1
|
Unalan I, Slavik B, Buettner A, Boccaccini AR. Phytotherapeutic Hierarchical PCL-Based Scaffolds as a Multifunctional Wound Dressing: Combining 3D Printing and Electrospinning. Macromol Biosci 2024; 24:e2400253. [PMID: 39254603 DOI: 10.1002/mabi.202400253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/10/2024] [Indexed: 09/11/2024]
Abstract
This study focuses on developing hybrid scaffolds incorporating phytotherapeutic agents via a combination of three-dimensional (3D) printing and electrospinning to enhance mechanical properties and provide antibacterial activity, in order to address the limitations of traditional antibiotics. In this regard, 3D-printed polycaprolactone (PCL) struts are first fabricated using fused deposition modeling (FDM). Then, alkaline surface treatment is applied to improve the adhesion of electrospun nanofibers. Finally, peppermint oil (PEP) or clove oil (CLV)-incorporated PCL-gelatin (GEL) electrospun nanofibers are collected on top of the 3D-printed PCL scaffolds by electrospinning. Incorporating PEP or CLV into PCL-GEL electrospun nanofibers enhances the scaffold's layer detachment and adhesion force. In addition, the DPPH free radical scavenging activity assay indicates that incorporating PEP or CLV improves the antioxidant properties of the scaffolds. Further, antibacterial activity results reveal that PEP or CLV incorporated scaffolds exhibit inhibition against Staphylococcus aureus and Escherichia coli bacteria. Moreover, anti-inflammatory assays show that scaffolds reduce the concentration of nitric oxide (NO) released from Raw 264.7 macrophage-like cells. On the other hand, the phytotherapeutic hierarchical scaffolds have no toxic effect on normal human dermal fibroblast (NHDF) cells, and PEP or CLV enhance cell attachment and proliferation. Overall, incorporating natural phytotherapeutic agents into hierarchical scaffolds shows promise for advancing wound healing applications.
Collapse
Affiliation(s)
- Irem Unalan
- Institute of Biomaterials, Department of Materials Science and Engineering, Friedrich-Alexander-University Erlangen-Nuremberg, Cauerstraße 6, 91058, Erlangen, Germany
| | - Benedikt Slavik
- Chair of Aroma and Smell Research, Department of Chemistry and Pharmacy, Friedrich-Alexander-University Erlangen-Nuremberg, Henkestraße 9, 91054, Erlangen, Germany
| | - Andrea Buettner
- Chair of Aroma and Smell Research, Department of Chemistry and Pharmacy, Friedrich-Alexander-University Erlangen-Nuremberg, Henkestraße 9, 91054, Erlangen, Germany
| | - Aldo R Boccaccini
- Institute of Biomaterials, Department of Materials Science and Engineering, Friedrich-Alexander-University Erlangen-Nuremberg, Cauerstraße 6, 91058, Erlangen, Germany
| |
Collapse
|
2
|
Chelu M. Hydrogels with Essential Oils: Recent Advances in Designs and Applications. Gels 2024; 10:636. [PMID: 39451288 PMCID: PMC11508064 DOI: 10.3390/gels10100636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 09/27/2024] [Accepted: 09/29/2024] [Indexed: 10/26/2024] Open
Abstract
The innovative fusion of essential oils with hydrogel engineering offers an optimistic perspective for the design and development of next-generation materials incorporating natural bioactive compounds. This review provides a comprehensive overview of the latest advances in the use of hydrogels containing essential oils for biomedical, dental, cosmetic, food, food packaging, and restoration of cultural heritage applications. Polymeric sources, methods of obtaining, cross-linking techniques, and functional properties of hydrogels are discussed. The unique characteristics of polymer hydrogels containing bioactive agents are highlighted. These include biocompatibility, nontoxicity, effective antibacterial activity, control of the sustained and prolonged release of active substances, optimal porosity, and outstanding cytocompatibility. Additionally, the specific characteristics and distinctive properties of essential oils are explored, along with their extraction and encapsulation methods. The advantages and disadvantages of these methods are also discussed. We have considered limitations due to volatility, solubility, environmental factors, and stability. The importance of loading essential oils in hydrogels, their stability, and biological activity is analyzed. This review highlights through an in-depth analysis, the recent innovations, challenges, and future prospects of hydrogels encapsulated with essential oils and their potential for multiple applications including biomedicine, dentistry, cosmetics, food, food packaging, and cultural heritage conservation.
