1
|
Ma S, Zhang J, Hua X, Wu J, Zheng M, Xu J. Tuina therapy promotes behavioral improvement and brain plasticity in rats with peripheral nerve injury and repair. Brain Behav 2023; 13:e3174. [PMID: 37522806 PMCID: PMC10498059 DOI: 10.1002/brb3.3174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 06/16/2023] [Accepted: 07/09/2023] [Indexed: 08/01/2023] Open
Abstract
INTRODUCTION Tuina is currently one of the popular complementary and alternative methods of rehabilitation therapy. Tuina can improve patients' pain and mobility function. However, the underlying physiological mechanism remains largely unknown, which might limit its further popularization in clinical practice. The aim of this study is to explore the short-term and long-term changes in brain functional activity following Tuina intervention for peripheral nerve injury repair. METHODS A total of 16 rats were equally divided into the intervention group and the control group. Rats in the intervention group received Tuina therapy applying on the gastrocnemius muscle of the right side for 4 months following sciatic nerve transection and immediate repair, while the control group received nerve transection and repair only. The block-design functional magnetic resonance imaging scan was applied in both groups at 1 and 4 months after the surgery. During the scan, both the injured and intact hindpaw was electrically stimulated according to a "boxcar" paradigm. RESULTS When stimulating the intact hindpaw, the intervention group exhibited significantly lower activation in the somatosensory area, limbic/paralimbic areas, pain-regulation areas, and basal ganglia compared to the control group, with only the prefrontal area showing higher activation. After 4 months of sciatic nerve injury, the control group exhibited decreased motor cortex activity compared to the activity observed at 1 month, and the intervention group demonstrated stronger bilateral motor cortex activity compared to the control group. CONCLUSION Tuina therapy on the gastrocnemius muscle of rats with sciatic nerve injury can effectively alleviate pain and maintain the motor function of the affected limb. In addition, Tuina therapy reduced the activation level of pain-related brain regions and inhibited the decreased activity of the motor cortex caused by nerve injury, reflecting the impact of peripheral stimulation on brain plasticity.
Collapse
Affiliation(s)
- Shu‐Jie Ma
- Department of Traditional Chinese Rehabilitation MedicineThe Second Rehabilitation Hospital of ShanghaiShanghaiChina
- Engineering Research Center of Traditional Chinese Medicine Intelligent RehabilitationMinistry of EducationShanghaiChina
| | - Jun‐Peng Zhang
- Engineering Research Center of Traditional Chinese Medicine Intelligent RehabilitationMinistry of EducationShanghaiChina
- School of Rehabilitation ScienceShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Xu‐Yun Hua
- Engineering Research Center of Traditional Chinese Medicine Intelligent RehabilitationMinistry of EducationShanghaiChina
- Department of Traumatology and Orthopedics, Yueyang HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Jia‐Jia Wu
- Engineering Research Center of Traditional Chinese Medicine Intelligent RehabilitationMinistry of EducationShanghaiChina
- Department of Rehabilitation Medicine, Yueyang HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Mou‐Xiong Zheng
- Engineering Research Center of Traditional Chinese Medicine Intelligent RehabilitationMinistry of EducationShanghaiChina
- Department of Traumatology and Orthopedics, Yueyang HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Jian‐Guang Xu
- Engineering Research Center of Traditional Chinese Medicine Intelligent RehabilitationMinistry of EducationShanghaiChina
- School of Rehabilitation ScienceShanghai University of Traditional Chinese MedicineShanghaiChina
| |
Collapse
|
2
|
Xiang YT, Xing XX, Hua XY, Zhang YW, Xue X, Wu JJ, Zheng MX, Wang H, Xu JG. Altered Neural Pathways and Related Brain Remodeling: A Rat Study Using Different Nerve Reconstructions. Neurosurgery 2023; 93:233-243. [PMID: 36735283 DOI: 10.1227/neu.0000000000002370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 11/17/2022] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Function recovery is related to cortical plasticity. The brain remodeling patterns induced by alterations in peripheral nerve pathways with different nerve reconstructions are unknown. OBJECTIVE To explore brain remodeling patterns related to alterations in peripheral neural pathways after different nerve reconstruction surgeries. METHODS Twenty-four female Sprague-Dawley rats underwent complete left brachial plexus nerve transection, together with the following interventions: no nerve repair (n = 8), grafted nerve repair (n = 8), and phrenic nerve transfer (n = 8). Resting-state functional MR images of brain were