1
|
Malvaez M, Liang A, Hall BS, Giovanniello JR, Paredes N, Gonzalez JY, Blair GJ, Sias AC, Murphy MD, Guo W, Wang A, Singh M, Griffin NK, Bridges SP, Wiener A, Pimenta JS, Holley SM, Cepeda C, Levine MS, Blair HT, Wikenheiser AM, Wassum KM. Striatal cell-type specific stability and reorganization underlying agency and habit. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.26.634924. [PMID: 39896502 PMCID: PMC11785256 DOI: 10.1101/2025.01.26.634924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Adaptive decision making requires agency, knowledge that actions produce particular outcomes. For well- practiced routines, agency is relinquished in favor of habit. Here, we asked how dorsomedial striatum D1 + and D2/A2A + neurons contribute to agency and habit. We imaged calcium activity of these neurons as mice learned to lever press with agency and formed habits with overtraining. Whereas many D1 + neurons stably encoded actions throughout learning and developed encoding of reward outcomes, A2A + neurons reorganized their encoding of actions from initial action-outcome learning to habit formation. Chemogenetic manipulations indicated that both D1 + and A2A + neurons support action-outcome learning, but only D1 + neurons enable the use of such agency for adaptive, goal-directed decision making. These data reveal coordinated dorsomedial striatum D1 + and A2A + function for the development of agency, cell-type specific stability and reorganization underlying agency and habit, and important insights into the neuronal circuits of how we learn and decide.
Collapse
|
2
|
Giovanniello JR, Paredes N, Wiener A, Ramírez-Armenta K, Oragwam C, Uwadia HO, Yu AL, Lim K, Pimenta JS, Vilchez GE, Nnamdi G, Wang A, Sehgal M, Reis FM, Sias AC, Silva AJ, Adhikari A, Malvaez M, Wassum KM. A dual-pathway architecture enables chronic stress to disrupt agency and promote habit formation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.03.560731. [PMID: 37873076 PMCID: PMC10592885 DOI: 10.1101/2023.10.03.560731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Chronic stress can change how we learn and, thus, how we make decisions. Here we investigated the neuronal circuit mechanisms that enable this. Using a multifaceted systems neuroscience approach in male and female mice, we reveal a dual pathway, amygdala-striatal neuronal circuit architecture by which a recent history of chronic stress disrupts the action-outcome learning underlying adaptive agency and promotes the formation of inflexible habits. We found that the basolateral amygdala projection to the dorsomedial striatum is activated by rewarding events to support the action-outcome learning needed for flexible, goal-directed decision making. Chronic stress attenuates this to disrupt action-outcome learning and, therefore, agency. Conversely, the central amygdala projection to the dorsomedial striatum mediates habit formation. Following stress this pathway is progressively recruited to learning to promote the premature formation of inflexible habits. Thus, stress exerts opposing effects on two amygdala-striatal pathways to disrupt agency and promote habit. These data provide neuronal circuit insights into how chronic stress shapes learning and decision making, and help understand how stress can lead to the disrupted decision making and pathological habits that characterize substance use disorders and mental health conditions.
