1
|
Guzmán E, Martínez-Pedrero F, Calero C, Maestro A, Ortega F, Rubio RG. A broad perspective to particle-laden fluid interfaces systems: from chemically homogeneous particles to active colloids. Adv Colloid Interface Sci 2022; 302:102620. [PMID: 35259565 DOI: 10.1016/j.cis.2022.102620] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 01/12/2023]
Abstract
Particles adsorbed to fluid interfaces are ubiquitous in industry, nature or life. The wide range of properties arising from the assembly of particles at fluid interface has stimulated an intense research activity on shed light to the most fundamental physico-chemical aspects of these systems. These include the mechanisms driving the equilibration of the interfacial layers, trapping energy, specific inter-particle interactions and the response of the particle-laden interface to mechanical perturbations and flows. The understanding of the physico-chemistry of particle-laden interfaces becomes essential for taking advantage of the particle capacity to stabilize interfaces for the preparation of different dispersed systems (emulsions, foams or colloidosomes) and the fabrication of new reconfigurable interface-dominated devices. This review presents a detailed overview of the physico-chemical aspects that determine the behavior of particles trapped at fluid interfaces. This has been combined with some examples of real and potential applications of these systems in technological and industrial fields. It is expected that this information can provide a general perspective of the topic that can be exploited for researchers and technologist non-specialized in the study of particle-laden interfaces, or for experienced researcher seeking new questions to solve.
Collapse
Affiliation(s)
- Eduardo Guzmán
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain; Unidad de Materia Condensada, Instituto Pluridisciplinar, Universidad Complutense de Madrid, Paseo Juan XXIII 1, 28040 Madrid, Spain.
| | - Fernando Martínez-Pedrero
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain.
| | - Carles Calero
- Departament de Física de la Matèria Condensada, Facultat de Física, Universitat de Barcelona, Avenida Diagonal 647, 08028 Barcelona, Spain; Institut de Nanociència i Nanotecnologia, IN2UB, Universitat de Barcelona, Avenida, Diagonal 647, 08028 Barcelona, Spain
| | - Armando Maestro
- Centro de Fı́sica de Materiales (CSIC, UPV/EHU)-Materials Physics Center MPC, Paseo Manuel de Lardizabal 5, 20018 San Sebastián, Spain; IKERBASQUE-Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
| | - Francisco Ortega
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain; Unidad de Materia Condensada, Instituto Pluridisciplinar, Universidad Complutense de Madrid, Paseo Juan XXIII 1, 28040 Madrid, Spain
| | - Ramón G Rubio
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain; Unidad de Materia Condensada, Instituto Pluridisciplinar, Universidad Complutense de Madrid, Paseo Juan XXIII 1, 28040 Madrid, Spain.
| |
Collapse
|
2
|
Gonçalves M, Kim JY, Kim Y, Rubab N, Jung N, Asai T, Hong S, Weon BM. Droplet evaporation on porous fabric materials. Sci Rep 2022; 12:1087. [PMID: 35058506 PMCID: PMC8776847 DOI: 10.1038/s41598-022-04877-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 12/30/2021] [Indexed: 11/08/2022] Open
Abstract
Droplet evaporation on porous materials is a complex dynamic that occurs with spontaneous liquid imbibition through pores by capillary action. Here, we explore water dynamics on a porous fabric substrate with in-situ observations of X-ray and optical imaging techniques. We show how spreading and wicking lead to water imbibition through a porous substrate, enhancing the wetted surface area and consequently promoting evaporation. These sequential dynamics offer a framework to understand the alterations in the evaporation due to porosity for the particular case of fabric materials and a clue of how face masks interact with respiratory droplets.
Collapse
Affiliation(s)
- Marta Gonçalves
- Soft Matter Physics Laboratory, School of Advanced Materials Science and Engineering, SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, 16419, South Korea
| | - Jin Young Kim
- Research Center for Advanced Materials Technology, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Yeseul Kim
- Soft Matter Physics Laboratory, School of Advanced Materials Science and Engineering, SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, 16419, South Korea
| | - Najaf Rubab
- Soft Matter Physics Laboratory, School of Advanced Materials Science and Engineering, SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, 16419, South Korea
| | - Narina Jung
- Korea Institute for Advanced Study, Seoul, 02455, South Korea
| | - Takeshi Asai
- Faculty of Health and Sports Science, University of Tsukuba, Tsukuba, 305 8574, Japan
| | - Sungchan Hong
- Faculty of Health and Sports Science, University of Tsukuba, Tsukuba, 305 8574, Japan.
| | - Byung Mook Weon
- Soft Matter Physics Laboratory, School of Advanced Materials Science and Engineering, SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, 16419, South Korea.
