1
|
He W, Kirmizialtin S. Mechanism of Cationic Lipid Induced DNA Condensation: Lipid-DNA Coordination and Divalent Cation Charge Fluctuations. Biomacromolecules 2024; 25:4819-4830. [PMID: 39011747 PMCID: PMC11323003 DOI: 10.1021/acs.biomac.4c00192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 06/30/2024] [Accepted: 07/01/2024] [Indexed: 07/17/2024]
Abstract
The condensation of nucleic acids by lipids is a widespread phenomenon in biology with crucial implications for drug delivery. However, the mechanisms of DNA assembly in lipid bilayers remain insufficiently understood due to challenges in measuring and assessing each component's contribution in the lipid-DNA-cation system. This study uses all-atom molecular dynamics simulations to investigate DNA condensation in cationic lipid bilayers. Our exhaustive exploration of the thermodynamic factors reveals unique roles for phospholipid head groups and cations. We observed that bridging cations between lipid and DNA drastically reduce charges, while mobile magnesium cations "ping-ponging" between double strands create charge fluctuations. While the first factor stabilizes the DNA-lipid complex, the latter creates attractive forces to induce the spontaneous condensation of DNAs. This novel mechanism not only sheds light on the current data regarding cationic lipid-induced DNA condensation but also provides potential design strategies for creating efficient gene delivery vectors for drug delivery.
Collapse
Affiliation(s)
- Weiwei He
- Chemistry
Program, Science Division, New York University
Abu Dhabi, Abu Dhabi, United Arab Emirates
- Department
of Chemistry, New York University, New York, New York 10003, United States
| | - Serdal Kirmizialtin
- Chemistry
Program, Science Division, New York University
Abu Dhabi, Abu Dhabi, United Arab Emirates
- Department
of Chemistry, New York University, New York, New York 10003, United States
| |
Collapse
|
2
|
Sáringer S, Terjéki G, Varga Á, Maléth J, Szilágyi I. Optimization of Interfacial Properties Improved the Stability and Activity of the Catalase Enzyme Immobilized on Plastic Nanobeads. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:16338-16348. [PMID: 39066719 PMCID: PMC11308775 DOI: 10.1021/acs.langmuir.4c01508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/23/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024]
Abstract
The immobilization of catalase (CAT), a crucial oxidoreductase enzyme involved in quenching reactive oxygen species, on colloids and nanoparticles presents a promising strategy to improve dispersion and storage stability while maintaining its activity. Here, the immobilization of CAT onto polymeric nanoparticles (positively (AL) or negatively (SL) charged) was implemented directly (AL) or via surface functionalization (SL) with water-soluble chitosan derivatives (glycol chitosan (GC) and methyl glycol chitosan (MGC)). The interfacial properties were optimized to obtain highly stable AL-CAT, SL-GC-CAT, and SL-MGC-CAT dispersions, and confocal microscopy confirmed the presence of CAT in the composites. Assessment of hydrogen peroxide decomposition ability revealed that applying chitosan derivatives in the immobilization process not only enhanced colloidal stability but also augmented the activity and reusability of CAT. In particular, the use of MGC has led to significant advances, indicating its potential for industrial and biomedical applications. Overall, the findings highlight the advantages of using chitosan derivatives in CAT immobilization processes to maintain the stability and activity of the enzyme as well as provide important data for the development of processable enzyme-based nanoparticle systems to combat reactive oxygen species.