acquired at the end of seventh month postsurgery. Amplitude of low-frequency fluctuation (ALFF), regional homogeneity (ReHo), and functional connectivity (FC) were compared among 3 groups. Behavioral observation and electromyography assessed nerve regeneration. RESULTS Compared with brachial plexus injury group, ALFF and ReHo of left entorhinal cortex decreased in nerve repair and nerve transfer groups. The nerve transfer group showed increased ALFF and ReHo than nerve repair group in left caudate putamen, right accumbens nucleus shell (AcbSh), and right somatosensory cortex. The FC between right somatosensory cortex and bilateral piriform cortices and bilateral somatosensory cortices increased in nerve repair group than brachial plexus injury and nerve transfer groups. The nerve transfer group showed increased FC between right somatosensory cortex and areas including left corpus callosum, left retrosplenial cortex, right parietal association cortex, and right dorsolateral thalamus than nerve repair group. CONCLUSION Entorhinal cortex is a key brain area in recovery of limb function after nerve reconstruction. Nerve transfer related brain remodeling mainly involved contralateral sensorimotor areas, facilitating directional "shifting" of motor representation.
Collapse
Affiliation(s)
- Yun-Ting Xiang
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiang-Xin Xing
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xu-Yun Hua
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Traumatology and Orthopedics, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yu-Wen Zhang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Xin Xue
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jia-Jia Wu
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Traumatology and Orthopedics, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mou-Xiong Zheng
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Traumatology and Orthopedics, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - He Wang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Human Phenome Institute, Fudan University, Shanghai, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, China
| | - Jian-Guang Xu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai, China
| |
Collapse
|
3
|
Rezvani-Ardakani S, Mohammad-Ali-Nezhad S, Ghasemi R. Epilepsy control using a fixed time integral super twisting sliding mode control for Pinsky-Rinzel pyramidal model through ion channels with optogenetic method. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2020; 195:105665. [PMID: 32736006 DOI: 10.1016/j.cmpb.2020.105665] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 07/11/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND AND OBJECTIVE Epilepsy is a dynamic disease of neuronal networks and epileptic activity in the brain should be suppressed quickly in the shortest possible time with minimum control signal. Thus, a closed-loop feedback control by using the fixed-time integral super-twisting sliding-mode controller via an optogenetic method is employed for suppressing seizures in the Pinsky-Rinzel (PR) model as a dynamic model of the hippocampus CA3 region where epileptic seizures occur. The control signal is applied to the PR model through the ChR2 channel model in the form of light photons using the optogenetic method. The present study aimed to determine the controller robustness against parameter changes and disturbances in order to reduce the control time, approach the zero tracking error of the normal desired state in a fixed time, and finally, converge the epileptic state to the normal desired state. METHOD In order to apply the control signal to the Pinsky-Rinzel model in the optogenetic method, the dynamic model of the ion current generated by channelrhodopsin 2 (ChR2) as a light-sensitive protein model in the optogenetic method was first applied to the PR model. Then, a fixed-time integral super-twisting sliding-mode controller was designed for the system, which is the combination of PR and ChR2 models. RESULTS After applying the proposed controller, the simulation results indicated that the control signal was -0.7 mV, the tracking error of the normal desired state could reach zero within 1.5 milliseconds, and the problems of singularity and chattering were solved. CONCLUSIONS A reduction occurred in the control signal reduced regarding the objectives of the study and comparing the proposed controller with the classical sliding-mode controller. Thus, this method can produce a safe control input for brain. In addition, both types of sliding mode controllers are robust against the parameters variations and external disturbances. Thus, they are superior to non-robust and simple controllers. Finally, based on the results, the validity of the fixed-time integral super-twisting sliding mode controller is confirmed for epilepsy control.