Collapse
Affiliation(s)
| | | | - Anna Wiener
- Dept. of Psychology, UCLA, Los Angeles, CA 90095
| | | | | | | | - Abigail L Yu
- Dept. of Physiology, UCLA, Los Angeles, CA 90095
| | - Kayla Lim
- Dept. of Biological Chemistry, UCLA, Los Angeles, CA 90095
| | | | | | - Gift Nnamdi
- Dept. of Psychology, UCLA, Los Angeles, CA 90095
| | - Alicia Wang
- Dept. of Psychology, UCLA, Los Angeles, CA 90095
| | - Megha Sehgal
- Dept. of Psychology, UCLA, Los Angeles, CA 90095
| | | | - Ana C Sias
- Dept. of Psychology, UCLA, Los Angeles, CA 90095
| | - Alcino J Silva
- Dept. of Psychology, UCLA, Los Angeles, CA 90095
- Brain Research Institute, UCLA, Los Angeles, CA 90095, USA
- Integrative Center for Learning and Memory, University of California Los Angeles, Los Angeles, CA, USA
| | - Avishek Adhikari
- Dept. of Psychology, UCLA, Los Angeles, CA 90095
- Brain Research Institute, UCLA, Los Angeles, CA 90095, USA
- Integrative Center for Learning and Memory, University of California Los Angeles, Los Angeles, CA, USA
| | | | - Kate M Wassum
- Dept. of Psychology, UCLA, Los Angeles, CA 90095
- Brain Research Institute, UCLA, Los Angeles, CA 90095, USA
- Integrative Center for Learning and Memory, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
3
|
Hildebrandt BA, Fisher H, LaPalombara Z, Young ME, Ahmari SE. Corticostriatal dynamics underlying components of binge-like consumption of palatable food in mice. Appetite 2023; 183:106462. [PMID: 36682623 PMCID: PMC9974784 DOI: 10.1016/j.appet.2023.106462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 01/12/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023]
Abstract
Binge eating (BE) is a maladaptive repetitive feeding behavior present across nearly all eating disorder diagnoses. Despite the substantial negative impact of BE on psychological and physiological health, its underlying neural mechanisms are largely unknown. Other repetitive behavior disorders (e.g., obsessive compulsive disorder) show dysfunction within corticostriatal circuitry. However, to date, no work has investigated the in vivo neural dynamics underlying corticostriatal activity during BE episodes. The aim of the current study was to longitudinally examine in vivo neural activity within corticostriatal regions - the infralimbic cortex (IL) and dorsolateral striatum (DLS)- in a robust pre-clinical model for BE. Female C57BL6/J mice (N = 32) were randomized to receive: 1) intermittent (daily, 2-h) binge-like access to palatable food (sweetened condensed milk) (BE), or 2) continuous, non-intermittent (24-h) access to palatable food (control). In vivo calcium imaging was performed via fiber photometry at baseline and after chronic (4 weeks) engagement in the model for BE. Specific consummatory behaviors (feeding bout onset/offset) during recordings were captured using lickometers which generated TTL outputs for precise alignment of behavior to neural data. IL showed no specific changes in neural activity related to BE. However, BE animals showed decreased DLS activity at feeding onset and offset at the chronic timepoint when compared to activity at the baseline timepoint. Additionally, BE mice had significantly lower DLS activity at feeding onset and offset at the chronic timepoint compared to control mice. These results point to a role for DLS hypofunction in chronic BE, highlighting a potential target for future treatment intervention.
Collapse
Affiliation(s)
- Britny A Hildebrandt
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA.
| | - Hayley Fisher
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Zoe LaPalombara
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Michael E Young
- Department of Psychological Sciences, Kansas State University, Manhattan, KS, 66506, USA
| | - Susanne E Ahmari
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA; Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, 15213, USA; Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh, PA, 15213, USA
| |
Collapse
|
4
|
Shan Q, Yu X, Tian Y. Adolescent social isolation shifts the balance of decision-making strategy from goal-directed action to habitual response in adulthood via suppressing the excitatory neurotransmission onto the direct pathway of the dorsomedial striatum. Cereb Cortex 2023; 33:1595-1609. [PMID: 35524719 DOI: 10.1093/cercor/bhac158] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/15/2022] [Accepted: 04/01/2022] [Indexed: 02/05/2023] Open
Abstract
Adverse experience, such as social isolation, during adolescence is one of the major causes of neuropsychiatric disorders that extend from adolescence into adulthood, such as substance addiction, obsessive-compulsive disorder, and eating disorders leading to obesity. A common behavioral feature of these neuropsychiatric disorders is a shift in the balance of decision-making strategy from goal-directed action to habitual response. This study has verified that adolescent social isolation directly shifts the balance of decision-making strategy from goal-directed action to habitual response, and that it cannot be reversed by simple regrouping. This study has further revealed that adolescent social isolation induces a suppression in the excitatory neurotransmission onto the direct-pathway medium spiny neurons of the dorsomedial striatum (DMS), and that chemogenetically compensating this suppression effect shifts the balance of decision-making strategy from habitual response back to goal-directed action. These findings suggest that the plasticity in the DMS causes the shift in the balance of decision-making strategy, which would potentially help to develop a general therapy to treat the various neuropsychiatric disorders caused by adolescent social isolation. Such a study is especially necessary under the circumstances that social distancing and lockdown have caused during times of world-wide, society-wide pandemic.
