1
|
Walker V. The Molecular Biology of Placental Transport of Calcium to the Human Foetus. Int J Mol Sci 2025; 26:383. [PMID: 39796238 PMCID: PMC11720126 DOI: 10.3390/ijms26010383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/23/2024] [Accepted: 12/30/2024] [Indexed: 01/13/2025] Open
Abstract
From fertilisation to delivery, calcium must be transported into and within the foetoplacental unit for intracellular signalling. This requires very rapid, precisely located Ca2+ transfers. In addition, from around the eighth week of gestation, increasing amounts of calcium must be routed directly from maternal blood to the foetus for bone mineralisation through a flow-through system, which does not impact the intracellular Ca2+ concentration. These different processes are mediated by numerous membrane-sited Ca2+ channels, transporters, and exchangers. Understanding the mechanisms is essential to direct interventions to optimise foetal development and postnatal bone health and to protect the mother and foetus from pre-eclampsia. Ethical issues limit the availability of human foetal tissue for study. Our insight into the processes of placental Ca2+ handling is advancing rapidly, enabled by developing genetic, analytical, and computer technology. Because of their diverse sources, the reports of new findings are scattered. This review aims to pull the data together and to highlight areas of uncertainty. Areas needing clarification include trafficking, membrane expression, and recycling of channels and transporters in the placental microvilli; placental metabolism of vitamin D in gestational diabetes and pre-eclampsia; and the vascular effects of increased endothelial Orai expression by pregnancy-specific beta-1-glycoproteins PSG1 and PSG9.
Collapse
Affiliation(s)
- Valerie Walker
- Department of Clinical Biochemistry, University Hospital Southampton NHS Foundation Trust, Southampton General Hospital, Southampton SO16 6YD, UK
| |
Collapse
|
2
|
Saadeldin IM, Ehab S, Noreldin AE, Swelum AAA, Bang S, Kim H, Yoon KY, Lee S, Cho J. Current strategies using 3D organoids to establish in vitro maternal-embryonic interaction. J Vet Sci 2024; 25:e40. [PMID: 38834510 PMCID: PMC11156602 DOI: 10.4142/jvs.24004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/14/2024] [Accepted: 03/28/2024] [Indexed: 06/06/2024] Open
Abstract
IMPORTANCE The creation of robust maternal-embryonic interactions and implantation models is important for comprehending the early stages of embryonic development and reproductive disorders. Traditional two-dimensional (2D) cell culture systems often fail to accurately mimic the highly complex in vivo conditions. The employment of three-dimensional (3D) organoids has emerged as a promising strategy to overcome these limitations in recent years. The advancements in the field of organoid technology have opened new avenues for studying the physiology and diseases affecting female reproductive tract. OBSERVATIONS This review summarizes the current strategies and advancements in the field of 3D organoids to establish maternal-embryonic interaction and implantation models for use in research and personalized medicine in assisted reproductive technology. The concepts of endometrial organoids, menstrual blood flow organoids, placental trophoblast organoids, stem cell-derived blastoids, and in vitro-generated embryo models are discussed in detail. We show the incorportaion of organoid systems and microfluidic technology to enhance tissue performance and precise management of the cellular surroundings. CONCLUSIONS AND RELEVANCE This review provides insights into the future direction of modeling maternal-embryonic interaction research and its combination with other powerful technologies to interfere with this dialogue either by promoting or hindering it for improving fertility or methods for contraception, respectively. The merging of organoid systems with microfluidics facilitates the creation of sophisticated and functional organoid models, enhancing insights into organ development, disease mechanisms, and personalized medical investigations.