Collapse
Affiliation(s)
| | | | - Reza Ghasemi
- Department of Electrical & Electronics Engineering, University of Qom, Qom, Iran
| |
Collapse
|
4
|
Marinković I, Tatlisumak T, Abo-Ramadan U, Brkić BG, Aksić M, Marinković S. A basic MRI anatomy of the rat brain in coronal sections for practical guidance to neuroscientists. Brain Res 2020; 1747:147021. [PMID: 32755602 DOI: 10.1016/j.brainres.2020.147021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 07/08/2020] [Accepted: 07/16/2020] [Indexed: 11/16/2022]
Abstract
Identification of the brain structures in the magnetic resonance imaging (MRI) of the rat is very important for the experimental work of many neuroscientists. Our intention was to recognize most of the structures without overlapping the MRI sections with the histological templates. Three live rats were used for this study who were examined in a micro-MRI apparatus by performing T2-weighted sequences in serial brain sections. Most of the white matter structures were easily identified, e.g. the anterior commissure, corpus callosum with forceps minor and major, cingulum, external and internal capsules, fornix, stria medullaris and terminalis, cranial nerves, mammillothalamic tract, fasciculus retroflexus, medial and lateral lemniscus, posterior commissure, commissures of the superior and inferior colliculi, medial longitudinal fasciculus, and the cerebral peduncle. Large and small gray matter structures were recognized as well, for example, the anterior olfactory structures, nucleus accumbens, caudate putamen, claustrum, bed nucleus of the stria terminalis, pituitary gland, globus pallidus, amygdala, some midline and intralaminar thalamic nuclei, certain hypothalamic nuclei, hippocampal formation, pineal body, periaqueductal gray matter, lateral and medial geniculate bodies, superior and inferior colliculi, and cranial nerves nuclei. All in all, of the total 160 recognized brain structures, 77 were identified without using the corresponding histological atlases. We believe that our labeled MRI pictures could be an important way for quick orientation for evaluating the effects of the experimental work regarding the rat brain.
Collapse
Affiliation(s)
- Ivan Marinković
- Clinical Neuroscience, Neurology, Helsinki University Hospital, Haartmaninkatu 4, 00290 Helsinki, Finland.
| | - Turgut Tatlisumak
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Blå Stråket 7, Plan 3, Sahlgrenska 41345, Gothenburg, Sweden; Department of Neurology, Sahlgrenska University Hospital, Blå Stråket 7, Plan 3, Sahlgrenska 41345, Gothenburg, Sweden.
| | - Usama Abo-Ramadan
- VTT Technical Research Centre of Finland Ltd, University of Helsinki, Tietotie 4E, 02150 Espoo, Finland
| | | | - Milan Aksić
- Department of Neuroanatomy, Institute of Anatomy, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Slobodan Marinković
- Department of Neuroanatomy, Institute of Anatomy, Faculty of Medicine, University of Belgrade, Belgrade, Serbia.
| |
Collapse
|
5
|
Zhang CH, Ma ZZ, Huo BB, Lu YC, Wu JJ, Hua XY, Xu JG. Diffusional plasticity induced by electroacupuncture intervention in rat model of peripheral nerve injury. J Clin Neurosci 2019; 69:250-256. [PMID: 31477463 DOI: 10.1016/j.jocn.2019.08.088] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 05/02/2019] [Accepted: 08/18/2019] [Indexed: 11/29/2022]
Abstract
Electroacupuncture (EA) is an adjuvant therapy for peripheral nerve injury (PNI). Both peripheral and central alterations contribute to the rehabilitation process. We employed diffusion tensor imaging (DTI) to investigate the diffusion plasticity of afferent and efferent pathways caused by EA in model of peripheral nerve injury and reparation. Twenty-four rats were divided into three groups: normal group, model group and intervention group. Rats of the model group and the intervention group underwent sciatic nerve transection and anastomosis. EA intervention was performed on the intervention group at ST-36 and GB-30 for three months. Gait assessment and DTI were conducted at days post-operative (DPO) 30, 60 and 90. We selected corticospinal tract, spinothalamic tract and internal capsule as regions of interest and analyzed diffusion metrics including fractional anisotropy (FA), axial diffusivity (AD) and radial diffusivity (RD). FA values and RD values displayed significant differences or obvious tendency while AD values maintained a stable level. RD values displayed better indicative performance than FA in internal capsule. The intervention group presented significant correlation between RD values and Regularity Index (RI) during the intervention period. The effect of EA on peripheral nerve injury repairing rats appeared to be accelerated recovery process of sensory and motor neural pathway. We proposed that RD was a potential in vivo indicator for structural plasticity caused by EA and PNI.