Collapse
Affiliation(s)
- Szilárd Sáringer
- MTA-SZTE
Lendület Biocolloids Research Group, Interdisciplinary Excellence
Center, Department of Physical Chemistry and Materials Science, University of Szeged, H-6720 Szeged, Hungary
| | - Gergő Terjéki
- MTA-SZTE
Lendület Biocolloids Research Group, Interdisciplinary Excellence
Center, Department of Physical Chemistry and Materials Science, University of Szeged, H-6720 Szeged, Hungary
| | - Árpád Varga
- MTA-SZTE
Lendület Epithelial Cell Signaling and Secretion Research Group,
Interdisciplinary Excellence Centre, University
of Szeged, H-6720 Szeged, Hungary
| | - József Maléth
- MTA-SZTE
Lendület Epithelial Cell Signaling and Secretion Research Group,
Interdisciplinary Excellence Centre, University
of Szeged, H-6720 Szeged, Hungary
| | - István Szilágyi
- MTA-SZTE
Lendület Biocolloids Research Group, Interdisciplinary Excellence
Center, Department of Physical Chemistry and Materials Science, University of Szeged, H-6720 Szeged, Hungary
| |
Collapse
|
3
|
Maldonado-Valderrama J, Yang Y, Jiménez-Guerra M, del Castillo-Santaella T, Ramos J, Martín-Molina A. Complexation of DNA with Thermoresponsive Charged Microgels: Role of Swelling State and Electrostatics. Gels 2022; 8:184. [PMID: 35323297 PMCID: PMC8955517 DOI: 10.3390/gels8030184] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/16/2022] [Accepted: 03/14/2022] [Indexed: 11/17/2022] Open
Abstract
Micro- and nanogels are being increasingly used to encapsulate bioactive compounds. Their soft structure allows large loading capacity while their stimuli responsiveness makes them extremely versatile. In this work, the complexation of DNA with thermoresponsive microgels is presented. To this end, PEGylated charged microgels based on poly-N-isopropylacrylamide have been synthesized, allowing one to explore the electrostatics of the complexation. Cationic microgels complexate spontaneously by electrostatic attraction to oppositely charged DNA as demonstrated by electrophoretic mobility of the complexes. Then, Langmuir monolayers reveal an increased interaction of DNA with swollen microgels (20 °C). Anionic microgels require the presence of multivalent cations (Ca2+) to promote the complexation, overcoming the electrostatic repulsion with negatively charged DNA. Then again, Langmuir monolayers evidence their complexation at the surface. However, the presence of Ca2+ seems to induce profound changes in the interaction and surface conformation of anionic microgels. These alterations are further explored by measuring adsorbed films with the pendant drop technique. Conformational changes induced by Ca2+ on the structure of the microgel can ultimately affect the complexation with DNA and should be considered in the design. The combination of microstructural and surface properties for microgels offers a new perspective into complexation of DNA with soft particles with biomedical applications.
Collapse
Affiliation(s)
- Julia Maldonado-Valderrama
- Departamento de Física Aplicada, Universidad de Granada, Campus de Fuentenueva sn, 18071 Granada, Granada, Spain; (J.M.-V.); (Y.Y.); (M.J.-G.); (T.d.C.-S.)
- Excellence Research Unit “Modelling Nature” (MNat), Universidad de Granada, 18071 Granada, Granada, Spain
| | - Yan Yang
- Departamento de Física Aplicada, Universidad de Granada, Campus de Fuentenueva sn, 18071 Granada, Granada, Spain; (J.M.-V.); (Y.Y.); (M.J.-G.); (T.d.C.-S.)
| | - Maykel Jiménez-Guerra
- Departamento de Física Aplicada, Universidad de Granada, Campus de Fuentenueva sn, 18071 Granada, Granada, Spain; (J.M.-V.); (Y.Y.); (M.J.-G.); (T.d.C.-S.)
| | - Teresa del Castillo-Santaella
- Departamento de Física Aplicada, Universidad de Granada, Campus de Fuentenueva sn, 18071 Granada, Granada, Spain; (J.M.-V.); (Y.Y.); (M.J.-G.); (T.d.C.-S.)
| | - José Ramos
- IQLIT Emulsiones Poliméricas S.L.U., Autovía Tarragona-Salou Km 3,8., 43110 La Canonja, Tarragona, Spain;
| | - Alberto Martín-Molina
- Departamento de Física Aplicada, Universidad de Granada, Campus de Fuentenueva sn, 18071 Granada, Granada, Spain; (J.M.-V.); (Y.Y.); (M.J.-G.); (T.d.C.-S.)
