1
|
Mortazavi E, Tarvirdizadeh B, Alipour K, Ghamari M. Deep learning approaches for assessing pediatric sleep apnea severity through SpO2 signals. Sci Rep 2024; 14:22696. [PMID: 39353980 PMCID: PMC11445237 DOI: 10.1038/s41598-024-67729-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 07/15/2024] [Indexed: 10/03/2024] Open
Abstract
Pediatric Sleep Apnea-Hypopnea (SAH) presents a significant health challenge, particularly in diagnostic contexts, where conventional Polysomnography (PSG) testing, although effective, can be distressing for children. Addressing this, our research proposes a less invasive method to assess pediatric SAH severity by analyzing blood oxygen saturation (SpO2) signals. We adopted two advanced deep learning architectures, namely ResNet-based and attention-augmented hybrid CNN-BiGRU models, to process SpO2 signals in a one-dimensional (1D) format for Apnea-Hypopnea Index (AHI) estimation in pediatric subjects. Employing the CHAT dataset, which includes 844 SpO2 signals, the data was partitioned into training (60%), testing (30%), and validation (10%) sets. A predefined validation subset was randomly selected to ensure the models' robustness via a threefold cross-validation approach. Comparative analysis revealed that while the ResNet model attained an average accuracy of 72.9% across four SAH severity categories with a kappa score of 0.57, the CNN-BiGRU-Attention model demonstrated superior performance, achieving an average accuracy of 75.95% and a kappa score of 0.63. This distinction underscores our method's efficacy in both estimating AHI and categorizing SAH severity levels with notable precision. Further, to evaluate diagnostic capabilities, the models were benchmarked against common AHI thresholds (1, 5, and 10 events/hour) in each test fold, affirming their effectiveness in identifying pediatric SAH. This study marks a significant advance in the field, offering a non-invasive, child-friendly alternative for pediatric SAH diagnosis. Although challenges persist in accurately estimating AHI, particularly in severe cases, our findings represent a critical stride towards improving diagnostic processes in pediatric SAH.
Collapse
Affiliation(s)
- Erfan Mortazavi
- Advanced Service Robots (ASR) Laboratory, Department of Mechatronics Engineering, School of Intelligent Systems Engineering, College of Interdisciplinary Science and Technology, University of Tehran, Tehran, Iran
| | - Bahram Tarvirdizadeh
- Advanced Service Robots (ASR) Laboratory, Department of Mechatronics Engineering, School of Intelligent Systems Engineering, College of Interdisciplinary Science and Technology, University of Tehran, Tehran, Iran.
| | - Khalil Alipour
- Advanced Service Robots (ASR) Laboratory, Department of Mechatronics Engineering, School of Intelligent Systems Engineering, College of Interdisciplinary Science and Technology, University of Tehran, Tehran, Iran
| | - Mohammad Ghamari
- Department of Electrical Eng., California Polytechnic State University, San Luis Obispo, CA, 93407, USA
| |
Collapse
|
2
|
Landry V, Semsar-Kazerooni K, Chen T, Gurberg J, Nguyen LHP, Constantin E. Diagnostic accuracy of portable sleep monitors in pediatric sleep apnea: A systematic review. Sleep Med Rev 2024; 78:101991. [PMID: 39173472 DOI: 10.1016/j.smrv.2024.101991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 05/01/2024] [Accepted: 08/05/2024] [Indexed: 08/24/2024]
Abstract
In recent years, a plethora of new type III and IV portable sleep monitors (PSM) have been developed, although evidence regarding their diagnostic accuracy for use in children remains heterogeneous. This study systematically reviews the literature addressing the diagnostic accuracies of type III and IV PSM for pediatric sleep apnea. Publications indexed in Medline, Embase, or Web of Science were reviewed using the PRISMA framework. Of 1054 studies, 62 fulfilled the inclusion criteria. Of the studies evaluating oximetry-based type IV PSM, one (6.25 %) demonstrated a balanced set of high (≥80 %) sensitivities and specificities for the diagnosis of any pediatric sleep apnea, while five studies (27.8 %) showed similar accuracies for moderate-to-severe sleep apnea. For non-oximetry-based type IV PSM, two studies (40 %) reported a balanced set of high diagnostic accuracies for moderate-to-severe sleep apnea. Type III PSM repeatedly demonstrated higher diagnostic accuracies, with six studies (66.7 %) reporting a balanced set of high diagnostic accuracies for moderate-to-severe sleep apnea. This review highlights the potential of type III PSM to detect moderate-to-severe pediatric sleep apnea, although current evidence is limited to support the stand-alone use of type IV PSM for the diagnosis of sleep apnea in most children.
Collapse
Affiliation(s)
- Vivianne Landry
- Division of Otolaryngology-Head and Neck Surgery, University of Montreal, Montreal, QC, Canada
| | | | - Tanya Chen
- Department of Otolaryngology-Head and Neck Surgery, University of Toronto, Toronto, ON, Canada
| | - Joshua Gurberg
- Department of Otolaryngology-Head and Neck Surgery, McGill University, Montreal, QC, Canada
| | - Lily H P Nguyen
- Department of Otolaryngology-Head and Neck Surgery, McGill University, Montreal, QC, Canada
| | - Evelyn Constantin
- Department of Pediatrics, Pediatric Sleep Medicine, McGill University, Montreal, QC, Canada.