Collapse
Affiliation(s)
- Chen-Hao Zhang
- Center of Rehabilitation, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhen-Zhen Ma
- Center of Rehabilitation, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China; School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Bei-Bei Huo
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ye-Chen Lu
- Center of Rehabilitation, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China; School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jia-Jia Wu
- Center of Rehabilitation, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xu-Yun Hua
- Department of Trauma and Orthopedics, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jian-Guang Xu
- Center of Rehabilitation, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai, China; School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
6
|
The Localization Research of Brain Plasticity Changes after Brachial Plexus Pain: Sensory Regions or Cognitive Regions? Neural Plast 2019; 2019:7381609. [PMID: 30728834 PMCID: PMC6341257 DOI: 10.1155/2019/7381609] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 10/30/2018] [Accepted: 11/19/2018] [Indexed: 01/08/2023] Open
Abstract
Objective Neuropathic pain after brachial plexus injury remains an increasingly prevalent and intractable disease due to inadequacy of satisfactory treatment strategies. A detailed mapping of cortical regions concerning the brain plasticity was the first step of therapeutic intervention. However, the specific mapping research of brachial plexus pain was limited. We aimed to provide some localization information about the brain plasticity changes after brachial plexus pain in this preliminary study. Methods 24 Sprague-Dawley rats received complete brachial plexus avulsion with neuropathic pain on the right forelimb successfully. Through functional imaging of both resting-state and block-design studies, we compared the amplitude of low-frequency fluctuations (ALFF) of premodeling and postmodeling groups and the changes of brain activation when applying sensory stimulation. Results The postmodeling group showed significant decreases on the mechanical withdrawal threshold (MWT) in the bilateral hindpaws and thermal withdrawal latency (TWL) in the left hindpaw than the premodeling group (P < 0.05). The amplitude of low-frequency fluctuations (ALFF) of the postmodeling group manifested increases in regions of the left anterodorsal hippocampus, left mesencephalic region, left dorsal midline thalamus, and so on. Decreased ALFF was observed in the bilateral entorhinal cortex compared to that of the premodeling group. The results of block-design scan showed significant differences in regions including the limbic/paralimbic system and somatosensory cortex. Conclusion We concluded that the entorhinal-hippocampus pathway, which was part of the Papez circuit, was involved in the functional integrated areas of brachial plexus pain processing. The regions in the “pain matrix” showed expected activation when applying instant nociceptive stimulus but remained silent in the resting status. This research confirmed the involvement of cognitive function, which brought novel information to the potential new therapy for brachial plexus pain.