- Instituto Carlos I de Física Teórica y Computacional, Universdad de Granada, 18071 Granada, Granada, Spain
| |
Collapse
|
4
|
Wang T, Wang S, Tong C. Charge reversal in the collapse of polyelectrolyte star brushes under an electric field. Chem Phys 2020. [DOI: 10.1016/j.chemphys.2020.110810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
5
|
Buyukdagli S, Podgornik R. Interactions between zwitterionic membranes in complex electrolytes. Phys Rev E 2020; 102:012806. [PMID: 32795042 DOI: 10.1103/physreve.102.012806] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 07/06/2020] [Indexed: 06/11/2023]
Abstract
We investigate the electrostatic interactions of zwitterionic membranes immersed in mixed electrolytes composed of mono- and multivalent ions. We show that the presence of monovalent salt is a necessary condition for the existence of a finite electrostatic force on the membrane. As a result, the mean-field membrane pressure originating from the surface dipoles exhibits a nonuniform salt dependence, characterized by an enhancement for dilute salt conditions and a decrease at intermediate salt concentrations. On addition of multivalent cations to the submolar salt solution, the separate interactions of these cations with the opposite charges of the surface dipoles makes the intermembrane pressure more repulsive at low membrane separation distances and strongly attractive at intermediate distances, resulting in a discontinuous like-charge binding transition followed by the membrane binding transition. By extending our formalism to account for correlation corrections associated with large salt concentrations, we show that membranes of high surface dipole density immersed in molar salt solutions may undergo a membrane binding transition even without the multivalent cations. Hence, the tuning of the surface polarization forces by membrane engineering can be an efficient way to adjust the equilibrium configuration of dipolar membranes in concentrated salt solutions.
Collapse
Affiliation(s)
| | - Rudolf Podgornik
- School of Physical Sciences and Kavli Institute for Theoretical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences (CAS), Beijing 100190, China
- Department of Physics, Faculty of Mathematics and Physics, University of Ljubljana, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
6
|
Pérez-Mas L, Martín-Molina A, Quesada-Pérez M. Coarse-grained Monte Carlo simulations of nanogel-polyelectrolyte complexes: electrostatic effects. SOFT MATTER 2020; 16:3022-3028. [PMID: 32129421 DOI: 10.1039/d0sm00173b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Coarse-grained Monte-Carlo simulations of nanogel-polyelectrolyte complexes have been carried out. The results presented here capture two phenomena reported in experiments with real complexes: (i) the reduction in size after absorbing just a few chains and (ii) the charge inversion detected through electrophoretic mobility data. Our simulations reveal that charge inversion occurs if the polyelectrolyte charge is large enough. In addition, the distribution of chains inside the nanogel strongly depends on whether charge inversion takes place. It should also be stressed that the chain topology has little influence on most of the properties studied here.
Collapse
Affiliation(s)
- Luis Pérez-Mas
- Departamento de Física, Escuela Politécnica Superior de Linares, Universidad de Jaén, 23700, Linares, Jaén, Spain.
| | | | | |
Collapse
|
7
|
Moore D, Arcila JA, Saraf RF. Electrochemical Deposition of Polyelectrolytes Is Maximum at the Potential of Zero Charge. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:1864-1870. [PMID: 32073857 DOI: 10.1021/acs.langmuir.9b03734] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Electrochemical deposition of cationic and anionic polyelectrolyte on a Au electrode is studied as a function of applied potential between the electrode and the solution of monovalent electrolyte. The deposition is measured by open circuit potential relative to a pristine electrode in a reference solution (100 mM NaCl). The rate of deposition is measured by a home-built electrochemical-optical method in real time. It was discovered that the polarity of the potential and magnitude of the potential are not the primary reasons to enhance deposition. For example, both the amount and rate of deposition of negatively charged poly(styrenesulfonate) in NaCl are higher when the electrode is at -200 mV than at +200 mV with respect to the solution. The results are explained in terms of the charge state of the electrical double layer that is primarily controlled by supporting (small) ions.