Collapse
Affiliation(s)
- Mariana Chelu
- "Ilie Murgulescu" Institute of Physical Chemistry, 202 Spl. Independentei, 060021 Bucharest, Romania
| |
Collapse
|
3
|
Maghrabia AE, Boughdady MF, Khater SM, ِِAbu Hashim II, Meshali MM. Quality by design approach of apocynin loaded clove oil based nanostructured lipid carrier as a prophylactic regimen in hemorrhagic cystitis in vitro and in vivo comprehensive study. Sci Rep 2024; 14:19162. [PMID: 39160172 PMCID: PMC11333711 DOI: 10.1038/s41598-024-68721-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 07/26/2024] [Indexed: 08/21/2024] Open
Abstract
Apocynin (APO) is a naturally occurring acetophenone with eminent anti-inflammatory and anti-oxidant peculiarities. It suffers from poor bioavailability due to low aqueous solubility. Herein, APO was loaded in a Clove oil (CO) based Nanostructured lipid carrier (NSLC) system using a simple method (ultrasonic emulsification) guided by a quality-by-design approach (23 full factorial design) to optimize the formulated NSLCs. The prepared NSLCs were evaluated regarding particle size (PS), polydispersity index (PDI), zeta potential (ZP), and entrapment efficiency (EE%). The optimal formula (F2) was extensively investigated through transmission electron microscope (TEM), Fourier transform infrared (FT-IR) spectroscopy, Differential scanning calorimetry (DSC), X-ray diffractometry (XRD), in vitro release, and stability studies. Cytotoxicity against human urinary bladder carcinoma (T24) cell line and in vivo activity studies in rats with induced cystitis were also assessed. The results disclosed that the optimal formula (F2) had PS of 214.8 ± 5.8 nm with EE% of 79.3 ± 0.9%. F2 also exhibited a strong cytotoxic effect toward the T24 cancer cells expressed by IC50 value of 5.8 ± 1.3 µg/mL. Pretreatment with the optimal formula (orally) hinted uroprotective effect against cyclophosphamide (CP)-induced hemorrhagic cystitis (HC) in rat models, emphasized by histopathological, immunohistochemical, and biochemical investigations. In consideration of the simple fabrication process, APO-loaded CO-based NSLCs can hold prospective potential in the prophylaxis of oncologic and urologic diseases.
Collapse
Affiliation(s)
- Amir Elsayed Maghrabia
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt.
- Department of Pharmacy, Urology and Nephrology Center, Mansoura University, Mansoura, 35516, Egypt.
| | - Mariza Fouad Boughdady
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Egypt
| | - Sherry Mohamed Khater
- Department of Clinical Pathology, Urology and Nephrology Center, Mansoura University, Mansoura, 35516, Egypt
| | | | | |
Collapse
|
4
|
Hassan MA, Abd El-Aziz S, Nabil-Adam A, Tamer TM. Formulation of novel bioactive gelatin inspired by cinnamaldehyde for combating multi-drug resistant bacteria: Characterization, molecular docking, pharmacokinetic analyses, and in vitro assessments. Int J Pharm 2024; 652:123827. [PMID: 38253268 DOI: 10.1016/j.ijpharm.2024.123827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/13/2024] [Accepted: 01/19/2024] [Indexed: 01/24/2024]
Abstract
This study set out to formulate antibacterial and antioxidant gelatin boosted by cinnamaldehyde for combating multi-drug resistant bacteria previously obtained from chronic wounds. Towards this end, gelatin amine groups were conjugated with carbonyl groups of cinnamaldehyde, producing cinnamyl-gelatin Schiff bases. The physicochemical attributes of cinnamyl-gelatin Schiff bases were probed concerning alterations in chemical structures and microstructures compared to native gelatin. Besides, cinnamyl-gelatin Schiff bases exhibited higher thermal stability than gelatin, with a diminishing in solubility due to increases in hydrophobicity features. Interestingly, cinnamyl-gelatin derivatives exerted antibacterial activities versus multi-drug resistant Gram-negative and Gram-positive bacteria, showing maximum growth inhibition at the highest concentration of cinnamaldehyde incorporated into gelatin. The scavenging activities of gelatin against DPPH and ABTS•+ were promoted in cinnamyl-gelatin derivatives from 11.93 ± 0.6 % to 49.9 ± 2.5 % and 12.54 ± 0.63 % to 49.9 ± 3.12 %, respectively. Remarkably, cinnamyl-gelatin derivatives induced the proliferation of fibroblast cells, implying their prospective applications in tissue engineering. Molecular docking and pharmacokinetic investigations disclosed the potential antibacterial mechanisms of cinnamyl-gelatin derivatives alongside their biopharmaceutical applications. Altogether, these findings suggest that cinnamyl-gelatin derivatives could be utilized to tailor antibacterial-free antibiotics and antioxidant wound dressings against virulent bacteria to promote chronic wound recovery.
