1
|
Baskakova KO, Kuzmichev PK, Karbyshev MS. Advanced applications of Nanodiscs-based platforms for antibodies discovery. Biophys Chem 2024; 313:107290. [PMID: 39002246 DOI: 10.1016/j.bpc.2024.107290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/18/2024] [Accepted: 07/08/2024] [Indexed: 07/15/2024]
Abstract
Due to their fundamental biological importance, membrane proteins (MPs) are attractive targets for drug discovery, with cell surface receptors, transporters, ion channels, and membrane-bound enzymes being of particular interest. However, due to numerous challenges, these proteins present underutilized opportunities for discovering biotherapeutics. Antibodies hold the promise of exquisite specificity and adaptability, making them the ideal candidates for targeting complex membrane proteins. They can target specific conformations of a particular membrane protein and can be engineered into various formats. Generating specific and effective antibodies targeting these proteins is no easy task due to several factors. The antigen's design, antibody-generation strategies, lead optimization technologies, and antibody modalities can be modified to tackle these challenges. The rational employment of cutting-edge lipid nanoparticle systems for retrieving the membrane antigen has been successfully implemented to simplify the mechanism-based therapeutic antibody discovery approach. Despite the highlighted MP production challenges, this review unequivocally underscores the advantages of targeting complex membrane proteins with antibodies and designing membrane protein antigens. Selected examples of lipid nanoparticle success have been illustrated, emphasizing the potential of therapeutic antibody discovery in this regard. With further research and development, we can overcome these challenges and unlock the full potential of therapeutic antibodies directed to target complex MPs.
Collapse
Affiliation(s)
- Kristina O Baskakova
- Laboratory of Molecular Therapy of Cancer, Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russian Federation
| | - Pavel K Kuzmichev
- Research Сenter for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudniy, Russian Federation
| | - Mikhail S Karbyshev
- Laboratory of Molecular Therapy of Cancer, Cancer Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russian Federation; Department of Biochemistry and Molecular Biology, Pirogov Russian National Research Medical University, Moscow, Russian Federation.
| |
Collapse
|
2
|
Free TJ, Talley JP, Hyer CD, Miller CJ, Griffitts JS, Bundy BC. Engineering the Signal Resolution of a Paper-Based Cell-Free Glutamine Biosensor with Genetic Engineering, Metabolic Engineering, and Process Optimization. SENSORS (BASEL, SWITZERLAND) 2024; 24:3073. [PMID: 38793927 PMCID: PMC11124800 DOI: 10.3390/s24103073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/03/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024]
Abstract
Specialized cancer treatments have the potential to exploit glutamine dependence to increase patient survival rates. Glutamine diagnostics capable of tracking a patient's response to treatment would enable a personalized treatment dosage to optimize the tradeoff between treatment success and dangerous side effects. Current clinical glutamine testing requires sophisticated and expensive lab-based tests, which are not broadly available on a frequent, individualized basis. To address the need for a low-cost, portable glutamine diagnostic, this work engineers a cell-free glutamine biosensor to overcome assay background and signal-to-noise limitations evident in previously reported studies. The findings from this work culminate in the development of a shelf-stable, paper-based, colorimetric glutamine test with a high signal strength and a high signal-to-background ratio for dramatically improved signal resolution. While the engineered glutamine test is important progress towards improving the management of cancer and other health conditions, this work also expands the assay development field of the promising cell-free biosensing platform, which can facilitate the low-cost detection of a broad variety of target molecules with high clinical value.
Collapse
Affiliation(s)
- Tyler J. Free
- Department of Chemical Engineering, Brigham Young University, Provo, UT 84602, USA
| | - Joseph P. Talley
- Department of Chemical Engineering, Brigham Young University, Provo, UT 84602, USA
| | - Chad D. Hyer
- Department of Chemical Engineering, Brigham Young University, Provo, UT 84602, USA
| | - Catherine J. Miller
- Department of Chemical Engineering, Brigham Young University, Provo, UT 84602, USA
| | - Joel S. Griffitts
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA
| | - Bradley C. Bundy
- Department of Chemical Engineering, Brigham Young University, Provo, UT 84602, USA
| |
Collapse
|
3
|
Maharjan A, Park JH. Cell-free protein synthesis system: A new frontier for sustainable biotechnology-based products. Biotechnol Appl Biochem 2023; 70:2136-2149. [PMID: 37735977 DOI: 10.1002/bab.2514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/11/2023] [Indexed: 09/23/2023]
Abstract
Cell-free protein synthesis (CFPS) system is an innovative technology with a wide range of potential applications that could challenge current thinking and provide solutions to environmental and health issues. CFPS system has been demonstrated to be a successful way of producing biomolecules in a variety of applications, including the biomedical industry. Although there are still obstacles to overcome, its ease of use, versatility, and capacity for integration with other technologies open the door for it to continue serving as a vital instrument in synthetic biology research and industry. In this review, we mainly focus on the cell-free based platform for various product productions. Moreover, the challenges in the bio-therapeutic aspect using cell-free systems and their future prospective for the improvement and sustainability of the cell free systems.
Collapse
Affiliation(s)
- Anoth Maharjan
- Bio-Evaluation Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea
| | - Jung-Ho Park
- Bio-Evaluation Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju 28116, Republic of Korea
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, Korea University of Science and Technology (UST), Daejeon, Republic of Korea
| |
Collapse
|
4
|
Melinek BJ, Tuck J, Probert P, Branton H, Bracewell DG. Designing of an extract production protocol for industrial application of cell-free protein synthesis technology: Building from a current best practice to a quality by design approach. ENGINEERING BIOLOGY 2023; 7:1-17. [PMID: 38094242 PMCID: PMC10715128 DOI: 10.1049/enb2.12029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 11/10/2023] [Accepted: 11/20/2023] [Indexed: 10/16/2024] Open
Abstract
Cell-Free Protein Synthesis (CFPS) has, over the past decade, seen a substantial increase in interest from both academia and industry. Applications range from fundamental research, through high-throughput screening to niche manufacture of therapeutic products. This review/perspective focuses on Quality Control in CFPS. The importance and difficulty of measuring the Raw Material Attributes (RMAs) of whole cell extract, such as constituent protein and metabolite concentrations, and of understanding and controlling these complicated enzymatic reactions is explored, for both centralised and distributed industrial production of biotherapeutics. It is suggested that a robust cell-free extract production process should produce cell extract of consistent quality; however, demonstrating this is challenging without a full understanding of the RMAs and their interaction with reaction conditions and product. Lack of technology transfer and knowledge sharing is identified as a key limiting factor in the development of CFPS. The article draws upon the experiences of industrial process specialists, discussions within the Future Targeted Healthcare Manufacturing Hub Specialist Working Groups and evidence drawn from various sources to identify sources of process variation and to propose an initial guide towards systematisation of CFPS process development and reporting. These proposals include the development of small scale screening tools, consistent reporting of selected process parameters and analytics and application of industrial thinking and manufacturability to protocol development.
