1
|
Liu YN, Liu XW. Nanoscale Spatiotemporal Dynamics of Microbial Adhesion: Unveiling Stepwise Transitions with Plasmonic Imaging. ACS NANO 2024; 18:16002-16010. [PMID: 38837910 DOI: 10.1021/acsnano.4c04354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Understanding bacterial adhesion at the nanoscale is crucial for elucidating biofilm formation, enhancing biosensor performance, and designing advanced biomaterials. However, the dynamics of the critical transition from reversible to irreversible adhesion has remained elusive due to analytical constraints. Here, we probed this adhesion transition, unveiling nanoscale, step-like bacterial approaches to substrates using a plasmonic imaging technique. This method reveals the discontinuous nature of adhesion, emphasizing the complex interplay between bacterial extracellular polymeric substances (EPS) and substrates. Our findings not only deepen our understanding of bacterial adhesion but also have significant implications for the development of theoretical models for biofilm management. By elucidating these nanoscale step-like adhesion processes, our work provides avenues for the application of nanotechnology in biosensing, biofilm control, and the creation of biomimetic materials.
Collapse
Affiliation(s)
- Yi-Nan Liu
- Hefei National Laboratory for Physical Sciences at the Microscale, Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Xian-Wei Liu
- Hefei National Laboratory for Physical Sciences at the Microscale, Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
- Department of Applied Chemistry, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
2
|
Li Y, Wu X, Liu Y, Taidi B. Immobilized microalgae: principles, processes and its applications in wastewater treatment. World J Microbiol Biotechnol 2024; 40:150. [PMID: 38548998 DOI: 10.1007/s11274-024-03930-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 02/16/2024] [Indexed: 04/02/2024]
Abstract
Microalgae have emerged as potential candidates for biomass production and pollutant removal. However, expensive biomass harvesting, insufficient biomass productivity, and low energy intensity limit the large-scale production of microalgae. To break through these bottlenecks, a novel technology of immobilized microalgae culture coupled with wastewater treatment has received increasing attention in recent years. In this review, the characteristics of two immobilized microalgae culture technologies are first presented and then their mechanisms are discussed in terms of biofilm formation theories, including thermodynamic theory, Derjaguin-Landau-Verwei-Overbeek theory (DLVO) and its extended theory (xDLVO), as well as ionic cross-linking mechanisms in the process of microalgae encapsulated in alginate. The main factors (algal strains, carriers, and culture conditions) affecting the growth of microalgae are also discussed. It is also summarized that immobilized microalgae show considerable potential for nitrogen and phosphorus removal, heavy metal removal, pesticide and antibiotic removal in wastewater treatment. The role of bacteria in the cultivation of microalgae by immobilization techniques and their application in wastewater treatment are clarified. This is economically feasible and technically superior. The problems and challenges faced by immobilized microalgae are finally presented.
Collapse
Affiliation(s)
- Yanpeng Li
- School of Water and Environment, Chang`an University, Yanta Road #126, Yanta District, Xi`an, 710054, People's Republic of China.
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, Chang`an University, Xi`an, 710054, People's Republic of China.
| | - Xuexue Wu
- School of Water and Environment, Chang`an University, Yanta Road #126, Yanta District, Xi`an, 710054, People's Republic of China
| | - Yi Liu
- School of Water and Environment, Chang`an University, Yanta Road #126, Yanta District, Xi`an, 710054, People's Republic of China
| | - Behnam Taidi
- LGPM, CentraleSupélec, Université Paris Saclay, 3 rue Joliot-Curie, 91190, Gif-sur-Yvette, France
| |
Collapse
|
3
|
Lee MS, Hussein HR, Chang SW, Chang CY, Lin YY, Chien Y, Yang YP, Kiew LV, Chen CY, Chiou SH, Chang CC. Nature-Inspired Surface Structures Design for Antimicrobial Applications. Int J Mol Sci 2023; 24:1348. [PMID: 36674860 PMCID: PMC9865960 DOI: 10.3390/ijms24021348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/30/2022] [Accepted: 01/08/2023] [Indexed: 01/13/2023] Open
Abstract
Surface contamination by microorganisms such as viruses and bacteria may simultaneously aggravate the biofouling of surfaces and infection of wounds and promote cross-species transmission and the rapid evolution of microbes in emerging diseases. In addition, natural surface structures with unique anti-biofouling properties may be used as guide templates for the development of functional antimicrobial surfaces. Further, these structure-related antimicrobial surfaces can be categorized into microbicidal and anti-biofouling surfaces. This review introduces the recent advances in the development of microbicidal and anti-biofouling surfaces inspired by natural structures and discusses the related antimicrobial mechanisms, surface topography design, material application, manufacturing techniques, and antimicrobial efficiencies.
Collapse
Grants
- 110VACS-003 Establishment of Regenerative Medicine and Cell Therapy Platform of Veterans General Hospital system
- 110VACS-007 Establishment of epidemic prevention and research platform in the veterans medical system for the control of emerging infectious diseases
- MOHW108-TDU-B-211-133001 Ministry of Health and Welfare
- MOHW109-TDU-B-211-114001 Ministry of Health and Welfare
- VN109-16 VGH, NTUH Joint Research Program
- VTA107-V1-5-1 VGH, TSGH, NDMC, AS Joint Research Program
- VTA108-V1-5-3 VGH, TSGH, NDMC, AS Joint Research Program
- VTA109-V1-4-1 VGH, TSGH, NDMC, AS Joint Research Program
- IBMS-CRC109-P04 AS Clinical Research Center
- NSTC 111-2321-B-A49-007 National Science and Technology Council, Taiwan
- NSTC 111-2112-M-A49-025 National Science and Technology Council, Taiwan
- MOST 108-2320-B-010-019-MY3 National Science and Technology Council, Taiwan
- MOST 109-2327-B-010-007 National Science and Technology Council, Taiwan
- MOST 109-2327-B-016-002 National Science and Technology Council, Taiwan
- NSTC 111-2927-I-A49-004 National Science and Technology Council, Taiwan
- IIRG003B-19FNW Universiti Malaya and the Ministry of Higher Education, Malaysia
Collapse
Affiliation(s)
- Meng-Shiue Lee
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112201, Taiwan
- Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Hussein Reda Hussein
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 300193, Taiwan
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Assiut Branch 71524, Egypt
| | - Sheng-Wen Chang
- Department of Biomedical Sciences & Engineering, National Central University, Taoyuan City 320317, Taiwan
- Department of French Language and Literature, National Central University, Taoyuan City 320317, Taiwan
| | - Chia-Yu Chang
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 300193, Taiwan
| | - Yi-Ying Lin
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112201, Taiwan
- Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Yueh Chien
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112201, Taiwan
- Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Yi-Ping Yang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112201, Taiwan
- Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Lik-Voon Kiew
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 300193, Taiwan
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Ching-Yun Chen
- Department of Biomedical Sciences & Engineering, National Central University, Taoyuan City 320317, Taiwan
| | - Shih-Hwa Chiou
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112201, Taiwan
- Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Chia-Ching Chang
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 300193, Taiwan
- Department of Electrophysics, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
- Center for Intelligent Drug Systems and Smart Bio-devices (IDS2 B), National Yang Ming Chiao Tung University, Hsinchu 300193, Taiwan
- Institute of Physics, Academia Sinica, Nankang, Taipei 11529, Taiwan
| |
Collapse
|
4
|
Santore MM. Interplay of physico-chemical and mechanical bacteria-surface interactions with transport processes controls early biofilm growth: A review. Adv Colloid Interface Sci 2022; 304:102665. [PMID: 35468355 DOI: 10.1016/j.cis.2022.102665] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 04/03/2022] [Accepted: 04/04/2022] [Indexed: 11/01/2022]
Abstract
Biofilms initiate when bacteria encounter and are retained on surfaces. The surface orchestrates biofilm growth through direct physico-chemical and mechanical interactions with different structures on bacterial cells and, in turn, through its influence on cell-cell interactions. Individual cells respond directly to a surface through mechanical or chemical means, initiating "surface sensing" pathways that regulate gene expression, for instance producing extra cellular matrix or altering phenotypes. The surface can also physically direct the evolving colony morphology as cells divide and grow. In either case, the physico-chemistry of the surface influences cells and cell communities through mechanisms that involve additional factors. For instance the numbers of cells arriving on a surface from solution relative to the generation of new cells by division depends on adhesion and transport kinetics, affecting early colony density and composition. Separately, the forces experienced by adhering cells depend on hydrodynamics, gravity, and the relative stiffnesses and viscoelasticity of the cells and substrate materials, affecting mechanosensing pathways. Physical chemistry and surface functionality, along with interfacial mechanics also influence cell-surface friction and control colony morphology, in particular 2D and 3D shape. This review focuses on the current understanding of the mechanisms in which physico-chemical interactions, deriving from surface functionality, impact individual cells and cell community behavior through their coupling with other interfacial processes.
Collapse
|
5
|
Marasco R, Fusi M, Mosqueira M, Booth JM, Rossi F, Cardinale M, Michoud G, Rolli E, Mugnai G, Vergani L, Borin S, De Philippis R, Cherif A, Daffonchio D. Rhizosheath-root system changes exopolysaccharide content but stabilizes bacterial community across contrasting seasons in a desert environment. ENVIRONMENTAL MICROBIOME 2022; 17:14. [PMID: 35365219 PMCID: PMC8973986 DOI: 10.1186/s40793-022-00407-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 03/14/2022] [Indexed: 05/05/2023]
Abstract
BACKGROUND In hot deserts daily/seasonal fluctuations pose great challenges to the resident organisms. However, these extreme ecosystems host unique microenvironments, such as the rhizosheath-root system of desert speargrasses in which biological activities and interactions are facilitated by milder conditions and reduced fluctuations. Here, we examined the bacterial microbiota associated with this structure and its surrounding sand in the desert speargrass Stipagrostis pungens under the contrasting environmental conditions of summer and winter in the Sahara Desert. RESULTS The belowground rhizosheath-root system has higher nutrient and humidity contents, and cooler temperatures than the surrounding sand. The plant responds to the harsh environmental conditions of the summer by increasing the abundance and diversity of extracellular polymeric substances (EPS) compared to the winter. On the contrary, the bacterial community associated with the rhizosheath-root system and its interactome remain stable and, unlike the bulk sand, are unaffected by the seasonal environmental variations. The rhizosheath-root system bacterial communities are consistently dominated by Actinobacteria and Alphaproteobacteria and form distinct bacteria communities from those of bulk sand in the two seasons. The microbiome-stabilization mediated by the plant host acts to consistently retain beneficial bacteria with multiple plant growth promoting functions, including those capable to produce EPS, which increase the sand water holding capacity ameliorating the rhizosheath micro-environment. CONCLUSIONS Our results reveal the capability of plants in desert ecosystems to stabilize their below ground microbial community under seasonal contrasting environmental conditions, minimizing the heterogeneity of the surrounding bulk sand and contributing to the overall holobiont resilience under poly-extreme conditions.
