A.G.D.); (Y.S.K.); (D.A.Z.); (L.I.K.); (V.V.V.); (V.E.A.)
| | - Andrew J. Bodey
- Diamond Light Source, Harwell Oxford Campus, Didcot OX11 0DE, UK;
| | - Victor E. Asadchikov
- Institute of Photon Technologies of Federal Scientific Research Centre “Crystallography and Photonics” of Russian Academy of Sciences, Pionerskaya 2, Troitsk, 108840 Moscow, Russia; (A.V.B.); (A.G.D.); (Y.S.K.); (D.A.Z.); (L.I.K.); (V.V.V.); (V.E.A.)
| | - Vladimir K. Popov
- Institute of Photon Technologies of Federal Scientific Research Centre “Crystallography and Photonics” of Russian Academy of Sciences, Pionerskaya 2, Troitsk, 108840 Moscow, Russia; (A.V.B.); (A.G.D.); (Y.S.K.); (D.A.Z.); (L.I.K.); (V.V.V.); (V.E.A.)
- Correspondence: (I.G.D.); (V.K.P.)
| |
Collapse
|
5
|
Song C, Zhang J, Li S, Yang S, Lu E, Xi Z, Cen L, Zhao L, Yuan W. Highly interconnected macroporous MBG/PLGA scaffolds with enhanced mechanical and biological properties via green foaming strategy. Chin J Chem Eng 2021. [DOI: 10.1016/j.cjche.2020.07.063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
6
|
Song C, Luo Y, Liu Y, Li S, Xi Z, Zhao L, Cen L, Lu E. Fabrication of PCL Scaffolds by Supercritical CO 2 Foaming Based on the Combined Effects of Rheological and Crystallization Properties. Polymers (Basel) 2020; 12:polym12040780. [PMID: 32252222 PMCID: PMC7240419 DOI: 10.3390/polym12040780] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 03/04/2020] [Accepted: 03/09/2020] [Indexed: 11/17/2022] Open
Abstract
Polycaprolactone (PCL) scaffolds have recently been developed via efficient and green supercritical carbon dioxide (scCO2) melt-state foaming. However, previously reported gas-foamed scaffolds sometimes showed insufficient interconnectivity or pore size for tissue engineering. In this study, we have correlated the thermal and rheological properties of PCL scaffolds with their porous morphology by studying four foamed samples with varied molecular weight (MW), and particularly aimed to clarify the required properties for the fabrication of scaffolds with favorable interconnected macropores. DSC and rheological tests indicate that samples show a delayed crystallization and enhanced complex viscosity with the increasing of MW. After foaming, scaffolds (27 kDa in weight-average molecular weight) show a favorable morphology (pore size = 70–180 μm, porosity = 90% and interconnectivity = 96%), where the lowest melt strength favors the generation of interconnected macropore, and the most rapid crystallization provides proper foamability. The scaffolds (27 kDa) also possess the highest Young’s modulus. More importantly, owing to the sufficient room and favorable material transportation provided by highly interconnected macropores, cells onto the optimized scaffolds (27 kDa) perform vigorous proliferation and superior adhesion and ingrowth, indicating its potential for regeneration applications. Furthermore, our findings provide new insights into the morphological control of porous scaffolds fabricated by scCO2 foaming, and are highly relevant to a broader community that is focusing on polymer foaming.
Collapse
Affiliation(s)
- Chaobo Song
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, School of Chemical engineering, East China University of Science and Technology, Shanghai 200237, China; (C.S.); (Y.L.); (Y.L.); (L.Z.); (L.C.)
| | - Yunhan Luo
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, School of Chemical engineering, East China University of Science and Technology, Shanghai 200237, China; (C.S.); (Y.L.); (Y.L.); (L.Z.); (L.C.)
| | - Yankai Liu
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, School of Chemical engineering, East China University of Science and Technology, Shanghai 200237, China; (C.S.); (Y.L.); (Y.L.); (L.Z.); (L.C.)
| | - Shuang Li
- School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China;
| | - Zhenhao Xi
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, School of Chemical engineering, East China University of Science and Technology, Shanghai 200237, China; (C.S.); (Y.L.); (Y.L.); (L.Z.); (L.C.)