Collapse
Affiliation(s)
- Mohamed A Hassan
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, 21934 Alexandria, Egypt.
| | - Sarah Abd El-Aziz
- Polymer Materials Research Department, Advanced Technologies, and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, 21934 Alexandria, Egypt
| | - Asmaa Nabil-Adam
- Marine Biotechnology and Natural Products Laboratory, National Institute of Oceanography & Fisheries, Cairo 11516, Egypt
| | - Tamer M Tamer
- Polymer Materials Research Department, Advanced Technologies, and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, 21934 Alexandria, Egypt.
| |
Collapse
|
5
|
Aghabagherzadeh M, Karimi E, Zareian M. Folic Acid-Conjugated Chitosan-Coated Solid Lipid Nanoparticles: Precision Targeting of Artemisia vulgaris Essential Oils for Anticancer Therapy. Chem Biodivers 2024; 21:e202300187. [PMID: 38164058 DOI: 10.1002/cbdv.202300187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 12/03/2023] [Accepted: 12/15/2023] [Indexed: 01/03/2024]
Abstract
In this study, we developed Solid Lipid Nanoparticles (SLN-NPs) loaded with Artemisia vulgaris essential oil and coated with folic acid-chitosan (AVEO-SCF-NPs) to enhance drug delivery in biotechnology and pharmaceutical sectors. AVEO-SCF-NPs were synthesized using homogenization and ultra-sonication methods and comprehensively characterized. These nanoparticles exhibited a particle size of 253.67 nm, Polydispersity Index (PDI) of 0.26, zeta potential (ζ-p) of +39.96 mV, encapsulation efficiency (%EE) of 99.0 %, and folic acid binding efficiency (% FB) of 46.25 %. They effectively inhibited MCF-7, HT-29, and PC-3 cancer cells with IC50 values of 48.87 μg/mL, 88.48 μg/mL, and 121.34 μg/mL, respectively, and demonstrated antibacterial properties against Gram-positive strains. AVEO-SCF-NPs also exhibited scavenging effects on ABTS (IC50 : 203.83 μg/mL) and DPPH (IC50: 680.86 μg/mL) free radicals and inhibited angiogenesis, as confirmed through CAM and qPCR assays. Furthermore, these nanoparticles induced apoptosis, evidenced by up-regulation of caspase 3 and 9, down-regulation of TNF-α genes, and an increase in SubG1 phase cells. The high loading capacity of SCF-NPs for AVEO, coupled with their multifaceted biological properties, highlights AVEO-SCF-NPs as promising candidates for cancer therapy in the biotechnology and pharmaceutical industries.