Collapse
Affiliation(s)
- Qiang Shan
- Laboratory for Synaptic Plasticity, Shantou University Medical College, Shantou, Guangdong, 515041, China
| | - Xiaoxuan Yu
- Laboratory for Synaptic Plasticity, Shantou University Medical College, Shantou, Guangdong, 515041, China
| | - Yao Tian
- Chern Institute of Mathematics, Nankai University, Tianjin, 300071, China
| |
Collapse
|
5
|
Balbinot G, Bandini A, Schuch CP. Post-Stroke Hemiplegic Rodent Evaluation: A Framework for Assessing Forelimb Movement Quality Using Kinematics. Curr Protoc 2022; 2:e369. [PMID: 35182413 DOI: 10.1002/cpz1.369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Kinematics is the gold-standard method for measuring detailed joint motions. Recent research demonstrates that post-stroke kinematic analysis in rats reveals reaching abnormalities similar to those seen in humans after stroke. Nonetheless, behavioral neuroscientists have failed to incorporate kinematic methods for assessing movement quality in stroke models. The availability of a user-friendly method to assess multi-segment forelimb kinematics models should greatly increase uptake of this approach. Here, we present a framework for multi-segment forelimb analysis in rodents after stroke. This method greatly enhances the understanding of post-stroke forelimb motor recovery by including several movement quality metrics often used in human clinical work, such as upper-limb linear and angular kinematics, movement smoothness and kinetics, abnormal synergies, and compensations. These metrics may constitute a preclinical surrogate for the Fugl-Meyer assessment of hemiplegic patients. The data obtained using this method are 83 outputs of linear and angular kinematics and kinetics. The outputs also include 24 time series of continuous data, which afford a graphical representation of the kinematics and kinetics of the reaching cycle. We show that post-stroke rodents displayed many features resembling those seen in humans after stroke that are evident only when multi-segment kinematics models are considered. This method expands the knowledge derived from methods constrained to paw movements to a multi-segment forelimb movement quality framework. Moreover, it highlights the need for preclinical work to consider more sensitive measures of sensorimotor impairment and recovery as a means to enhance the interpretation of true recovery and compensation. © 2022 Wiley Periodicals LLC. Basic Protocol: Recording and data analysis of rodents performing the Montoya staircase task.
Collapse
Affiliation(s)
- Gustavo Balbinot
- KITE Research Institute, Toronto Rehabilitation Institute-University Health Network, Toronto, Canada
| | - Andrea Bandini
- KITE Research Institute, Toronto Rehabilitation Institute-University Health Network, Toronto, Canada.,The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa, Italy.,Department of Excellence in Robotics and AI, Scuola Superiore Sant'Anna, Pisa, Italy
| | | |
Collapse
|
6
|
Wood W, Mazar A, Neal DT. Habits and Goals in Human Behavior: Separate but Interacting Systems. PERSPECTIVES ON PSYCHOLOGICAL SCIENCE 2021; 17:590-605. [PMID: 34283681 DOI: 10.1177/1745691621994226] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
People automatically repeat behaviors that were frequently rewarded in the past in a given context. Such repetition is commonly attributed to habit, or associations in memory between a context and a response. Once habits form, contexts directly activate the response in mind. An opposing view is that habitual behaviors depend on goals. However, we show that this view is challenged by the goal independence of habits across the fields of social and health psychology, behavioral neuroscience, animal learning, and computational modeling. It also is challenged by direct tests revealing that habits do not depend on implicit goals. Furthermore, we show that two features of habit memory-rapid activation of specific responses and resistance to change-explain the different conditions under which people act on habit versus persuing goals. Finally, we tested these features with a novel secondary analysis of action-slip data. We found that habitual responses are activated regardless of goals, but they can be performed in concert with goal pursuit.