Collapse
|
7
|
Shen J, Huo BB, Hua XY, Zheng MX, Lu YC, Wu JJ, Shan CL, Xu JG. Cerebral 18F-FDG metabolism alteration in a neuropathic pain model following brachial plexus avulsion: A PET/CT study in rats. Brain Res 2019; 1712:132-138. [PMID: 30738025 DOI: 10.1016/j.brainres.2019.02.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 02/03/2019] [Accepted: 02/05/2019] [Indexed: 12/14/2022]
Abstract
The present study aimed to investigate cerebral metabolic changes in a neuropathic pain model following deafferentation. A total of 24 Sprague-Dawley rats were included for modeling of right brachial plexus avulsion (BPA) through the posterior approach. As nerve injury would cause central sensitization and facilitate pain sensitivity in other parts of the body, thermal withdrawal latency (TWL) of the intact forepaw was assessed to investigate the level of pain perception following BPA-induced neuropathic pain. [Fluorine-18]-fluoro-2-deoxy-d-glucose (18F-FDG) positron emission tomography (PET) was applied to the brain before and after brachial plexus avulsion to explore metabolic changes in neuropathic pain following deafferentation. The TWL of the left (intact) forepaw was significantly lower after BPA than that of baseline (p < 0.001). Using TWL as a covariate, standardized uptake values (SUVs) of 18F-FDG significantly increased in the ipsilateral dorsolateral thalamus and contralateral anterodorsal hippocampus after BPA. Conversely, SUVs in multiple brain regions decreased, including the contralateral somatosensory cortex, ipsilateral cingulate cortex, and ipsilateral temporal association cortex. The Pearson correlation analysis showed that the SUVs of the contralateral anterodorsal hippocampus and ipsilateral dorsolateral thalamus were negatively related to the TWL of the intact forepaw, whereas the SUVs in the contralateral somatosensory cortex and ipsilateral cingulate cortex were positively related to it (p < 0.05). These findings indicate that upregulation of metabolism in the anterodorsal hippocampus and dorsolateral thalamus and downregulation metabolism in the contralateral somatosensory cortex and ipsilateral cingulate cortex could be a unique pattern of metabolic changes for neuropathic pain following brachial plexus avulsion.
Collapse
Affiliation(s)
- Jun Shen
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Bei-Bei Huo
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xu-Yun Hua
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Department of Trauma and Orthopedics, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mou-Xiong Zheng
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Department of Trauma and Orthopedics, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ye-Chen Lu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jia-Jia Wu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chun-Lei Shan
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Department of Rehabilitation Medicine, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jian-Guang Xu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Department of Rehabilitation Medicine, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
8
|
Nyitrai G, Spisák T, Spisák Z, Gajári D, Diószegi P, Kincses TZ, Czurkó A. Stepwise occlusion of the carotid arteries of the rat: MRI assessment of the effect of donepezil and hypoperfusion-induced brain atrophy and white matter microstructural changes. PLoS One 2018; 13:e0198265. [PMID: 29851990 PMCID: PMC5979036 DOI: 10.1371/journal.pone.0198265] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 05/16/2018] [Indexed: 12/31/2022] Open
Abstract
Bilateral common carotid artery occlusion (BCCAo) in the rat is a widely used animal model of vascular dementia and a valuable tool for preclinical pharmacological drug testing, although the varying degrees of acute focal ischemic lesions it induces could interfere with its translational value. Recently, a modification to the BCCAo model, the stepwise occlusion of the two carotid arteries, has been introduced. To acquire objective translatable measures, we used longitudinal multimodal magnetic resonance imaging (MRI) to assess the effects of semi-chronic (8 days) donepezil treatment in this model, with half of the Wistar rats receiving the treatment one week after the stepwise BCCAo. With an ultrahigh field MRI, we measured high-resolution anatomy, diffusion tensor imaging, cerebral blood flow measurements and functional MRI in response to whisker stimulation, to evaluate both the structural and functional effects of the donepezil treatment and stepwise BCCAo up to 5 weeks post-occlusion. While no large ischemic lesions were detected, atrophy in the striatum and in the neocortex, along with widespread white matter microstructural changes, were found. Donepezil ameliorated the transient drop in the somatosensory BOLD response in distant cortical areas, as detected 2 weeks after the occlusion but the drug had no effect on the long term structural changes. Our results demonstrate a measurable functional MRI effect of the donepezil treatment and the importance of diffusion MRI and voxel based morphometry (VBM) analysis in the translational evaluation of the rat BCCAo model.