| |
Collapse
|
3
|
Bazoukis G, Bollepalli SC, Chung CT, Li X, Tse G, Bartley BL, Batool-Anwar S, Quan SF, Armoundas AA. Application of artificial intelligence in the diagnosis of sleep apnea. J Clin Sleep Med 2023; 19:1337-1363. [PMID: 36856067 PMCID: PMC10315608 DOI: 10.5664/jcsm.10532] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 02/21/2023] [Accepted: 02/21/2023] [Indexed: 03/02/2023]
Abstract
STUDY OBJECTIVES Machine learning (ML) models have been employed in the setting of sleep disorders. This review aims to summarize the existing data about the role of ML techniques in the diagnosis, classification, and treatment of sleep-related breathing disorders. METHODS A systematic search in Medline, EMBASE, and Cochrane databases through January 2022 was performed. RESULTS Our search strategy revealed 132 studies that were included in the systematic review. Existing data show that ML models have been successfully used for diagnostic purposes. Specifically, ML models showed good performance in diagnosing sleep apnea using easily obtained features from the electrocardiogram, pulse oximetry, and sound signals. Similarly, ML showed good performance for the classification of sleep apnea into obstructive and central categories, as well as predicting apnea severity. Existing data show promising results for the ML-based guided treatment of sleep apnea. Specifically, the prediction of outcomes following surgical treatment and optimization of continuous positive airway pressure therapy can be guided by ML models. CONCLUSIONS The adoption and implementation of ML in the field of sleep-related breathing disorders is promising. Advancements in wearable sensor technology and ML models can help clinicians predict, diagnose, and classify sleep apnea more accurately and efficiently. CITATION Bazoukis G, Bollepalli SC, Chung CT, et al. Application of artificial intelligence in the diagnosis of sleep apnea. J Clin Sleep Med. 2023;19(7):1337-1363.
Collapse
Affiliation(s)
- George Bazoukis
- Department of Cardiology, Larnaca General Hospital, Larnaca, Cyprus
- Department of Basic and Clinical Sciences, University of Nicosia Medical School, Nicosia, Cyprus
| | | | - Cheuk To Chung
- Cardiac Electrophysiology Unit, Cardiovascular Analytics Group, China-UK Collaboration, Hong Kong
| | - Xinmu Li
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular disease, Department of Cardiology, Tianjin Institute of Cardiology, the Second Hospital of Tianjin Medical University, Tianjin, China
| | - Gary Tse
- Cardiac Electrophysiology Unit, Cardiovascular Analytics Group, China-UK Collaboration, Hong Kong
- Kent and Medway Medical School, Canterbury, Kent, United Kingdom
| | - Bethany L. Bartley
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Salma Batool-Anwar
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Stuart F. Quan
- Division of Sleep and Circadian Disorders, Brigham and Women’s Hospital, Boston, Massachusetts
- Asthma and Airway Disease Research Center, University of Arizona College of Medicine, Tucson, Arizona
| | - Antonis A. Armoundas
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, Massachusetts
- Broad Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts
| |
Collapse
|
4
|
Qi P, Gong S, Jiang N, Dai Y, Yang J, Jiang L, Tong J. Mattress-Based Non-Influencing Sleep Apnea Monitoring System. SENSORS (BASEL, SWITZERLAND) 2023; 23:3675. [PMID: 37050735 PMCID: PMC10098849 DOI: 10.3390/s23073675] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/22/2023] [Accepted: 03/29/2023] [Indexed: 06/19/2023]
Abstract
A mattress-type non-influencing sleep apnea monitoring system was designed to detect sleep apnea-hypopnea syndrome (SAHS). The pressure signals generated during sleep on the mattress were collected, and ballistocardiogram (BCG) and respiratory signals were extracted from the original signals. In the experiment, wavelet transform (WT) was used to reduce noise and decompose and reconstruct the signal to eliminate the influence of interference noise, which can directly and accurately separate the BCG signal and respiratory signal. In feature extraction, based on the five features commonly used in SAHS, an innovative respiratory waveform similarity feature was proposed in this work for the first time. In the SAHS detection, the binomial logistic regression was used to determine the sleep apnea symptoms in the signal segment. Simulation and experimental results showed that the device, algorithm, and system designed in this work were effective methods to detect, diagnose, and assist the diagnosis of SAHS.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jijun Tong
- School of Information Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
5
|
Gutiérrez-Tobal GC, Álvarez D, Kheirandish-Gozal L, Del Campo F, Gozal D, Hornero R. Reliability of machine learning to diagnose pediatric obstructive sleep apnea: Systematic review and meta-analysis. Pediatr Pulmonol 2022; 57:1931-1943. [PMID: 33856128 DOI: 10.1002/ppul.25423] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/07/2021] [Accepted: 04/10/2021] [Indexed: 12/27/2022]
Abstract
BACKGROUND Machine-learning approaches have enabled promising results in efforts to simplify the diagnosis of pediatric obstructive sleep apnea (OSA). A comprehensive review and analysis of such studies increase the confidence level of practitioners and healthcare providers in the implementation of these methodologies in clinical practice. OBJECTIVE To assess the reliability of machine-learning-based methods to detect pediatric OSA. DATA SOURCES Two researchers conducted an electronic search on the Web of Science and Scopus using term, and studies were reviewed along with their bibliographic references. ELIGIBILITY CRITERIA Articles or reviews (Year 2000 onwards) that applied machine learning to detect pediatric OSA; reported data included information enabling derivation of true positive, false negative, true negative, and false positive cases; polysomnography served as diagnostic standard. APPRAISAL AND SYNTHESIS METHODS Pooled sensitivities and specificities were computed for three apnea-hypopnea index (AHI) thresholds: 1 event/hour (e/h), 5 e/h, and 10 e/h. Random-effect models were assumed. Summary receiver-operating characteristics (SROC) analyses were also conducted. Heterogeneity (I 2 ) was evaluated, and publication bias was corrected (trim and fill). RESULTS Nineteen studies were finally retained, involving 4767 different pediatric sleep studies. Machine learning improved diagnostic performance as OSA severity criteria increased reaching optimal values for AHI = 10 e/h (0.652 sensitivity; 0.931 specificity; and 0.940 area under the SROC curve). Publication bias correction had minor effect on summary statistics, but high heterogeneity was observed among the studies.