Collapse
Affiliation(s)
| | - Jade Tuck
- CPIDarlingtonUK
- Merck KGaADarmstadtGermany
| | | | | | | |
Collapse
|
5
|
Gupta MD, Flaskamp Y, Roentgen R, Juergens H, Armero-Gimenez J, Albrecht F, Hemmerich J, Arfi ZA, Neuser J, Spiegel H, Schillberg S, Yeliseev A, Song L, Qiu J, Williams C, Finnern R. Scaling eukaryotic cell-free protein synthesis achieved with the versatile and high-yielding tobacco BY-2 cell lysate. Biotechnol Bioeng 2023; 120:2890-2906. [PMID: 37376851 DOI: 10.1002/bit.28461] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 04/18/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023]
Abstract
Eukaryotic cell-free protein synthesis (CFPS) can accelerate expression and high-throughput analysis of complex proteins with functionally relevant post-translational modifications (PTMs). However, low yields and difficulties scaling such systems have prevented their widespread adoption in protein research and manufacturing. Here, we provide detailed demonstrations for the capabilities of a CFPS system derived from Nicotiana tabacum BY-2 cell culture (BY-2 lysate; BYL). BYL is able to express diverse, functional proteins at high yields in 48 h, complete with native disulfide bonds and N-glycosylation. An optimized version of the technology is commercialized as ALiCE® and advances in scaling of BYL production methodologies now allow scaling of eukaryotic CFPS reactions. We show linear, lossless scale-up of batch mode protein expression from 100 µL microtiter plates to 10 and 100 mL volumes in Erlenmeyer flasks, culminating in preliminary data from a litre-scale reaction in a rocking-type bioreactor. Together, scaling across a 20,000x range is achieved without impacting product yields. Production of multimeric virus-like particles from the BYL cytosolic fraction were then shown, followed by functional expression of multiple classes of complex, difficult-to-express proteins using the native microsomes of the BYL CFPS. Specifically: a dimeric enzyme; a monoclonal antibody; the SARS-CoV-2 receptor-binding domain; a human growth factor; and a G protein-coupled receptor membrane protein. Functional binding and activity are demonstrated, together with in-depth PTM characterization of purified proteins through disulfide bond and N-glycan analysis. Taken together, BYL is a promising end-to-end R&D to manufacturing platform with the potential to significantly reduce the time-to-market for high value proteins and biologics.
Collapse
Affiliation(s)
| | | | | | | | - Jorge Armero-Gimenez
- LenioBio GmbH, Technology Centre, Aachen, Germany
- Laboratory of Nematology, Wageningen University and Research, Wageningen, The Netherlands
| | | | | | | | - Jakob Neuser
- LenioBio GmbH, Technology Centre, Aachen, Germany
| | - Holger Spiegel
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
| | - Stefan Schillberg
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
- RWTH Aachen University, Institute for Molecular Biotechnology, Aachen, Germany
| | - Alexei Yeliseev
- National Institute on Alcoholism and Alcohol Abuse, National Institutes of Health, Rockville, Maryland, USA
| | - Lusheng Song
- The Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Ji Qiu
- The Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | | | | |
Collapse
|
6
|
Kelwick RJR, Webb AJ, Heliot A, Segura CT, Freemont PS. Opportunities to accelerate extracellular vesicle research with cell-free synthetic biology. JOURNAL OF EXTRACELLULAR BIOLOGY 2023; 2:e90. [PMID: 38938277 PMCID: PMC11080881 DOI: 10.1002/jex2.90] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 04/03/2023] [Accepted: 05/05/2023] [Indexed: 06/29/2024]
Abstract
Extracellular vesicles (EVs) are lipid-membrane nanoparticles that are shed or secreted by many different cell types. The EV research community has rapidly expanded in recent years and is leading efforts to deepen our understanding of EV biological functions in human physiology and pathology. These insights are also providing a foundation on which future EV-based diagnostics and therapeutics are poised to positively impact human health. However, current limitations in our understanding of EV heterogeneity, cargo loading mechanisms and the nascent development of EV metrology are all areas that have been identified as important scientific challenges. The field of synthetic biology is also contending with the challenge of understanding biological complexity as it seeks to combine multidisciplinary scientific knowledge with engineering principles, to build useful and robust biotechnologies in a responsible manner. Within this context, cell-free systems have emerged as a powerful suite of in vitro biotechnologies that can be employed to interrogate fundamental biological mechanisms, including the study of aspects of EV biogenesis, or to act as a platform technology for medical biosensors and therapeutic biomanufacturing. Cell-free gene expression (CFE) systems also enable in vitro protein production, including membrane proteins, and could conceivably be exploited to rationally engineer, or manufacture, EVs loaded with bespoke molecular cargoes for use in foundational or translational EV research. Our pilot data herein, also demonstrates the feasibility of cell-free EV engineering. In this perspective, we discuss the opportunities and challenges for accelerating EV research and healthcare applications with cell-free synthetic biology.
Collapse
Affiliation(s)
- Richard J. R. Kelwick
- Section of Structural and Synthetic BiologyDepartment of Infectious DiseaseImperial College LondonLondonUK
| | - Alexander J. Webb
- Section of Structural and Synthetic BiologyDepartment of Infectious DiseaseImperial College LondonLondonUK
| | - Amelie Heliot
- Section of Structural and Synthetic BiologyDepartment of Infectious DiseaseImperial College LondonLondonUK
| | | | - Paul S. Freemont
- Section of Structural and Synthetic BiologyDepartment of Infectious DiseaseImperial College LondonLondonUK
- The London BiofoundryImperial College Translation & Innovation HubLondonUK
- UK Dementia Research Institute Care Research and Technology CentreImperial College London, Hammersmith CampusLondonUK
| |
Collapse
|
7
|
Romo E, Torres M, Martin-Solano S. Current situation of snakebites envenomation in the Neotropics: Biotechnology, a versatile tool in the production of antivenoms. BIONATURA 2022. [DOI: 10.21931/rb/2022.07.04.54] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Snakebite envenomation is a neglected tropical disease that affects millions of people around the world with a great impact on health and the economy. Unfortunately, public health programs do not include this kind of disease as a priority in their social programs. Cases of snakebite envenomations in the Neotropics are inaccurate due to inadequate disease management from medical records to the choice of treatments. Victims of snakebite envenomation are primarily found in impoverished agricultural areas where remote conditions limit the availability of antivenom. Antivenom serum is the only Food and Drug Administration-approved treatment used up to date. However, it has several disadvantages in terms of safety and effectiveness. This review provides a comprehensive insight dealing with the current epidemiological status of snakebites in the Neotropics and technologies employed in antivenom production. Also, modern biotechnological tools such as transcriptomic, proteomic, immunogenic, high-density peptide microarray and epitope mapping are highlighted for producing new-generation antivenom sera. These results allow us to propose strategic solutions in the Public Health Sector for managing this disease.
Keywords: antivenom, biotechnology, neglected tropical disease, omics, recombinant antibody.