Collapse
Affiliation(s)
| | - Ehsan Karimi
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Mohsen Zareian
- Department of Life Sciences, Chalmers University of Technology, Göteborg, Sweden
| |
Collapse
|
6
|
Alves APN, Arango-Ospina M, Oliveira RLMS, Ferreira IM, de Moraes EG, Hartmann M, de Oliveira APN, Boccaccini AR, de Sousa Trichês E. 3D-printed β-TCP/S53P4 bioactive glass scaffolds coated with tea tree oil: Coating optimization, in vitro bioactivity and antibacterial properties. J Biomed Mater Res B Appl Biomater 2023; 111:881-894. [PMID: 36440654 DOI: 10.1002/jbm.b.35198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 10/31/2022] [Accepted: 11/06/2022] [Indexed: 11/29/2022]
Abstract
Bone infection treatment is a significant challenge for the orthopedic field. 3D printing is a promising technology to produce scaffolds with customized architecture, able to stimulate and support bone growth. β-TCP and S53P4 bioactive glass (BG) are well-known biomaterials for scaffold manufacturing. However, a multifunctional scaffold, able to inhibit microbial proliferation at the defect site, is of increasing interest to avoid infection recurrence. Tea tree oil (TTO) has aroused interest as an antimicrobial agent to minimize the use of antibiotics. Therefore, combining the regenerative potential of a bioceramic with TTO's antimicrobial properties could result in a scaffold capable of stimulating tissue growth and treating infections. In this context, this study aimed to produce and characterize 3D-printed β-TCP/S53P4 BG scaffolds coated with TTO. Scaffolds morphological and chemical characterizations were carried out through XDR, SEM, and FTIR analysis. β-TCP/S53P4 BG scaffolds showed a compressive strength of ~2 MPa and 53 ± 2% of porosity. The scaffolds were coated by two different procedures, using an ethanol/TTO (EtOH/TTO) and a gelatin/TTO (Gel/TTO) solution with 5, 10, and 15% (v/v) TTO. The addition of TTO decreased MG-63 cell viability for both coating groups, but the Gel/TTO group showed higher cell viability. The antibacterial activity of the coated scaffolds was evaluated against S. aureus and higher inhibition of colony formation was found for Gel/TTO group. Therefore, the coating with Gel/TTO was effective in terms of antibacterial activity and cell viability. Such Gel/TTO coated β-TCP/S53P4 BG scaffolds are proposed for antibacterial bone tissue engineering.
Collapse
Affiliation(s)
- Ana Paula Nogueira Alves
- Bioceramics Laboratory (BIOCERAM), Universidade Federal de São Paulo, Instituto de Ciência e Tecnologia, São Paulo, Brazil
| | - Marcela Arango-Ospina
- Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Institute of Biomaterials, Erlangen, Germany
| | | | - Igor Maia Ferreira
- Department of Mechanical Engineering, Laboratory of Glass-Ceramic Materials (VITROCER), Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Elisângela Guzi de Moraes
- Department of Mechanical Engineering, Laboratory of Glass-Ceramic Materials (VITROCER), Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Malte Hartmann
- Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Institute of Biomaterials, Erlangen, Germany
| | - Antônio Pedro Novaes de Oliveira
- Department of Mechanical Engineering, Laboratory of Glass-Ceramic Materials (VITROCER), Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Aldo Roberto Boccaccini
- Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Institute of Biomaterials, Erlangen, Germany
| | - Eliandra de Sousa Trichês
- Bioceramics Laboratory (BIOCERAM), Universidade Federal de São Paulo, Instituto de Ciência e Tecnologia, São Paulo, Brazil
| |
Collapse
|
7
|
Assessment of Growth Inhibition of Eugenol-Loaded Nano-Emulsions against Beneficial Bifidobacterium sp. along with Resistant Escherichia coli Using Flow Cytometry. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9020140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The intestinal tract microbiota influences many aspects of the dietary components on colon health and during enteric infections, thus, playing a pivotal role in the colon health. Therefore, the eugenol (EU) nano-emulsion effective concentration reported in our previous study against cancer cells should be explored for safety against beneficial microbes. We evaluated the sensitivity of Bifidobacterium breve and B. adolescentis against EU-loaded nano-emulsions at 0, 300, 600 and 900 µm, which were effective against colon and liver cancer cells. Both B. breve and B. adolescentis showed comparable growth ranges to the control group at 300 and 600 µm, as evident from the plate count experimental results. However, at 900 µm, a slight growth variation was revealed with respect to the control group. The real-time inhibition determination through flow cytometry showed B. breve viable, sublethal cells (99.49 and 0.51%) and B. adolescentis (95.59 and 0.15%) at 900 µm, suggesting slight inhibition even at the highest tested concentration. Flow cytometry proved to be a suitable quantitative approach that has revealed separate live, dead, and susceptible cells upon treatment with EU nano-emulsion against Escherichia coli. Similarly, in the case of B. breve and B. adolescentis, the cells showed only live cells that qualitatively suggest EU nano-emulsion safety. To judge the viability of these sublethal populations of B. breve and B. adolescentis, Fourier transforms infrared spectroscopy was carried out, revealing no peak shift for proteins, lipids, DNA and carbohydrates at 900 µm EU nano-emulsion compared to the control. On the other hand, EU-loaded nano-emulsions (900 µm)-treated E. coli showed a clear peak shift for a membrane protein, lipids, DNA and carbohydrates. This study provides insights to utilize plant phenols as safe medicines as well as dietary supplements.