Collapse
Affiliation(s)
- Gonzalo C Gutiérrez-Tobal
- Biomedical Engineering Group, Universidad de Valladolid, Valladolid, Spain.,Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina, (CIBER-BBN), Zaragoza, Spain
| | - Daniel Álvarez
- Biomedical Engineering Group, Universidad de Valladolid, Valladolid, Spain.,Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina, (CIBER-BBN), Zaragoza, Spain.,Department of Pneumology, Río Hortega University Hospital, Valladolid, Spain
| | - Leila Kheirandish-Gozal
- Department of Child Health, Child Health Research Institute, The University of Missouri School of Medicine, Columbia, Missouri, USA
| | - Félix Del Campo
- Biomedical Engineering Group, Universidad de Valladolid, Valladolid, Spain.,Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina, (CIBER-BBN), Zaragoza, Spain.,Department of Pneumology, Río Hortega University Hospital, Valladolid, Spain
| | - David Gozal
- Department of Child Health, Child Health Research Institute, The University of Missouri School of Medicine, Columbia, Missouri, USA
| | - Roberto Hornero
- Biomedical Engineering Group, Universidad de Valladolid, Valladolid, Spain.,Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina, (CIBER-BBN), Zaragoza, Spain.,Department of Pneumology, Río Hortega University Hospital, Valladolid, Spain
| |
Collapse
|
6
|
Jiménez-García J, García M, Gutiérrez-Tobal GC, Kheirandish-Gozal L, Vaquerizo-Villar F, Álvarez D, del Campo F, Gozal D, Hornero R. A 2D convolutional neural network to detect sleep apnea in children using airflow and oximetry. Comput Biol Med 2022; 147:105784. [DOI: 10.1016/j.compbiomed.2022.105784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/19/2022] [Accepted: 06/26/2022] [Indexed: 11/03/2022]
|
7
|
Álvarez D, Gutiérrez-Tobal GC, Vaquerizo-Villar F, Moreno F, Del Campo F, Hornero R. Oximetry Indices in the Management of Sleep Apnea: From Overnight Minimum Saturation to the Novel Hypoxemia Measures. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1384:219-239. [PMID: 36217087 DOI: 10.1007/978-3-031-06413-5_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Obstructive sleep apnea (OSA) is a multidimensional disease often underdiagnosed due to the complexity and unavailability of its standard diagnostic method: the polysomnography. Among the alternative abbreviated tests searching for a compromise between simplicity and accurateness, oximetry is probably the most popular. The blood oxygen saturation (SpO2) signal is characterized by a near-constant profile in healthy subjects breathing normally, while marked drops (desaturations) are linked to respiratory events. Parameterization of the desaturations has led to a great number of indices of severity assessment commonly used to assist in OSA diagnosis. In this chapter, the main methodologies used to characterize the overnight oximetry profile are reviewed, from visual inspection and simple statistics to complex measures involving signal processing and pattern recognition techniques. We focus on the individual performance of each approach, but also on the complementarity among the great amount of indices existing in the state of the art, looking for the most relevant oximetric feature subset. Finally, a quick overview of SpO2-based deep learning applications for OSA management is carried out, where the raw oximetry signal is analyzed without previous parameterization. Our research allows us to conclude that all the methodologies (conventional, time, frequency, nonlinear, and hypoxemia-based) demonstrate high ability to provide relevant oximetric indices, but only a reduced set provide non-redundant complementary information leading to a significant performance increase. Finally, although oximetry is a robust tool, greater standardization and prospective validation of the measures derived from complex signal processing techniques are still needed to homogenize interpretation and increase generalizability.
Collapse
Affiliation(s)
- Daniel Álvarez
- Biomedical Engineering Group (GIB), University of Valladolid, Valladolid, Spain.
- Pneumology Department, Río Hortega University Hospital, Valladolid, Spain.
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Valladolid, Spain.
| | - Gonzalo C Gutiérrez-Tobal
- Biomedical Engineering Group (GIB), University of Valladolid, Valladolid, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Valladolid, Spain
| | - Fernando Vaquerizo-Villar
- Biomedical Engineering Group (GIB), University of Valladolid, Valladolid, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Valladolid, Spain
| | - Fernando Moreno
- Pneumology Department, Río Hortega University Hospital, Valladolid, Spain
| | - Félix Del Campo
- Biomedical Engineering Group (GIB), University of Valladolid, Valladolid, Spain
- Pneumology Department, Río Hortega University Hospital, Valladolid, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Valladolid, Spain
| | - Roberto Hornero
- Biomedical Engineering Group (GIB), University of Valladolid, Valladolid, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Valladolid, Spain
| |
Collapse
|
8
|
Barroso-García V, Jiménez-García J, Gutiérrez-Tobal GC, Hornero R. Airflow Analysis in the Context of Sleep Apnea. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1384:241-253. [PMID: 36217088 DOI: 10.1007/978-3-031-06413-5_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The airflow (AF) is a physiological signal involved in the overnight polysomnography (PSG) that reflects the respiratory activity. This signal is able to show the particularities of sleep apnea and is therefore used to define apneic events. In this regard, a growing number of studies have shown the usefulness of employing the overnight airflow as the only or combined information source for diagnosing sleep apnea in both children and adults. Due to its easy acquisition and interpretation, this biosignal has been widely analyzed by means of different signal processing techniques. In this chapter, we review the main methodological approaches applied to characterize and extract relevant information from this signal. In view of the results, we can conclude that the overnight airflow successfully reflects the particularities caused by the occurrence of apneic and hypopneic events and provides useful information for obtaining relevant biomarkers that characterize this disease.