Collapse
Affiliation(s)
- Elizabeth Romo
- Carrera de Ingeniería en Biotecnología, Departamento de Ciencias de la Vida y la Agricultura, Universidad de las Fuerzas Armadas-ESPE, Sangolquí, Ecuador
| | - Marbel Torres
- Carrera de Ingeniería en Biotecnología, Departamento de Ciencias de la Vida y la Agricultura, Universidad de las Fuerzas Armadas-ESPE, Sangolquí, Ecuador, Grupo de Investigación en Sanidad Animal y Humana (GISAH), Carrera de Ingeniería en Biotecnología, Departamento de Ciencias de la Vida y la Agricultura, Universidad de las Fuerzas Armadas-ESPE, Immunology and Virology Laboratory, Nanoscience and Nanotechnology Center, Universidad de las Fuerzas Armadas, ESPE, Sangolquí, Ecuador
| | - Sarah Martin-Solano
- Carrera de Ingeniería en Biotecnología, Departamento de Ciencias de la Vida y la Agricultura, Universidad de las Fuerzas Armadas-ESPE, Sangolquí, Ecuador, Grupo de Investigación en Sanidad Animal y Humana (GISAH), Carrera de Ingeniería en Biotecnología, Departamento de Ciencias de la Vida y la Agricultura, Universidad de las Fuerzas Armadas-ESPE, Grupo de Investigación en Biodiversidad, Zoonosis y Salud Pública, Universidad Central del Ecuador
| |
Collapse
|
8
|
Das Gupta M, Flaskamp Y, Roentgen R, Juergens H, Gimenez JA, Albrecht F, Hemmerich J, Ahmad Arfi Z, Neuser J, Spiegel H, Yeliseev A, Song L, Qiu J, Williams C, Finnern R. ALiCE ® : A versatile, high yielding and scalable eukaryotic cell-free protein synthesis (CFPS) system. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.11.10.515920. [PMID: 36380753 PMCID: PMC9665337 DOI: 10.1101/2022.11.10.515920] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Eukaryotic cell-free protein synthesis (CFPS) systems have the potential to simplify and speed up the expression and high-throughput analysis of complex proteins with functionally relevant post-translational modifications (PTMs). However, low yields and the inability to scale such systems have so far prevented their widespread adoption in protein research and manufacturing. Here, we present a detailed demonstration for the capabilities of a CFPS system derived from Nicotiana tabacum BY-2 cell culture (BY-2 lysate; BYL). BYL is able to express diverse, functional proteins at high yields in under 48 hours, complete with native disulfide bonds and N-glycosylation. An optimised version of the technology is commercialised as 'ALiCE ® ', engineered for high yields of up to 3 mg/mL. Recent advances in the scaling of BYL production methodologies have allowed scaling of the CFPS reaction. We show simple, linear scale-up of batch mode reporter proten expression from a 100 μL microtiter plate format to 10 mL and 100 mL volumes in standard Erlenmeyer flasks, culminating in preliminary data from 1 L reactions in a CELL-tainer® CT20 rocking motion bioreactor. As such, these works represent the first published example of a eukaryotic CFPS reaction scaled past the 10 mL level by several orders of magnitude. We show the ability of BYL to produce the simple reporter protein eYFP and large, multimeric virus-like particles directly in the cytosolic fraction. Complex proteins are processed using the native microsomes of BYL and functional expression of multiple classes of complex, difficult-to-express proteins is demonstrated, specifically: a dimeric, glycoprotein enzyme, glucose oxidase; the monoclonal antibody adalimumab; the SARS-Cov-2 receptor-binding domain; human epidermal growth factor; and a G protein-coupled receptor membrane protein, cannabinoid receptor type 2. Functional binding and activity are shown using a combination of surface plasmon resonance techniques, a serology-based ELISA method and a G protein activation assay. Finally, in-depth post-translational modification (PTM) characterisation of purified proteins through disulfide bond and N-glycan analysis is also revealed - previously difficult in the eukaryotic CFPS space due to limitations in reaction volumes and yields. Taken together, BYL provides a real opportunity for screening of complex proteins at the microscale with subsequent amplification to manufacturing-ready levels using off-the-shelf protocols. This end-to-end platform suggests the potential to significantly reduce cost and the time-to-market for high value proteins and biologics.
Collapse
|
9
|
Purification challenges for the portable, on-demand point-of-care production of biologics. Curr Opin Chem Eng 2022. [DOI: 10.1016/j.coche.2022.100802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
Spice AJ, Aw R, Polizzi KM. Cell-Free Protein Synthesis Using Pichia pastoris. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2433:75-88. [PMID: 34985738 DOI: 10.1007/978-1-0716-1998-8_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Pichia pastoris (syn. Komagataella phaffii) is an industrially relevant recombinant protein platform that has been used to produce over 5000 proteins to date. Cell-free protein synthesis can be used as a screening tool before strain development or for the production of proteins that are difficult or toxic to make in vivo. Here we describe the methods for generating an active cell lysate from P. pastoris using high pressure homogenization and an improved reaction mix which results in high yields of reporter proteins such as luciferase, and complex proteins such as human serum albumin and virus-like particles.
Collapse
Affiliation(s)
- Alex J Spice
- Department of Chemical Engineering, Imperial College London, London, UK
- Imperial College Centre for Synthetic Biology, Imperial College London, London, UK
| | - Rochelle Aw
- Department of Chemical Engineering, Imperial College London, London, UK
- Imperial College Centre for Synthetic Biology, Imperial College London, London, UK
| | - Karen M Polizzi
- Department of Chemical Engineering, Imperial College London, London, UK.
- Imperial College Centre for Synthetic Biology, Imperial College London, London, UK.
| |
Collapse
|
11
|
Ramm F, Jack L, Kaser D, Schloßhauer JL, Zemella A, Kubick S. Cell-Free Systems Enable the Production of AB5 Toxins for Diagnostic Applications. Toxins (Basel) 2022; 14:toxins14040233. [PMID: 35448842 PMCID: PMC9027097 DOI: 10.3390/toxins14040233] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 12/04/2022] Open
Abstract
Cell-free protein synthesis (CFPS) represents a versatile key technology for the production of toxic proteins. As a cell lysate, rather than viable cells, is used, the toxic effects on the host organism can be circumvented. The open nature of cell-free systems allows for the addition of supplements affecting protein concentration and folding. Here, we present the cell-free synthesis and functional characterization of two AB5 toxins, namely the cholera toxin (Ctx) and the heat-labile enterotoxin (LT), using two eukaryotic cell-free systems based on Chinese hamster ovary (CHO) and Spodoptera frugiperda (Sf21) cells. Through an iterative optimization procedure, the synthesis of the individual AB5 toxins was established, and the formation of multimeric structures could be shown by autoradiography. A functional analysis was performed using cell-based assays, thereby demonstrating that the LT complex induced the characteristic cell elongation of target cells after 24 h. The LT complex induced cell death at higher concentrations, starting at an initial concentration of 5 nM. The initial toxic effects of the Ctx multimer could already be detected at 4 nM. The detection and characterization of such AB5 toxins is of utmost importance, and the monitoring of intracellular trafficking facilitates the further identification of the mechanism of action of these toxins. We showed that the B-subunit of LT (LTB) could be fluorescently labeled using an LTB-Strep fusion protein, which is a proof-of-concept for future Trojan horse applications. Further, we performed a mutational analysis of the CtxA subunit as its template was modified, and an amber stop codon was inserted into CtxA’s active site. Subsequently, a non-canonical amino acid was site-specifically incorporated using bio-orthogonal systems. Finally, a fluorescently labeled CtxA protein was produced using copper-catalyzed click reactions as well as a Staudinger ligation. As expected, the modified Ctx multimer no longer induced toxic effects. In our study, we showed that CFPS could be used to study the active centers of toxins by inserting mutations. Additionally, this methodology can be applied for the design of Trojan horses and targeted toxins, as well as enabling the intracellular trafficking of toxins as a prerequisite for the analysis of the toxin’s mechanism of action.
Collapse
Affiliation(s)
- Franziska Ramm
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, 14476 Potsdam, Germany; (F.R.); (L.J.); (D.K.); (J.L.S.); (A.Z.)
- Institute of Chemistry and Biochemistry—Biochemistry, Freie Universität Berlin, Takustr. 6, 14195 Berlin, Germany
| | - Lena Jack
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, 14476 Potsdam, Germany; (F.R.); (L.J.); (D.K.); (J.L.S.); (A.Z.)
| | - Danny Kaser
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, 14476 Potsdam, Germany; (F.R.); (L.J.); (D.K.); (J.L.S.); (A.Z.)
| | - Jeffrey L. Schloßhauer
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, 14476 Potsdam, Germany; (F.R.); (L.J.); (D.K.); (J.L.S.); (A.Z.)
- Institute of Chemistry and Biochemistry—Biochemistry, Freie Universität Berlin, Takustr. 6, 14195 Berlin, Germany
| | - Anne Zemella
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, 14476 Potsdam, Germany; (F.R.); (L.J.); (D.K.); (J.L.S.); (A.Z.)
| | - Stefan Kubick
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, 14476 Potsdam, Germany; (F.R.); (L.J.); (D.K.); (J.L.S.); (A.Z.)