- College of Chemistry and Chemical Engineering, Xinjiang University, Urumqi 830046, China
- Correspondence: (Z.X.); (E.L.); Tel.: +86-21-6425-3042 (Z.X.); +86-21-5875-2345 (E.L.); Fax: +86-21-6425-3528 (Z.X.); +86-21-5839-4262 (E.L.)
| | - Ling Zhao
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, School of Chemical engineering, East China University of Science and Technology, Shanghai 200237, China; (C.S.); (Y.L.); (Y.L.); (L.Z.); (L.C.)
- College of Chemistry and Chemical Engineering, Xinjiang University, Urumqi 830046, China
| | - Lian Cen
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, School of Chemical engineering, East China University of Science and Technology, Shanghai 200237, China; (C.S.); (Y.L.); (Y.L.); (L.Z.); (L.C.)
| | - Eryi Lu
- School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China;
- Correspondence: (Z.X.); (E.L.); Tel.: +86-21-6425-3042 (Z.X.); +86-21-5875-2345 (E.L.); Fax: +86-21-6425-3528 (Z.X.); +86-21-5839-4262 (E.L.)
| |
Collapse
|
7
|
Shkarin R, Shkarin A, Shkarina S, Cecilia A, Surmenev RA, Surmeneva MA, Weinhardt V, Baumbach T, Mikut R. Quanfima: An open source Python package for automated fiber analysis of biomaterials. PLoS One 2019; 14:e0215137. [PMID: 30973910 PMCID: PMC6459545 DOI: 10.1371/journal.pone.0215137] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 03/27/2019] [Indexed: 12/19/2022] Open
Abstract
Hybrid 3D scaffolds composed of different biomaterials with fibrous structure or enriched with different inclusions (i.e., nano- and microparticles) have already demonstrated their positive effect on cell integration and regeneration. The analysis of fibers in hybrid biomaterials, especially in a 3D space is often difficult due to their various diameters (from micro to nanoscale) and compositions. Though biomaterials processing workflows are implemented, there are no software tools for fiber analysis that can be easily integrated into such workflows. Due to the demand for reproducible science with Jupyter notebooks and the broad use of the Python programming language, we have developed the new Python package quanfima offering a complete analysis of hybrid biomaterials, that include the determination of fiber orientation, fiber and/or particle diameter and porosity. Here, we evaluate the provided tensor-based approach on a range of generated datasets under various noise conditions. Also, we show its application to the X-ray tomography datasets of polycaprolactone fibrous scaffolds pure and containing silicate-substituted hydroxyapatite microparticles, hydrogels enriched with bioglass contained strontium and alpha-tricalcium phosphate microparticles for bone tissue engineering and porous cryogel 3D scaffold for pancreatic cell culturing. The results obtained with the help of the developed package demonstrated high accuracy and performance of orientation, fibers and microparticles diameter and porosity analysis.