Collapse
Affiliation(s)
- Verónica Barroso-García
- Biomedical Engineering Group, University of Valladolid, Valladolid, Spain.
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Valladolid, Spain.
| | | | - Gonzalo C Gutiérrez-Tobal
- Biomedical Engineering Group, University of Valladolid, Valladolid, Spain
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Valladolid, Spain
| | - Roberto Hornero
- Biomedical Engineering Group, University of Valladolid, Valladolid, Spain
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Valladolid, Spain
- Mathematics Research Institute of the University of Valladolid (IMUVa), Valladolid, Spain
| |
Collapse
|
9
|
Gozal D. Diagnostic approaches to respiratory abnormalities in craniofacial syndromes. Semin Fetal Neonatal Med 2021; 26:101292. [PMID: 34556443 DOI: 10.1016/j.siny.2021.101292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Craniofacial syndromes are a complex cluster of genetic conditions characterized by embryonic perturbations in the developmental trajectory of the upper airway and related structures. The presence of reduced airway size and maladaptive neuromuscular responses, particularly during sleep, leads to significant alterations in sleep architecture and overall detrimental gas exchange abnormalities that can be life-threatening. The common need for multi-stage therapeutic interventions for these craniofacial problems requires careful titration of anatomy and function, and the latter is currently evaluated by overnight polysomnography in sleep laboratories. The cost, inconvenience, and scarcity of pediatric sleep laboratories preclude the frequent evaluations that could optimize the overall process of treatment and corresponding outcomes. Here, we critically examine reductionist approaches to polysomnography in children to establish the parallel approximation of such techniques to infant with craniofacial disorders. The need for prospective longitudinal multicenter studies with side-by-side comparisons aimed at identifying an optimal diagnostic and long-term monitoring paradigm for these potentially life-threatening conditions is emphasized.
Collapse
Affiliation(s)
- David Gozal
- Department of Child Health, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
10
|
Martín-Montero A, Gutiérrez-Tobal GC, Gozal D, Barroso-García V, Álvarez D, del Campo F, Kheirandish-Gozal L, Hornero R. Bispectral Analysis of Heart Rate Variability to Characterize and Help Diagnose Pediatric Sleep Apnea. ENTROPY (BASEL, SWITZERLAND) 2021; 23:1016. [PMID: 34441156 PMCID: PMC8394544 DOI: 10.3390/e23081016] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/28/2021] [Accepted: 08/03/2021] [Indexed: 12/28/2022]
Abstract
Pediatric obstructive sleep apnea (OSA) is a breathing disorder that alters heart rate variability (HRV) dynamics during sleep. HRV in children is commonly assessed through conventional spectral analysis. However, bispectral analysis provides both linearity and stationarity information and has not been applied to the assessment of HRV in pediatric OSA. Here, this work aimed to assess HRV using bispectral analysis in children with OSA for signal characterization and diagnostic purposes in two large pediatric databases (0-13 years). The first database (training set) was composed of 981 overnight ECG recordings obtained during polysomnography. The second database (test set) was a subset of the Childhood Adenotonsillectomy Trial database (757 children). We characterized three bispectral regions based on the classic HRV frequency ranges (very low frequency: 0-0.04 Hz; low frequency: 0.04-0.15 Hz; and high frequency: 0.15-0.40 Hz), as well as three OSA-specific frequency ranges obtained in recent studies (BW1: 0.001-0.005 Hz; BW2: 0.028-0.074 Hz; BWRes: a subject-adaptive respiratory region). In each region, up to 14 bispectral features were computed. The fast correlation-based filter was applied to the features obtained from the classic and OSA-specific regions, showing complementary information regarding OSA alterations in HRV. This information was then used to train multi-layer perceptron (MLP) neural networks aimed at automatically detecting pediatric OSA using three clinically defined severity classifiers. Both classic and OSA-specific MLP models showed high and similar accuracy (Acc) and areas under the receiver operating characteristic curve (AUCs) for moderate (classic regions: Acc = 81.0%, AUC = 0.774; OSA-specific regions: Acc = 81.0%, AUC = 0.791) and severe (classic regions: Acc = 91.7%, AUC = 0.847; OSA-specific regions: Acc = 89.3%, AUC = 0.841) OSA levels. Thus, the current findings highlight the usefulness of bispectral analysis on HRV to characterize and diagnose pediatric OSA.
Collapse
Affiliation(s)
- Adrián Martín-Montero
- Biomedical Engineering Group, University of Valladolid, 47002 Valladolid, Spain; (G.C.G.-T.); (V.B.-G.); (D.Á.); (F.d.C.); (R.H.)
| | - Gonzalo C. Gutiérrez-Tobal
- Biomedical Engineering Group, University of Valladolid, 47002 Valladolid, Spain; (G.C.G.-T.); (V.B.-G.); (D.Á.); (F.d.C.); (R.H.)
- CIBER-BBN, Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina, 28029 Madrid, Spain
| | - David Gozal
- Department of Child Health and the Child Health Research Institute, The University of Missouri School of Medicine, Columbia, MO 65212, USA; (D.G.); (L.K.-G.)
| | - Verónica Barroso-García
- Biomedical Engineering Group, University of Valladolid, 47002 Valladolid, Spain; (G.C.G.-T.); (V.B.-G.); (D.Á.); (F.d.C.); (R.H.)
- CIBER-BBN, Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina, 28029 Madrid, Spain
| | - Daniel Álvarez
- Biomedical Engineering Group, University of Valladolid, 47002 Valladolid, Spain; (G.C.G.-T.); (V.B.-G.); (D.Á.); (F.d.C.); (R.H.)