- Research Center for Advanced Materials Technology, Sungkyunkwan University, Suwon, 16419, South Korea.
| |
Collapse
|
3
|
Ji X, Wang X, Zhang Y, Zang D. Interfacial viscoelasticity and jamming of colloidal particles at fluid-fluid interfaces: a review. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2020; 83:126601. [PMID: 32998118 DOI: 10.1088/1361-6633/abbcd8] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Colloidal particles can be adsorbed at fluid-fluid interfaces, a phenomenon frequently observed in particle-stabilized foams, Pickering emulsions, and bijels. Particles adsorbed at interfaces exhibit unique physical and chemical behaviors, which affect the mechanical properties of the interface. Therefore, interfacial colloidal particles are of interest in terms of both fundamental and applied research. In this paper, we review studies on the adsorption of colloidal particles at fluid-fluid interfaces, from both thermodynamic and mechanical points of view, and discuss the differences as compared with surfactants and polymers. The unique particle interactions induced by the interfaces as well as the particle dynamics including lateral diffusion and contact line relaxation will be presented. We focus on the rearrangement of the particles and the resultant interfacial viscoelasticity. Particular emphasis will be given to the effects of particle shape, size, and surface hydrophobicity on the interfacial particle assembly and the mechanical properties of the obtained particle layer. We will also summarize recent advances in interfacial jamming behavior caused by adsorption of particles at interfaces. The buckling and cracking behavior of particle layers will be discussed from a mechanical perspective. Finally, we suggest several potential directions for future research in this area.
Collapse
Affiliation(s)
- Xiaoliang Ji
- Soft Matter & Complex Fluids Group, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an, 710129, People's Republic of China
| | - Xiaolu Wang
- Institute of Welding and Surface Engineering Technology, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, People's Republic of China
| | - Yongjian Zhang
- Shaanxi Key Laboratory of Surface Engineering and Remanufacturing, Xi'an University, Xi'an 710065, People's Republic of China
| | - Duyang Zang
- Soft Matter & Complex Fluids Group, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an, 710129, People's Republic of China
| |
Collapse
|
4
|
Fu W, Zhang W. Measurement of the surface hydrophobicity of engineered nanoparticles using an atomic force microscope. Phys Chem Chem Phys 2018; 20:24434-24443. [DOI: 10.1039/c8cp04676j] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A scanning probe method based on atomic force microscopy (AFM) was used to probe the nanoscale hydrophobicity of nanomaterials in liquid environments.
Collapse
Affiliation(s)
- Wanyi Fu
- John A. Reif, Jr. Department of Civil and Environmental Engineering
- New Jersey Institute of Technology
- Newark
- USA
| | - Wen Zhang
- John A. Reif, Jr. Department of Civil and Environmental Engineering
- New Jersey Institute of Technology
- Newark
- USA
| |
Collapse
|
5
|
Bollhorst T, Rezwan K, Maas M. Colloidal capsules: nano- and microcapsules with colloidal particle shells. Chem Soc Rev 2017; 46:2091-2126. [DOI: 10.1039/c6cs00632a] [Citation(s) in RCA: 193] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This review provides a comprehensive overview of the synthesis strategies and the progress made so far of bringing colloidal capsules closer to technical and biomedical applications.