Collapse
|
8
|
Buyukdagli S, Podgornik R. Orientational transition and complexation of DNA with anionic membranes: Weak and intermediate electrostatic coupling. Phys Rev E 2019; 99:062501. [PMID: 31330654 DOI: 10.1103/physreve.99.062501] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Indexed: 01/26/2023]
Abstract
We characterize the role of charge correlations in the adsorption of a short, rodlike anionic polyelectrolyte onto a similarly charged membrane. Our theory reveals two different mechanisms driving the like-charge polyelectrolyte-membrane complexation: In weakly charged membranes, repulsive polyelectrolyte-membrane interactions lead to the interfacial depletion and a parallel orientation of the polyelectrolyte with respect to the membrane; while in the intermediate membrane charge regime, the interfacial counterion excess gives rise to an attractive "salt-induced" image force. This furthermore results in an orientational transition from a parallel to a perpendicular configuration and a subsequent short-ranged like-charge adsorption of the polyelectrolyte to the substrate. A further increase of the membrane charge engenders a charge inversion, originating from surface-induced ionic correlations, that act as a separate mechanism capable of triggering the like-charge polyelectrolyte-membrane complexation over an extended distance interval from the membrane surface. The emerging picture of this complexation phenomenon identifies the interfacial "salt-induced" image forces as a powerful control mechanism in polyelectrolyte-membrane complexation.
Collapse
Affiliation(s)
| | - Rudolf Podgornik
- School of Physical Sciences and Kavli Institute for Theoretical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.,CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences (CAS), Beijing 100190, China.,Department of Physics, Faculty of Mathematics and Physics, University of Ljubljana, 1000 Ljubljana, Slovenia
| |
Collapse
|
9
|
Luque-Caballero G, Maldonado-Valderrama J, Quesada-Pérez M, Martín-Molina A. Interaction of DNA with likely-charged lipid monolayers: An experimental study. Colloids Surf B Biointerfaces 2019; 178:170-176. [PMID: 30856586 DOI: 10.1016/j.colsurfb.2019.02.058] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 02/27/2019] [Accepted: 02/28/2019] [Indexed: 12/31/2022]
Abstract
Anionic lipids are increasingly being used in lipoplexes for synthetic gene vectors as an alternative to cationic lipids. This is primarily due to their lower toxicity, which makes them biocompatible and adaptable to be tissue specific. However, anionic lipoplexes require the presence of multivalent cations to promote the electrostatic attraction between DNA and anionic lipid mono- and bilayers. In this work we provide for the first time experimental results of the adsorption of linear DNA onto anionic/zwitterionic lipid monolayers without any addition of cations. This is demonstrated experimentally by means of Langmuir monolayers of DOPE/DOPG (1:1) lipids spread on a water subphase that contains calf thymus DNA. The adsorption of DNA onto anionic/zwitterionic lipid monolayers is discussed in terms of the surface pressure-molecular area isotherms recorded in the absence and in the presence of different electrolytes. Measurements of the surface potential provide additional evidence of the different interaction of DNA anionic/zwitterionic lipid monolayers depending on the presence and nature of electrolyte. These experimental results are further analysed in terms of the overall dipole moment normal to the monolayers providing new insight into the behaviour of anionic lipoplexes and the role of zwitterionic lipids.
Collapse
Affiliation(s)
- German Luque-Caballero
- Departamento de Física Aplicada, Universidad de Granada, Campus de Fuentenueva sn, 18071, Granada, Spain
| | - Julia Maldonado-Valderrama
- Departamento de Física Aplicada, Universidad de Granada, Campus de Fuentenueva sn, 18071, Granada, Spain; Unidad de excelencia "Modelling Nature" (MNat), Universidad de Granada, Spain
| | - Manuel Quesada-Pérez
- Departamento de Física, Escuela Politécnica Superior de Linares, Universidad de Jaén, 23700, Linares, Jaén, Spain
| | - Alberto Martín-Molina
- Departamento de Física Aplicada, Universidad de Granada, Campus de Fuentenueva sn, 18071, Granada, Spain; Instituto Carlos I de Física Teórica y Computacional, Universidad de Granada, Spain.