Collapse
|
8
|
Aguilar-Pérez KM, Medina DI, Parra-Saldívar R, Iqbal HMN. Nano-Size Characterization and Antifungal Evaluation of Essential Oil Molecules-Loaded Nanoliposomes. Molecules 2022; 27:5728. [PMID: 36080492 PMCID: PMC9457754 DOI: 10.3390/molecules27175728] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
Nanoliposomes, bilayer vesicles at the nanoscale, are becoming popular because of their safety, patient compliance, high entrapment efficiency, and prompt action. Several notable biological activities of natural essential oils (EOs), including fungal inhibition, are of supreme interest. As developed, multi-compositional nanoliposomes loaded with various concentrations of clove essential oil (CEO) and tea tree oil (TTO) were thoroughly characterized to gain insight into their nano-size distribution. The present work also aimed to reconnoiter the sustainable synthesis conditions to estimate the efficacy of EOs in bulk and EO-loaded nanoliposomes with multi-functional entities. Following a detailed nano-size characterization of in-house fabricated EO-loaded nanoliposomes, the antifungal efficacy was tested by executing the mycelial growth inhibition (MGI) test using Trichophyton rubrum fungi as a test model. The dynamic light scattering (DLS) profile of as-fabricated EO-loaded nanoliposomes revealed the mean size, polydispersity index (PdI), and zeta potential values as 37.12 ± 1.23 nm, 0.377 ± 0.007, and -36.94 ± 0.36 mV, respectively. The sphere-shaped morphology of CEO and TTO-loaded nanoliposomes was confirmed by a scanning electron microscope (SEM). The existence of characteristic functional bands in all tested counterparts was demonstrated by attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopy. Compared to TTO-loaded nanoliposomes, the CEO-loaded nanoliposomes exhibited a maximum entrapment efficacy of 91.57 ± 2.5%. The CEO-loaded nanoliposome fraction, prepared using 1.5 µL/mL concentration, showed the highest MGI of 98.4 ± 0.87% tested against T. rubrum strains compared to the rest of the formulations.
Collapse
Affiliation(s)
- Katya M. Aguilar-Pérez
- School of Engineering and Sciences, Tecnologico de Monterrey, Atizapan de Zaragoza 52926, Estado de Mexico, Mexico
| | - Dora I. Medina
- School of Engineering and Sciences, Tecnologico de Monterrey, Atizapan de Zaragoza 52926, Estado de Mexico, Mexico
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey 64849, Nuevo León, Mexico
| | - Roberto Parra-Saldívar
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey 64849, Nuevo León, Mexico
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Nuevo León, Mexico
| | - Hafiz M. N. Iqbal
- Institute of Advanced Materials for Sustainable Manufacturing, Tecnologico de Monterrey, Monterrey 64849, Nuevo León, Mexico
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Nuevo León, Mexico
| |
Collapse
|
9
|
Polyvinylidene fluoride/ginger oil nanofiber scaffold for anticancer treatment: preparation, characterization, and biological evaluation. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04338-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
10
|
Borges-Vilches J, Unalan I, Fernández K, Boccaccini AR. Fabrication of Biocompatible Electrospun Poly(ε-caprolactone)/Gelatin Nanofibers Loaded with Pinus radiata Bark Extracts for Wound Healing Applications. Polymers (Basel) 2022; 14:2331. [PMID: 35745907 PMCID: PMC9228265 DOI: 10.3390/polym14122331] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/01/2022] [Accepted: 06/04/2022] [Indexed: 02/01/2023] Open
Abstract
In this study, poly(ε-caprolactone) (PCL)/gelatin (GEL) electrospun nanofibers loaded with two different concentrations of Pinus radiata bark extracts (PEs) were fabricated via electrospinning for wound healing applications. The effects of incorporating PE into PCL/GEL electrospun nanofibers were investigated regarding their physicochemical properties and in vitro biocompatibility. All electrospun nanofibers showed smooth, uniform, and bead-free surfaces. Their functional groups were detected by ATR-FTIR spectroscopy, and their total phenol content was measured by a Folin-Ciocalteu assay. With PE addition, the electrospun nanofibers exhibited an increase in their wettability and degradation rates over time and a decrease in their tensile stress values from 20 ± 4 to 8 ± 2 MPa for PCL/GEL and PCL/GEL/0.36%PE samples, respectively. PE was also released from the fibrous mats in a rather controlled fashion. The PCL/GEL/0.18%PE and PCL/GEL/0.36%PE electrospun nanofibers inhibited bacterial activity at around 6 ± 0.1% and 23 ± 0.3% against E. coli and 14 ± 0.1% and 18 ± 0.2% against S. aureus after 24 h incubation, respectively. In vitro cell studies showed that PE-loaded electrospun nanofibers enhanced HaCaT cell growth, attachment, and proliferation, favoring cell migration towards the scratch area in the wound healing assay and allowing a complete wound closure after 72 h treatment. These findings suggested that PE-loaded electrospun nanofibers are promising materials for antibiotic-free dressings for wound healing applications.