Collapse
Affiliation(s)
- Roman Shkarin
- Laboratory for Applications of Synchrotron Radiation, Karlsruhe Institute of Technology, Karlsruhe, Germany
- Institute for Automation and Applied Computer Science, Karlsruhe Institute of Technology, Karlsruhe, Germany
- * E-mail:
| | - Andrei Shkarin
- Laboratory for Applications of Synchrotron Radiation, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Svetlana Shkarina
- Physical Materials Science and Composite Materials Centre, Research School of Chemistry & Applied Biomedical Sciences, National Research Tomsk Polytechnic University, Tomsk, Russia
- Institute for Photon Science and Synchrotron Radiation, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Angelica Cecilia
- Institute for Photon Science and Synchrotron Radiation, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Roman A. Surmenev
- Physical Materials Science and Composite Materials Centre, Research School of Chemistry & Applied Biomedical Sciences, National Research Tomsk Polytechnic University, Tomsk, Russia
| | - Maria A. Surmeneva
- Physical Materials Science and Composite Materials Centre, Research School of Chemistry & Applied Biomedical Sciences, National Research Tomsk Polytechnic University, Tomsk, Russia
| | - Venera Weinhardt
- Laboratory for Applications of Synchrotron Radiation, Karlsruhe Institute of Technology, Karlsruhe, Germany
- Institute for Photon Science and Synchrotron Radiation, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
- Centre for Organismal Studies, COS, Heidelberg University, Heidelberg, Germany
| | - Tilo Baumbach
- Laboratory for Applications of Synchrotron Radiation, Karlsruhe Institute of Technology, Karlsruhe, Germany
- Institute for Photon Science and Synchrotron Radiation, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Ralf Mikut
- Institute for Automation and Applied Computer Science, Karlsruhe Institute of Technology, Karlsruhe, Germany
| |
Collapse
|
8
|
Rahbari A, Montazerian H, Davoodi E, Homayoonfar S. Predicting permeability of regular tissue engineering scaffolds: scaling analysis of pore architecture, scaffold length, and fluid flow rate effects. Comput Methods Biomech Biomed Engin 2016; 20:231-241. [DOI: 10.1080/10255842.2016.1215436] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
9
|
Gutiérrez C, Rodríguez JF, Gracia I, de Lucas A, García MT. Foaming Process from Polystyrene/p-Cymene Solutions Using CO2. Chem Eng Technol 2014. [DOI: 10.1002/ceat.201300780] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
10
|
Reinwald Y, Johal R, Ghaemmaghami A, Rose F, Howdle S, Shakesheff K. Interconnectivity and permeability of supercritical fluid-foamed scaffolds and the effect of their structural properties on cell distribution. POLYMER 2014. [DOI: 10.1016/j.polymer.2013.09.041] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
11
|
Grandelli HE, Kiran E. High pressure density, miscibility and compressibility of poly(lactide-co-glycolide) solutions in acetone and acetone+CO2 binary fluid mixtures. J Supercrit Fluids 2013. [DOI: 10.1016/j.supflu.2012.12.034] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Bhamidipati M, Scurto AM, Detamore MS. The future of carbon dioxide for polymer processing in tissue engineering. TISSUE ENGINEERING PART B-REVIEWS 2013; 19:221-32. [PMID: 23289736 DOI: 10.1089/ten.teb.2012.0361] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The use of CO2 for scaffold fabrication in tissue engineering was popularized in the mid-1990 s as a tool for producing polymeric foam scaffolds, but had fallen out of favor to some extent, in part due to challenges with pore interconnectivity. Pore interconnectivity issues have since been resolved by numerous dedicated studies that have collectively outlined how to control the appropriate parameters to achieve a pore structure desirable for tissue regeneration. In addition to CO2 foaming, several groups have leveraged CO2 as a swelling agent to impregnate scaffolds with drugs and other bioactive additives, and for encapsulation of plasmids within scaffolds for gene delivery. Moreover, in contrast to CO2 foaming, which typically relies on supercritical CO2 at very high pressures, CO2 at much lower pressures has also been used to sinter polymeric microspheres together in the presence of cells to create cell-seeded scaffolds in a single step. CO2 has a number of advantages for polymer processing in tissue engineering, including its ease of use, low cost, and the opportunity to circumvent the use of organic solvents. Building on these advantages, and especially now with the tremendous precedent that has paved the way in defining operating parameters, and making the technology accessible for new groups to adapt, we invite and encourage our colleagues in the field to leverage CO2 as a new tool to enhance their own respective unique capabilities.
Collapse
Affiliation(s)
- Manjari Bhamidipati
- Bioengineering Graduate Program, University of Kansas, Lawrence, Kansas 66045-7618, USA
| | | | | |
Collapse
|