- CIBER-BBN, Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina, 28029 Madrid, Spain
| | - Félix del Campo
- Biomedical Engineering Group, University of Valladolid, 47002 Valladolid, Spain; (G.C.G.-T.); (V.B.-G.); (D.Á.); (F.d.C.); (R.H.)
- CIBER-BBN, Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina, 28029 Madrid, Spain
- Sleep-Ventilation Unit, Pneumology Service, Río Hortega University Hospital, 47012 Valladolid, Spain
| | - Leila Kheirandish-Gozal
- Department of Child Health and the Child Health Research Institute, The University of Missouri School of Medicine, Columbia, MO 65212, USA; (D.G.); (L.K.-G.)
| | - Roberto Hornero
- Biomedical Engineering Group, University of Valladolid, 47002 Valladolid, Spain; (G.C.G.-T.); (V.B.-G.); (D.Á.); (F.d.C.); (R.H.)
- CIBER-BBN, Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina, 28029 Madrid, Spain
| |
Collapse
|
11
|
Martín-Montero A, Gutiérrez-Tobal GC, Kheirandish-Gozal L, Jiménez-García J, Álvarez D, del Campo F, Gozal D, Hornero R. Heart rate variability spectrum characteristics in children with sleep apnea. Pediatr Res 2021; 89:1771-1779. [PMID: 32927472 PMCID: PMC7956022 DOI: 10.1038/s41390-020-01138-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/04/2020] [Accepted: 08/10/2020] [Indexed: 01/04/2023]
Abstract
BACKGROUND Classic spectral analysis of heart rate variability (HRV) in pediatric sleep apnea-hypopnea syndrome (SAHS) traditionally evaluates the very low frequency (VLF: 0-0.04 Hz), low frequency (LF: 0.04-0.15 Hz), and high frequency (HF: 0.15-0.40 Hz) bands. However, specific SAHS-related frequency bands have not been explored. METHODS One thousand seven hundred and thirty-eight HRV overnight recordings from two pediatric databases (0-13 years) were evaluated. The first one (981 children) served as training set to define new HRV pediatric SAHS-related frequency bands. The associated relative power (RP) were computed in the test set, the Childhood Adenotonsillectomy Trial database (CHAT, 757 children). Their relationships with polysomnographic variables and diagnostic ability were assessed. RESULTS Two new specific spectral bands of pediatric SAHS within 0-0.15 Hz were related to duration of apneic events, number of awakenings, and wakefulness after sleep onset (WASO), while an adaptive individual-specific new band from HF was related to oxyhemoglobin desaturations, arousals, and WASO. Furthermore, these new spectral bands showed improved diagnostic ability than classic HRV. CONCLUSIONS Novel spectral bands provide improved characterization of pediatric SAHS. These findings may pioneer a better understanding of the effects of SAHS on cardiac function and potentially serve as detection biomarkers. IMPACT New specific heart rate variability (HRV) spectral bands are identified and characterized as potential biomarkers in pediatric sleep apnea. Spectral band BW1 (0.001-0.005 Hz) is related to macro sleep disruptions. Spectral band BW2 (0.028-0.074 Hz) is related to the duration of apneic events. An adaptive spectral band within the respiratory range, termed ABW3, is related to oxygen desaturations. The individual and collective diagnostic ability of these novel spectral bands outperforms classic HRV bands.
Collapse
Affiliation(s)
| | - Gonzalo C. Gutiérrez-Tobal
- Biomedical Engineering Group, University of Valladolid, Valladolid, Spain.,CIBER-BBN, Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina, Valladolid, Spain
| | - Leila Kheirandish-Gozal
- Department of Child Health and The Child Health Research Institute, The University of Missouri School of Medicine, Columbia, Missouri
| | | | - Daniel Álvarez
- Biomedical Engineering Group, University of Valladolid, Valladolid, Spain.,CIBER-BBN, Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina, Valladolid, Spain.,Sleep-Ventilation Unit, Pneumology Department, Río Hortega University Hospital, Valladolid, Spain
| | - Félix del Campo
- Biomedical Engineering Group, University of Valladolid, Valladolid, Spain.,CIBER-BBN, Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina, Valladolid, Spain.,Sleep-Ventilation Unit, Pneumology Department, Río Hortega University Hospital, Valladolid, Spain
| | - David Gozal
- Department of Child Health and The Child Health Research Institute, The University of Missouri School of Medicine, Columbia, Missouri
| | - Roberto Hornero
- Biomedical Engineering Group, University of Valladolid, Valladolid, Spain.,CIBER-BBN, Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina, Valladolid, Spain
| |
Collapse
|
12
|
Barroso-García V, Gutiérrez-Tobal GC, Gozal D, Vaquerizo-Villar F, Álvarez D, del Campo F, Kheirandish-Gozal L, Hornero R. Wavelet Analysis of Overnight Airflow to Detect Obstructive Sleep Apnea in Children. SENSORS 2021; 21:s21041491. [PMID: 33669996 PMCID: PMC7926995 DOI: 10.3390/s21041491] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/16/2021] [Accepted: 02/18/2021] [Indexed: 01/08/2023]
Abstract
This study focused on the automatic analysis of the airflow signal (AF) to aid in the diagnosis of pediatric obstructive sleep apnea (OSA). Thus, our aims were: (i) to characterize the overnight AF characteristics using discrete wavelet transform (DWT) approach, (ii) to evaluate its diagnostic utility, and (iii) to assess its complementarity with the 3% oxygen desaturation index (ODI3). In order to reach these goals, we analyzed 946 overnight pediatric AF recordings in three stages: (i) DWT-derived feature extraction, (ii) feature selection, and (iii) pattern recognition. AF recordings from OSA patients showed both lower detail coefficients and decreased activity associated with the normal breathing band. Wavelet analysis also revealed that OSA disturbed the frequency and energy distribution of the AF signal, increasing its irregularity. Moreover, the information obtained from the wavelet analysis was complementary to ODI3. In this regard, the combination of both wavelet information and ODI3 achieved high diagnostic accuracy using the common OSA-positive cutoffs: 77.97%, 81.91%, and 90.99% (AdaBoost.M2), and 81.96%, 82.14%, and 90.69% (Bayesian multi-layer perceptron) for 1, 5, and 10 apneic events/hour, respectively. Hence, these findings suggest that DWT properly characterizes OSA-related severity as embedded in nocturnal AF, and could simplify the diagnosis of pediatric OSA.