Collapse
Affiliation(s)
- Jessica Borges-Vilches
- Laboratory of Biomaterials, Department of Chemical Engineering, Faculty of Engineering, Universidad de Concepción, Concepción 4030000, Chile; (J.B.-V.); (K.F.)
| | - Irem Unalan
- Institute of Biomaterials, Department of Materials Science and Engineering, Friedrich-Alexander-University Erlangen-Nuremberg, Cauerstraße 6, 91058 Erlangen, Germany;
| | - Katherina Fernández
- Laboratory of Biomaterials, Department of Chemical Engineering, Faculty of Engineering, Universidad de Concepción, Concepción 4030000, Chile; (J.B.-V.); (K.F.)
| | - Aldo R. Boccaccini
- Institute of Biomaterials, Department of Materials Science and Engineering, Friedrich-Alexander-University Erlangen-Nuremberg, Cauerstraße 6, 91058 Erlangen, Germany;
| |
Collapse
|
11
|
Baghi F, Gharsallaoui A, Dumas E, Ghnimi S. Advancements in Biodegradable Active Films for Food Packaging: Effects of Nano/Microcapsule Incorporation. Foods 2022; 11:760. [PMID: 35267394 PMCID: PMC8909076 DOI: 10.3390/foods11050760] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/01/2022] [Accepted: 03/03/2022] [Indexed: 12/04/2022] Open
Abstract
Food packaging plays a fundamental role in the modern food industry as a main process to preserve the quality of food products from manufacture to consumption. New food packaging technologies are being developed that are formulated with natural compounds by substituting synthetic/chemical antimicrobial and antioxidant agents to fulfill consumers' expectations for healthy food. The strategy of incorporating natural antimicrobial compounds into food packaging structures is a recent and promising technology to reach this goal. Concepts such as "biodegradable packaging", "active packaging", and "bioactive packaging" currently guide the research and development of food packaging. However, the use of natural compounds faces some challenges, including weak stability and sensitivity to processing and storage conditions. The nano/microencapsulation of these bioactive compounds enhances their stability and controls their release. In addition, biodegradable packaging materials are gaining great attention in the face of ever-growing environmental concerns about plastic pollution. They are a sustainable, environmentally friendly, and cost-effective alternative to conventional plastic packaging materials. Ultimately, a combined formulation of nano/microencapsulated antimicrobial and antioxidant natural molecules, incorporated into a biodegradable food packaging system, offers many benefits by preventing food spoilage, extending the shelf life of food, reducing plastic and food waste, and preserving the freshness and quality of food. The main objective of this review is to illustrate the latest advances in the principal biodegradable materials used in the development of active antimicrobial and antioxidant packaging systems, as well as the most common nano/microencapsulated active natural agents incorporated into these food-packaging materials.
Collapse
Affiliation(s)
- Fatemeh Baghi
- Laboratoire d’Automatique, de Génie des Procédés et de Génie Pharmaceutique, CNRS, University Claude Bernard Lyon 1, 43 Bd 11 Novembre 1918, 69622 Villeurbanne, France; (F.B.); (A.G.); (E.D.)
- Institut Supérieur d’Agriculture et Agroalimentaire Rhône-Alpes (ISARA), 23 Rue Jean Baldassini, CEDEX 07, 69364 Lyon, France
| | - Adem Gharsallaoui
- Laboratoire d’Automatique, de Génie des Procédés et de Génie Pharmaceutique, CNRS, University Claude Bernard Lyon 1, 43 Bd 11 Novembre 1918, 69622 Villeurbanne, France; (F.B.); (A.G.); (E.D.)
| | - Emilie Dumas
- Laboratoire d’Automatique, de Génie des Procédés et de Génie Pharmaceutique, CNRS, University Claude Bernard Lyon 1, 43 Bd 11 Novembre 1918, 69622 Villeurbanne, France; (F.B.); (A.G.); (E.D.)
| | - Sami Ghnimi
- Laboratoire d’Automatique, de Génie des Procédés et de Génie Pharmaceutique, CNRS, University Claude Bernard Lyon 1, 43 Bd 11 Novembre 1918, 69622 Villeurbanne, France; (F.B.); (A.G.); (E.D.)