Collapse
Affiliation(s)
- Gabriella Nyitrai
- Preclinical Imaging Center, Pharmacology and Drug Safety Research, Gedeon Richter Plc., Budapest, Hungary
- * E-mail:
| | - Tamás Spisák
- Preclinical Imaging Center, Pharmacology and Drug Safety Research, Gedeon Richter Plc., Budapest, Hungary
| | - Zsófia Spisák
- Preclinical Imaging Center, Pharmacology and Drug Safety Research, Gedeon Richter Plc., Budapest, Hungary
| | - Dávid Gajári
- Preclinical Imaging Center, Pharmacology and Drug Safety Research, Gedeon Richter Plc., Budapest, Hungary
| | - Pálma Diószegi
- Preclinical Imaging Center, Pharmacology and Drug Safety Research, Gedeon Richter Plc., Budapest, Hungary
| | - Tamás Zsigmond Kincses
- Preclinical Imaging Center, Pharmacology and Drug Safety Research, Gedeon Richter Plc., Budapest, Hungary
- Department of Neurology, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary
| | - András Czurkó
- Preclinical Imaging Center, Pharmacology and Drug Safety Research, Gedeon Richter Plc., Budapest, Hungary
| |
Collapse
|
9
|
A Longitudinal Mapping Study on Cortical Plasticity of Peripheral Nerve Injury Treated by Direct Anastomosis and Electroacupuncture in Rats. World Neurosurg 2018. [PMID: 29524702 DOI: 10.1016/j.wneu.2018.02.173] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVE We used functional magnetic resonance imaging to provide a longitudinal description of cortical plasticity caused by electroacupuncture (EA) of sciatic nerve transection and direct anastomosis in rats. METHODS Sixteen rats in a sciatic nerve transection and direct anastomosis model were randomly divided into intervention and control groups. EA intervention in the position of ST-36, GB-30 was conducted continuously for 4 months in the intervention group. Functional magnetic resonance imaging and gait assessment were performed every month after intervention. RESULTS The somatosensory area was more activated in the first 2 months and then deactivated in the rest 2 months when EA was applied. The pain-related areas had the same activation pattern as the somatosensory area. The limbic/paralimbic areas fluctuated more during the EA intervention, which was not constantly activated or deactivated as previous studies reported. We attributed such changes in somatosensory and pain-related areas to the gradual reduction of sensory afferentation. The alterations in limbic/paralimbic system might be associated with the confrontation between the upregulating effect of paresthesia or pain and the downregulating effect of EA intervention through the autonomic nerve system. The gait analysis showed significantly higher maximum contact mean intensity in the intervention group. CONCLUSIONS The alterations in the brain brought about by the long-term therapeutic effect of EA could be described as a synchronized activation pattern in the somatosensory and pain-related areas and a fluctuating pattern in the limbic/paralimbic system.
Collapse
|
10
|
Pérez-Cervera L, Caramés JM, Fernández-Mollá LM, Moreno A, Fernández B, Pérez-Montoyo E, Moratal D, Canals S, Pacheco-Torres J. Mapping Functional Connectivity in the Rodent Brain Using Electric-Stimulation fMRI. Methods Mol Biol 2018; 1718:117-134. [PMID: 29341006 DOI: 10.1007/978-1-4939-7531-0_8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Since its discovery in the early 90s, BOLD signal-based functional Magnetic Resonance Imaging (fMRI) has become a fundamental technique for the study of brain activity in basic and clinical research. Functional MRI signals provide an indirect but robust and quantitative readout of brain activity through the tight coupling between cerebral blood flow and neuronal activation, the so-called neurovascular coupling. Combined with experimental techniques only available in animal models, such as intracerebral micro-stimulation, optogenetics or pharmacogenetics, provides a powerful framework to investigate the impact of specific circuit manipulations on overall brain dynamics. The purpose of this chapter is to provide a comprehensive protocol to measure brain activity using fMRI with intracerebral electric micro-stimulation in murine models. Preclinical research (especially in rodents) opens the door to very sophisticated and informative experiments, but at the same time imposes important constrains (i.e., anesthetics, translatability), some of which will be addressed here.