- Institute of Chemistry and Biochemistry—Biochemistry, Freie Universität Berlin, Takustr. 6, 14195 Berlin, Germany
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus–Senftenberg, Brandenburg Medical School Theodor Fontane and the University of Potsdam, 14476 Potsdam, Germany
- Correspondence:
| |
Collapse
|
12
|
Rivera-de-Torre E, Rimbault C, Jenkins TP, Sørensen CV, Damsbo A, Saez NJ, Duhoo Y, Hackney CM, Ellgaard L, Laustsen AH. Strategies for Heterologous Expression, Synthesis, and Purification of Animal Venom Toxins. Front Bioeng Biotechnol 2022; 9:811905. [PMID: 35127675 PMCID: PMC8811309 DOI: 10.3389/fbioe.2021.811905] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/24/2021] [Indexed: 11/13/2022] Open
Abstract
Animal venoms are complex mixtures containing peptides and proteins known as toxins, which are responsible for the deleterious effect of envenomations. Across the animal Kingdom, toxin diversity is enormous, and the ability to understand the biochemical mechanisms governing toxicity is not only relevant for the development of better envenomation therapies, but also for exploiting toxin bioactivities for therapeutic or biotechnological purposes. Most of toxinology research has relied on obtaining the toxins from crude venoms; however, some toxins are difficult to obtain because the venomous animal is endangered, does not thrive in captivity, produces only a small amount of venom, is difficult to milk, or only produces low amounts of the toxin of interest. Heterologous expression of toxins enables the production of sufficient amounts to unlock the biotechnological potential of these bioactive proteins. Moreover, heterologous expression ensures homogeneity, avoids cross-contamination with other venom components, and circumvents the use of crude venom. Heterologous expression is also not only restricted to natural toxins, but allows for the design of toxins with special properties or can take advantage of the increasing amount of transcriptomics and genomics data, enabling the expression of dormant toxin genes. The main challenge when producing toxins is obtaining properly folded proteins with a correct disulfide pattern that ensures the activity of the toxin of interest. This review presents the strategies that can be used to express toxins in bacteria, yeast, insect cells, or mammalian cells, as well as synthetic approaches that do not involve cells, such as cell-free biosynthesis and peptide synthesis. This is accompanied by an overview of the main advantages and drawbacks of these different systems for producing toxins, as well as a discussion of the biosafety considerations that need to be made when working with highly bioactive proteins.
Collapse
Affiliation(s)
- Esperanza Rivera-de-Torre
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
- *Correspondence: Esperanza Rivera-de-Torre, ; Andreas H. Laustsen,
| | - Charlotte Rimbault
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Timothy P. Jenkins
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Christoffer V. Sørensen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Anna Damsbo
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Natalie J. Saez
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Yoan Duhoo
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Celeste Menuet Hackney
- Department of Biology, Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, Copenhagen, Denmark
| | - Lars Ellgaard
- Department of Biology, Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, Copenhagen, Denmark
| | - Andreas H. Laustsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
- *Correspondence: Esperanza Rivera-de-Torre, ; Andreas H. Laustsen,
| |
Collapse
|
13
|
Romantseva EF, Tack DS, Alperovich N, Ross D, Strychalski EA. Best Practices for DNA Template Preparation Toward Improved Reproducibility in Cell-Free Protein Production. Methods Mol Biol 2022; 2433:3-50. [PMID: 34985735 DOI: 10.1007/978-1-0716-1998-8_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Performance variability is a common challenge in cell-free protein production and hinders a wider adoption of these systems for both research and biomanufacturing. While the inherent stochasticity and complexity of biology likely contributes to variability, other systematic factors may also play a role, including the source and preparation of the cell extract, the composition of the supplemental reaction buffer, the facility at which experiments are conducted, and the human operator (Cole et al. ACS Synth Biol 8:2080-2091, 2019). Variability in protein production could also arise from differences in the DNA template-specifically the amount of functional DNA added to a cell-free reaction and the quality of the DNA preparation in terms of contaminants and strand breakage. Here, we present protocols and suggest best practices optimized for DNA template preparation and quantitation for cell-free systems toward reducing variability in cell-free protein production.
Collapse
Affiliation(s)
| | - Drew S Tack
- National Institute of Standards and Technology, Gaithersburg, MD, USA
| | - Nina Alperovich
- National Institute of Standards and Technology, Gaithersburg, MD, USA
| | - David Ross
- National Institute of Standards and Technology, Gaithersburg, MD, USA
| | | |
Collapse
|
14
|
|
15
|
Duran‐Villalobos CA, Ogonah O, Melinek B, Bracewell DG, Hallam T, Lennox B. Multivariate statistical data analysis of cell‐free protein synthesis toward monitoring and control. AIChE J 2021. [DOI: 10.1002/aic.17257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Olotu Ogonah
- Department of Biochemical Engineering University College London London UK
| | - Beatrice Melinek
- Department of Biochemical Engineering University College London London UK
| | | | - Trevor Hallam
- Sutro Biopharma, Inc. South San Francisco California USA
| | - Barry Lennox
- Department of Electrical and Electronic Engineering The University of Manchester Manchester UK
| |
Collapse
|
16
|
Colant N, Melinek B, Frank S, Rosenberg W, Bracewell DG. Escherichia Coli-Based Cell-Free Protein Synthesis for Iterative Design of Tandem-Core Virus-Like Particles. Vaccines (Basel) 2021; 9:193. [PMID: 33669126 PMCID: PMC7996620 DOI: 10.3390/vaccines9030193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 02/15/2021] [Accepted: 02/22/2021] [Indexed: 11/25/2022] Open
Abstract
Tandem-core hepatitis B core antigen (HBcAg) virus-like particles (VLPs), in which two HBcAg monomers are joined together by a peptide linker, can be used to display two different antigens on the VLP surface. We produced universal influenza vaccine candidates that use this scaffold in an Escherichia coli-based cell-free protein synthesis (CFPS) platform. We then used the CFPS system to rapidly test modifications to the arginine-rich region typically found in wild-type HBcAg, the peptide linkers around the influenza antigen inserts, and the plasmid vector backbone to improve titer and quality. Using a minimal plasmid vector backbone designed for CFPS improved titers by at least 1.4-fold over the original constructs. When the linker lengths for the influenza inserts were more consistent in length and a greater variety of codons for glycine and serine were utilized, titers were further increased to over 70 μg/mL (4.0-fold greater than the original construct) and the presence of lower molecular weight product-related impurities was significantly reduced, although improvements in particle assembly were not seen. Furthermore, any constructs with the C-terminal arginine-rich region removed resulted in asymmetric particles of poor quality. This demonstrates the potential for CFPS as a screening platform for VLPs.