- Institut Supérieur d’Agriculture et Agroalimentaire Rhône-Alpes (ISARA), 23 Rue Jean Baldassini, CEDEX 07, 69364 Lyon, France
| |
Collapse
|
12
|
Gupta P, Poluri KM. Elucidating the Eradication Mechanism of Perillyl Alcohol against Candida glabrata Biofilms: Insights into the Synergistic Effect with Azole Drugs. ACS BIO & MED CHEM AU 2022; 2:60-72. [PMID: 37102177 PMCID: PMC10114769 DOI: 10.1021/acsbiomedchemau.1c00034] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Increased incidences of fungal infections and associated mortality have accelerated the need for effective and alternative therapeutics. Perillyl alcohol (PA) is a terpene produced by the hydroxylation of limonene via the mevalonate pathway. In pursuit of an alternative antifungal agent, we studied the effect of PA on the biofilm community of Candida glabrata and on different cellular pathways to decipher its mode of action. PA efficiently inhibited growth and eradicated biofilms by reducing carbohydrate and eDNA content in the extracellular matrix. PA reduced the activity of hydrolytic enzymes in the ECM of C. glabrata biofilm. The chemical profiling study has given insights into the overall mode of action of PA in C. glabrata and the marked involvement of the cell wall and membrane, ergosterol biosynthesis, oxidative stress, and DNA replication. The spectroscopic and RT-PCR studies suggested a strong interaction of PA with chitin, β-glucan, ergosterol, and efflux pump, thus indicating increased membrane fluidity in C. glabrata. Furthermore, the microscopic and flow cytometry analysis emphasized that PA facilitated the change in mitochondrial activity, increased Ca2+ influx via overexpression of voltage-gated Ca2+ channels, and enhanced cytochrome C release from mitochondria. In addition, PA interferes with DNA replication and thus hinders the cell cycle progression at the S-phase. All these studies together established that PA mitigates the C. glabrata biofilms by targeting multiple cellular pathways. Interestingly, PA also potentiated the efficacy of azole drugs, particularly miconazole, against C. glabrata and its clinical isolates. Conclusively, the study demonstrated the use of PA as an effective antifungal agent alone or in combination with FDA-approved conventional drugs for fungal biofilm eradication.
Collapse
Affiliation(s)
- Payal Gupta
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| | - Krishna Mohan Poluri
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India
| |
Collapse
|
13
|
Gupta P, Mishra P, Mehra L, Rastogi K, Prasad R, Mittal G, Poluri KM. Eugenol-acacia gum-based bifunctional nanofibers as a potent antifungal transdermal substitute. Nanomedicine (Lond) 2021; 16:2269-2289. [PMID: 34569268 DOI: 10.2217/nnm-2021-0274] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Aim: Fungal biofilms interfere with the wound healing processes. Henceforth, the study aims to fabricate a biomaterial-based nano-scaffold with the dual functionalities of wound healing and antibiofilm activity. Methods: Nanofibers comprising acacia gum, polyvinyl alcohol and inclusion complex of eugenol in β-cyclodextrin (EG-NF) were synthesized using electrospinning. Antibiofilm studies were performed on Candida species, and the wound-healing activity was evaluated through an in vivo excision wound rat model. Results: The EG-NF potentially eradicated the mature biofilm of Candida species and their clinical isolates. Further, EG-NF also enhanced the re-epithelization and speed of wound healing in in vivo rat experiments. Conclusion: The study established the bifunctional applications of eugenol nanofibers as a transdermal substitute with antifungal potency.