Collapse
Affiliation(s)
- Tobias Bollhorst
- Advanced Ceramics
- Department of Production Engineering & MAPEX Center for Materials and Processes
- University of Bremen
- 28359 Bremen
- Germany
| | - Kurosch Rezwan
- Advanced Ceramics
- Department of Production Engineering & MAPEX Center for Materials and Processes
- University of Bremen
- 28359 Bremen
- Germany
| | - Michael Maas
- Advanced Ceramics
- Department of Production Engineering & MAPEX Center for Materials and Processes
- University of Bremen
- 28359 Bremen
- Germany
| |
Collapse
|
6
|
Elbers NA, van der Hoeven JES, de Winter DAM, Schneijdenberg CTWM, van der Linden MN, Filion L, van Blaaderen A. Repulsive van der Waals forces enable Pickering emulsions with non-touching colloids. SOFT MATTER 2016; 12:7265-7272. [PMID: 27406917 DOI: 10.1039/c6sm01294a] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Emulsions stabilized by solid particles, called Pickering emulsions, offer promising applications in drug delivery, cosmetics, food science and the manufacturing of porous materials. This potential stems from their high stability against coalescence and 'surfactant-free' nature. Generally, Pickering emulsions require that the solid particles are wetted by both phases and as a result, the adsorption free energy is often large with respect to the thermal energy (kBT). Here we provide the first experimental proof for an alternative scenario: non-touching (effectively non-wetting), charged, particles that are completely immersed in the oil phase through a balance of charge induced attractions and repulsions caused by van der Waals forces. These particles nonetheless stabilize the emulsion. The main advantage of this novel adsorption mechanism is that these particles can easily be detached from the interface simply by adding salt. This not only makes the finding fundamentally of interest, but also enables a triggered de-emulsification and particle recovery, which is useful in fields like enhanced oil recovery, heterogeneous catalysis, and emulsion polymerization.
Collapse
Affiliation(s)
- Nina A Elbers
- Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
7
|
Zanini M, Isa L. Particle contact angles at fluid interfaces: pushing the boundary beyond hard uniform spherical colloids. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2016; 28:313002. [PMID: 27299800 DOI: 10.1088/0953-8984/28/31/313002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Micro and nanoparticles at fluid interfaces have been attracting increasing interest in the last few decades as building blocks for materials, as mechanical and structural probes for complex interfaces and as models for two-dimensional systems. The three-phase contact angle enters practically all aspects of the particle behavior at the interface: its thermodynamics (binding energy to the interface), dynamics (motion and drag at the interface) and interactions with the interface (adsorption and wetting). Moreover, many interactions among particles at the interface also strongly depend on the contact angle. These concepts have been extensively discussed for non-deformable, homogeneous and mostly spherical particles, but recent progress in particle synthesis and fabrication has instead moved in the direction of producing more complex micro and nanoscale objects, which can be responsive, deformable, heterogenous and/or anisotropic in shape, surface chemistry and material properties. These new particles have a much greater potential for applications and new science, and the study of their behavior at interfaces has only very recently started. In this paper, we critically review the current state of the art of the experimental methods available to measure the contact angle of micro and nanoparticles at fluid interfaces, indicating their strengths and limitations. We then comment on new particle systems that are currently attracting increasing interest in relation to their adsorption and assembly at fluid interfaces and discuss if and which ones of the current techniques are suited to investigate their properties at interfaces. Based on this discussion, we will finally try to indicate a direction in which new experimental methods should develop in the future to tackle the new challenges posed by the novel types of particles that more and more often are used at interfaces.
Collapse
Affiliation(s)
- Michele Zanini
- Department of Materials, Laboratory for Interfaces, Soft matter and Assembly, ETH Zurich, Vladimir-Prelog-Weg 5, 8093 Zurich, Switzerland
| | | |
Collapse
|
8
|
Cho K, Hwang IG, Kim Y, Lim SJ, Lim J, Kim JH, Gim B, Weon BM. Low internal pressure in femtoliter water capillary bridges reduces evaporation rates. Sci Rep 2016; 6:22232. [PMID: 26928329 PMCID: PMC4772007 DOI: 10.1038/srep22232] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 02/08/2016] [Indexed: 11/23/2022] Open
Abstract
Capillary bridges are usually formed by a small liquid volume in a confined space between two solid surfaces. They can have a lower internal pressure than the surrounding pressure for volumes of the order of femtoliters. Femtoliter capillary bridges with relatively rapid evaporation rates are difficult to explore experimentally. To understand in detail the evaporation of femtoliter capillary bridges, we present a feasible experimental method to directly visualize how water bridges evaporate between a microsphere and a flat substrate in still air using transmission X-ray microscopy. Precise measurements of evaporation rates for water bridges show that lower water pressure than surrounding pressure can significantly decrease evaporation through the suppression of vapor diffusion. This finding provides insight into the evaporation of ultrasmall capillary bridges.