Collapse
Affiliation(s)
- Wendy Wood
- Department of Psychology, University of Southern California.,Marshall School of Business, University of Southern California
| | - Asaf Mazar
- Department of Psychology, University of Southern California
| | - David T Neal
- Catalyst Behavioral Sciences, Coral Gables, Florida.,Center for Advanced Hindsight, Duke University
| |
Collapse
|
7
|
Oleson EB, Hamilton LR, Gomez DM. Cannabinoid Modulation of Dopamine Release During Motivation, Periodic Reinforcement, Exploratory Behavior, Habit Formation, and Attention. Front Synaptic Neurosci 2021; 13:660218. [PMID: 34177546 PMCID: PMC8222827 DOI: 10.3389/fnsyn.2021.660218] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 05/05/2021] [Indexed: 12/12/2022] Open
Abstract
Motivational and attentional processes energize action sequences to facilitate evolutionary competition and promote behavioral fitness. Decades of neuropharmacology, electrophysiology and electrochemistry research indicate that the mesocorticolimbic DA pathway modulates both motivation and attention. More recently, it was realized that mesocorticolimbic DA function is tightly regulated by the brain's endocannabinoid system and greatly influenced by exogenous cannabinoids-which have been harnessed by humanity for medicinal, ritualistic, and recreational uses for 12,000 years. Exogenous cannabinoids, like the primary psychoactive component of cannabis, delta-9-tetrahydrocannabinol, produce their effects by acting at binding sites for naturally occurring endocannabinoids. The brain's endocannabinoid system consists of two G-protein coupled receptors, endogenous lipid ligands for these receptor targets, and several synthetic and metabolic enzymes involved in their production and degradation. Emerging evidence indicates that the endocannabinoid 2-arachidonoylglycerol is necessary to observe concurrent increases in DA release and motivated behavior. And the historical pharmacology literature indicates a role for cannabinoid signaling in both motivational and attentional processes. While both types of behaviors have been scrutinized under manipulation by either DA or cannabinoid agents, there is considerably less insight into prospective interactions between these two important signaling systems. This review attempts to summate the relevance of cannabinoid modulation of DA release during operant tasks designed to investigate either motivational or attentional control of behavior. We first describe how cannabinoids influence DA release and goal-directed action under a variety of reinforcement contingencies. Then we consider the role that endocannabinoids might play in switching an animal's motivation from a goal-directed action to the search for an alternative outcome, in addition to the formation of long-term habits. Finally, dissociable features of attentional behavior using both the 5-choice serial reaction time task and the attentional set-shifting task are discussed along with their distinct influences by DA and cannabinoids. We end with discussing potential targets for further research regarding DA-cannabinoid interactions within key substrates involved in motivation and attention.