Collapse
Affiliation(s)
- Noelle Colant
- Department of Biochemical Engineering, University College London, London WC1E 6BT, UK; (N.C.); (B.M.); (S.F.)
| | - Beatrice Melinek
- Department of Biochemical Engineering, University College London, London WC1E 6BT, UK; (N.C.); (B.M.); (S.F.)
| | - Stefanie Frank
- Department of Biochemical Engineering, University College London, London WC1E 6BT, UK; (N.C.); (B.M.); (S.F.)
| | - William Rosenberg
- Division of Medicine, UCL Institute for Liver and Digestive Health, Royal Free Campus, London NW3 2PF, UK;
| | - Daniel G. Bracewell
- Department of Biochemical Engineering, University College London, London WC1E 6BT, UK; (N.C.); (B.M.); (S.F.)
| |
Collapse
|
17
|
Batista AC, Soudier P, Kushwaha M, Faulon J. Optimising protein synthesis in cell‐free systems, a review. ENGINEERING BIOLOGY 2021; 5:10-19. [PMID: 36968650 PMCID: PMC9996726 DOI: 10.1049/enb2.12004] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 12/03/2020] [Accepted: 12/09/2020] [Indexed: 12/25/2022] Open
Abstract
Over the last decades, cell-free systems have been extensively used for in vitro protein expression. A vast range of protocols and cellular sources varying from prokaryotes and eukaryotes are now available for cell-free technology. However, exploiting the maximum capacity of cell free systems is not achieved by using traditional protocols. Here, what are the strategies and choices one can apply to optimise cell-free protein synthesis have been reviewed. These strategies provide robust and informative improvements regarding transcription, translation and protein folding which can later be used for the establishment of individual best cell-free reactions per lysate batch.
Collapse
Affiliation(s)
- Angelo C. Batista
- Université Paris‐Saclay INRAE AgroParisTech Micalis Institute Jouy‐en‐Josas France
| | - Paul Soudier
- Université Paris‐Saclay INRAE AgroParisTech Micalis Institute Jouy‐en‐Josas France
| | - Manish Kushwaha
- Université Paris‐Saclay INRAE AgroParisTech Micalis Institute Jouy‐en‐Josas France
| | - Jean‐Loup Faulon
- Université Paris‐Saclay INRAE AgroParisTech Micalis Institute Jouy‐en‐Josas France
- SYNBIOCHEM Center School of Chemistry Manchester Institute of Biotechnology The University of Manchester Manchester UK
| |
Collapse
|
18
|
Stamatis C, Farid SS. Process economics evaluation of cell-free synthesis for the commercial manufacture of antibody drug conjugates. Biotechnol J 2021; 16:e2000238. [PMID: 33231912 DOI: 10.1002/biot.202000238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 11/13/2020] [Indexed: 11/06/2022]
Abstract
Continuous improvements of cell-free synthesis (CFS) systems have generated interest in adopting the technology for the manufacture of biologics. This paper provides an evaluation of the manufacturing cost-effectiveness of CFS for the commercial production of antibody-drug conjugates (ADCs). The evaluation was performed using an advanced techno-economic engine (TEE) built in Python. The TEE is programmed in an object-oriented environment capable of simulating a plethora of process flowsheets and predicting size and cost metrics for the process and the facility. A case study was formulated to compare the economics of whole bioprocesses based on either a CFS system or a mammalian cell system (CHO) for the manufacture of an ADC at a range of product demands. The analysis demonstrated the potential of CFS for the commercial manufacture of biologics and identified key cost drivers related to the system. The CFS system showed an approximately 80% increase in the cost of goods compared to CHO with a significant cost attributed to the in-house manufacture of the bacterial cell extract, necessary for the CFS reaction step in the process. A sensitivity and target analysis highlighted the need for further process improvements especially in the titer for the CFS process to become more competitive against well-established systems.
Collapse
Affiliation(s)
- Christos Stamatis
- The Advanced Centre for Biochemical Engineering, Department of Biochemical Engineering, University College London, London, UK
| | - Suzanne S Farid
- The Advanced Centre for Biochemical Engineering, Department of Biochemical Engineering, University College London, London, UK
| |
Collapse
|
19
|
Chiba CH, Knirsch MC, Azzoni AR, Moreira AR, Stephano MA. Cell-free protein synthesis: advances on production process for biopharmaceuticals and immunobiological products. Biotechniques 2021; 70:126-133. [PMID: 33467890 DOI: 10.2144/btn-2020-0155] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Biopharmaceutical products are of great importance in the treatment or prevention of many diseases and represent a growing share of the global pharmaceutical market. The usual technology for protein synthesis (cell-based expression) faces certain obstacles, especially with 'difficult-to-express' proteins. Cell-free protein synthesis (CFPS) can overcome the main bottlenecks of cell-based expression. This review aims to present recent advances in the production process of biologic products by CFPS. First, key aspects of CFPS systems are summarized. A description of several biologic products that have been successfully produced using the CFPS system is provided. Finally, the CFPS system's ability to scale up and scale down, its main limitations and its application for biologics production are discussed.
Collapse
Affiliation(s)
- Camila Hiromi Chiba
- Departamento de Tecnologia Bioquímico-Farmacêutica, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, Brazil
| | - Marcos Camargo Knirsch
- Departamento de Tecnologia Bioquímico-Farmacêutica, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, Brazil
| | - Adriano Rodrigues Azzoni
- Departamento de Engenharia Química, Escola Politécnica, Universidade de São Paulo, São Paulo, Brazil
| | - Antonio R Moreira
- Department of Chemical, Biochemical & Environmental Engineering, University of Maryland Baltimore County, Baltimore, MD, USA
| | - Marco Antonio Stephano
- Departamento de Tecnologia Bioquímico-Farmacêutica, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
20
|
Benítez-Mateos AI, Zeballos N, Comino N, Moreno de Redrojo L, Randelovic T, López-Gallego F. Microcompartmentalized Cell-Free Protein Synthesis in Hydrogel μ-Channels. ACS Synth Biol 2020; 9:2971-2978. [PMID: 33170665 DOI: 10.1021/acssynbio.0c00462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The rapid demand for protein-based molecules has stimulated much research on cell-free protein synthesis (CFPS); however, there are still many challenges in terms of cost-efficiency, process intensification, and sustainability. Herein, we describe the microcompartmentalization of CFPS of superfolded green fluorescent protein (sGFP) in alginate hydrogels, which were casted into a μ-channel device. CFPS was optimized for the microcompartmentalized environment and characterized in terms of synthesis yield. To extend the scope of this technology, the use of other biocompatible materials (collagen, laponite, and agarose) was explored. In addition, the diffusion of sGFP from the hydrogel microenvironment to the bulk was demonstrated, opening a promising opportunity for concurrent synthesis and delivery of proteins. Finally, we provide an application for this system: the CFPS of enzymes. The present design of the hydrogel μ-channel device may enhance the potential application of microcompartmentalized CFPS in biosensing, bioprototyping, and therapeutic development.