Collapse
Affiliation(s)
- Ramona Marasco
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia.
| | - Marco Fusi
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
- Joint Nature Conservation Committee, Monkstone House, City Road, Peterborough, PE1 1JY, UK
| | - Maria Mosqueira
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Jenny Marie Booth
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Federico Rossi
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Florence, Italy
| | - Massimiliano Cardinale
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
- Institute of Applied Microbiology, Research Center for BioSystems, Land Use, and Nutrition (IFZ), Justus-Liebig-University, Giessen, Germany
| | - Grégoire Michoud
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Eleonora Rolli
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milano, Milan, Italy
| | | | - Lorenzo Vergani
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milano, Milan, Italy
| | - Sara Borin
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milano, Milan, Italy
| | - Roberto De Philippis
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Florence, Italy
| | - Ameur Cherif
- Institut Supérieur de Biotechnologie Sidi Thabet (ISBST), BVBGR-LR11ES31, Biotechpole Sidi Thabet, University Manouba, Ariana, Tunisia
| | - Daniele Daffonchio
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia.
| |
Collapse
|
6
|
Liu YN, Lv ZT, Yang SY, Liu XW. Optical Tracking of the Interfacial Dynamics of Single SARS-CoV-2 Pseudoviruses. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:4115-4122. [PMID: 33566596 PMCID: PMC7885801 DOI: 10.1021/acs.est.0c06962] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 01/29/2021] [Accepted: 02/02/2021] [Indexed: 05/20/2023]
Abstract
The frequent detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA in healthcare environments, accommodations, and wastewater has attracted great attention to the risk of viral transmission by environmental fomites. However, the process of SARS-CoV-2 adsorption to exposed surfaces in high-risk environments remains unclear. In this study, we investigated the interfacial dynamics of single SARS-CoV-2 pseudoviruses with plasmonic imaging technology. Through the use of this technique, which has high spatial and temporal resolution, we tracked the collision of viruses at a surface and differentiated their stable adsorption and transient adsorption. We determined the effect of the electrostatic force on virus adhesion by correlating the solution and surface chemistry with the interfacial diffusion velocity and equilibrium position. Viral adsorption was found to be enhanced in real scenarios, such as in simulated saliva. This work not only describes a plasmonic imaging method to examine the interfacial dynamics of a single virus but also provides direct measurements of the factors that regulate the interfacial adsorption of SARS-CoV-2 pseudovirus. Such information is valuable for understanding virus transport and environmental transmission and even for designing anticontamination surfaces.
Collapse
Affiliation(s)
- Yi-Nan Liu
- Chinese Academy of Sciences Key Laboratory of Urban
Pollutant Conversion, Department of Environmental Science and Engineering,
University of Science and Technology of China, Hefei 230026,
China
| | - Zhen-Ting Lv
- Chinese Academy of Sciences Key Laboratory of Urban
Pollutant Conversion, Department of Environmental Science and Engineering,
University of Science and Technology of China, Hefei 230026,
China
| | - Si-Yu Yang
- Chinese Academy of Sciences Key Laboratory of Urban
Pollutant Conversion, Department of Environmental Science and Engineering,
University of Science and Technology of China, Hefei 230026,
China
| | - Xian-Wei Liu
- Chinese Academy of Sciences Key Laboratory of Urban
Pollutant Conversion, Department of Environmental Science and Engineering,
University of Science and Technology of China, Hefei 230026,
China
- Department of Applied Chemistry,
University of Science and Technology of China, Hefei 230026,
China
| |
Collapse
|
7
|
Spatial pattern and surface-specificity of particle and microorganism deposition and attachment: Modeling, analytic solution and experimental test. J Colloid Interface Sci 2021; 584:45-56. [PMID: 33039682 DOI: 10.1016/j.jcis.2020.09.098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 11/24/2022]
Abstract
HYPOTHESIS Understanding microparticle and living cell deposition and attachment on surfaces from a flow is a long-standing surface-science problem, pivotal to developing antifouling strategies. Recent studies indicate a complex non-conservative and surface-specific nature of adhesion and mechanical contact forces that determine attachment kinetics. This requires new models and kinetic data, however, observed deposition rates (e.g., in parallel-plate flow chamber, PPFC) represent a superposition of attachment and bulk transport. Here, we propose to deduce attachment rates (as an appropriate rate constant) from spatial deposition profiles along PPFC and develop an analytical solution for the full problem, suitable for deposition data analysis and parameter fitting. EXPERIMENTS Analytical solution, validated by numerical simulations, reveals relation between the deposition profile along PPFC and key model parameter B, the ratio of sedimentation and attachment rates. Its use is demonstrated on experimental data obtained in a PPFC for particles and bacteria on various surfaces. FINDINGS Fitted B values highlight correlation with the particle/substrate nature and consistently explain the observed trends along PPFC, both decreasing and increasing. Thus derived attachment rates will serve as basis for future microscopic modelling that would relate attachment to appropriate surface and contact-mechanical characteristics of particles and substrate and flow conditions.
Collapse
|
8
|
Koubali H, Latrache H, Zahir H, El Louali M. Kinetics of Adhesion
Staphylococcus aureus
on Glass in the Presence of Sodium Lauryl Sulfate. J SURFACTANTS DETERG 2020. [DOI: 10.1002/jsde.12484] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Hajar Koubali
- Laboratory of Bioprocess and Bio‐interfaces, Faculty of Sciences and Technics Sultan Moulay Slimane University B.P. 523 Beni Mellal 23000 Morocco
| | - Hassan Latrache
- Laboratory of Bioprocess and Bio‐interfaces, Faculty of Sciences and Technics Sultan Moulay Slimane University B.P. 523 Beni Mellal 23000 Morocco
| | - Hafida Zahir
- Laboratory of Bioprocess and Bio‐interfaces, Faculty of Sciences and Technics Sultan Moulay Slimane University B.P. 523 Beni Mellal 23000 Morocco
| | - Mostafa El Louali
- Laboratory of Bioprocess and Bio‐interfaces, Faculty of Sciences and Technics Sultan Moulay Slimane University B.P. 523 Beni Mellal 23000 Morocco
| |
Collapse
|
9
|
Physical methods for controlling bacterial colonization on polymer surfaces. Biotechnol Adv 2020; 43:107586. [DOI: 10.1016/j.biotechadv.2020.107586] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 06/05/2020] [Accepted: 07/06/2020] [Indexed: 02/06/2023]
|
10
|
Kimkes TEP, Heinemann M. How bacteria recognise and respond to surface contact. FEMS Microbiol Rev 2020; 44:106-122. [PMID: 31769807 PMCID: PMC7053574 DOI: 10.1093/femsre/fuz029] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 11/23/2019] [Indexed: 12/27/2022] Open
Abstract
Bacterial biofilms can cause medical problems and issues in technical systems. While a large body of knowledge exists on the phenotypes of planktonic and of sessile cells in mature biofilms, our understanding of what happens when bacteria change from the planktonic to the sessile state is still very incomplete. Fundamental questions are unanswered: for instance, how do bacteria sense that they are in contact with a surface, and what are the very initial cellular responses to surface contact. Here, we review the current knowledge on the signals that bacteria could perceive once they attach to a surface, the signal transduction systems that could be involved in sensing the surface contact and the cellular responses that are triggered as a consequence to surface contact ultimately leading to biofilm formation. Finally, as the main obstacle in investigating the initial responses to surface contact has been the difficulty to experimentally study the dynamic response of single cells upon surface attachment, we also review recent experimental approaches that could be employed to study bacterial surface sensing, which ultimately could lead to an improved understanding of how biofilm formation could be prevented.
Collapse
Affiliation(s)
- Tom E P Kimkes
- Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands
| | - Matthias Heinemann
- Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, the Netherlands
| |
Collapse
|
11
|
Streptococcus mutans adhesion force sensing in multi-species oral biofilms. NPJ Biofilms Microbiomes 2020; 6:25. [PMID: 32581220 PMCID: PMC7314845 DOI: 10.1038/s41522-020-0135-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 05/29/2020] [Indexed: 12/13/2022] Open
Abstract
Bacteria utilize chemical and mechanical mechanisms to sense their environment, to survive hostile conditions. In mechanical sensing, intra-bilayer pressure profiles change due to deformation induced by the adhesion forces bacteria experience on a surface. Emergent properties in mono-species Streptococcus mutans biofilms, such as extracellular matrix production, depend on the adhesion forces that streptococci sense. Here we determined whether and how salivary-conditioning film (SCF) adsorption and the multi-species nature of oral biofilm influence adhesion force sensing and associated gene expression by S. mutans. Hereto, Streptococcus oralis, Actinomyces naeslundii, and S. mutans were grown together on different surfaces in the absence and presence of an adsorbed SCF. Atomic force microscopy and RT-qPCR were used to measure S. mutans adhesion forces and gene expressions. Upon SCF adsorption, stationary adhesion forces decreased on a hydrophobic and increased on a hydrophilic surface to around 8 nN. Optical coherence tomography showed that triple-species biofilms on SCF-coated surfaces with dead S. oralis adhered weakly and often detached as a contiguous sheet. Concurrently, S. mutans displayed no differential adhesion force sensing on SCF-coated surfaces in the triple-species biofilms with dead S. oralis, but once live S. oralis were present S. mutans adhesion force sensing and gene expression ranked similar as on surfaces in the absence of an adsorbed SCF. Concluding, live S. oralis may enzymatically degrade SCF components to facilitate direct contact of biofilm inhabitants with surfaces and allow S. mutans adhesion force sensing of underlying surfaces to define its appropriate adaptive response. This represents a new function of initial colonizers in multi-species oral biofilms.