Collapse
Affiliation(s)
- Verónica Barroso-García
- Biomedical Engineering Group, University of Valladolid, 47011 Valladolid, Spain; (V.B.-G.); (F.V.-V.); (D.Á.); (F.d.C.); (R.H.)
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 47011 Valladolid, Spain
| | - Gonzalo C. Gutiérrez-Tobal
- Biomedical Engineering Group, University of Valladolid, 47011 Valladolid, Spain; (V.B.-G.); (F.V.-V.); (D.Á.); (F.d.C.); (R.H.)
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 47011 Valladolid, Spain
- Correspondence: ; Tel.: +34-983-423000 (ext. 4713)
| | - David Gozal
- Department of Child Health, The University of Missouri School of Medicine, Columbia, MO 65212, USA; (D.G.); (L.K.-G.)
| | - Fernando Vaquerizo-Villar
- Biomedical Engineering Group, University of Valladolid, 47011 Valladolid, Spain; (V.B.-G.); (F.V.-V.); (D.Á.); (F.d.C.); (R.H.)
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 47011 Valladolid, Spain
| | - Daniel Álvarez
- Biomedical Engineering Group, University of Valladolid, 47011 Valladolid, Spain; (V.B.-G.); (F.V.-V.); (D.Á.); (F.d.C.); (R.H.)
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 47011 Valladolid, Spain
- Sleep-Ventilation Unit, Pneumology Department, Río Hortega University Hospital, 47012 Valladolid, Spain
| | - Félix del Campo
- Biomedical Engineering Group, University of Valladolid, 47011 Valladolid, Spain; (V.B.-G.); (F.V.-V.); (D.Á.); (F.d.C.); (R.H.)
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 47011 Valladolid, Spain
- Sleep-Ventilation Unit, Pneumology Department, Río Hortega University Hospital, 47012 Valladolid, Spain
| | - Leila Kheirandish-Gozal
- Department of Child Health, The University of Missouri School of Medicine, Columbia, MO 65212, USA; (D.G.); (L.K.-G.)
| | - Roberto Hornero
- Biomedical Engineering Group, University of Valladolid, 47011 Valladolid, Spain; (V.B.-G.); (F.V.-V.); (D.Á.); (F.d.C.); (R.H.)
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 47011 Valladolid, Spain
| |
Collapse
|
13
|
Oceja E, Rodríguez P, Jurado MJ, Luz Alonso M, del Río G, Villar MÁ, Mediano O, Martínez M, Juarros S, Merino M, Corral J, Luna C, Kheirandish-Gozal L, Gozal D, Durán-Cantolla J. Validity and Cost-Effectiveness of Pediatric Home Respiratory Polygraphy for the Diagnosis of Obstructive Sleep Apnea in Children: Rationale, Study Design, and Methodology. Methods Protoc 2021; 4:9. [PMID: 33477929 PMCID: PMC7838960 DOI: 10.3390/mps4010009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 12/15/2022] Open
Abstract
Obstructive sleep apnea (OSA) in children is a prevalent, albeit largely undiagnosed disease associated with a large spectrum of morbidities. Overnight in-lab polysomnography remains the gold standard diagnostic approach, but is time-consuming, inconvenient, and expensive, and not readily available in many places. Simplified Home Respiratory Polygraphy (HRP) approaches have been proposed to reduce costs and facilitate the diagnostic process. However, evidence supporting the validity of HRP is still scarce, hampering its implementation in routine clinical use. The objectives were: Primary; to establish the diagnostic and therapeutic decision validity of a simplified HRP approach compared to PSG among children at risk of OSA. Secondary: (a) Analyze the cost-effectiveness of the HRP versus in-lab PSG in evaluation and treatment of pediatric OSA; (b) Evaluate the impact of therapeutic interventions based on HRP versus PSG findings six months after treatment using sleep and health parameters and quality of life instruments; (c) Discovery and validity of the urine biomarkers to establish the diagnosis of OSA and changes after treatment.