| |
Collapse
|
10
|
Martínez-Esaín J, Faraudo J, Puig T, Obradors X, Ros J, Ricart S, Yáñez R. Tunable Self-Assembly of YF 3 Nanoparticles by Citrate-Mediated Ionic Bridges. J Am Chem Soc 2018; 140:2127-2134. [PMID: 29308645 PMCID: PMC6090504 DOI: 10.1021/jacs.7b09821] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Indexed: 12/12/2022]
Abstract
Ligand-to-surface interactions are critical factors in surface and interface chemistry to control the mechanisms governing nanostructured colloidal suspensions. In particular, molecules containing carboxylate moieties (such as citrate anions) have been extensively investigated to stabilize metal, metal oxide, and metal fluoride nanoparticles. Using YF3 nanoparticles as a model system, we show here the self-assembly of citrate-stabilized nanostructures (supraparticles) with a size tunable by temperature. Results from several experimental techniques and molecular dynamics simulations show that the self-assembly of nanoparticles into supraparticles is due to ionic bridges between different nanoparticles. These interactions were caused by cations (e.g., ammonium) strongly adsorbed onto the nanoparticle surface that also interact strongly with nonbonded citrate anions, creating ionic bridges in solution between nanoparticles. Experimentally, we observe self-assembly of nanoparticles into supraparticles at 25 and 100 °C. Interestingly, at high temperatures (100 °C), this citrate-bridge self-assembly mechanism is more efficient, giving rise to larger supraparticles. At low temperatures (5 °C), this mechanism is not observed, and nanoparticles remain stable. Molecular dynamics simulations show that the free energy of a single citrate bridge between nanoparticles in solution is much larger than the thermal energy and in fact is much larger than typical adsorption free energies of ions on colloids. Summarizing our experiments and simulations, we identify as key aspects of the self-assembly mechanism the requirement of NPs with a surface able to adsorb anions and cations and the presence of multidentate ions in solution. This indicates that this new ion-mediated self-assembly mechanism is not specific of YF3 and citrate anions, as supported by preliminary experimental results in other systems.
Collapse
Affiliation(s)
- Jordi Martínez-Esaín
- Departament
de Química, Universitat Autònoma
de Barcelona, 08193 Bellaterra, Spain
- Institut
de Ciència de Materials de Barcelona (ICMAB-CSIC), 08193 Bellaterra, Spain
| | - Jordi Faraudo
- Institut
de Ciència de Materials de Barcelona (ICMAB-CSIC), 08193 Bellaterra, Spain
| | - Teresa Puig
- Institut
de Ciència de Materials de Barcelona (ICMAB-CSIC), 08193 Bellaterra, Spain
| | - Xavier Obradors
- Institut
de Ciència de Materials de Barcelona (ICMAB-CSIC), 08193 Bellaterra, Spain
| | - Josep Ros
- Departament
de Química, Universitat Autònoma
de Barcelona, 08193 Bellaterra, Spain
| | - Susagna Ricart
- Institut
de Ciència de Materials de Barcelona (ICMAB-CSIC), 08193 Bellaterra, Spain
| | - Ramón Yáñez
- Departament
de Química, Universitat Autònoma
de Barcelona, 08193 Bellaterra, Spain
| |
Collapse
|
11
|
Rouster P, Pavlovic M, Szilagyi I. Immobilization of Superoxide Dismutase on Polyelectrolyte-Functionalized Titania Nanosheets. Chembiochem 2017; 19:404-410. [DOI: 10.1002/cbic.201700502] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Indexed: 01/06/2023]
Affiliation(s)
- Paul Rouster
- Department of Inorganic and Analytical Chemistry; University of Geneva; 30 Quai Ernest-Ansermet 1205 Geneva Switzerland
| | - Marko Pavlovic
- Department of Inorganic and Analytical Chemistry; University of Geneva; 30 Quai Ernest-Ansermet 1205 Geneva Switzerland
| | - Istvan Szilagyi
- Department of Inorganic and Analytical Chemistry; University of Geneva; 30 Quai Ernest-Ansermet 1205 Geneva Switzerland
- MTA-SZTE Lendület Biocolloids Research Group; Department of Physical Chemistry and Materials Science; University of Szeged; 1 Aradi vértanúk tere 6720 Szeged Hungary
| |
Collapse
|
12
|
Buyukdagli S, Blossey R. Correlation-induced DNA adsorption on like-charged membranes. Phys Rev E 2016; 94:042502. [PMID: 27841536 DOI: 10.1103/physreve.94.042502] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Indexed: 11/07/2022]
Abstract
The adsorption of DNA or other polyelectrolyte molecules on charged membranes is a recurrent motif in soft matter and bionanotechnological systems. Two typical situations encountered are the deposition of single DNA chains onto substrates for further analysis, e.g., by force microscopy, or the pulling of polyelectrolytes into membrane nanopores, as in sequencing applications. In this paper, we present a theoretical analysis of such scenarios based on the self-consistent field theory approach, which allows us to address the important effect of charge correlations. We calculate the grand potential of a stiff polyelectrolyte immersed in an electrolyte in contact with a negatively charged dielectric membrane. For the sake of conciseness, we neglect conformational polymer fluctuations and model the molecule as a rigid charged line. At strongly charged membranes, the adsorbed counterions enhance the screening ability of the interfacial region. In the presence of highly charged polymers such as double-stranded DNA molecules close to the membrane, this enhanced interfacial screening dominates the mean-field level DNA-membrane repulsion and results in the adsorption of the DNA molecule to the surface. This picture provides a simple explanation for the recently observed DNA binding onto similarly charged substrates [G. L.-Caballero et al., Soft Matter 10, 2805 (2014)1744-683X10.1039/c3sm52428k] and points out charge correlations as a non-negligible ingredient of polymer-surface interactions.