Collapse
Affiliation(s)
- Kun Cho
- Soft Matter Physics Laboratory, School of Advanced Materials Science and Engineering, SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 440-746, Korea
| | - In Gyu Hwang
- Soft Matter Physics Laboratory, School of Advanced Materials Science and Engineering, SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 440-746, Korea
| | - Yeseul Kim
- Soft Matter Physics Laboratory, School of Advanced Materials Science and Engineering, SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 440-746, Korea
| | - Su Jin Lim
- Soft Matter Physics Laboratory, School of Advanced Materials Science and Engineering, SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 440-746, Korea
| | - Jun Lim
- Beamline Division, Pohang Light Source, Hyoja, Pohang, Kyung-buk, 790-784, Korea
| | - Joon Heon Kim
- Advanced Photonics Research Institute, Gwangju Institute of Science and Technology (GIST), Gwangju, 500-712, Korea
| | - Bopil Gim
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 305-701, Korea
| | - Byung Mook Weon
- Soft Matter Physics Laboratory, School of Advanced Materials Science and Engineering, SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 440-746, Korea
| |
Collapse
|
9
|
Kim JY, Cho K, Ryu SA, Kim SY, Weon BM. Crack formation and prevention in colloidal drops. Sci Rep 2015; 5:13166. [PMID: 26279317 PMCID: PMC4538394 DOI: 10.1038/srep13166] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 06/10/2015] [Indexed: 11/24/2022] Open
Abstract
Crack formation is a frequent result of residual stress release from colloidal films made by the evaporation of colloidal droplets containing nanoparticles. Crack prevention is a significant task in industrial applications such as painting and inkjet printing with colloidal nanoparticles. Here, we illustrate how colloidal drops evaporate and how crack generation is dependent on the particle size and initial volume fraction, through direct visualization of the individual colloids with confocal laser microscopy. To prevent crack formation, we suggest use of a versatile method to control the colloid-polymer interactions by mixing a nonadsorbing polymer with the colloidal suspension, which is known to drive gelation of the particles with short-range attraction. Gelation-driven crack prevention is a feasible and simple method to obtain crack-free, uniform coatings through drying-mediated assembly of colloidal nanoparticles.
Collapse
Affiliation(s)
- Jin Young Kim
- Soft Matter Physics Laboratory, School of Advanced Materials Science and Engineering, SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 440-746, Korea
| | - Kun Cho
- Soft Matter Physics Laboratory, School of Advanced Materials Science and Engineering, SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 440-746, Korea
| | - Seul-A Ryu
- Soft Matter Physics Laboratory, School of Advanced Materials Science and Engineering, SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 440-746, Korea
| | - So Youn Kim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 689-798, Korea
| | - Byung Mook Weon
- Soft Matter Physics Laboratory, School of Advanced Materials Science and Engineering, SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 440-746, Korea
| |
Collapse
|
10
|
Gharabaghi M, Aghazadeh S. A review of the role of wetting and spreading phenomena on the flotation practice. Curr Opin Colloid Interface Sci 2014. [DOI: 10.1016/j.cocis.2014.07.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
11
|
Park SJ, Weon BM, Lee JS, Lee J, Kim J, Je JH. Visualization of asymmetric wetting ridges on soft solids with X-ray microscopy. Nat Commun 2014; 5:4369. [PMID: 25007777 PMCID: PMC4104447 DOI: 10.1038/ncomms5369] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 06/10/2014] [Indexed: 12/22/2022] Open
Abstract
One of the most questionable issues in wetting is the force balance that includes the vertical component of liquid surface tension. On soft solids, the vertical component leads to a microscopic protrusion of the contact line, that is, a 'wetting ridge'. The wetting principle determining the tip geometry of the ridge is at the heart of the issues over the past half century. Here we reveal a universal wetting principle from the ridge tips directly visualized with high spatio-temporal resolution of X-ray microscopy. We find that the cusp of the ridge is bent with an asymmetric tip, whose geometry is invariant during ridge growth or by surface softness. This singular asymmetry is deduced by linking the macroscopic and microscopic contact angles to Young and Neuman laws, respectively. Our finding shows that this dual-scale approach would be contributable to a general framework in elastowetting, and give hints to issues in cell-substrate interaction and elasto-capillary problems.