Collapse
Affiliation(s)
- Ana I. Benítez-Mateos
- Heterogeneous Biocatalysis Laboratory, CICbiomaGUNE, Paseo Miramón 182. Edificio empresarial “C”, 20014 San Sebastián, Spain
- Heterogeneous Biocatalysis Laboratory, Instituto de Síntesis Química y Catálisis Homogénea (iSQCH), CSIC-Universidad de Zaragoza, C/Pedro Cerbuna 12, 50009 Zaragoza, Spain
- Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Nicoll Zeballos
- Heterogeneous Biocatalysis Laboratory, CICbiomaGUNE, Paseo Miramón 182. Edificio empresarial “C”, 20014 San Sebastián, Spain
| | - Natalia Comino
- Heterogeneous Biocatalysis Laboratory, CICbiomaGUNE, Paseo Miramón 182. Edificio empresarial “C”, 20014 San Sebastián, Spain
| | - Lucía Moreno de Redrojo
- Heterogeneous Biocatalysis Laboratory, Instituto de Síntesis Química y Catálisis Homogénea (iSQCH), CSIC-Universidad de Zaragoza, C/Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Teodora Randelovic
- Tissue MicroEnvironment (TME) Lab, Institute for Health Research Aragón (IISA), Avda. San Juan Bosco 13, 50009 Zaragoza, Spain
- Aragon Institute of Engineering Research (I3A), University of Zaragoza, Mariano Escuillor s/n, 50018 Zaragoza, Spain
| | - Fernando López-Gallego
- Heterogeneous Biocatalysis Laboratory, CICbiomaGUNE, Paseo Miramón 182. Edificio empresarial “C”, 20014 San Sebastián, Spain
- Heterogeneous Biocatalysis Laboratory, Instituto de Síntesis Química y Catálisis Homogénea (iSQCH), CSIC-Universidad de Zaragoza, C/Pedro Cerbuna 12, 50009 Zaragoza, Spain
- IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain
- ARAID, Aragon Foundation for Science, 50009 Zaragoza, Spain
| |
Collapse
|
21
|
Aw R, Spice AJ, Polizzi KM. Methods for Expression of Recombinant Proteins Using a
Pichia pastoris
Cell‐Free System. ACTA ACUST UNITED AC 2020; 102:e115. [DOI: 10.1002/cpps.115] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Rochelle Aw
- Imperial College Centre for Synthetic Biology Imperial College London London United Kingdom
- Department of Chemical Engineering Imperial College London London United Kingdom
| | - Alex J. Spice
- Imperial College Centre for Synthetic Biology Imperial College London London United Kingdom
- Department of Chemical Engineering Imperial College London London United Kingdom
| | - Karen M. Polizzi
- Imperial College Centre for Synthetic Biology Imperial College London London United Kingdom
- Department of Chemical Engineering Imperial College London London United Kingdom
| |
Collapse
|
22
|
Liu Z, Zhou W, Qi C, Kong T. Interface Engineering in Multiphase Systems toward Synthetic Cells and Organelles: From Soft Matter Fundamentals to Biomedical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2002932. [PMID: 32954548 DOI: 10.1002/adma.202002932] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/19/2020] [Indexed: 06/11/2023]
Abstract
Synthetic cells have a major role in gaining insight into the complex biological processes of living cells; they also give rise to a range of emerging applications from gene delivery to enzymatic nanoreactors. Living cells rely on compartmentalization to orchestrate reaction networks for specialized and coordinated functions. Principally, the compartmentalization has been an essential engineering theme in constructing cell-mimicking systems. Here, efforts to engineer liquid-liquid interfaces of multiphase systems into membrane-bounded and membraneless compartments, which include lipid vesicles, polymer vesicles, colloidosomes, hybrids, and coacervate droplets, are summarized. Examples are provided of how these compartments are designed to imitate biological behaviors or machinery, including molecule trafficking, growth, fusion, energy conversion, intercellular communication, and adaptivity. Subsequently, the state-of-art applications of these cell-inspired synthetic compartments are discussed. Apart from being simplified and cell models for bridging the gap between nonliving matter and cellular life, synthetic compartments also are utilized as intracellular delivery vehicles for nuclei acids and nanoreactors for biochemical synthesis. Finally, key challenges and future directions for achieving the full potential of synthetic cells are highlighted.
Collapse
Affiliation(s)
- Zhou Liu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518000, China
| | - Wen Zhou
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518000, China
| | - Cheng Qi
- College of Mechatronics and Control Engineering, Shenzhen University, Shenzhen, 518000, China
| | - Tiantian Kong
- Department of Biomedical Engineering, School of Medicine, Shenzhen University, Shenzhen, Guangdong, 518000, China
| |
Collapse
|
23
|
Spice AJ, Aw R, Bracewell DG, Polizzi KM. Improving the reaction mix of a Pichia pastoris cell-free system using a design of experiments approach to minimise experimental effort. Synth Syst Biotechnol 2020; 5:137-144. [PMID: 32637667 PMCID: PMC7320237 DOI: 10.1016/j.synbio.2020.06.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/07/2020] [Accepted: 06/08/2020] [Indexed: 12/20/2022] Open
Abstract
A renaissance in cell-free protein synthesis (CFPS) is underway, enabled by the acceleration and adoption of synthetic biology methods. CFPS has emerged as a powerful platform technology for synthetic gene network design, biosensing and on-demand biomanufacturing. Whilst primarily of bacterial origin, cell-free extracts derived from a variety of host organisms have been explored, aiming to capitalise on cellular diversity and the advantageous properties associated with those organisms. However, cell-free extracts produced from eukaryotes are often overlooked due to their relatively low yields, despite the potential for improved protein folding and posttranslational modifications. Here we describe further development of a Pichia pastoris cell-free platform, a widely used expression host in both academia and the biopharmaceutical industry. Using a minimised Design of Experiments (DOE) approach, we were able to increase the productivity of the system by improving the composition of the complex reaction mixture. This was achieved in a minimal number of experimental runs, within the constraints of the design and without the need for liquid-handling robots. In doing so, we were able to estimate the main effects impacting productivity in the system and increased the protein synthesis of firefly luciferase and the biopharmaceutical HSA by 4.8-fold and 3.5-fold, respectively. This study highlights the P. pastoris-based cell-free system as a highly productive eukaryotic platform and displays the value of minimised DOE designs.
Collapse
Key Words
- AB, Albumin Blue
- CFPS, cell-free protein synthesis
- CHO, Chinese hamster ovary cells
- Cell-free protein synthesis
- DOE, design of Experiments
- DSD, definitive screening design
- Design of experiments (DOE)
- HSA, human serum albumin
- IRES, internal ribosome entry site
- Pichia pastoris
- RRL, rabbit reticulocyte lysate
- Synthetic biology
- VLP, virus-like particles
- WGE, wheat-germ etract
Collapse
Affiliation(s)
- Alex J. Spice
- Department of Chemical Engineering, Imperial College London, London, UK
- Imperial College Centre for Synthetic Biology, Imperial College London, UK
| | - Rochelle Aw
- Department of Chemical Engineering, Imperial College London, London, UK
- Imperial College Centre for Synthetic Biology, Imperial College London, UK
| | - Daniel G. Bracewell
- Department of Biochemical Engineering, University College London, London, UK
| | - Karen M. Polizzi
- Department of Chemical Engineering, Imperial College London, London, UK
- Imperial College Centre for Synthetic Biology, Imperial College London, UK
| |
Collapse
|
24
|
Abstract
Cell-free systems are a widely used research tool in systems and synthetic biology and a promising platform for manufacturing of proteins and chemicals. In the past, cell-free biology was primarily used to better understand fundamental biochemical processes. Notably, E. coli cell-free extracts were used in the 1960s to decipher the sequencing of the genetic code. Since then, the transcription and translation capabilities of cell-free systems have been repeatedly optimized to improve energy efficiency and product yield. Today, cell-free systems, in combination with the rise of synthetic biology, have taken on a new role as a promising technology for just-in-time manufacturing of therapeutically important biologics and high-value small molecules. They have also been implemented at an industrial scale for the production of antibodies and cytokines. In this review, we discuss the evolution of cell-free technologies, in particular advancements in extract preparation, cell-free protein synthesis, and cell-free metabolic engineering applications. We then conclude with a discussion of the mathematical modeling of cell-free systems. Mathematical modeling of cell-free processes could be critical to addressing performance bottlenecks and estimating the costs of cell-free manufactured products.
Collapse
|
25
|
Kelwick RJR, Webb AJ, Freemont PS. Biological Materials: The Next Frontier for Cell-Free Synthetic Biology. Front Bioeng Biotechnol 2020; 8:399. [PMID: 32478045 PMCID: PMC7235315 DOI: 10.3389/fbioe.2020.00399] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 04/08/2020] [Indexed: 12/13/2022] Open
Abstract
Advancements in cell-free synthetic biology are enabling innovations in sustainable biomanufacturing, that may ultimately shift the global manufacturing paradigm toward localized and ecologically harmonized production processes. Cell-free synthetic biology strategies have been developed for the bioproduction of fine chemicals, biofuels and biological materials. Cell-free workflows typically utilize combinations of purified enzymes, cell extracts for biotransformation or cell-free protein synthesis reactions, to assemble and characterize biosynthetic pathways. Importantly, cell-free reactions can combine the advantages of chemical engineering with metabolic engineering, through the direct addition of co-factors, substrates and chemicals -including those that are cytotoxic. Cell-free synthetic biology is also amenable to automatable design cycles through which an array of biological materials and their underpinning biosynthetic pathways can be tested and optimized in parallel. Whilst challenges still remain, recent convergences between the materials sciences and these advancements in cell-free synthetic biology enable new frontiers for materials research.