Collapse
|
12
|
Yongabi D, Khorshid M, Gennaro A, Jooken S, Duwé S, Deschaume O, Losada-Pérez P, Dedecker P, Bartic C, Wübbenhorst M, Wagner P. QCM-D Study of Time-Resolved Cell Adhesion and Detachment: Effect of Surface Free Energy on Eukaryotes and Prokaryotes. ACS APPLIED MATERIALS & INTERFACES 2020; 12:18258-18272. [PMID: 32223273 DOI: 10.1021/acsami.0c00353] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Cell-material interactions are crucial for many biomedical applications, including medical implants, tissue engineering, and biosensors. For implants, while the adhesion of eukaryotic host cells is desirable, bacterial adhesion often leads to infections. Surface free energy (SFE) is an important parameter that controls short- and long-term eukaryotic and prokaryotic cell adhesion. Understanding its effect at a fundamental level is essential for designing materials that minimize bacterial adhesion. Most cell adhesion studies for implants have focused on correlating surface wettability with mammalian cell adhesion and are restricted to short-term time scales. In this work, we used quartz crystal microbalance with dissipation monitoring (QCM-D) and electrical impedance analysis to characterize the adhesion and detachment of S. cerevisiae and E. coli, serving as model eukaryotic and prokaryotic cells within extended time scales. Measurements were performed on surfaces displaying different surface energies (Au, SiO2, and silanized SiO2). Our results demonstrate that tuning the surface free energy of materials is a useful strategy for selectively promoting eukaryotic cell adhesion and preventing bacterial adhesion. Specifically, we show that under flow and steady-state conditions and within time scales up to ∼10 h, a high SFE, especially its polar component, enhances S. cerevisiae adhesion and hinders E. coli adhesion. In the long term, however, both cells tend to detach, but less detachment occurs on surfaces with a high dispersive SFE contribution. The conclusions on S. cerevisiae are also valid for a second eukaryotic cell type, being the human embryonic kidney (HEK) cells on which we performed the same analysis for comparison. Furthermore, each cell adhesion phase is associated with unique cytoskeletal viscoelastic states, which are cell-type-specific and surface free energy-dependent and provide insights into the underlying adhesion mechanisms.
Collapse
Affiliation(s)
- Derick Yongabi
- Department of Physics and Astronomy, Laboratory for Soft Matter and Biophysics, KU Leuven, Celestijnenlaan 200 D, B-3001 Leuven, Belgium
| | - Mehran Khorshid
- Department of Physics and Astronomy, Laboratory for Soft Matter and Biophysics, KU Leuven, Celestijnenlaan 200 D, B-3001 Leuven, Belgium
| | - Alessia Gennaro
- Department of Physics and Astronomy, Laboratory for Soft Matter and Biophysics, KU Leuven, Celestijnenlaan 200 D, B-3001 Leuven, Belgium
| | - Stijn Jooken
- Department of Physics and Astronomy, Laboratory for Soft Matter and Biophysics, KU Leuven, Celestijnenlaan 200 D, B-3001 Leuven, Belgium
| | - Sam Duwé
- Department of Chemistry, Laboratory for Nanobiology, KU Leuven, Celestinenlaan 200 G, B-3001, Leuven, Belgium
| | - Olivier Deschaume
- Department of Physics and Astronomy, Laboratory for Soft Matter and Biophysics, KU Leuven, Celestijnenlaan 200 D, B-3001 Leuven, Belgium
| | - Patricia Losada-Pérez
- Experimental Soft Matter and Thermal Physics Group, Université Libre de Bruxelles (ULB), Campus La Plaine, CP223, Boulevard du Triomphe, 1050 Brussels, Belgium
| | - Peter Dedecker
- Department of Chemistry, Laboratory for Nanobiology, KU Leuven, Celestinenlaan 200 G, B-3001, Leuven, Belgium
| | - Carmen Bartic
- Department of Physics and Astronomy, Laboratory for Soft Matter and Biophysics, KU Leuven, Celestijnenlaan 200 D, B-3001 Leuven, Belgium
| | - Michael Wübbenhorst
- Department of Physics and Astronomy, Laboratory for Soft Matter and Biophysics, KU Leuven, Celestijnenlaan 200 D, B-3001 Leuven, Belgium
| | - Patrick Wagner
- Department of Physics and Astronomy, Laboratory for Soft Matter and Biophysics, KU Leuven, Celestijnenlaan 200 D, B-3001 Leuven, Belgium
| |
Collapse
|
13
|
Kravchenko S, Snopok B. “Vanishing mass” in the Sauerbrey world: quartz crystal microbalance study of self-assembled monolayers based on a tripod-branched structure with tuneable molecular flexibility. Analyst 2020; 145:656-666. [DOI: 10.1039/c9an01366k] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Complex loadings that appear on a surface with flexible spatial organisation can reveal anti-Sauerbrey behaviour due to their variable interfacial architecture even for an ultrathin monomolecular sensitive layer.
Collapse
Affiliation(s)
| | - Boris Snopok
- V. Lashkaryov Institute of Semiconductor Physics
- Kyiv
- Ukraine
| |
Collapse
|
14
|
Pacha-Olivenza MÁ, Rodríguez-Cano A, González-Martín ML, Gallardo-Moreno AM. Kinetic of Adhesion of S. epidermidis with Different EPS Production on Ti6Al4V Surfaces. BIOMED RESEARCH INTERNATIONAL 2019; 2019:1437806. [PMID: 31915679 PMCID: PMC6930745 DOI: 10.1155/2019/1437806] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 08/20/2019] [Indexed: 11/18/2022]
Abstract
Controlling initial bacterial adhesion is essential to prevent biofilm formation and implant-related infection. The search for surface coatings that prevent initial adhesion is a powerful strategy to obtain implants that are more resistant to infection. Tracking the progression of adhesion on surfaces from the beginning of the interaction between bacteria and the surface provides a deeper understanding of the initial adhesion behavior. To this purpose, we have studied the progression over time of bacterial adhesion from a laminar flow of a bacterial suspension, using a modified Robbins device (MRD). Comparing with other laminar flow devices, such as the parallel plate flow chamber, MRD allows the use of diverse substrata under the same controlled flow conditions simultaneously. Two different surfaces of Ti6Al4V and two strains of Staphylococcus epidermidis with different exopolymer production were tested. In addition, the modified Robbins device was examined for its convenience and suitability for the purpose of this study. Results were analyzed according to a pseudofirst order kinetic. The values of the parameters obtained from this model make it possible to discriminate the adhesive behavior of surfaces and bacteria. One of the fitting parameters depends on the bacterial strain and the other only on the surface properties of the substrate.
Collapse
Affiliation(s)
- Miguel Ángel Pacha-Olivenza
- Department of Biomedical Sciences, Faculty of Medicine, University of Extremadura, Avda de Elvas s/n, Badajoz 06006, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Badajoz, Spain
- University Institute of Biosanitary Research of Extremadura (INUBE), Badajoz 06006, Spain
| | - Abraham Rodríguez-Cano
- Department of Applied Physics, Faculty of Science, University of Extremadura, Avda de Elvas s/n, Badajoz 06006, Spain
| | - M. Luisa González-Martín
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Badajoz, Spain
- University Institute of Biosanitary Research of Extremadura (INUBE), Badajoz 06006, Spain
- Department of Applied Physics, Faculty of Science, University of Extremadura, Avda de Elvas s/n, Badajoz 06006, Spain
| | - Amparo M. Gallardo-Moreno
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Badajoz, Spain
- University Institute of Biosanitary Research of Extremadura (INUBE), Badajoz 06006, Spain
- Department of Applied Physics, Faculty of Science, University of Extremadura, Avda de Elvas s/n, Badajoz 06006, Spain
| |
Collapse
|
15
|
Smith DE, Dhinojwala A, Moore FBG. Effect of Substrate and Bacterial Zeta Potential on Adhesion of Mycobacterium smegmatis. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:7035-7042. [PMID: 31035758 DOI: 10.1021/acs.langmuir.8b03920] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Bacterial adhesion is described as a multistep process of interactions between microbes and the substrate, beginning with reversible contact, followed by irreversible adhesion. We explore the influence of substrate zeta potential on adhesion of Mycobacterium smegmatis, a nonpathogenic bacterial model for tuberculosis-causing Mycobacterium tuberculosis and a common foulant of reverse osmosis filtration systems. Substrates having a range of zeta potentials were prepared by coating silica with the polycation, poly(diallyldimethyl ammonium chloride) (pDADMAC), by adjusting the pH of alumina, a pH-responsive material, and by coating silica with a hydrophobic self-assembled monolayer coating of octadecyltrichlorosilane. Our observations using these surfaces demonstrated that adhesion of M. smegmatis increased significantly by more than 200% on the silica-pDADMAC system and more than 300% on alumina substrates, as zeta potential became less negative, and that the variation of pH did not affect adhesion on alumina surfaces. Live and heat-killed bacteria were studied to investigate the contribution of biological response to adhesion with respect to zeta potential. While approximately 60% fewer heat-killed M. smegmatis adhered to pDADMAC-coated silica substrates, the trend of significantly increasing adhesion with less negative zeta potential was still observed. These results show the influence of zeta potential on adhesion of M. smegmatis, which is a separate process from that of the biological response. Across the range of substrate surface chemistries, hydrophobicities, and zeta potentials tested, adhesion of M. smegmatis can primarily be controlled by zeta potential. The bacterial zeta potential was not changed by the various experimental conditions and was -28.3 ± 2.4 mV.
Collapse
|
16
|
QCM-D characterization of time-dependence of bacterial adhesion. ACTA ACUST UNITED AC 2019; 5:100024. [PMID: 32743140 PMCID: PMC7389184 DOI: 10.1016/j.tcsw.2019.100024] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 01/29/2019] [Accepted: 03/29/2019] [Indexed: 12/22/2022]
Abstract
Quartz crystal microbalance with dissipation monitoring (QCM-D) is becoming an increasingly popular technique that can be employed as part of experimental and modeling investigations of bacterial adhesion. The usefulness of QCM-D derives from this technique's ability to probe binding and interactions under dynamic conditions, in real time. Bacterial adhesion is an important first step in the formation of biofilms, the control of which is relevant to industries that include shipping, water purification, packaging, and biomedical devices. However, many questions remain unanswered in the bacterial adhesion process, despite extensive research in this area. With QCM-D, multiple variables affecting bacterial adhesion can be studied, including the roles of substrate composition, chemical modification, solution ionic strength, environmental temperature, shear conditions, and time. Recent studies demonstrate the utility of QCM-D in developing new bacterial adhesion models and studying different stages of biofilm formation. We provide a review of how QCM-D has been used to study bacterial adhesion at stages ranging from the first step of bacterial adhesion to mature biofilms, and how QCM-D studies are being used to promote the development of solutions to biofilm formation.