Collapse
Affiliation(s)
- Islam Mohamed Saadeldin
- Comparative Medicine Department, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Seif Ehab
- Biomedical Sciences Program, University of Science and Technology, Zewail City of Science and Technology, Giza 11341, Egypt
| | - Ahmed Elsayed Noreldin
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Damanhour University, the Scientific Campus, Damanhour 22511, Egypt
| | - Ayman Abdel-Aziz Swelum
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
- Department of Theriogenology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Seonggyu Bang
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Korea
| | - Hyejin Kim
- Division in Biomedical Art, Department of Fine Art, Incheon Catholic University Graduate School, Incheon 21986, Korea
| | - Ki Young Yoon
- Department of Companion Animal, Shingu College, Seongnam 13174, Korea
| | - Sanghoon Lee
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea
| | - Jongki Cho
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Korea.
| |
Collapse
|
3
|
Teague S, Primavera G, Chen B, Liu ZY, Yao L, Freeburne E, Khan H, Jo K, Johnson C, Heemskerk I. Time-integrated BMP signaling determines fate in a stem cell model for early human development. Nat Commun 2024; 15:1471. [PMID: 38368368 PMCID: PMC10874454 DOI: 10.1038/s41467-024-45719-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 02/02/2024] [Indexed: 02/19/2024] Open
Abstract
How paracrine signals are interpreted to yield multiple cell fate decisions in a dynamic context during human development in vivo and in vitro remains poorly understood. Here we report an automated tracking method to follow signaling histories linked to cell fate in large numbers of human pluripotent stem cells (hPSCs). Using an unbiased statistical approach, we discover that measured BMP signaling history correlates strongly with fate in individual cells. We find that BMP response in hPSCs varies more strongly in the duration of signaling than the level. However, both the level and duration of signaling activity control cell fate choices only by changing the time integral. Therefore, signaling duration and level are interchangeable in this context. In a stem cell model for patterning of the human embryo, we show that signaling histories predict the fate pattern and that the integral model correctly predicts changes in cell fate domains when signaling is perturbed. Our data suggest that mechanistically, BMP signaling is integrated by SOX2.
Collapse
Affiliation(s)
- Seth Teague
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Gillian Primavera
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Bohan Chen
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Zong-Yuan Liu
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - LiAng Yao
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Emily Freeburne
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Hina Khan
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Kyoung Jo
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Craig Johnson
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Idse Heemskerk
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, USA.
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA.
- Center for Cell Plasticity and Organ Design, University of Michigan Medical School, Ann Arbor, MI, USA.
- Department of Physics, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
4
|
Teague S, Primavera G, Chen B, Freeburne E, Khan H, Jo K, Johnson C, Heemskerk I. The time integral of BMP signaling determines fate in a stem cell model for early human development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.10.536068. [PMID: 37090515 PMCID: PMC10120633 DOI: 10.1101/2023.04.10.536068] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
How paracrine signals are interpreted to yield multiple cell fate decisions in a dynamic context during human development in vivo and in vitro remains poorly understood. Here we report an automated tracking method to follow signaling histories linked to cell fate in large numbers of human pluripotent stem cells (hPSCs). Using an unbiased statistical approach, we discovered that measured BMP signaling history correlates strongly with fate in individual cells. We found that BMP response in hPSCs varies more strongly in the duration of signaling than the level. However, we discovered that both the level and duration of signaling activity control cell fate choices only by changing the time integral of signaling and that duration and level are therefore interchangeable in this context. In a stem cell model for patterning of the human embryo, we showed that signaling histories predict the fate pattern and that the integral model correctly predicts changes in cell fate domains when signaling is perturbed. Using an RNA-seq screen we then found that mechanistically, BMP signaling is integrated by SOX2.