Collapse
Affiliation(s)
- Richard J. R. Kelwick
- Section of Structural and Synthetic Biology, Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Alexander J. Webb
- Section of Structural and Synthetic Biology, Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Paul S. Freemont
- Section of Structural and Synthetic Biology, Department of Infectious Disease, Imperial College London, London, United Kingdom
- The London Biofoundry, Imperial College Translation & Innovation Hub, London, United Kingdom
- UK Dementia Research Institute Care Research and Technology Centre, Imperial College London, London, United Kingdom
| |
Collapse
|
26
|
Techno-Economic Assessment of Cell-Free Synthesis of Monoclonal Antibodies Using CHO Cell Extracts. Processes (Basel) 2020. [DOI: 10.3390/pr8040454] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Cell-free protein synthesis (CFPS) is an emerging tool for the rapid production of difficult-to-express proteins as well as for identifying protein synthesis bottlenecks. In CFPS, the biotic phase is substituted by extracts of living cells devoid of any of their own genetic material. The main advantage is that these systems delineate cell growth from recombinant protein production, enabling the expression of targets that would otherwise place too big a burden on living cells. We have conducted a techno-economic analysis of a CFPS system to produce monoclonal antibodies (mAbs) using extracts of Chinese hamster ovary (CHO) cells. We compare the performance of the CFPS system with two alternative production strategies: stable and transient gene expression in CHO cells. Our assessment shows that the viability of CFPS for mAb production requires a significant increase in the product yield and the recycling of high-cost components such as DNA. Nevertheless, CFPS shows significant promise for personalized medicine applications, providing a platform for on-demand production and simplified supply chains.
Collapse
|
27
|
Spice AJ, Aw R, Bracewell DG, Polizzi KM. Synthesis and Assembly of Hepatitis B Virus-Like Particles in a Pichia pastoris Cell-Free System. Front Bioeng Biotechnol 2020; 8:72. [PMID: 32117947 PMCID: PMC7033515 DOI: 10.3389/fbioe.2020.00072] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 01/28/2020] [Indexed: 12/13/2022] Open
Abstract
Virus-like particles (VLPs) are supramolecular protein assemblies with the potential for unique and exciting applications in synthetic biology and medicine. Despite the attention VLPs have gained thus far, considerable limitations still persist in their production. Poorly scalable manufacturing technologies and inconsistent product architectures continue to restrict the full potential of VLPs. Cell-free protein synthesis (CFPS) offers an alternative approach to VLP production and has already proven to be successful, albeit using extracts from a limited number of organisms. Using a recently developed Pichia pastoris-based CFPS system, we have demonstrated the production of the model Hepatitis B core antigen VLP as a proof-of-concept. The VLPs produced in the CFPS system were found to have comparable characteristics to those previously produced in vivo and in vitro. Additionally, we have developed a facile and rapid synthesis, assembly and purification methodology that could be applied as a rapid prototyping platform for vaccine development or synthetic biology applications. Overall the CFPS methodology allows far greater throughput, which will expedite the screening of optimal assembly conditions for more robust and stable VLPs. This approach could therefore support the characterization of larger sample sets to improve vaccine development efficiency.
Collapse
Affiliation(s)
- Alex J. Spice
- Department of Chemical Engineering, Imperial College London, London, United Kingdom
- The Imperial College Centre for Synthetic Biology Imperial College London, London, United Kingdom
| | - Rochelle Aw
- Department of Chemical Engineering, Imperial College London, London, United Kingdom
- The Imperial College Centre for Synthetic Biology Imperial College London, London, United Kingdom
| | - Daniel G. Bracewell
- Department of Biochemical Engineering, University College London, London, United Kingdom
| | - Karen M. Polizzi
- Department of Chemical Engineering, Imperial College London, London, United Kingdom
- The Imperial College Centre for Synthetic Biology Imperial College London, London, United Kingdom
| |
Collapse
|
28
|
Dopp JL, Jo YR, Reuel NF. Methods to reduce variability in E. Coli-based cell-free protein expression experiments. Synth Syst Biotechnol 2019; 4:204-211. [PMID: 31750411 PMCID: PMC6849339 DOI: 10.1016/j.synbio.2019.10.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 10/21/2019] [Accepted: 10/24/2019] [Indexed: 12/23/2022] Open
Abstract
Cell-free protein synthesis (CFPS) is an established biotechnology tool that has shown great utility in many applications such as prototyping proteins, building genetic circuits, designing biosensors, and expressing cytotoxic proteins. Although CFPS has been widely deployed, the many, varied methods presented in the literature can be challenging for new users to adopt. From our experience and others who newly enter the field, one of the most frustrating aspects of applying CFPS as a laboratory can be the large levels of variability that are present within experimental replicates. Herein we provide a retrospective summary of CFPS methods that reduce variability significantly. These methods include optimized extract preparation, fully solubilizing the master mix components, and careful mixing of the reaction. These have reduced our coefficient of variation from 97.3% to 1.2%. Moreover, these methods allow complete novices (e.g. semester rotation undergraduate students) to provide data that is comparable to experienced users, thus allowing broader participation in this exciting research area.
Collapse
|
29
|
Wilding KM, Zhao EL, Earl CC, Bundy BC. Thermostable lyoprotectant-enhanced cell-free protein synthesis for on-demand endotoxin-free therapeutic production. N Biotechnol 2019; 53:73-80. [DOI: 10.1016/j.nbt.2019.07.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 07/16/2019] [Accepted: 07/21/2019] [Indexed: 12/15/2022]
|
30
|
Garenne D, Noireaux V. Cell-free transcription–translation: engineering biology from the nanometer to the millimeter scale. Curr Opin Biotechnol 2019; 58:19-27. [DOI: 10.1016/j.copbio.2018.10.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 10/14/2018] [Indexed: 01/01/2023]
|
31
|
Yang O, Qadan M, Ierapetritou M. Economic Analysis of Batch and Continuous Biopharmaceutical Antibody Production: A Review. J Pharm Innov 2019; 14:1-19. [PMID: 30923586 PMCID: PMC6432653 DOI: 10.1007/s12247-018-09370-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
PURPOSE There is a growing interest in continuous biopharmaceutical processing due to the advantages of small footprint, increased productivity, consistent product quality, high process flexibility and robustness, facility cost-effectiveness, and reduced capital and operating cost. To support the decision making of biopharmaceutical manufacturing, comparisons between conventional batch and continuous processing are provided. METHODS Various process unit operations in different operating modes are summarized. Software implementation, as well as computational methods used, are analyzed pointing to the advantages and disadvantages that have been highlighted in the literature. Economic analysis methods and their applications in different parts of the processes are also discussed with examples from publications in the last decade. RESULTS The results of the comparison between batch and continuous process operation alternatives are discussed. Possible improvements in process design and analysis are recommended. The methods used here do not reflect Lilly's cost structures or economic evaluation methods. CONCLUSION This paper provides a review of the work that has been published in the literature on computational process design and economic analysis methods on continuous biopharmaceutical antibody production and its comparison with a conventional batch process.