Collapse
|
17
|
Ghosh S, Qureshi A, Purohit HJ. D-Tryptophan governs biofilm formation rates and bacterial interaction in P. mendocina and S. aureus. J Biosci 2019. [DOI: 10.1007/s12038-018-9841-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
18
|
Luan Y, Liu S, Pihl M, van der Mei HC, Liu J, Hizal F, Choi CH, Chen H, Ren Y, Busscher HJ. Bacterial interactions with nanostructured surfaces. Curr Opin Colloid Interface Sci 2018. [DOI: 10.1016/j.cocis.2018.10.007] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
19
|
Carniello V, Peterson BW, van der Mei HC, Busscher HJ. Physico-chemistry from initial bacterial adhesion to surface-programmed biofilm growth. Adv Colloid Interface Sci 2018; 261:1-14. [PMID: 30376953 DOI: 10.1016/j.cis.2018.10.005] [Citation(s) in RCA: 199] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 10/08/2018] [Accepted: 10/22/2018] [Indexed: 02/07/2023]
Abstract
Biofilm formation is initiated by adhesion of individual bacteria to a surface. However, surface adhesion alone is not sufficient to form the complex community architecture of a biofilm. Surface-sensing creates bacterial awareness of their adhering state on the surface and is essential to initiate the phenotypic and genotypic changes that characterize the transition from initial bacterial adhesion to a biofilm. Physico-chemistry has been frequently applied to explain initial bacterial adhesion phenomena, including bacterial mass transport, role of substratum surface properties in initial adhesion and the transition from reversible to irreversible adhesion. However, also emergent biofilm properties, such as production of extracellular-polymeric-substances (EPS), can be surface-programmed. This review presents a four-step, comprehensive description of the role of physico-chemistry from initial bacterial adhesion to surface-programmed biofilm growth: (1) bacterial mass transport towards a surface, (2) reversible bacterial adhesion and (3) transition to irreversible adhesion and (4) cell wall deformation and associated emergent properties. Bacterial transport mostly occurs from sedimentation or convective-diffusion, while initial bacterial adhesion can be described by surface thermodynamic and Derjaguin-Landau-Verwey-Overbeek (DLVO)-analyses, considering bacteria as smooth, inert colloidal particles. DLVO-analyses however, require precise indication of the bacterial cell surface, which is impossible due to the presence of bacterial surface tethers, creating a multi-scale roughness that impedes proper definition of the interaction distance in DLVO-analyses. Application of surface thermodynamics is also difficult, because initial bacterial adhesion is only an equilibrium phenomenon for a short period of time, when bacteria are attached to a substratum surface through few surface tethers. Physico-chemical bond-strengthening occurs in several minutes leading to irreversible adhesion due to progressive removal of interfacial water, conformational changes in cell surface proteins, re-orientation of bacteria on a surface and the progressive involvement of more tethers in adhesion. After initial bond-strengthening, adhesion forces arising from a substratum surface cause nanoscopic deformation of the bacterial cell wall against the elasticity of the rigid peptidoglycan layer positioned in the cell wall and the intracellular pressure of the cytoplasm. Cell wall deformation not only increases the contact area with a substratum surface, presenting another physico-chemical bond-strengthening mechanism, but is also accompanied by membrane surface tension changes. Membrane-located sensor molecules subsequently react to control emergent phenotypic and genotypic properties in biofilms, most notably adhesion-associated ones like EPS production. Moreover, also bacterial efflux pump systems may be activated or mechano-sensitive channels may be opened upon adhesion-induced cell wall deformation. The physico-chemical properties of the substratum surface thus control the response of initially adhering bacteria and through excretion of autoinducer molecules extend the awareness of their adhering state to other biofilm inhabitants who subsequently respond with similar emergent properties. Herewith, physico-chemistry is not only involved in initial bacterial adhesion to surfaces but also in what we here propose to call "surface-programmed" biofilm growth. This conclusion is pivotal for the development of new strategies to control biofilm formation on substratum surfaces, that have hitherto been largely confined to the initial bacterial adhesion phenomena.
Collapse
|
20
|
Bastos-Arrieta J, Revilla-Guarinos A, Uspal WE, Simmchen J. Bacterial Biohybrid Microswimmers. Front Robot AI 2018; 5:97. [PMID: 33500976 PMCID: PMC7805739 DOI: 10.3389/frobt.2018.00097] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 07/30/2018] [Indexed: 12/12/2022] Open
Abstract
Over millions of years, Nature has optimized the motion of biological systems at the micro and nanoscales. Motor proteins to motile single cells have managed to overcome Brownian motion and solve several challenges that arise at low Reynolds numbers. In this review, we will briefly describe naturally motile systems and their strategies to move, starting with a general introduction that surveys a broad range of developments, followed by an overview about the physical laws and parameters that govern and limit motion at the microscale. We characterize some of the classes of biological microswimmers that have arisen in the course of evolution, as well as the hybrid structures that have been constructed based on these, ranging from Montemagno's ATPase motor to the SpermBot. Thereafter, we maintain our focus on bacteria and their biohybrids. We introduce the inherent properties of bacteria as a natural microswimmer and explain the different principles bacteria use for their motion. We then elucidate different strategies that have been employed for the coupling of a variety of artificial microobjects to the bacterial surface, and evaluate the different effects the coupled objects have on the motion of the "biohybrid." Concluding, we give a short overview and a realistic evaluation of proposed applications in the field.
Collapse
Affiliation(s)
| | - Ainhoa Revilla-Guarinos
- Department of General Microbiology, Institute of Microbiology, Technische Universität Dresden, Dresden, Germany
| | - William E Uspal
- Department of Theory of Inhomogeneous Condensed Matter, Max-Planck-Institut für Intelligente Systeme, Stuttgart, Germany.,IV. Institut für Theoretische Physik, Universität Stuttgart, Stuttgart, Germany
| | - Juliane Simmchen
- Physikalische Chemie, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
21
|
Ye Z, Kim A, Mottley CY, Ellis MW, Wall C, Esker AR, Nain AS, Behkam B. Design of Nanofiber Coatings for Mitigation of Microbial Adhesion: Modeling and Application to Medical Catheters. ACS APPLIED MATERIALS & INTERFACES 2018; 10:15477-15486. [PMID: 29637776 DOI: 10.1021/acsami.8b02907] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Surface-associated microbial communities, known as biofilms, pose significant challenges in clinical and industrial settings. Micro-/nanoscale substratum surface features have been shown to disrupt firm adhesion of planktonic microbes to surfaces, thereby interfering with the earliest stage of biofilm formation. However, the role of geometry and size of surface features in microbial retention is not completely understood. In this study, we developed a biophysical model that describes the changes in the total free energy (adhesion energy and stretching energy) of an adherent Candida albicans cell on nanofiber-coated surfaces as a function of the geometry (i.e., diameter) and configuration (i.e., interfiber spacing) of the surface features (i.e., nanofibers). We then introduced a new nondimensional parameter, Π, to represent the ratio of cell rigidity to cell-substratum interfacial energy. We show that the total free energy is a strong function of topographical feature size at higher Π and lower spacing values. To confirm our biophysical model predictions, we performed 24 h dynamic retention assays and quantified cell attachment number density on surfaces coated with highly ordered polystyrene nanofibers. We show that the total free energy of a single adherent cell on a patterned surface is a key determinant of microbial retention on that surface. The cell attachment density trend closely correlates with the predictions based on the adherent single-cell total energy. The nanofiber coating design (1.2 μm diameter, 2 μm spacing) that maximized the total energy of the adherent cell resulted in the lowest microbial retention. We further demonstrate the utility of our biophysical model by showing close correlation between the computed single-cell total free energy and biofilm nucleation on fiber-coated urinary and central venous catheters of different materials. This biophysical model could offer a powerful new paradigm in ab initio design of patterned surfaces for controlled biofilm growth for medical applications and beyond.
Collapse
|
22
|
Jang Y, Choi WT, Johnson CT, García AJ, Singh PM, Breedveld V, Hess DW, Champion JA. Inhibition of Bacterial Adhesion on Nanotextured Stainless Steel 316L by Electrochemical Etching. ACS Biomater Sci Eng 2018; 4:90-97. [PMID: 29333490 PMCID: PMC5761049 DOI: 10.1021/acsbiomaterials.7b00544] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 11/28/2017] [Indexed: 11/28/2022]
Abstract
Bacterial adhesion to stainless steel 316L (SS316L), which is an alloy typically used in many medical devices and food processing equipment, can cause serious infections along with substantial healthcare costs. This work demonstrates that nanotextured SS316L surfaces produced by electrochemical etching effectively inhibit bacterial adhesion of both Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus, but exhibit cytocompatibility and no toxicity toward mammalian cells in vitro. Additionally, the electrochemical surface modification on SS316L results in formation of superior passive layer at the surface, improving corrosion resistance. The nanotextured SS316L offers significant potential for medical applications based on the surface structure-induced reduction of bacterial adhesion without use of antibiotic or chemical modifications while providing cytocompatibility and corrosion resistance in physiological conditions.
Collapse
Affiliation(s)
- Yeongseon Jang
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive, Atlanta, Georgia 30332, United States
| | - Won Tae Choi
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive, Atlanta, Georgia 30332, United States
- School of Material Science and Engineering, Georgia Institute of Technology, 500 10th Street, Northwest, Atlanta, Georgia 30332, United States
| | - Christopher T Johnson
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, United States
| | - Andrés J García
- Woodruff School of Mechanical Engineering, Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Drive, Atlanta, Georgia 30332, United States
| | - Preet M Singh
- School of Material Science and Engineering, Georgia Institute of Technology, 500 10th Street, Northwest, Atlanta, Georgia 30332, United States
| | - Victor Breedveld
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive, Atlanta, Georgia 30332, United States
| | - Dennis W Hess
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive, Atlanta, Georgia 30332, United States
| | - Julie A Champion
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive, Atlanta, Georgia 30332, United States
| |
Collapse
|
23
|
Physico-chemistry of bacterial transmission versus adhesion. Adv Colloid Interface Sci 2017; 250:15-24. [PMID: 29129313 DOI: 10.1016/j.cis.2017.11.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 11/02/2017] [Accepted: 11/03/2017] [Indexed: 12/11/2022]
Abstract
Bacterial adhesion is a main problem in many biomedical, domestic, natural and industrial environments and forms the onset of the formation of a biofilm, in which adhering bacteria grow into a multi-layered film while embedding themselves in a matrix of extracellular polymeric substances. It is usually assumed that bacterial adhesion occurs from air or by convective-diffusion from a liquid suspension, but often bacteria adhere by transmission from a bacterially contaminated donor to a receiver surface. Therewith bacterial transmission is mechanistically different from adhesion, as it involves bacterial detachment from a donor surface followed by adhesion to a receiver one. Transmission is further complicated when the donor surface is not covered with a single layer of adhering bacteria but with a multi-layered biofilm, in which case bacteria can be transmitted either by interfacial failure at the biofilm-donor surface or through cohesive failure in the biofilm. Transmission through cohesive failure in a biofilm is more common than interfacial failure. The aim of this review is to oppose surface thermodynamics and adhesion force analyses, as can both be applied towards bacterial adhesion, with their appropriate extensions towards transmission. Opposition of surface thermodynamics and adhesion force analyses, will allow to distinguish between transmission of bacteria from a donor covered with a (sub)monolayer of adhering bacteria or a multi-layered biofilm. Contact angle measurements required for surface thermodynamic analyses of transmission are of an entirely different nature than analyses of adhesion forces, usually measured through atomic force microscopy. Nevertheless, transmission probabilities based on Weibull analyses of adhesion forces between bacteria and donor and receiver surfaces, correspond with the surface thermodynamic preferences of bacteria for either the donor or receiver surface. Surfaces with low adhesion forces such as polymer-brush coated or nanostructured surfaces are thus preferable for use as non-adhesive receiver surfaces, but at the same time should be avoided for use as a donor surface. Since bacterial transmission occurs under a contact pressure between two surfaces, followed by their separation under tensile or shear pressure and ultimately detachment, this will affect biofilm structure. During the compression phase of transmission, biofilms are compacted into a more dense film. After transmission, and depending on the ability of the bacterial strain involved to produce extracellular polymeric substances, biofilm left-behind on a donor or transmitted to a receiver surface will relax to its original, pre-transmission structure owing to the viscoelasticity of the extracellular polymeric substances matrix, when present. Apart from mechanistic differences between bacterial adhesion and transmission, the low numbers of bacteria generally transmitted require careful selection of suitably sensitive enumeration methods, for which culturing and optical coherence tomography are suggested. Opposing adhesion and transmission as done in this review, not only yields a better understanding of bacterial transmission, but may stimulate researchers to more carefully consider whether an adhesion or transmission model is most appropriate in the specific area of application aimed for, rather than routinely relying on adhesion models.