Collapse
Affiliation(s)
- Laura Pérez-Cervera
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas, Universidad Miguel Hernández, Sant Joan d'Alacant, 03550, Spain
| | - José María Caramés
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas, Universidad Miguel Hernández, Sant Joan d'Alacant, 03550, Spain
| | | | - Andrea Moreno
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas, Universidad Miguel Hernández, Sant Joan d'Alacant, 03550, Spain
- Center for Biomaterials and Tissue Engineering, Universitat Politècnica de València, Valencia, 46022, Spain
| | - Begoña Fernández
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas, Universidad Miguel Hernández, Sant Joan d'Alacant, 03550, Spain
| | - Elena Pérez-Montoyo
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas, Universidad Miguel Hernández, Sant Joan d'Alacant, 03550, Spain
| | - David Moratal
- Center for Biomaterials and Tissue Engineering, Universitat Politècnica de València, Valencia, 46022, Spain
| | - Santiago Canals
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas, Universidad Miguel Hernández, Sant Joan d'Alacant, 03550, Spain
| | - Jesús Pacheco-Torres
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas, Universidad Miguel Hernández, Sant Joan d'Alacant, 03550, Spain.
| |
Collapse
|
11
|
Spisák T, Pozsgay Z, Aranyi C, Dávid S, Kocsis P, Nyitrai G, Gajári D, Emri M, Czurkó A, Kincses ZT. Central sensitization-related changes of effective and functional connectivity in the rat inflammatory trigeminal pain model. Neuroscience 2016; 344:133-147. [PMID: 28003158 DOI: 10.1016/j.neuroscience.2016.12.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 12/09/2016] [Accepted: 12/11/2016] [Indexed: 01/24/2023]
Abstract
Central sensitization is a key mechanism in the pathology of several neuropathic pain disorders. We aimed to investigate the underlying brain connectivity changes in a rat model of chronic pain. Non-noxious whisker stimulation was used to evoke blood-oxygen-level-dependent (BOLD) responses in a block-design functional Magnetic Resonance Imaging (fMRI) experiment on 9.4T. Measurements were repeated two days and one week after injecting complete Freund's adjuvant into the rats' whisker pad. We found that acute pain reduced activation in the barrel cortex, most probably due to a plateau effect. After one week, increased activation of the anterior cingulate cortex was found. Analyses of effective connectivity driven by stimulus-related activation revealed that chronic pain-related central sensitization manifested as a widespread alteration in the activity of the somatosensory network. Changes were mainly mediated by the anterior cingulate cortex and the striatum and affected the somatosensory and motor cortices and the superior colliculus. Functional connectivity analysis of nested BOLD oscillations justified that the anterior cingular-somatosensory interplay is a key element of network changes. Additionally, a decreased cingulo-motor functional connectivity implies that alterations also involve the output tract of the network. Our results extend the knowledge about the role of the cingulate cortex in the chronification of pain and indicate that integration of multiple connectivity analysis could be fruitful in studying the central sensitization in the pain matrix.
Collapse
Affiliation(s)
- Tamás Spisák
- Preclinical Imaging Center, Gedeon Richter Plc., Budapest, Hungary.
| | - Zsófia Pozsgay
- Preclinical Imaging Center, Gedeon Richter Plc., Budapest, Hungary
| | - Csaba Aranyi
- Department of Nuclear Medicine, University of Debrecen, Debrecen, Hungary
| | - Szabolcs Dávid
- Preclinical Imaging Center, Gedeon Richter Plc., Budapest, Hungary
| | - Pál Kocsis
- Preclinical Imaging Center, Gedeon Richter Plc., Budapest, Hungary
| | | | - Dávid Gajári
- Preclinical Imaging Center, Gedeon Richter Plc., Budapest, Hungary
| | - Miklós Emri
- Department of Nuclear Medicine, University of Debrecen, Debrecen, Hungary
| | - András Czurkó
- Preclinical Imaging Center, Gedeon Richter Plc., Budapest, Hungary
| | - Zsigmond Tamás Kincses
- Preclinical Imaging Center, Gedeon Richter Plc., Budapest, Hungary; Department of Neurology, University of Szeged, Hungary; International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic
| |
Collapse
|