Collapse
Affiliation(s)
- Ou Yang
- Department of Chemical and Biochemical Engineering, Rutgers—The State University of New Jersey, 98 Brett Road, Piscataway, New Jersey 08854-8058, United States
| | - Maen Qadan
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285, United States
| | - Marianthi Ierapetritou
- Department of Chemical and Biochemical Engineering, Rutgers—The State University of New Jersey, 98 Brett Road, Piscataway, New Jersey 08854-8058, United States
| |
Collapse
|
32
|
Aw R, Polizzi KM. Biosensor‐assisted engineering of a high‐yield
Pichia pastoris
cell‐free protein synthesis platform. Biotechnol Bioeng 2019; 116:656-666. [DOI: 10.1002/bit.26901] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 10/12/2018] [Accepted: 12/14/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Rochelle Aw
- Department of Chemical EngineeringImperial College LondonLondon UK
- Imperial College Centre for Synthetic Biology, Imperial College LondonLondon UK
| | - Karen M. Polizzi
- Department of Chemical EngineeringImperial College LondonLondon UK
- Imperial College Centre for Synthetic Biology, Imperial College LondonLondon UK
| |
Collapse
|
33
|
Dopp BJL, Tamiev DD, Reuel NF. Cell-free supplement mixtures: Elucidating the history and biochemical utility of additives used to support in vitro protein synthesis in E. coli extract. Biotechnol Adv 2019; 37:246-258. [DOI: 10.1016/j.biotechadv.2018.12.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 12/06/2018] [Accepted: 12/15/2018] [Indexed: 12/18/2022]
|
34
|
Bundy BC, Hunt JP, Jewett MC, Swartz JR, Wood DW, Frey DD, Rao G. Cell-free biomanufacturing. Curr Opin Chem Eng 2018. [DOI: 10.1016/j.coche.2018.10.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
35
|
Shi T, Han P, You C, Zhang YHPJ. An in vitro synthetic biology platform for emerging industrial biomanufacturing: Bottom-up pathway design. Synth Syst Biotechnol 2018; 3:186-195. [PMID: 30345404 PMCID: PMC6190512 DOI: 10.1016/j.synbio.2018.05.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 05/21/2018] [Accepted: 05/23/2018] [Indexed: 01/29/2023] Open
Abstract
Although most in vitro (cell-free) synthetic biology projects are usually used for the purposes of fundamental research or the formation of high-value products, in vitro synthetic biology platform, which can implement complicated biochemical reactions by the in vitro assembly of numerous enzymes and coenzymes, has been proposed for low-cost biomanufacturing of bioenergy, food, biochemicals, and nutraceuticals. In addition to the most important advantage-high product yield, in vitro synthetic biology platform features several other biomanufacturing advantages, such as fast reaction rate, easy product separation, open process control, broad reaction condition, tolerance to toxic substrates or products, and so on. In this article, we present the basic bottom-up design principles of in vitro synthetic pathway from basic building blocks-BioBricks (thermoenzymes and/or immobilized enzymes) to building modules (e.g., enzyme complexes or multiple enzymes as a module) with specific functions. With development in thermostable building blocks-BioBricks and modules, the in vitro synthetic biology platform would open a new biomanufacturing age for the cost-competitive production of biocommodities.
Collapse
Affiliation(s)
| | | | - Chun You
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, China
| | - Yi-Heng P. Job Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, China
| |
Collapse
|
36
|
Bhadra S, Pothukuchy A, Shroff R, Cole AW, Byrom M, Ellefson JW, Gollihar JD, Ellington AD. Cellular reagents for diagnostics and synthetic biology. PLoS One 2018; 13:e0201681. [PMID: 30110361 PMCID: PMC6093680 DOI: 10.1371/journal.pone.0201681] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 07/19/2018] [Indexed: 11/18/2022] Open
Abstract
We have found that the overproduction of enzymes in bacteria followed by their lyophilization leads to 'cellular reagents' that can be directly used to carry out numerous molecular biology reactions. We demonstrate the use of cellular reagents in a variety of molecular diagnostics, such as TaqMan qPCR with no diminution in sensitivity, and in synthetic biology cornerstones such as the Gibson assembly of DNA fragments, where new plasmids can be constructed solely based on adding cellular reagents. Cellular reagents have significantly reduced complexity and cost of production, storage and implementation, features that should facilitate accessibility and use in resource-poor conditions.
Collapse
Affiliation(s)
- Sanchita Bhadra
- Department of Molecular Biosciences, College of Natural Sciences, The University of Texas at Austin, Austin, TX, United States of America
| | - Arti Pothukuchy
- Department of Molecular Biosciences, College of Natural Sciences, The University of Texas at Austin, Austin, TX, United States of America
| | - Raghav Shroff
- Department of Molecular Biosciences, College of Natural Sciences, The University of Texas at Austin, Austin, TX, United States of America
| | - Austin W. Cole
- Department of Molecular Biosciences, College of Natural Sciences, The University of Texas at Austin, Austin, TX, United States of America
| | - Michelle Byrom
- Department of Molecular Biosciences, College of Natural Sciences, The University of Texas at Austin, Austin, TX, United States of America
| | - Jared W. Ellefson
- Department of Molecular Biosciences, College of Natural Sciences, The University of Texas at Austin, Austin, TX, United States of America
| | - Jimmy D. Gollihar
- Department of Molecular Biosciences, College of Natural Sciences, The University of Texas at Austin, Austin, TX, United States of America
| | - Andrew D. Ellington
- Department of Molecular Biosciences, College of Natural Sciences, The University of Texas at Austin, Austin, TX, United States of America
- * E-mail:
| |
Collapse
|
37
|
Thoring L, Kubick S. Versatile Cell-Free Protein Synthesis Systems Based on Chinese Hamster Ovary Cells. Methods Mol Biol 2018; 1850:289-308. [PMID: 30242694 DOI: 10.1007/978-1-4939-8730-6_19] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We present an alternative production platform for the synthesis of complex proteins. Apart from conventionally applied protein production using engineered mammalian cell lines, this protocol describes the preparation and principle of cell-free protein synthesis systems based on CHO cell lysates. The CHO cell-free system contains endogenous microsomes derived from the endoplasmic reticulum, which enables a direct integration of membrane proteins into a nature like milieu and the introduction of posttranslational modifications. Different steps of system development are described including the cultivation of CHO cells, cell harvesting and cell disruption to prepare translationally active CHO cell lysates. The requirements for DNA templates and the generation of linear DNA templates suitable for the CHO cell-free reaction is further depicted to underline the opportunity to produce different protein variants in a short period. This experimental setup provides a basis for high-throughput applications. The productivity of the CHO cell-free systems is further increased by using a non-canonical translation initiation due to the attachment of an internal ribosomal entry site of the Cricket paralysis virus (CRPV IRES) to the 5´ UTR of the desired gene. In this way, a direct interaction of the IRES structure with the ribosome facilitates a translation factor independent initiation of translation. Cell-free reactions were performed in fast and efficient batch reactions leading to protein yields up to 40 μg/mL. The reaction format was further adjusted to a continuous exchange CHO cell-free reaction (CHO CECF) to prolong reaction time and thereby increase the productivity of the cell-free systems. Finally, protein yields up to 1 g/L were obtained. The CHO CECF system represents a sophisticated resource to address structural and functional aspects of difficult-to-express proteins in fundamental and applied research.
Collapse
Affiliation(s)
- Lena Thoring
- Cell-free and Cell-based Bioproduction, Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses Potsdam-Golm (IZI-BB), Potsdam-Golm, Germany
| | - Stefan Kubick
- Cell-free and Cell-based Bioproduction, Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses Potsdam-Golm (IZI-BB), Potsdam-Golm, Germany.
| |
Collapse
|