Collapse
Affiliation(s)
- Erik B. Oleson
- Department of Psychology, University of Colorado Denver, Denver, CO, United States
| | - Lindsey R. Hamilton
- Department of Psychology, University of Colorado Denver, Denver, CO, United States
| | - Devan M. Gomez
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI, United States
| |
Collapse
|
8
|
Yu X, Chen S, Shan Q. Depression in the Direct Pathway of the Dorsomedial Striatum Permits the Formation of Habitual Action. Cereb Cortex 2021; 31:3551-3564. [PMID: 33774666 DOI: 10.1093/cercor/bhab031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 01/16/2021] [Accepted: 01/26/2021] [Indexed: 02/05/2023] Open
Abstract
In order to achieve optimal outcomes in an ever-changing environment, humans and animals generally manage their action control via either goal-directed action or habitual action. These two action strategies are thought to be encoded in distinct parallel circuits in the dorsal striatum, specifically, the posterior dorsomedial striatum (DMS) and the dorsolateral striatum (DLS), respectively. The striatum is primarily composed of two subtypes of medium spiny neurons (MSNs): the direct-pathway striatonigral and the indirect-pathway striatopallidal MSNs. MSN-subtype-specific synaptic plasticity in the DMS and the DLS has been revealed to underlie goal-directed action and habitual action, respectively. However, whether any MSN-subtype-specific synaptic plasticity in the DMS is associated with habitual action, and if so, whether the synaptic plasticity affects the formation of habitual action, are not known. This study demonstrates that postsynaptic depression in the excitatory synapses of the direct-pathway striatonigral MSNs in the DMS is formed after habit learning. Moreover, chemogenetically rescuing this depression compromises the acquisition, but not the expression, of habitual action. These findings reveal that an MSN-subtype-specific synaptic plasticity in the DMS affects habitual action and suggest that plasticity in the DMS as well as in the DLS contributes to the formation of habitual action.
Collapse
Affiliation(s)
- Xiaoxuan Yu
- Laboratory for Synaptic Plasticity, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Shijie Chen
- Laboratory for Synaptic Plasticity, Shantou University Medical College, Shantou, Guangdong 515041, China
| | - Qiang Shan
- Laboratory for Synaptic Plasticity, Shantou University Medical College, Shantou, Guangdong 515041, China
| |
Collapse
|
9
|
Alteration of the cholinergic system and motor deficits in cholinergic neuron-specific Dyt1 knockout mice. Neurobiol Dis 2021; 154:105342. [PMID: 33757902 DOI: 10.1016/j.nbd.2021.105342] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 03/11/2021] [Accepted: 03/18/2021] [Indexed: 12/30/2022] Open
Abstract
Dystonia is a neurological movement disorder characterized by sustained or intermittent muscle contractions, repetitive movement, and sometimes abnormal postures. DYT1 dystonia is one of the most common genetic dystonias, and most patients carry heterozygous DYT1 ∆GAG mutations causing a loss of a glutamic acid of the protein torsinA. Patients can be treated with anticholinergics, such as trihexyphenidyl, suggesting an abnormal cholinergic state. Early work on the cell-autonomous effects of Dyt1 deletion with ChI-specific Dyt1 conditional knockout mice (Dyt1 Ch1KO) revealed abnormal electrophysiological responses of striatal ChIs to muscarine and quinpirole, motor deficits, and no changes in the number or size of the ChIs. However, the Chat-cre line that was used to derive Dyt1 Ch1KO mice contained a neomycin cassette and was reported to have ectopic cre-mediated recombination. In this study, we generated a Dyt1 Ch2KO mouse line by removing the neomycin cassette in Dyt1 Ch1KO mice. The Dyt1 Ch2KO mice showed abnormal paw clenching behavior, motor coordination and balance deficits, impaired motor learning, reduced striatal choline acetyltransferase protein level, and a reduced number of striatal ChIs. Furthermore, the mutant striatal ChIs had a normal muscarinic inhibitory function, impaired quinpirole-mediated inhibition, and altered current density. Our findings demonstrate a cell-autonomous effect of Dyt1 deletion on the striatal ChIs and a critical role for the striatal ChIs and corticostriatal pathway in the pathogenesis of DYT1 dystonia.