Collapse
|
24
|
Mendonça Munhoz A, Santanelli di Pompeo F, De Mezerville R. Nanotechnology, nanosurfaces and silicone gel breast implants: current aspects. CASE REPORTS IN PLASTIC SURGERY AND HAND SURGERY 2017; 4:99-113. [PMID: 29250575 PMCID: PMC5727455 DOI: 10.1080/23320885.2017.1407658] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 11/16/2017] [Indexed: 02/03/2023]
Abstract
Nanotechnology is defined as the design of products that interact with biological systems on the nanoscopic scale. Creating a controlled nanotexture and understanding the ways in which surface properties impact inflammatory response is of the utmost significance in designing implants that can provide satisfactory outcomes.
Collapse
Affiliation(s)
- Alexandre Mendonça Munhoz
- Plastic Surgery Division, Hospital Sírio-LibanêsSão PauloBrazil.,Breast Surgery Group, Plastic Surgery Division, University of São Paulo School of MedicineSão PauloBrazil
| | | | | |
Collapse
|
25
|
Teno J, González-Gaitano G, González-Benito J. Nanofibrous polysulfone/TiO2nanocomposites: Surface properties and their relation withE. coliadhesion. ACTA ACUST UNITED AC 2017. [DOI: 10.1002/polb.24404] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Jorge Teno
- Universidad Carlos III de Madrid, Department of Materials Science and Engineering, IQMAAB; 28911 Leganés Spain
| | | | - Javier González-Benito
- Universidad Carlos III de Madrid, Department of Materials Science and Engineering, IQMAAB; 28911 Leganés Spain
| |
Collapse
|
26
|
Chen S, Li Y, Cheng YF. Nanopatterning of steel by one-step anodization for anti-adhesion of bacteria. Sci Rep 2017; 7:5326. [PMID: 28706204 PMCID: PMC5509660 DOI: 10.1038/s41598-017-05626-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 05/31/2017] [Indexed: 11/13/2022] Open
Abstract
Surface nanopatterning of metals has been an effective technique for improved performance and functionalization. However, it is of great challenge to fabricate nanostructure on carbon steels despite their extensive use and urgent needs to maintain the performance reliability and durability. Here, we report a one-step anodization technique to nanopattern a carbon steel in 50 wt.% NaOH solution for highly effective anti-adhesion by sulphate reducing bacteria (SRB), i.e., Desulfovibrio desulfuricans subsp. desulfuricans (Beijerinck) Kluyver and van Niel. We characterize the morphology, structure, composition, and surface roughness of the nanostructured film formed on the steel as a function of anodizing potential. We quantify the surface hydrophobicity by contact angle measurements, and the SRB adhesion by fluorescent analysis. The optimal anodization potential of 2.0 V is determined for the best performance of anti-adhesion of SRB to the steel, resulting in a 23.5 times of reduction of SRB adhesion compared to bare steel. We discuss the mechanisms for the film formation on the steel during anodization, and the high-performance anti-adhesion of bacteria to nanopatterned steels. Our technique is simple, cost-effective and environment-friendly, providing a promising alternative for industry-scale surface nanopatterning of carbon steels for effective controlling of bacterial adhesion.
Collapse
Affiliation(s)
- Shiqiang Chen
- Department of Mechanical & Manufacturing Engineering, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Yuan Li
- Department of Mechanical & Manufacturing Engineering, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Y Frank Cheng
- Department of Mechanical & Manufacturing Engineering, University of Calgary, Calgary, Alberta, T2N 1N4, Canada.
| |
Collapse
|
27
|
Sjollema J, van der Mei HC, Hall CL, Peterson BW, de Vries J, Song L, Jong EDD, Busscher HJ, Swartjes JJTM. Detachment and successive re-attachment of multiple, reversibly-binding tethers result in irreversible bacterial adhesion to surfaces. Sci Rep 2017; 7:4369. [PMID: 28663565 PMCID: PMC5491521 DOI: 10.1038/s41598-017-04703-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 05/08/2017] [Indexed: 01/15/2023] Open
Abstract
Bacterial adhesion to surfaces occurs ubiquitously and is initially reversible, though becoming more irreversible within minutes after first contact with a surface. We here demonstrate for eight bacterial strains comprising four species, that bacteria adhere irreversibly to surfaces through multiple, reversibly-binding tethers that detach and successively re-attach, but not collectively detach to cause detachment of an entire bacterium. Arguments build on combining analyses of confined Brownian-motion of bacteria adhering to glass and their AFM force-distance curves and include the following observations: (1) force-distance curves showed detachment events indicative of multiple binding tethers, (2) vibration amplitudes of adhering bacteria parallel to a surface decreased with increasing adhesion-forces acting perpendicular to the surface, (3) nanoscopic displacements of bacteria with relatively long autocorrelation times up to several seconds, in absence of microscopic displacement, (4) increases in Mean-Squared-Displacement over prolonged time periods according to tα with 0 < α ≪ 1, indicative of confined displacement. Analysis of simulated position-maps of adhering particles using a new, in silico model confirmed that adhesion to surfaces is irreversible through detachment and successive re-attachment of reversibly-binding tethers. This makes bacterial adhesion mechanistically comparable with the irreversible adsorption of high-molecular-weight proteins to surfaces, mediated by multiple, reversibly-binding molecular segments.
Collapse
Affiliation(s)
- Jelmer Sjollema
- University of Groningen and University Medical Center Groningen, Department of Biomedical Engineering, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Henny C van der Mei
- University of Groningen and University Medical Center Groningen, Department of Biomedical Engineering, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands.
| | - Connie L Hall
- Department of Biomedical Engineering, The College of New Jersey, Armstong Hall, Room 181, P. O. Box 7718, The College of New Jersey, Ewing, NJ, 08628, USA
| | - Brandon W Peterson
- University of Groningen and University Medical Center Groningen, Department of Biomedical Engineering, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Joop de Vries
- University of Groningen and University Medical Center Groningen, Department of Biomedical Engineering, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Lei Song
- University of Groningen and University Medical Center Groningen, Department of Biomedical Engineering, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Ed D de Jong
- University of Groningen and University Medical Center Groningen, Department of Biomedical Engineering, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Henk J Busscher
- University of Groningen and University Medical Center Groningen, Department of Biomedical Engineering, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Jan J T M Swartjes
- University of Groningen and University Medical Center Groningen, Department of Biomedical Engineering, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| |
Collapse
|
28
|
Huang R, Yi P, Tang Y. Probing the interactions of organic molecules, nanomaterials, and microbes with solid surfaces using quartz crystal microbalances: methodology, advantages, and limitations. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2017; 19:793-811. [PMID: 28488712 DOI: 10.1039/c6em00628k] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Quartz crystal microbalances (QCMs) provide a new analytical opportunity and prospect to characterize many environmental processes at solid/liquid interfaces, thanks to their almost real-time measurement of physicochemical changes on their quartz sensor. This work reviews the applications of QCMs in probing the interactions of organic molecules, nanomaterials (NMs) and microbes with solid surfaces. These interfacial interactions are relevant to critical environmental processes such as biofilm formation, fate and transport of NMs, fouling in engineering systems and antifouling practices. The high sensitivity, real-time monitoring, and simultaneous frequency and dissipation measurements make QCM-D a unique technique that helps reveal the interaction mechanisms for the abovementioned processes (e.g., driving forces, affinity, kinetics, and the interplay between surface chemistry and solution chemistry). On the other hand, QCM measurement is nonselective and spatially-dependent. Thus, caution should be taken during data analysis and interpretation, and it is necessary to cross-validate the results using complementary information from other techniques for more quantitative and accurate interpretation. This review summarizes the general methodologies for collecting and analyzing raw QCM data, as well as for evaluating the associated uncertainties. It serves to help researchers gain deeper insights into the fundamentals and applications of QCMs, and provides new perspectives on future research directions.
Collapse
Affiliation(s)
- Rixiang Huang
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, 311 Ferst Dr, Atlanta, Georgia 30324-0340, USA.
| | | | | |
Collapse
|
29
|
Markande AR, Nerurkar AS. Bioemulsifier (BE-AM1) produced by Solibacillus silvestris AM1 is a functional amyloid that modulates bacterial cell-surface properties. BIOFOULING 2016; 32:1153-1162. [PMID: 27669827 DOI: 10.1080/08927014.2016.1232716] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 08/29/2016] [Indexed: 06/06/2023]
Abstract
A novel estuarine bacterial strain, Solibacillus silvestris AM1, produces an extracellular, thermostable and fibrous, glycoprotein bioemulsifier (BE-AM1). The amyloid nature of the bioemulsifier (BE-AM1) was confirmed by biophysical techniques (Congo red based polarization microscopy, ThioflavinS based fluorescent microscopy, fibrous arrangement in transmission electron microscopy and secondary structure measurement by FTIR and CD spectrum analysis). Cell-bound BE-AM1 production by S. silvestris AM1 during the mid-logarithmic phase of growth coincided with a decrease in cell surface hydrophobicity, and an increase in cell autoaggregation and biofilm formation. It was observed that the total interfacial interaction energy ([Formula: see text]) for the surface of the bioemulsifier producing S. silvestris AM1 and different derivatized surfaces of polystyrene (silanized and sulfonated) was found to support biofilm formation. This study has revealed that the BE-AM1, a bacterial bioemulsifier, is a functional amyloid and has a role in biofilm formation and cell surface modulation in S. silvestris AM1.