Collapse
Affiliation(s)
- Seth Teague
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
| | - Gillian Primavera
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
| | - Bohan Chen
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan
| | - Emily Freeburne
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Hina Khan
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Kyoung Jo
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Craig Johnson
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Idse Heemskerk
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan
- Center for Cell Plasticity and Organ Design, University of Michigan Medical School, Ann Arbor, Michigan
- Department of Physics, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
5
|
Medina-Cano D, Corrigan EK, Glenn RA, Islam MT, Lin Y, Kim J, Cho H, Vierbuchen T. Rapid and robust directed differentiation of mouse epiblast stem cells into definitive endoderm and forebrain organoids. Development 2022; 149:dev200561. [PMID: 35899604 PMCID: PMC10655922 DOI: 10.1242/dev.200561] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 07/04/2022] [Indexed: 11/20/2022]
Abstract
Directed differentiation of pluripotent stem cells (PSCs) is a powerful model system for deconstructing embryonic development. Although mice are the most advanced mammalian model system for genetic studies of embryonic development, state-of-the-art protocols for directed differentiation of mouse PSCs into defined lineages require additional steps and generates target cell types with lower purity than analogous protocols for human PSCs, limiting their application as models for mechanistic studies of development. Here, we examine the potential of mouse epiblast stem cells cultured in media containing Wnt pathway inhibitors as a starting point for directed differentiation. As a proof of concept, we focused our efforts on two specific cell/tissue types that have proven difficult to generate efficiently and reproducibly from mouse embryonic stem cells: definitive endoderm and neural organoids. We present new protocols for rapid generation of nearly pure definitive endoderm and forebrain-patterned neural organoids that model the development of prethalamic and hippocampal neurons. These differentiation models present new possibilities for combining mouse genetic tools with in vitro differentiation to characterize molecular and cellular mechanisms of embryonic development.
Collapse
Affiliation(s)
- Daniel Medina-Cano
- Developmental Biology Program, Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA
- Center for Stem Cell Biology, Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA
| | - Emily K. Corrigan
- Developmental Biology Program, Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA
- Center for Stem Cell Biology, Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA
| | - Rachel A. Glenn
- Developmental Biology Program, Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA
- Center for Stem Cell Biology, Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA
- Cell and Developmental Biology Program, Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY 10065, USA
| | - Mohammed T. Islam
- Developmental Biology Program, Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA
- Center for Stem Cell Biology, Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA
| | - Yuan Lin
- Developmental Biology Program, Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA
- Center for Stem Cell Biology, Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA
| | - Juliet Kim
- Developmental Biology Program, Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA
- Center for Stem Cell Biology, Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA
| | - Hyunwoo Cho
- Developmental Biology Program, Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA
- Center for Stem Cell Biology, Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA
| | - Thomas Vierbuchen
- Developmental Biology Program, Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA
- Center for Stem Cell Biology, Sloan Kettering Institute for Cancer Research, New York, NY 10065, USA
| |
Collapse
|
6
|
Bao M, Cornwall-Scoones J, Zernicka-Goetz M. Stem-cell-based human and mouse embryo models. Curr Opin Genet Dev 2022; 76:101970. [PMID: 35988317 PMCID: PMC10309046 DOI: 10.1016/j.gde.2022.101970] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/17/2022] [Accepted: 07/19/2022] [Indexed: 11/26/2022]
Abstract
Synthetic embryology aims to develop embryo-like structures from stem cells to provide new insight into early stages of mammalian development. Recent advances in synthetic embryology have highlighted the remarkable capacity of stem cells to self-organize under certain biochemical or biophysical stimulations, generating structures that recapitulate the fate and form of early mouse/human embryos, in which symmetry breaking, pattern formation, or proper morphogenesis can be observed spontaneously. Here we review recent progress on the design principles for different types of embryoids and discuss the impact of different biochemical and biophysical factors on the process of stem-cell self-organization. We also offer our thoughts about the principal future challenges.
Collapse
Affiliation(s)
- Min Bao
- California Institute of Technology, Division of Biology and Biological Engineering, 1200 E. California Boulevard, Pasadena, CA 91125, USA; Mammalian Embryo and Stem Cell Group, Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK. https://twitter.com/@Min_Bao_
| | - Jake Cornwall-Scoones
- California Institute of Technology, Division of Biology and Biological Engineering, 1200 E. California Boulevard, Pasadena, CA 91125, USA; The Francis Crick Institute, London NW1 1AT, UK. https://twitter.com/@jake_cs_
| | - Magdalena Zernicka-Goetz
- California Institute of Technology, Division of Biology and Biological Engineering, 1200 E. California Boulevard, Pasadena, CA 91125, USA; Mammalian Embryo and Stem Cell Group, Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge CB2 3DY, UK.