Collapse
Affiliation(s)
- Su Ji Park
- X-ray Imaging Center, Department of Materials Science and Engineering, Pohang University of Science and Technology, San 31, Hyoja-dong, Pohang 790-784, South Korea
| | - Byung Mook Weon
- School of Advanced Materials Science and Engineering, SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 440-746, South Korea
| | - Ji San Lee
- X-ray Imaging Center, Department of Materials Science and Engineering, Pohang University of Science and Technology, San 31, Hyoja-dong, Pohang 790-784, South Korea
| | - Junho Lee
- X-ray Imaging Center, Department of Materials Science and Engineering, Pohang University of Science and Technology, San 31, Hyoja-dong, Pohang 790-784, South Korea
| | - Jinkyung Kim
- X-ray Imaging Center, Department of Materials Science and Engineering, Pohang University of Science and Technology, San 31, Hyoja-dong, Pohang 790-784, South Korea
| | - Jung Ho Je
- X-ray Imaging Center, Department of Materials Science and Engineering, Pohang University of Science and Technology, San 31, Hyoja-dong, Pohang 790-784, South Korea
| |
Collapse
|
12
|
Jung JW, Jeon HM, Pyo J, Lim JH, Weon BM, Kohmura Y, Ishikawa T, Je JH. Four-dimensional visualization of rising microbubbles. Sci Rep 2014; 4:5083. [PMID: 24866552 PMCID: PMC4035580 DOI: 10.1038/srep05083] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 05/07/2014] [Indexed: 11/09/2022] Open
Abstract
Four-dimensional imaging, which indicates imaging in three spatial dimensions as a function of time, provides useful evidence to investigate the interactions of rising bubbles. However, this has been largely unexplored for microbubbles, mostly due to problems associated with strong light scattering and shallow depth of field in optical imaging. Here, tracking x-ray microtomography is used to visualize rising microbubbles in four dimensions. Bubbles are tracked by moving the cell to account for their rise velocity. The sizes, shapes, time-dependent positions, and velocities of individual rising microbubbles are clearly identified, despite substantial overlaps between bubbles in the field of view. Our tracking x-ray microtomography affords opportunities for understanding bubble-bubble (or particle) interactions at microscales - important in various fields such as microfluidics, biomechanics, and floatation.
Collapse
Affiliation(s)
- Ji Won Jung
- X-ray Imaging Center, Department of Materials Science and Engineering, Pohang University of Science and Technology, San 31, Hyoja-dong, Pohang 790-784, Korea
| | - Hyung Min Jeon
- X-ray Imaging Center, Department of Materials Science and Engineering, Pohang University of Science and Technology, San 31, Hyoja-dong, Pohang 790-784, Korea
| | - Jaeyeon Pyo
- X-ray Imaging Center, Department of Materials Science and Engineering, Pohang University of Science and Technology, San 31, Hyoja-dong, Pohang 790-784, Korea
| | - Jae-Hong Lim
- Pohang Accelerator Laboratory, San 31, Hyoja-dong, Pohang 790-784, Korea
| | - Byung Mook Weon
- School of Advanced Materials Science and Engineering, SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon 440-746, Korea
| | - Yoshiki Kohmura
- RIKEN/SPring-8, 1-1-1 Kouto, Mikazuki-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Tetsuya Ishikawa
- RIKEN/SPring-8, 1-1-1 Kouto, Mikazuki-cho, Sayo-gun, Hyogo 679-5148, Japan
| | - Jung Ho Je
- 1] X-ray Imaging Center, Department of Materials Science and Engineering, Pohang University of Science and Technology, San 31, Hyoja-dong, Pohang 790-784, Korea [2] RIKEN/SPring-8, 1-1-1 Kouto, Mikazuki-cho, Sayo-gun, Hyogo 679-5148, Japan
| |
Collapse
|
13
|
Abstract
Numerous cell types have shown a remarkable ability to detect and move along gradients in stiffness of an underlying substrate--a process known as durotaxis. The mechanisms underlying durotaxis are still unresolved, but generally believed to involve active sensing and locomotion. Here, we show that simple liquid droplets also undergo durotaxis. By modulating substrate stiffness, we obtain fine control of droplet position on soft, flat substrates. Unlike other control mechanisms, droplet durotaxis works without imposing chemical, thermal, electrical, or topographical gradients. We show that droplet durotaxis can be used to create large-scale droplet patterns and is potentially useful for many applications, such as microfluidics, thermal control, and microfabrication.