Collapse
Affiliation(s)
- A R Markande
- a Department of Microbiology and Biotechnology Centre, Faculty of Science , The Maharaja Sayajirao University of Baroda , Vadodara , India
| | - A S Nerurkar
- a Department of Microbiology and Biotechnology Centre, Faculty of Science , The Maharaja Sayajirao University of Baroda , Vadodara , India
| |
Collapse
|
30
|
Kinsinger NM, Mayton HM, Luth MR, Walker SL. Efficacy of post-harvest rinsing and bleach disinfection of E. coli O157:H7 on spinach leaf surfaces. Food Microbiol 2016; 62:212-220. [PMID: 27889151 DOI: 10.1016/j.fm.2016.10.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 10/03/2016] [Accepted: 10/08/2016] [Indexed: 11/17/2022]
Abstract
Attachment and detachment kinetics of Escherichia coli O157:H7 from baby spinach leaf epicuticle layers were investigated using a parallel plate flow chamber. Mass transfer rate coefficients were used to determine the impact of water chemistry and common bleach disinfection rinses on the removal and inactivation of the pathogen. Attachment mass transfer rate coefficients generally increased with ionic strength. Detachment mass transfer rate coefficients were nearly the same in KCl and AGW rinses; however, the detachment phase lasted longer in KCl than AGW (18 ± 4 min and 4 ± 2 min, respectively), indicating that the ions present during attachment play a significant role in the cells' ability to remain attached. Specifically, increasing bleach rinse concentration by two orders of magnitude was found to increase the detachment mass transfer rate coefficient by 20 times (from 5.7 ± 0.7 × 10-11 m/s to 112.1 ± 26.8 × 10-11 m/s for 10 ppb and 1000 ppb, respectively), and up to 88 ± 4% of attached cells remained alive. The spinach leaf texture was incorporated within a COMSOL model of disinfectant concentration gradients, which revealed nearly 15% of the leaf surface is exposed to almost 1000 times lower concentration than the bulk rinse solution.
Collapse
Affiliation(s)
- Nichola M Kinsinger
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA, 92521, United States
| | - Holly M Mayton
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA, 92521, United States
| | - Madeline R Luth
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA, 92521, United States
| | - Sharon L Walker
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA, 92521, United States.
| |
Collapse
|
31
|
Lüdecke C, Roth M, Yu W, Horn U, Bossert J, Jandt KD. Nanorough titanium surfaces reduce adhesion of Escherichia coli and Staphylococcus aureus via nano adhesion points. Colloids Surf B Biointerfaces 2016; 145:617-625. [DOI: 10.1016/j.colsurfb.2016.05.049] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 04/26/2016] [Accepted: 05/17/2016] [Indexed: 01/06/2023]
|
32
|
Liu X, Wang H, Long F, Qi L, Fan H. Optimizing and real-time control of biofilm formation, growth and renewal in denitrifying biofilter. BIORESOURCE TECHNOLOGY 2016; 209:326-332. [PMID: 26994461 DOI: 10.1016/j.biortech.2016.02.095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 02/19/2016] [Accepted: 02/22/2016] [Indexed: 06/05/2023]
Abstract
A pilot-scale denitrifying biofilter (DNBF) with a treatment capacity of 600m(3)/d was used to study real-time control of biofilm formation, removal and renewal. The results showed biofilm formation, growth and removal can be well controlled using on-line monitored turbidity. The status of filter layer condition can be well indicated by Turb break points on turbidity profile. There was a very good linear relationship between biofilm growth degree (Xbiof) and filter clogging degree (Cfilter) with R(2) higher than 0.99. Filter layer clogging coefficient (Yc) lower than 0.27 can be used to determine stable filter layer condition. Since variations of turbidity during backwash well fitted normal distribution with R(2) higher than 0.96, biofilm removal during backwash also can be well optimized by turbidity. Although biofilm structure and nirK-coding denitrifying communities using different carbon sources were much more different, DNBF was still successfully and stably optimized and real-time controlled via on-line turbidity.
Collapse
Affiliation(s)
- Xiuhong Liu
- School of Environment & Natural Resources, Renmin University of China, Beijing 100872, China
| | - Hongchen Wang
- School of Environment & Natural Resources, Renmin University of China, Beijing 100872, China.
| | - Feng Long
- School of Environment & Natural Resources, Renmin University of China, Beijing 100872, China
| | - Lu Qi
- School of Environment & Natural Resources, Renmin University of China, Beijing 100872, China
| | - Haitao Fan
- School of Environment & Natural Resources, Renmin University of China, Beijing 100872, China
| |
Collapse
|
33
|
Olsson AL, Mitzel MR, Tufenkji N. QCM-D for non-destructive real-time assessment of Pseudomonas aeruginosa biofilm attachment to the substratum during biofilm growth. Colloids Surf B Biointerfaces 2015; 136:928-34. [DOI: 10.1016/j.colsurfb.2015.10.032] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 10/02/2015] [Accepted: 10/20/2015] [Indexed: 12/20/2022]
|
34
|
Younes JA, Klappe K, Kok JW, Busscher HJ, Reid G, van der Mei HC. Vaginal epithelial cells regulate membrane adhesiveness to co-ordinate bacterial adhesion. Cell Microbiol 2015; 18:605-14. [PMID: 26477544 DOI: 10.1111/cmi.12537] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 10/05/2015] [Accepted: 10/13/2015] [Indexed: 01/05/2023]
Abstract
Vaginal epithelium is colonized by different bacterial strains and species. The bacterial composition of vaginal biofilms controls the balance between health and disease. Little is known about the relative contribution of the epithelial and bacterial cell surfaces to bacterial adhesion and whether and how adhesion is regulated over cell membrane regions. Here, we show that bacterial adhesion forces with cell membrane regions not located above the nucleus are stronger than with regions above the nucleus both for vaginal pathogens and different commensal and probiotic lactobacillus strains involved in health. Importantly, adhesion force ratios over membrane regions away from and above the nucleus coincided with the ratios between numbers of adhering bacteria over both regions. Bacterial adhesion forces were dramatically decreased by depleting the epithelial cell membrane of cholesterol or sub-membrane cortical actin. Thus, epithelial cells can regulate membrane regions to which bacterial adhesion is discouraged, possibly to protect the nucleus.
Collapse
Affiliation(s)
- Jessica A Younes
- Department of BioMedical Engineering, University of Groningen and University Medical Center Groningen, Antonius Deusinglaan 1, Groningen, 9713-AV, The Netherlands
| | - Karin Klappe
- Department of Cell Biology, University of Groningen and University Medical Center Groningen, Antonius Deusinglaan 1, Groningen, 9713-AV, The Netherlands
| | - Jan Willem Kok
- Department of Cell Biology, University of Groningen and University Medical Center Groningen, Antonius Deusinglaan 1, Groningen, 9713-AV, The Netherlands
| | - Henk J Busscher
- Department of BioMedical Engineering, University of Groningen and University Medical Center Groningen, Antonius Deusinglaan 1, Groningen, 9713-AV, The Netherlands
| | - Gregor Reid
- Human Microbiome and Probiotics, Lawson Health Research Institute, 268 Grosvenor Street, London, Ontario, N6A 4 V2, Canada.,Departments of Microbiology & Immunology and Surgery, The University of Western Ontario, London, Ontario, N6A 5C1, Canada
| | - Henny C van der Mei
- Department of BioMedical Engineering, University of Groningen and University Medical Center Groningen, Antonius Deusinglaan 1, Groningen, 9713-AV, The Netherlands
| |
Collapse
|
35
|
Naz I, Seher S, Perveen I, Saroj DP, Ahmed S. Physiological activities associated with biofilm growth in attached and suspended growth bioreactors under aerobic and anaerobic conditions. ENVIRONMENTAL TECHNOLOGY 2015; 36:1657-1671. [PMID: 25609155 DOI: 10.1080/09593330.2014.1003614] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
This research work evaluated the biofilm succession on stone media and compared the biochemical changes of sludge in attached and suspended biological reactors operated under aerobic and anaerobic conditions. Stones incubated (30±2°C) with activated sludge showed a constant increase in biofilm weight up to the fifth and seventh week time under anaerobic and aerobic conditions, respectively, where after reduction (>80%) the most probable number index of pathogen indicators on ninth week was recorded. Reduction in parameters such as biological oxygen demand (BOD) (47.7%), chemical oxygen demand (COD, 41%), nitrites (60.2%), nitrates (105.5%) and phosphates (58.9%) and increase in dissolved oxygen (176.5%) of sludge were higher in aerobic attached growth reactors as compared with other settings. While, considerable reductions in these values were also observed (BOD, 53.8%; COD, 2.8%; nitrites, 28.6%; nitrates, 31.7%; phosphates, 41.4%) in the suspended growth system under anaerobic conditions. However, higher sulphate removal was observed in suspended (40.9% and 54.9%) as compared with biofilm reactors (28.2% and 29.3%). Six weeks biofilm on the stone media showed maximum physiological activities; thus, the operational conditions should be controlled to keep the biofilm structure similar to six-week-old biofilm, and can be used in fixed biofilm reactors for wastewater treatment.
Collapse
Affiliation(s)
- Iffat Naz
- a Department of Microbiology , Quaid-i-Azam University , Islamabad 45320 , Pakistan
| | | | | | | | | |
Collapse
|
36
|
Friedlander RS, Vogel N, Aizenberg J. Role of Flagella in Adhesion of Escherichia coli to Abiotic Surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:6137-44. [PMID: 25945399 DOI: 10.1021/acs.langmuir.5b00815] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Understanding the interfacial activity of bacteria is of critical importance due to the huge economic and public health implications associated with surface fouling and biofilm formation. The complexity of the process and difficulties of predicting microbial adhesion to novel materials demand study of the properties of specific bacterial surface features and their potential contribution to surface attachment. Here, we examine flagella, cell appendages primarily studied for their cell motility function, to elucidate their potential role in the surface adhesion of Escherichia coli-a model organism and potential pathogen. We use self-assembled monolayers (SAMs) of thiol-bearing molecules on gold films to generate surfaces of varying hydrophobicity, and measure adhesion of purified flagella using quartz crystal microbalance. We show that flagella adhere more extensively and bind more tightly to hydrophobic SAMs than to hydrophilic ones, and we propose a two-step vs a single-step adhesion mechanism that accounts for the observed dissipation and frequency changes for the two types of surfaces, respectively. Subsequently, study of the adhesion of wild-type and flagella knockout cells confirms that flagella improve adhesion to hydrophobic substrates, whereas cells lacking flagella do not show preferred affinity to hydrophobic substrates. Together, these properties bring about an interesting ability of cells with flagella to stabilize emulsions of aqueous culture and dodecane, not observed for cells lacking flagella. This work contributes to our overall understanding of nonspecific bacterial adhesion and confirms that flagella, beyond motility, may play an important role in surface adhesion.