Collapse
|
10
|
Bender BN, Torregrossa MM. Dorsolateral striatum dopamine-dependent cocaine seeking is resistant to pavlovian cue extinction in male and female rats. Neuropharmacology 2021; 182:108403. [PMID: 33197468 PMCID: PMC7740074 DOI: 10.1016/j.neuropharm.2020.108403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 10/23/2022]
Abstract
Cue exposure therapy (CET) reduces craving induced by drug-associated cues in individuals with substance use disorders. A preclinical model of CET, cue extinction, similarly reduces cue-induced cocaine seeking in rodent self-administration models; however, those models may not capture the habitual or compulsive aspects of drug use. Thus, the effectiveness of cue extinction was tested in male and female rats trained to self-administer cocaine using second-order (SO) or fixed-ratio (FR) schedules of reinforcement to facilitate dorsolateral striatum (DLS) dopamine-dependent or -independent response strategies, respectively. Cue extinction significantly reduced drug seeking in FR-trained rats, replicating prior results, but was ineffective in SO-trained rats. SO-trained rats also showed increased indices of glutamate signaling in the DLS relative to FR-trained rats, despite comparable levels of cocaine intake. Furthermore, in SO-trained rats, antagonism of AMPA receptors in the DLS rescued the efficacy of cue extinction to reduce drug seeking. Finally, the effectiveness of cue extinction was also revealed in SO-trained rats when they were taught to perform a new, non-habitual response for cocaine cue presentation. Overall, our findings indicate that habit-like drug seeking leads to plasticity in the DLS and behavior that is resistant to cue extinction, but that the effects of cue extinction are restored when DLS glutamatergic signaling is blocked. These results have implications for the effectiveness of clinical cue exposure therapy.
Collapse
Affiliation(s)
- Brooke N Bender
- Department of Psychiatry, University of Pittsburgh, 450 Technology Drive, Pittsburgh, PA, 15219, United States; Center for Neuroscience, University of Pittsburgh, 4200 Fifth Ave, Pittsburgh, PA, 15213, United States
| | - Mary M Torregrossa
- Department of Psychiatry, University of Pittsburgh, 450 Technology Drive, Pittsburgh, PA, 15219, United States; Center for Neuroscience, University of Pittsburgh, 4200 Fifth Ave, Pittsburgh, PA, 15213, United States.
| |
Collapse
|
11
|
Bender BN, Torregrossa MM. Molecular and circuit mechanisms regulating cocaine memory. Cell Mol Life Sci 2020; 77:3745-3768. [PMID: 32172301 PMCID: PMC7492456 DOI: 10.1007/s00018-020-03498-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 02/04/2020] [Accepted: 03/02/2020] [Indexed: 01/27/2023]
Abstract
Risk of relapse is a major challenge in the treatment of substance use disorders. Several types of learning and memory mechanisms are involved in substance use and have implications for relapse. Associative memories form between the effects of drugs and the surrounding environmental stimuli, and exposure to these stimuli during abstinence causes stress and triggers drug craving, which can lead to relapse. Understanding the neural underpinnings of how these associations are formed and maintained will inform future advances in treatment practices. A large body of research has expanded our knowledge of how associative memories are acquired and consolidated, how they are updated through reactivation and reconsolidation, and how competing extinction memories are formed. This review will focus on the vast literature examining the mechanisms of cocaine Pavlovian associative memories with an emphasis on the molecular memory mechanisms and circuits involved in the consolidation, reconsolidation, and extinction of these memories. Additional research elucidating the specific signaling pathways, mechanisms of synaptic plasticity, and epigenetic regulation of gene expression in the circuits involved in associative learning will reveal more distinctions between consolidation, reconsolidation, and extinction learning that can be applied to the treatment of substance use disorders.
Collapse
Affiliation(s)
- Brooke N Bender
- Department of Psychiatry, University of Pittsburgh, 450 Technology Drive, Pittsburgh, PA, 15219, USA
- Center for Neuroscience, University of Pittsburgh, 4200 Fifth Ave, Pittsburgh, PA, 15213, USA
| | - Mary M Torregrossa
- Department of Psychiatry, University of Pittsburgh, 450 Technology Drive, Pittsburgh, PA, 15219, USA.