Collapse
Affiliation(s)
- Esther Oceja
- Domiciliary Hospitalization, Sleep Unit, OSI Araba University Hospital, 01004 Vitoria, Spain;
| | - Paula Rodríguez
- Research Service and Bioaraba Research Institute, OSI Araba University Hospital, UPV/EHU, 01004 Vitoria, Spain;
| | - María José Jurado
- Sleep Unit, Hospital Universitario Valle de Hebrón, 08035 Barcelona, Spain;
| | - Maria Luz Alonso
- Sleep Unit, Complejo Hospitalario de Burgos, 09006 Burgos, Spain
| | | | | | - Olga Mediano
- Sleep Unit, Hospital de Guadalajara, 19002 Guadalajara, Spain;
| | - Marian Martínez
- Sleep Unit, Hospital Universitario Marqués de Valdecilla, 39008 Santander, Spain;
| | - Santiago Juarros
- Sleep Unit, Hospital Universitario de Valladolid, 47012 Valladolid, Spain;
| | - Milagros Merino
- Sleep Unit, Hospital Universitario La Paz, 28046 Madrid, Spain;
| | - Jaime Corral
- Sleep Unit, Complejo Hospitalario de Cáceres, 100003 Cáceres, Spain;
| | - Carmen Luna
- Sleep Unit, Hospital Universitario 12 de Octubre, 280035 Madrid, Spain;
| | - Leila Kheirandish-Gozal
- Department of Child Health and Child Health Research Institute, School of Medicine, University of Missouri, Columbia, MO 65201, USA; (L.K.-G.); (D.G.)
| | - David Gozal
- Department of Child Health and Child Health Research Institute, School of Medicine, University of Missouri, Columbia, MO 65201, USA; (L.K.-G.); (D.G.)
| | - Joaquín Durán-Cantolla
- Research Service and Bioaraba Research Institute, OSI Araba University Hospital, UPV/EHU, 01004 Vitoria, Spain;
| |
Collapse
|
14
|
Wan W, Wu Z, Lu J, Wan W, Gao J, Su H, Zhu W. Obstructive Sleep Apnea is Related with the Risk of Retinal Vein Occlusion. Nat Sci Sleep 2021; 13:273-281. [PMID: 33688286 PMCID: PMC7936718 DOI: 10.2147/nss.s290583] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 02/17/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Retinal vein occlusion (RVO) was a vision-threatening retinal vascular disorder, however, the relationship between obstructive sleep apnea (OSA) and RVO risk remained unclear. METHODS A total of 45 RVO cases and 45 controls between April 2018 and April 2020 were included. All the participants underwent full-night polysomnography (PSG) and thus detected the severity of OSA. Besides, the relationship between the apnea-hypopnea index (AHI) and oxidative and inflammatory biomarkers, including 8-hydroxy-2 deoxyguanosine (8-OHdG), C-reactive protein (CRP), interleukin 1 beta (IL1β), interleukin 6 (IL6) and tumor necrosis factor alpha (TNFα) were detected. The incidences of macular edema (ME) and neovascular glaucoma (NVG) were detected in a three-months follow-up. RESULTS In this case-control study, it was found that OSA incidence was increased in the RVO cases comparing with the cataract controls. Advanced analyses about the RVO subtypes demonstrated that incidence of OSA was higher in the central RVO (CRVO) cases comparing with branch RVO (BRVO) cases. Plasma samples from OSA cases demonstrated relatively higher concentrations of oxidative stress parameters and inflammatory biomarkers, including 8-OHdG, CRP, IL1β, and IL6, in the RVO cases. Significant linear correlations between AHI and oxidative/inflammatory biomarkers were detected, and advanced analyses on the OSA subtypes demonstrated that these biomarkers were significantly higher in cases with later stages of OSA. In a three months follow-up, an impaired visual activity improvement rate and increased ME incidence in the OSA group among all the RVO cases were detected. CONCLUSION OSA was related with an increased incidence of RVO. Besides, OSA would lead to increased oxidative and inflammatory biomarkers concentrations in the RVO cases. OSA could be used as a harmful prognostic factor of visual activity improvement and ME incidences. These findings highlighted the role of OSA in the development of RVO.
Collapse
Affiliation(s)
- Wencui Wan
- Department of Ophthalmology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Zhen Wu
- Department of Ear, Nose, and Throat, Changshu No. 2 People's Hospital, Changshu, People's Republic of China
| | - Jia Lu
- Department of Ear, Nose, and Throat, Changshu No. 2 People's Hospital, Changshu, People's Republic of China
| | - Weiwei Wan
- Department of Ophthalmology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Jing Gao
- Department of Ophthalmology, First Hospital Affiliated to Soochow University, Suzhou, Jiangsu Province, People's Republic of China
| | - Hongxia Su
- Department of Rhinology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
| | - Wei Zhu
- Department of Ophthalmology, Changshu No. 2 People's Hospital, Changshu, People's Republic of China
| |
Collapse
|
15
|
Barroso-García V, Gutiérrez-Tobal GC, Kheirandish-Gozal L, Vaquerizo-Villar F, Álvarez D, Del Campo F, Gozal D, Hornero R. Bispectral analysis of overnight airflow to improve the pediatric sleep apnea diagnosis. Comput Biol Med 2020; 129:104167. [PMID: 33385706 DOI: 10.1016/j.compbiomed.2020.104167] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 11/19/2020] [Accepted: 12/04/2020] [Indexed: 12/15/2022]
Abstract
Pediatric Obstructive Sleep Apnea (OSA) is a respiratory disease whose diagnosis is performed through overnight polysomnography (PSG). Since it is a complex, time-consuming, expensive, and labor-intensive test, simpler alternatives are being intensively sought. In this study, bispectral analysis of overnight airflow (AF) signal is proposed as a potential approach to replace PSG when indicated. Thus, our objective was to characterize AF through bispectrum, and assess its performance to diagnose pediatric OSA. This characterization was conducted using 13 bispectral features from 946 AF signals. The oxygen desaturation index ≥3% (ODI3), a common clinical measure of OSA severity, was also obtained to evaluate its complementarity to the AF bispectral analysis. The fast correlation-based filter (FCBF) and a multi-layer perceptron (MLP) were used for subsequent automatic feature selection and pattern recognition stages. FCBF selected 3 bispectral features and ODI3, which were used to train a MLP model with ability to estimate apnea-hypopnea index (AHI). The model reached 82.16%, 82.49%, and 90.15% accuracies for the common AHI cut-offs 1, 5, and 10 events/h, respectively. The different bispectral approaches used to characterize AF in children provided complementary information. Accordingly, bispectral analysis showed that the occurrence of apneic events decreases the non-gaussianity and non-linear interaction of the AF harmonic components, as well as the regularity of the respiratory patterns. Moreover, the bispectral information from AF also showed complementarity with ODI3. Our findings suggest that AF bispectral analysis may serve as a useful tool to simplify the diagnosis of pediatric OSA, particularly for children with moderate-to-severe OSA.