Collapse
Affiliation(s)
- Ronn S Friedlander
- †Harvard-MIT Division of Health Sciences and Technology, Cambridge, Massachusetts 02139, United States
| | | | | |
Collapse
|
37
|
Hotrum NE, de Jong P, Akkerman JC, Fox MB. Pilot scale ultrasound enabled plate heat exchanger – Its design and potential to prevent biofouling. J FOOD ENG 2015. [DOI: 10.1016/j.jfoodeng.2014.11.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
38
|
Lynch F, Tomlinson S, Palombo EA, Harding IH. An epifluorescence-based evaluation of the effects of short-term particle association on the chlorination of surface water bacteria. WATER RESEARCH 2014; 63:199-208. [PMID: 25003212 DOI: 10.1016/j.watres.2014.06.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 06/11/2014] [Accepted: 06/13/2014] [Indexed: 06/03/2023]
Abstract
Investigations into particle-mediated chlorination resistance were undertaken for three different bacteria (Escherichia coli ATCC 25922 and environmental isolates of Pseudomonas fluorescens and Serratia marcescens) and three different surfaces (goethite, environmental particles and surface-modified environmental particles). P. fluorescens demonstrated greater hydrophobicity than both other strains and proved the most adherent bacterium over all substrata investigated. Particle-mediated resistance to chlorination was investigated using short bacteria-particle association times and activity assays that employed sensitive epifluorescent detection. Consistent with adhesive behaviours, the bacterial strain that demonstrated the greatest particle-mediated chlorination resistance was the environmental strain of P. fluorescens. Resistance was observed to vary with both bacteria and particle type, and demonstrated a moderate correlation with adhesion (r(2) ≥ 0.65). The short-term approach employed in our study demonstrates particle-mediated protection without the commonly assumed requirements of extracellular polymeric substances (EPS) or a large particle-based chlorine demand. Consequently, we have linked resistance with adhesion capacities and demonstrated a limit to resistance in the presence of additional particle protective sites (through increased turbidity) which appears to be driven by intra-population variance in bacterial surface characteristics. Finally, we observed important differences between behaviours of environmental versus laboratory-derived bacterial strains and particles, which highlight the importance of employing both approaches in characterising "real world" systems.
Collapse
Affiliation(s)
- Fiona Lynch
- Department of Chemistry and Biotechnology, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn 3122, Australia.
| | - Steven Tomlinson
- Department of Chemistry and Biotechnology, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn 3122, Australia
| | - Enzo A Palombo
- Department of Chemistry and Biotechnology, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn 3122, Australia
| | - Ian H Harding
- Department of Chemistry and Biotechnology, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn 3122, Australia
| |
Collapse
|
39
|
Li J, Busscher HJ, Swartjes JJTM, Chen Y, Harapanahalli AK, Norde W, van der Mei HC, Sjollema J. Residence-time dependent cell wall deformation of different Staphylococcus aureus strains on gold measured using surface-enhanced-fluorescence. SOFT MATTER 2014; 10:7638-7646. [PMID: 25130697 DOI: 10.1039/c4sm00584h] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Bacterial adhesion to surfaces is accompanied by cell wall deformation that may extend to the lipid membrane with an impact on the antimicrobial susceptibility of the organisms. Nanoscale cell wall deformation upon adhesion is difficult to measure, except for Δpbp4 mutants, deficient in peptidoglycan cross-linking. This work explores surface enhanced fluorescence to measure the cell wall deformation of Staphylococci adhering on gold surfaces. Adhesion-related fluorescence enhancement depends on the distance of the bacteria from the surface and the residence-time of the adhering bacteria. A model is forwarded based on the adhesion-related fluorescence enhancement of green-fluorescent microspheres, through which the distance to the surface and cell wall deformation of adhering bacteria can be calculated from their residence-time dependent adhesion-related fluorescence enhancement. The distances between adhering bacteria and a surface, including compression of their extracellular polymeric substance (EPS)-layer, decrease up to 60 min after adhesion, followed by cell wall deformation. Cell wall deformation is independent of the integrity of the EPS-layer and proceeds fastest for a Δpbp4 strain.
Collapse
Affiliation(s)
- Jiuyi Li
- University of Groningen and University Medical Center Groningen, Department of Biomedical Engineering, 9713 AV Groningen, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Bovicin HC5 and nisin reduce Staphylococcus aureus adhesion to polystyrene and change the hydrophobicity profile and Gibbs free energy of adhesion. Int J Food Microbiol 2014; 190:1-8. [PMID: 25173449 DOI: 10.1016/j.ijfoodmicro.2014.08.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 08/01/2014] [Accepted: 08/02/2014] [Indexed: 12/25/2022]
Abstract
Staphylococcus aureus is an opportunistic pathogen often multidrug-resistant that not only causes a variety of human diseases, but also is able to survive on biotic and abiotic surfaces through biofilm communities. The best way to inhibit biofilm establishment is to prevent cell adhesion. In the present study, subinhibitory concentrations of the bacteriocins bovicin HC5 and nisin were tested for their capability to interfere with the adhesion of S. aureus to polystyrene. Subinhibitory dosages of the bacteriocins reduced cell adhesion and this occurred probably due to changes in the hydrophobicity of the bacterial cell and polystyrene surfaces. After treatment with bovicin HC5 and nisin, the surfaces became more hydrophilic and the free energy of adhesion (∆G(adhesion)) between bacteria and the polystyrene surface was unfavorable. The transcriptional level of selected genes was assessed by RT-qPCR approach, revealing that the bacteriocins affected the expression of some important biofilm associated genes (icaD, fnbA, and clfB) and rnaIII, which is involved in the quorum sensing mechanism. The conditioning of food-contact surfaces with bacteriocins can be an innovative and powerful strategy to prevent biofilms in the food industry. The results are relevant for food safety as they indicate that bovicin HC5 and nisin can inhibit bacterial adhesion and consequent biofilm establishment, since cell adhesion precedes biofilm formation.
Collapse
|
41
|
Fang B, Jiang Y, Rotello VM, Nüsslein K, Santore MM. Easy come easy go: surfaces containing immobilized nanoparticles or isolated polycation chains facilitate removal of captured Staphylococcus aureus by retarding bacterial bond maturation. ACS NANO 2014; 8:1180-1190. [PMID: 24422487 DOI: 10.1021/nn405845y] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Adhesion of bacteria is a key step in the functioning of antimicrobial surfaces or certain types of on-line sensors. The subsequent removal of these bacteria, within a ∼ 10-30 min time frame, is equally important but complicated by the tendency of bacterial adhesion to strengthen within minutes of initial capture. This study uses Staphylococcus aureus as a model bacterium to demonstrate the general strategy of clustering adhesive surface functionality (at length scales smaller than the bacteria themselves) on otherwise nonadhesive surfaces to capture and retain bacteria (easy come) while limiting the progressive strengthening of adhesion. The loose attachment facilitates bacteria removal by moderate shearing flow (easy go). This strategy is demonstrated using surfaces containing sparsely and randomly arranged immobilized amine-functionalized nanoparticles or poly-l-lysine chains, about 10 nm in size. The rest of the surface is backfilled with a nonadhesive polyethylene glycol (PEG) brush that, by itself, repels S. aureus. The nanoparticles or polymer chains cluster cationic functionality, providing small regions that attract negatively charged S. aureus cells. Compared with surfaces of nearly uniform cationic character where S. aureus adhesion quickly becomes strong (on a time scale less than 5 min), placement of cationic charge in small clusters retards or prevents processes that increase bacteria adhesion on a time scale of ∼ 30 min, providing "easy go" surfaces.
Collapse
Affiliation(s)
- Bing Fang
- Department of Polymer Science and Engineering, ‡Department of Chemistry, and §Department of Microbiology, University of Massachusetts at Amherst , Amherst, Massachusetts 01003, United States
| | | | | | | | | |
Collapse
|
42
|
Quantification of the interaction between biomaterial surfaces and bacteria by 3-D modeling. Acta Biomater 2014; 10:267-75. [PMID: 24071002 DOI: 10.1016/j.actbio.2013.09.016] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 08/20/2013] [Accepted: 09/09/2013] [Indexed: 12/23/2022]
Abstract
It is general knowledge that bacteria/surface interactions depend on the surface topography. However, this well-known dependence has so far not been included in the modeling efforts. We propose a model for calculating interaction energies between spherical bacteria and arbitrarily structured 3-D surfaces, combining the Derjaguin, Landau, Verwey, Overbeek theory and an extended surface element integration method. The influence of roughness on the interaction (for otherwise constant parameters, e.g. surface chemistry, bacterial hydrophobicity) is quantified, demonstrating that common experimental approaches which consider amplitude parameters of the surface topography but which ignore spacing parameters fail to adequately describe the influence of surface roughness on bacterial adhesion. The statistical roughness profile parameters arithmetic average height (representing an amplitude parameter) and peak density (representing a spacing parameter) both exert a distinct influence on the interaction energy. The influence of peak density on the interaction energy increases with decreasing arithmetic average height and contributes significantly to the total interaction energy with an arithmetic average height below 70 nm. With the aid of the proposed model, different sensitivity ranges of the interaction between rough surfaces and bacteria are identified. On the nanoscale, the spacing parameter of the surface dominates the interaction, whereas on the microscale the amplitude parameter adopts the governing role.
Collapse
|
43
|
Khatoon N, Naz I, Ali MI, Ali N, Jamal A, Hameed A, Ahmed S. Bacterial succession and degradative changes by biofilm on plastic medium for wastewater treatment. J Basic Microbiol 2013; 54:739-49. [PMID: 24115187 DOI: 10.1002/jobm.201300162] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 07/13/2013] [Indexed: 12/14/2022]
Abstract
Biofilms contain a diverse range of microorganisms and their varying extracellular polysaccharides. The present study has revealed biofilm succession associated with degradative effects on plastic (polypropylene) and contaminants in sludge. The wet weight of biofilm significantly (p < 0.05) increased; from 0.23 ± 0.01 to 0.44 ± 0.01 g. Similarly, the dry weight of the biofilm increased from 0.02 to 0.05 g. Significant reduction in pathogens (E. coli and feacal coliforms) by MPN technique (>80%) and in chemical parameters (decrease in COD, BOD5 of 73.32 and 69.94%) representing diminution of organic pollutants. Energy dispersive X-ray spectroscopy (EDS) of plastic revealed carbon and oxygen contents, further surface analysis of plastic by scanning electron microscopy (SEM) revealed emergence of profound bacterial growth on the surface. Fourier transform infrared (FTIR) spectroscopy conforms its biotransformation under aerobic conditions after 8 weeks. New peaks developed at the region 1050 and 969 cm(-1) indicating CO and CC bond formation. Thus plastic with 6 weeks old aerobic biofilm (free of pathogens, max. weight, and OD, efficient COD & BOD removal ability) is suggested to be maintained in fixed biofilm reactors for wastewater treatment.