- Center for Neuroscience, University of Pittsburgh, 4200 Fifth Ave, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
12
|
Complementary Control over Habits and Behavioral Vigor by Phasic Activity in the Dorsolateral Striatum. J Neurosci 2020; 40:2139-2153. [PMID: 31969469 DOI: 10.1523/jneurosci.1313-19.2019] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 12/18/2019] [Accepted: 12/19/2019] [Indexed: 12/13/2022] Open
Abstract
Despite clear evidence linking the basal ganglia to the control of outcome insensitivity (i.e., habit) and behavioral vigor (i.e., its behavioral speed/fluidity), it remains unclear whether or how these functions relate to one another. Here, using male Long-Evans rats in response-based and cue-based maze-running tasks, we demonstrate that phasic dorsolateral striatum (DLS) activity occurring at the onset of a learned behavior regulates how vigorous and habitual it is. In a response-based task, brief optogenetic excitation at the onset of runs decreased run duration and the occurrence of deliberative behaviors, whereas midrun stimulation carried little effect. Outcome devaluation showed these runs to be habitual. DLS inhibition at run start did not produce robust effects on behavior until after outcome devaluation. At that time, when the DLS was plausibly most critically required for performance (i.e., habitual), inhibition reduced performance vigor measures and caused a dramatic loss of habitual responding (i.e., animals quit the task). In a second cue-based "beacon" task requiring behavior initiation at the start of the run and again in the middle of the run, DLS excitation at both time points could improve the vigor of runs. Postdevaluation testing showed behavior on the beacon task to be habitual as well. This pattern of results suggests that one role for phasic DLS activity at behavior initiation is to promote the execution of the behavior in a vigorous and habitual fashion by a diverse set of measures.SIGNIFICANCE STATEMENT Our research expands the literature twofold. First, we find that features of a habitual behavior that are typically studied separately (i.e., maze response performance, deliberation movements, running vigor, and outcome insensitivity) are quite closely linked together. Second, efforts have been made to understand "what" the dorsolateral striatum (DLS) does for habitual behavior, and our research provides a key set of results showing "when" it is important (i.e., at behavior initiation). By showing such dramatic control over habits by DLS activity in a phasic time window, plausible real-world applications could involve more informed DLS perturbations to curb intractably problematic habits.
Collapse
|
13
|
Lipton DM, Gonzales BJ, Citri A. Dorsal Striatal Circuits for Habits, Compulsions and Addictions. Front Syst Neurosci 2019; 13:28. [PMID: 31379523 PMCID: PMC6657020 DOI: 10.3389/fnsys.2019.00028] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 06/27/2019] [Indexed: 12/18/2022] Open
Abstract
Here, we review the neural circuit bases of habits, compulsions, and addictions, behaviors which are all characterized by relatively automatic action performance. We discuss relevant studies, primarily from the rodent literature, and describe how major headway has been made in identifying the brain regions and neural cell types whose activity is modulated during the acquisition and performance of these automated behaviors. The dorsal striatum and cortical inputs to this structure have emerged as key players in the wider basal ganglia circuitry encoding behavioral automaticity, and changes in the activity of different neuronal cell-types in these brain regions have been shown to co-occur with the formation of automatic behaviors. We highlight how disordered functioning of these neural circuits can result in neuropsychiatric disorders, such as obsessive-compulsive disorder (OCD) and drug addiction. Finally, we discuss how the next phase of research in the field may benefit from integration of approaches for access to cells based on their genetic makeup, activity, connectivity and precise anatomical location.