| |
Collapse
|
7
|
Dokmegang J. Modeling Epiblast Shape in Implanting Mammalian Embryos. Methods Mol Biol 2022; 2490:281-296. [PMID: 35486253 DOI: 10.1007/978-1-0716-2281-0_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
An indispensable prerequisite of mammalian development is successful morphogenesis in the epiblast, the embryonic tissue that gives rise to all differentiated cells of the adult mammal. The right control of both epiblast morphogenesis and the events that regulate its shape in particular during implantation is henceforth of tremendous importance. However, monitoring the process of development in implanting human embryos is ethically and technically challenging, making it difficult to troubleshoot when things go wrong, as it is unfortunately the case with over 30% of pregnancy failures. Although modern in vitro techniques have proven very insightful lately, more tools are needed in the quest to elucidate mammalian and human development. Mathematical and computational modeling position themselves as helpful complementary tools in the biologist's toolbox, enabling the exploration of the living in silico, beyond the boundaries set by ethical concerns and the potential limitations of wet lab techniques. Here, we show how mathematical modeling and computer simulations can be used to emulate and investigate mechanisms driving epiblast shape changes in mouse and human embryos during implantation.
Collapse
Affiliation(s)
- Joel Dokmegang
- NSF-Simons Center for Quantitative Biology, Northwestern University, Evanston, IL, USA.
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
8
|
Weldon SA, Münsterberg AE. Somite development and regionalisation of the vertebral axial skeleton. Semin Cell Dev Biol 2021; 127:10-16. [PMID: 34690064 DOI: 10.1016/j.semcdb.2021.10.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/27/2021] [Accepted: 10/06/2021] [Indexed: 11/25/2022]
Abstract
A critical stage in the development of all vertebrate embryos is the generation of the body plan and its subsequent patterning and regionalisation along the main anterior-posterior axis. This includes the formation of the vertebral axial skeleton. Its organisation begins during early embryonic development with the periodic formation of paired blocks of mesoderm tissue called somites. Here, we review axial patterning of somites, with a focus on studies using amniote model systems - avian and mouse. We summarise the molecular and cellular mechanisms that generate paraxial mesoderm and review how the different anatomical regions of the vertebral column acquire their specific identity and thus shape the body plan. We also discuss the generation of organoids and embryo-like structures from embryonic stem cells, which provide insights regarding axis formation and promise to be useful for disease modelling.
Collapse
Affiliation(s)
- Shannon A Weldon
- School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | | |
Collapse
|
9
|
Xu PF, Borges RM, Fillatre J, de Oliveira-Melo M, Cheng T, Thisse B, Thisse C. Construction of a mammalian embryo model from stem cells organized by a morphogen signalling centre. Nat Commun 2021; 12:3277. [PMID: 34078907 PMCID: PMC8172561 DOI: 10.1038/s41467-021-23653-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 05/11/2021] [Indexed: 12/16/2022] Open
Abstract
Generating properly differentiated embryonic structures in vitro from pluripotent stem cells remains a challenge. Here we show that instruction of aggregates of mouse embryonic stem cells with an experimentally engineered morphogen signalling centre, that functions as an organizer, results in the development of embryo-like entities (embryoids). In situ hybridization, immunolabelling, cell tracking and transcriptomic analyses show that these embryoids form the three germ layers through a gastrulation process and that they exhibit a wide range of developmental structures, highly similar to neurula-stage mouse embryos. Embryoids are organized around an axial chordamesoderm, with a dorsal neural plate that displays histological properties similar to the murine embryo neuroepithelium and that folds into a neural tube patterned antero-posteriorly from the posterior midbrain to the tip of the tail. Lateral to the chordamesoderm, embryoids display somitic and intermediate mesoderm, with beating cardiac tissue anteriorly and formation of a vasculature network. Ventrally, embryoids differentiate a primitive gut tube, which is patterned both antero-posteriorly and dorso-ventrally. Altogether, embryoids provide an in vitro model of mammalian embryo that displays extensive development of germ layer derivatives and that promises to be a powerful tool for in vitro studies and disease modelling.