Collapse
Affiliation(s)
- Nazia Khatoon
- Microbiology Research Laboratory, Department of Microbiology, Quaid-i-Azam University, Islamabad, Pakistan
| | | | | | | | | | | | | |
Collapse
|
44
|
Naz I, Batool SAU, Ali N, Khatoon N, Atiq N, Hameed A, Ahmed S. Monitoring of growth and physiological activities of biofilm during succession on polystyrene from activated sludge under aerobic and anaerobic conditions. ENVIRONMENTAL MONITORING AND ASSESSMENT 2013; 185:6881-6892. [PMID: 23361646 DOI: 10.1007/s10661-013-3072-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Accepted: 01/02/2013] [Indexed: 06/01/2023]
Abstract
The present research work monitored the successive biofilm development and its catabolic role in the degradation of polystyrene (PS). PS material was artificially colonized with biofilm by incubating it with activated sludge under aerobic and anaerobic conditions. Biofilm formation was monitored by gravimetric weight analysis, spectrophotometric absorbance technique, heterotrophic plate count, and scanning electron microscopy under aerobic and anaerobic conditions. The wet weight (1.59 and 1.17 g) and dry weight (0.41 and 0.08 g) of a biofilm showed a significant constant increase under aerobic and anaerobic conditions, respectively, from first till 9 weeks of incubation. Plate count of the selected bacteria (Escherichia coli, Salmonella typhimurium, Shigella dysenteriae, Pseudomonas aeruginosa) considerably declined (90-99 %) in the biofilm after seventh and fifth weeks of incubation under aerobic and anaerobic conditions, respectively, indicating a positive shift from pathogenic to beneficial microbial community. While most probable number index of fecal coliforms and E. coli in the sludge showed more reduction (98 and 99 %) under aerobic as compare to anaerobic conditions (86 and 91 %) after 9 weeks of biofilm formation on PS cubes. Correspondingly, the decreasing levels of chemical oxygen demand and biochemical oxygen demand (up to 73 %) showed signs of sludge digestion. Scanning electron microscope coupled with energy dispersive X-ray spectroscope revealed nature of PS media containing high carbon content. However, biofilm development proved to be involved in the biochemical transformation of the PS medium as indicated by Fourier transform infrared spectroscopy.
Collapse
Affiliation(s)
- Iffat Naz
- Microbiology Research Laboratory, Department of Microbiology, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| | | | | | | | | | | | | |
Collapse
|
45
|
Enhancing antibacterial activity of surface-grafted chitosan with immobilized lysozyme on bioinspired stainless steel substrates. Colloids Surf B Biointerfaces 2013; 106:11-21. [DOI: 10.1016/j.colsurfb.2012.12.048] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 12/15/2012] [Accepted: 12/21/2012] [Indexed: 11/24/2022]
|
46
|
Abstract
The interaction of bacteria with surfaces has important implications in a range of areas, including bioenergy, biofouling, biofilm formation, and the infection of plants and animals. Many of the interactions of bacteria with surfaces produce changes in the expression of genes that influence cell morphology and behavior, including genes essential for motility and surface attachment. Despite the attention that these phenotypes have garnered, the bacterial systems used for sensing and responding to surfaces are still not well understood. An understanding of these mechanisms will guide the development of new classes of materials that inhibit and promote cell growth, and complement studies of the physiology of bacteria in contact with surfaces. Recent studies from a range of fields in science and engineering are poised to guide future investigations in this area. This review summarizes recent studies on bacteria-surface interactions, discusses mechanisms of surface sensing and consequences of cell attachment, provides an overview of surfaces that have been used in bacterial studies, and highlights unanswered questions in this field.
Collapse
Affiliation(s)
- Hannah H. Tuson
- Department of Biochemistry, University of Wisconsin-Madison, Madison,
WI 53706
| | - Douglas B. Weibel
- Department of Biochemistry, University of Wisconsin-Madison, Madison,
WI 53706
- Department of Biomedical Engineering, University of Wisconsin-Madison,
Madison, WI 53706
| |
Collapse
|
47
|
Rizzello L, Cingolani R, Pompa PP. Nanotechnology tools for antibacterial materials. Nanomedicine (Lond) 2013; 8:807-21. [DOI: 10.2217/nnm.13.63] [Citation(s) in RCA: 127] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The understanding of the interactions between biological systems and nanoengineered devices is crucial in several research fields, including tissue engineering, biomechanics, synthetic biology and biomedical devices. This review discusses the current knowledge of the interactions between bacteria and abiotic nanostructured substrates. First, the effects of randomly organized nanoscale topography on bacterial adhesion and persistence are described. Second, the interactions between microorganisms and highly organized/ordered micro- and nano-patterns are discussed. Finally, we survey the most promising approaches for the fabrication of silver polymeric nanocomposites, which have important applications as antimicrobial materials. The advantages, drawbacks and limitations of such nanotechnologies are critically discussed in view of potential future applications.
Collapse
Affiliation(s)
- Loris Rizzello
- Center for Bio-Molecular Nanotechnology, Istituto Italiano di Tecnologia, Via Barsanti, 1-73010 Arnesano (Lecce), Italy
| | - Roberto Cingolani
- Istituto Italiano di Tecnologia, Central Research Laboratories, Via Morego, 30-16136 Genova, Italy
| | - Pier Paolo Pompa
- Center for Bio-Molecular Nanotechnology, Istituto Italiano di Tecnologia, Via Barsanti, 1-73010 Arnesano (Lecce), Italy.
| |
Collapse
|
48
|
Ovchinnikova ES, van der Mei HC, Krom BP, Busscher HJ. Exchange of adsorbed serum proteins during adhesion of Staphylococcus aureus to an abiotic surface and Candida albicans hyphae--an AFM study. Colloids Surf B Biointerfaces 2013; 110:45-50. [PMID: 23707849 DOI: 10.1016/j.colsurfb.2013.04.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2013] [Revised: 03/20/2013] [Accepted: 04/11/2013] [Indexed: 12/31/2022]
Abstract
Staphylococcus aureus and Candida albicans are the second and third most commonly isolated microorganisms in hospital-related-infections, that are often multi-species in nature causing high morbidity and mortality. Here, adhesion forces between a S. aureus strain and abiotic (tissue-culture-polystyrene, TCPS) or partly biotic (TCPS with adhering hyphae of C. albicans) surfaces were investigated in presence of fetal-bovine-serum or individual serum proteins and related with staphylococcal adhesion. Atomic-force-microscopy was used to measure adhesion forces between S. aureus and the abiotic and biotic surfaces. Adsorption of individual serum proteins like albumin and apo-transferrin to abiotic TCPS surfaces during 60min, impeded development of strong adhesion forces as compared to fibronectin, while 60min adsorption of proteins from fetal-bovine-serum yielded a decrease in adhesion force from -5.7nN in phosphate-buffered-saline to -0.6nN. Adsorption of albumin and apo-transferrin also decreased staphylococcal adhesion forces to hyphae as compared with fibronectin. During 60min exposure to fetal-bovine-serum however, initial (5min protein adsorption) staphylococcal adhesion forces were low (-1.6nN), but strong adhesion forces of around -5.5nN were restored within 60min. This suggests for the first time that in whole fetal-bovine-serum exchange of non-adhesive proteins by fibronectin occurs on biotic C. albicans hyphal surfaces. No evidence was found for such protein exchange on abiotic TCPS surfaces. Staphylococcal adhesion of abiotic and biotic surfaces varied in line with the adhesion forces and was low on TCPS in presence of fetal-bovine-serum. On partly biotic TCPS, staphylococci aggregated in presence of fetal-bovine-serum around adhering C. albicans hyphae.
Collapse
Affiliation(s)
- Ekaterina S Ovchinnikova
- University of Groningen and University Medical Center Groningen, Department of Biomedical Engineering, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | | | | | | |
Collapse
|
49
|
Ovchinnikova ES, Krom BP, Harapanahalli AK, Busscher HJ, van der Mei HC. Surface thermodynamic and adhesion force evaluation of the role of chitin-binding protein in the physical interaction between Pseudomonas aeruginosa and Candida albicans. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:4823-4829. [PMID: 23509956 DOI: 10.1021/la400554g] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Candida albicans and Pseudomonas aeruginosa are able to form pathogenic polymicrobial communities. P. aeruginosa colonizes and kills hyphae but is unable to attach to yeast. It is unknown why the interaction of P. aeruginosa is different with yeast than with hyphae. Here we aim to evaluate the role of P. aeruginosa chitin-binding protein (CbpD) in its physical interaction with C. albicans hyphae or yeast, based on surface thermodynamic and atomic force microscopic analyses. A P. aeruginosa mutant lacking CbpD was unable to express strong adhesion forces with hyphae (-2.9 nN) as compared with the parent strain P. aeruginosa PAO1 (-4.8 nN) and showed less adhesion to hyphae. Also blocking of CbpD using N-acetyl-glucosamine yielded a lower adhesion force (-4.3 nN) with hyphae. Strong adhesion forces were restored after complementing the expression of CbpD in P. aeruginosa PAO1 ΔcbpD yielding an adhesion force of -5.1 nN. These observations were confirmed with microscopic evaluation of adhesion tests. Regardless of the absence or presence of CbpD on the bacterial cell surfaces, or their blocking, P. aeruginosa experienced favorable thermodynamic conditions for adhesion with hyphae, which were absent with yeast. In addition, adhesion forces with yeast were less than 0.5 nN in all cases. Concluding, CbpD in P. aeruginosa is responsible for strong physical interactions with C. albicans hyphae. The development of this interaction requires time due to the fact that CbpDs have to invade the outermost mannoprotein layer on the hyphal cell surfaces. In order to do this, thermodynamic conditions at the outermost cell surfaces have to be favorable.
Collapse
Affiliation(s)
- Ekaterina S Ovchinnikova
- University of Groningen and University Medical Center Groningen, Department of Biomedical Engineering, Groningen, The Netherlands
| | | | | | | | | |
Collapse
|
50
|
Goode KR, Asteriadou K, Robbins PT, Fryer PJ. Fouling and Cleaning Studies in the Food and Beverage Industry Classified by Cleaning Type. Compr Rev Food Sci Food Saf 2013. [DOI: 10.1111/1541-4337.12000] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Kylee R. Goode
- School of Chemical Engineering; Univ. of Birmingham; Edgbaston; Birmingham; B15 2TT; U.K
| | - Konstantia Asteriadou
- School of Chemical Engineering; Univ. of Birmingham; Edgbaston; Birmingham; B15 2TT; U.K
| | - Phillip T. Robbins
- School of Chemical Engineering; Univ. of Birmingham; Edgbaston; Birmingham; B15 2TT; U.K
| | - Peter J. Fryer
- School of Chemical Engineering; Univ. of Birmingham; Edgbaston; Birmingham; B15 2TT; U.K
| |
Collapse
|