Collapse
Affiliation(s)
- Payal Gupta
- Department of Biosciences & Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Purusottam Mishra
- Department of Biosciences & Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Lalita Mehra
- Department of Combat Sciences, Institute of Nuclear Medicine & Allied Sciences, Defence Research & Development Organisation, Timarpur, 110054, Delhi, India
| | - Kartikey Rastogi
- Department of Combat Sciences, Institute of Nuclear Medicine & Allied Sciences, Defence Research & Development Organisation, Timarpur, 110054, Delhi, India
| | - Ramasare Prasad
- Department of Biosciences & Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Gaurav Mittal
- Department of Combat Sciences, Institute of Nuclear Medicine & Allied Sciences, Defence Research & Development Organisation, Timarpur, 110054, Delhi, India
| | - Krishna Mohan Poluri
- Department of Biosciences & Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India.,Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| |
Collapse
|
14
|
Aguilar-Pérez KM, Medina DI, Narayanan J, Parra-Saldívar R, Iqbal HMN. Synthesis and Nano-Sized Characterization of Bioactive Oregano Essential Oil Molecule-Loaded Small Unilamellar Nanoliposomes with Antifungal Potentialities. Molecules 2021; 26:molecules26102880. [PMID: 34068039 PMCID: PMC8152473 DOI: 10.3390/molecules26102880] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/06/2021] [Accepted: 05/10/2021] [Indexed: 02/07/2023] Open
Abstract
The development of greener nano-constructs with noteworthy biological activity is of supreme interest, as a robust choice to minimize the extensive use of synthetic drugs. Essential oils (EOs) and their constituents offer medicinal potentialities because of their extensive biological activity, including the inhibition of fungi species. However, their application as natural antifungal agents are limited due to their volatility, low stability, and restricted administration routes. Nanotechnology is receiving particular attention to overcome the drawbacks of EOs such as volatility, degradation, and high sensitivity to environmental/external factors. For the aforementioned reasons, nanoencapsulation of bioactive compounds, for instance, EOs, facilitates protection and controlled-release attributes. Nanoliposomes are bilayer vesicles, at nanoscale, composed of phospholipids, and can encapsulate hydrophilic and hydrophobic compounds. Considering the above critiques, herein, we report the in-house fabrication and nano-size characterization of bioactive oregano essential oil (Origanum vulgare L.) (OEO) molecules loaded with small unilamellar vesicles (SUV) nanoliposomes. The study was focused on three main points: (1) multi-compositional fabrication nanoliposomes using a thin film hydration-sonication method; (2) nano-size characterization using various analytical and imaging techniques; and (3) antifungal efficacy of as-developed OEO nanoliposomes against Trichophyton rubrum (T. rubrum) by performing the mycelial growth inhibition test (MGI). The mean size of the nanoliposomes was around 77.46 ± 0.66 nm and 110.4 ± 0.98 nm, polydispersity index (PdI) of 0.413 ± 0.015, zeta potential values up to -36.94 ± 0.36 mV were obtained by dynamic light scattering (DLS). and spherical morphology was confirmed by scanning electron microscopy (SEM). The presence of OEO into nanoliposomes was displayed by attenuated total reflection Fourier-transform infrared (ATR-FTIR) spectroscopy. Entrapment efficiency values of 79.55 ± 6.9% were achieved for OEO nanoliposomes. In vitro antifungal activity of nanoliposomes tested against T. rubrum strains revealed that OEO nanoliposomes exhibited the highest MGI, 81.66 ± 0.86%, at a concentration of 1.5 µL/mL compared to the rest of the formulations. In summary, this work showed that bioactive OEO molecules with loaded nanoliposomes could be used as natural antifungal agents for therapeutical purposes against T. rubrum.
Collapse
Affiliation(s)
- Katya M. Aguilar-Pérez
- Tecnologico de Monterrey, School of Engineering and Sciences, Atizapan de Zaragoza 52926, Estado de Mexico, Mexico; (K.M.A.-P.); (D.I.M.)
| | - Dora I. Medina
- Tecnologico de Monterrey, School of Engineering and Sciences, Atizapan de Zaragoza 52926, Estado de Mexico, Mexico; (K.M.A.-P.); (D.I.M.)
| | - Jayanthi Narayanan
- División de Ingeniería en Nanotecnología, Universidad Politécnica del Valle de México, Av. Mexiquense s/n esquina Av. Universidad Politécnica, Col. Villa Esmeralda, Tultitlan 54910, Estado de México, Mexico;
| | - Roberto Parra-Saldívar
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey 64849, Nuevo Leon, Mexico;
| | - Hafiz M. N. Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey 64849, Nuevo Leon, Mexico;
- Correspondence:
| |
Collapse
|