Collapse
|
14
|
Thiruvengadathan R, Korampally V, Ghosh A, Chanda N, Gangopadhyay K, Gangopadhyay S. Nanomaterial processing using self-assembly-bottom-up chemical and biological approaches. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2013; 76:066501. [PMID: 23722189 DOI: 10.1088/0034-4885/76/6/066501] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Nanotechnology is touted as the next logical sequence in technological evolution. This has led to a substantial surge in research activities pertaining to the development and fundamental understanding of processes and assembly at the nanoscale. Both top-down and bottom-up fabrication approaches may be used to realize a range of well-defined nanostructured materials with desirable physical and chemical attributes. Among these, the bottom-up self-assembly process offers the most realistic solution toward the fabrication of next-generation functional materials and devices. Here, we present a comprehensive review on the physical basis behind self-assembly and the processes reported in recent years to direct the assembly of nanoscale functional blocks into hierarchically ordered structures. This paper emphasizes assembly in the synthetic domain as well in the biological domain, underscoring the importance of biomimetic approaches toward novel materials. In particular, two important classes of directed self-assembly, namely, (i) self-assembly among nanoparticle-polymer systems and (ii) external field-guided assembly are highlighted. The spontaneous self-assembling behavior observed in nature that leads to complex, multifunctional, hierarchical structures within biological systems is also discussed in this review. Recent research undertaken to synthesize hierarchically assembled functional materials have underscored the need as well as the benefits harvested in synergistically combining top-down fabrication methods with bottom-up self-assembly.
Collapse
|
15
|
Weon BM, Je JH. Self-pinning by colloids confined at a contact line. PHYSICAL REVIEW LETTERS 2013; 110:028303. [PMID: 23383946 DOI: 10.1103/physrevlett.110.028303] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Indexed: 06/01/2023]
Abstract
Colloidal particles suspended in a fluid usually inhibit complete wetting of the fluid on a solid surface and cause pinning of the contact line, known as self-pinning. We show differences in spreading and drying behaviors of pure and colloidal droplets using optical and confocal imaging methods. These differences come from spreading inhibition by colloids confined at a contact line. We propose a self-pinning mechanism based on spreading inhibition by colloids. We find a good agreement between the mechanism and the experimental result taken by directly tracking individual colloids near the contact lines of evaporating colloidal droplets.
Collapse
Affiliation(s)
- Byung Mook Weon
- X-ray Imaging Center, Department of Materials Science and Engineering, Pohang University of Science and Technology, San 31, Hyoja-dong, Pohang 790-784, Korea.
| | | |
Collapse
|
16
|
Weon BM, Je JH. Fingering inside the coffee ring. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2013; 87:013003. [PMID: 23410422 DOI: 10.1103/physreve.87.013003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Revised: 11/13/2012] [Indexed: 06/01/2023]
Abstract
Colloidal droplets including micro- and nanoparticles generally leave a ringlike stain, called the "coffee ring," after evaporation. We show that fingering emerges during evaporation inside the coffee ring, resulting from a bidispersed colloidal mixture of micro- and nanoparticles. Microscopic observations suggest that finger formation is driven by competition between the coffee-ring and Marangoni effects, especially when the inward Marangoni flow is overwhelmed by the outward coffee-ring flow. This finding could help to understand the variety of the final deposition patterns of colloidal droplets.
Collapse
Affiliation(s)
- Byung Mook Weon
- X-ray Imaging Center, Department of Materials Science and Engineering, Pohang University of Science and Technology, San 31, Hyoja-dong, Pohang 790-784, Korea.
| | | |
Collapse
|