Collapse
Affiliation(s)
- Peng-Fei Xu
- Department of Cell Biology, University of Virginia, Charlottesville, VA, USA
- Institute of Genetics and Department of Genetics, School of Medicine, Zhejiang University, Hangzhou, China
| | | | - Jonathan Fillatre
- Department of Cell Biology, University of Virginia, Charlottesville, VA, USA
| | - Maraysa de Oliveira-Melo
- Department of Cell Biology, University of Virginia, Charlottesville, VA, USA
- Department of Cell Biology, State University of Campinas, Campinas, Brazil
| | - Tao Cheng
- Institute of Genetics and Department of Genetics, School of Medicine, Zhejiang University, Hangzhou, China
| | - Bernard Thisse
- Department of Cell Biology, University of Virginia, Charlottesville, VA, USA
| | - Christine Thisse
- Department of Cell Biology, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
10
|
Affiliation(s)
- Jake Cornwall-Scoones
- California Institute of Technology, Division of Biology and Biological Engineering, 1200 E. California Boulevard, Pasadena, CA, 91125, USA
| | - Magdalena Zernicka-Goetz
- California Institute of Technology, Division of Biology and Biological Engineering, 1200 E. California Boulevard, Pasadena, CA, 91125, USA; Mammalian Embryo and Stem Cell Group, University of Cambridge, Department of Physiology, Development and Neuroscience, Cambridge, CB2 3EG, UK.
| |
Collapse
|
11
|
Reassembling gastrulation. Dev Biol 2021; 474:71-81. [DOI: 10.1016/j.ydbio.2020.12.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 12/11/2020] [Accepted: 12/13/2020] [Indexed: 12/18/2022]
|
12
|
PlacentaCellEnrich: A tool to characterize gene sets using placenta cell-specific gene enrichment analysis. Placenta 2020; 103:164-171. [PMID: 33137644 DOI: 10.1016/j.placenta.2020.10.029] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/23/2020] [Accepted: 10/25/2020] [Indexed: 01/01/2023]
Abstract
Single-cell RNA-Sequencing (scRNA-Seq) has improved our understanding of individual cell types in the human placenta. However, placental scRNA-Seq data is not readily accessible when trying to understand how expression patterns in model systems correspond to those from first trimester human placenta. Therefore, we developed PlacentaCellEnrich, a tool that takes a gene set as input, and then reports if the input set is enriched for genes with placenta cell-specific expression patterns, based on human placenta scRNA-Seq data. The PlacentaCellEnrich tool is freely available at https://placentacellenrich.gdcb.iastate.edu/ for non-profit academic use under the MIT license.
Collapse
|
13
|
Bardot ES, Hadjantonakis AK. Mouse gastrulation: Coordination of tissue patterning, specification and diversification of cell fate. Mech Dev 2020; 163:103617. [PMID: 32473204 PMCID: PMC7534585 DOI: 10.1016/j.mod.2020.103617] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 05/18/2020] [Accepted: 05/22/2020] [Indexed: 12/22/2022]
Abstract
During mouse embryonic development a mass of pluripotent epiblast tissue is transformed during gastrulation to generate the three definitive germ layers: endoderm, mesoderm, and ectoderm. During gastrulation, a spatiotemporally controlled sequence of events results in the generation of organ progenitors and positions them in a stereotypical fashion throughout the embryo. Key to the correct specification and differentiation of these cell fates is the establishment of an axial coordinate system along with the integration of multiple signals by individual epiblast cells to produce distinct outcomes. These signaling domains evolve as the anterior-posterior axis is established and the embryo grows in size. Gastrulation is initiated at the posteriorly positioned primitive streak, from which nascent mesoderm and endoderm progenitors ingress and begin to diversify. Advances in technology have facilitated the elaboration of landmark findings that originally described the epiblast fate map and signaling pathways required to execute those fates. Here we will discuss the current state of the field and reflect on how our understanding has shifted in recent years.
Collapse
Affiliation(s)
- Evan S Bardot
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA.
| | - Anna-Katerina Hadjantonakis
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
14
|
Truskey GA, Fu J. The future of biomedical engineering: Bioengineering of organoids and tissue development. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2020. [DOI: 10.1016/j.cobme.2020.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|