Collapse
Affiliation(s)
- David M Lipton
- Edmond and Lily Safra Center for Brain Sciences, Hebrew University of Jerusalem, Jerusalem, Israel.,Zuckerman Postdoctoral Scholar, Jerusalem, Israel
| | - Ben J Gonzales
- Institute of Life Sciences, Edmond J. Safra Campus, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ami Citri
- Edmond and Lily Safra Center for Brain Sciences, Hebrew University of Jerusalem, Jerusalem, Israel.,Institute of Life Sciences, Edmond J. Safra Campus, Hebrew University of Jerusalem, Jerusalem, Israel.,Program in Child and Brain Development, MaRS Centre, Canadian Institute for Advanced Research, Toronto, ON, Canada
| |
Collapse
|
14
|
Mendelsohn AI. Creatures of Habit: The Neuroscience of Habit and Purposeful Behavior. Biol Psychiatry 2019; 85:e49-e51. [PMID: 31122343 PMCID: PMC6701929 DOI: 10.1016/j.biopsych.2019.03.978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 03/21/2019] [Indexed: 10/26/2022]
|
15
|
Deep brain stimulation of the internal capsule enhances human cognitive control and prefrontal cortex function. Nat Commun 2019; 10:1536. [PMID: 30948727 PMCID: PMC6449385 DOI: 10.1038/s41467-019-09557-4] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 03/19/2019] [Indexed: 01/11/2023] Open
Abstract
Deep brain stimulation (DBS) is a circuit-oriented treatment for mental disorders. Unfortunately, even well-conducted psychiatric DBS clinical trials have yielded inconsistent symptom relief, in part because DBS’ mechanism(s) of action are unclear. One clue to those mechanisms may lie in the efficacy of ventral internal capsule/ventral striatum (VCVS) DBS in both major depression (MDD) and obsessive-compulsive disorder (OCD). MDD and OCD both involve deficits in cognitive control. Cognitive control depends on prefrontal cortex (PFC) regions that project into the VCVS. Here, we show that VCVS DBS’ effect is explained in part by enhancement of PFC-driven cognitive control. DBS improves human subjects’ performance on a cognitive control task and increases theta (5–8Hz) oscillations in both medial and lateral PFC. The theta increase predicts subjects’ clinical outcomes. Our results suggest a possible mechanistic approach to DBS therapy, based on tuning stimulation to optimize these neurophysiologic phenomena. Deep brain stimulation (DBS) is a promising treatment for psychiatric disorders, but its mechanism in relieving symptoms is unclear. Here, the authors show that DBS of ventral internal capsule/ventral striatum (VCVS) may act by enhancing prefrontal cortex oscillations that in turn enhance cognitive control.
Collapse
|
16
|
Balbinot G, Schuch CP. Compensatory Relearning Following Stroke: Cellular and Plasticity Mechanisms in Rodents. Front Neurosci 2019; 12:1023. [PMID: 30766468 PMCID: PMC6365459 DOI: 10.3389/fnins.2018.01023] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 12/18/2018] [Indexed: 11/13/2022] Open
Abstract
von Monakow’s theory of diaschisis states the functional ‘standstill’ of intact brain regions that are remote from a damaged area, often implied in recovery of function. Accordingly, neural plasticity and activity patterns related to recovery are also occurring at the same regions. Recovery relies on plasticity in the periinfarct and homotopic contralesional regions and involves relearning to perform movements. Seeking evidence for a relearning mechanism following stroke, we found that rodents display many features that resemble classical learning and memory mechanisms. Compensatory relearning is likely to be accompanied by gradual shaping of these regions and pathways, with participating neurons progressively adapting cortico-striato-thalamic activity and synaptic strengths at different cortico-thalamic loops – adapting function relayed by the striatum. Motor cortex functional maps are progressively reinforced and shaped by these loops as the striatum searches for different functional actions. Several cortical and striatal cellular mechanisms that influence motor learning may also influence post-stroke compensatory relearning. Future research should focus on how different neuromodulatory systems could act before, during or after rehabilitation to improve stroke recovery.
Collapse
Affiliation(s)
- Gustavo Balbinot
- Brain Institute, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | - Clarissa Pedrini Schuch
- Graduate Program in Rehabilitation Sciences, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Brazil
| |
Collapse
|
17
|
|