Collapse
Affiliation(s)
- Verónica Barroso-García
- Biomedical Engineering Group, University of Valladolid, Valladolid, Spain; CIBER-BBN, Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina, Valladolid, Spain.
| | - Gonzalo C Gutiérrez-Tobal
- Biomedical Engineering Group, University of Valladolid, Valladolid, Spain; CIBER-BBN, Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina, Valladolid, Spain
| | - Leila Kheirandish-Gozal
- Department of Child Health, The University of Missouri School of Medicine, Columbia, MO, USA
| | - Fernando Vaquerizo-Villar
- Biomedical Engineering Group, University of Valladolid, Valladolid, Spain; CIBER-BBN, Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina, Valladolid, Spain
| | - Daniel Álvarez
- Biomedical Engineering Group, University of Valladolid, Valladolid, Spain; CIBER-BBN, Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina, Valladolid, Spain; Sleep-Ventilation Unit, Pneumology Department, Río Hortega University Hospital, Valladolid, Spain
| | - Félix Del Campo
- Biomedical Engineering Group, University of Valladolid, Valladolid, Spain; CIBER-BBN, Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina, Valladolid, Spain; Sleep-Ventilation Unit, Pneumology Department, Río Hortega University Hospital, Valladolid, Spain
| | - David Gozal
- Department of Child Health, The University of Missouri School of Medicine, Columbia, MO, USA
| | - Roberto Hornero
- Biomedical Engineering Group, University of Valladolid, Valladolid, Spain; CIBER-BBN, Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina, Valladolid, Spain
| |
Collapse
|
16
|
Early lung cancer diagnostic biomarker discovery by machine learning methods. Transl Oncol 2020; 14:100907. [PMID: 33217646 PMCID: PMC7683339 DOI: 10.1016/j.tranon.2020.100907] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/21/2020] [Accepted: 09/25/2020] [Indexed: 02/07/2023] Open
Abstract
Early diagnosis could improve lung cancer survival rate. The availability of blood-based screening could increase lung cancer patient uptake. An interdisciplinary mechanism combines metabolomics and machine learning methods. Metabolic biomarkers could be potential screening biomarkers for early detection of lung cancer. Naïve Bayes is recommended as an exploitable tool for early lung tumor prediction.
Early diagnosis has been proved to improve survival rate of lung cancer patients. The availability of blood-based screening could increase early lung cancer patient uptake. Our present study attempted to discover Chinese patients’ plasma metabolites as diagnostic biomarkers for lung cancer. In this work, we use a pioneering interdisciplinary mechanism, which is firstly applied to lung cancer, to detect early lung cancer diagnostic biomarkers by combining metabolomics and machine learning methods. We collected total 110 lung cancer patients and 43 healthy individuals in our study. Levels of 61 plasma metabolites were from targeted metabolomic study using LC-MS/MS. A specific combination of six metabolic biomarkers note-worthily enabling the discrimination between stage I lung cancer patients and healthy individuals (AUC = 0.989, Sensitivity = 98.1%, Specificity = 100.0%). And the top 5 relative importance metabolic biomarkers developed by FCBF algorithm also could be potential screening biomarkers for early detection of lung cancer. Naïve Bayes is recommended as an exploitable tool for early lung tumor prediction. This research will provide strong support for the feasibility of blood-based screening, and bring a more accurate, quick and integrated application tool for early lung cancer diagnostic. The proposed interdisciplinary method could be adapted to other cancer beyond lung cancer.
Collapse
|
17
|
Assessment of Airflow and Oximetry Signals to Detect Pediatric Sleep Apnea-Hypopnea Syndrome Using AdaBoost. ENTROPY 2020; 22:e22060670. [PMID: 33286442 PMCID: PMC7517204 DOI: 10.3390/e22060670] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/09/2020] [Accepted: 06/15/2020] [Indexed: 12/17/2022]
Abstract
The reference standard to diagnose pediatric Obstructive Sleep Apnea (OSA) syndrome is an overnight polysomnographic evaluation. When polysomnography is either unavailable or has limited availability, OSA screening may comprise the automatic analysis of a minimum number of signals. The primary objective of this study was to evaluate the complementarity of airflow (AF) and oximetry (SpO2) signals to automatically detect pediatric OSA. Additionally, a secondary goal was to assess the utility of a multiclass AdaBoost classifier to predict OSA severity in children. We extracted the same features from AF and SpO2 signals from 974 pediatric subjects. We also obtained the 3% Oxygen Desaturation Index (ODI) as a common clinically used variable. Then, feature selection was conducted using the Fast Correlation-Based Filter method and AdaBoost classifiers were evaluated. Models combining ODI 3% and AF features outperformed the diagnostic performance of each signal alone, reaching 0.39 Cohens's kappa in the four-class classification task. OSA vs. No OSA accuracies reached 81.28%, 82.05% and 90.26% in the apnea-hypopnea index cutoffs 1, 5 and 10 events/h, respectively. The most relevant information from SpO2 was redundant with ODI 3%, and AF was complementary to them. Thus, the joint analysis of AF and SpO2 enhanced the diagnostic performance of each signal alone using AdaBoost, thereby enabling a potential screening alternative for OSA in children.
Collapse
|