Collapse
Affiliation(s)
| | - Ralf Blossey
- Université Lille 1, CNRS, UGSF UMR8576, 59000 Lille, France
| |
Collapse
|
13
|
Kostritskii AY, Kondinskaia DA, Nesterenko AM, Gurtovenko AA. Adsorption of Synthetic Cationic Polymers on Model Phospholipid Membranes: Insight from Atomic-Scale Molecular Dynamics Simulations. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:10402-10414. [PMID: 27642663 DOI: 10.1021/acs.langmuir.6b02593] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Although synthetic cationic polymers represent a promising class of effective antibacterial agents, the molecular mechanisms behind their antimicrobial activity remain poorly understood. To this end, we employ atomic-scale molecular dynamics simulations to explore adsorption of several linear cationic polymers of different chemical structure and protonation (polyallylamine (PAA), polyethylenimine (PEI), polyvinylamine (PVA), and poly-l-lysine (PLL)) on model bacterial membranes (4:1 mixture of zwitterionic phosphatidylethanolamine (PE) and anionic phosphatidylglycerol (PG) lipids). Overall, our findings show that binding of polycations to the anionic membrane surface effectively neutralizes its charge, leading to the reorientation of water molecules close to the lipid/water interface and to the partial release of counterions to the water phase. In certain cases, one has even an overcharging of the membrane, which was shown to be a cooperative effect of polymer charges and lipid counterions. Protonated amine groups of polycations are found to interact preferably with head groups of anionic lipids, giving rise to formation of hydrogen bonds and to a noticeable lateral immobilization of the lipids. While all the above findings are mostly defined by the overall charge of a polymer, we found that the polymer architecture also matters. In particular, PVA and PEI are able to accumulate anionic PG lipids on the membrane surface, leading to lipid segregation. In turn, PLL whose charge twice exceeds charges of PVA/PEI does not induce such lipid segregation due to its considerably less compact architecture and relatively long side chains. We also show that partitioning of a polycation into the lipid/water interface is an interplay between its protonation level (the overall charge) and hydrophobicity of the backbone. Therefore, a possible strategy in creating highly efficient antimicrobial polymeric agents could be in tuning these polycation's properties through proper combination of protonated and hydrophobic blocks.
Collapse
Affiliation(s)
- Andrei Yu Kostritskii
- Faculty of Physics, St. Petersburg State University , Ulyanovskaya str. 3, Petrodvorets, St. Petersburg 198504 Russia
| | - Diana A Kondinskaia
- Faculty of Physics, St. Petersburg State University , Ulyanovskaya str. 3, Petrodvorets, St. Petersburg 198504 Russia
| | - Alexey M Nesterenko
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University , Moscow 119991 Russia
| | - Andrey A Gurtovenko
- Faculty of Physics, St. Petersburg State University , Ulyanovskaya str. 3, Petrodvorets, St. Petersburg 198504 Russia
- Institute of Macromolecular Compounds, Russian Academy of Sciences , Bolshoi Prospect V.O. 31, St. Petersburg 199004 Russia
| |
Collapse
|
14
|
dos Santos AP, Girotto M, Levin Y. Simulations of Polyelectrolyte Adsorption to a Dielectric Like-Charged Surface. J Phys Chem B 2016; 120:10387-10393. [DOI: 10.1021/acs.jpcb.6b06002] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Alexandre P. dos Santos
- Instituto de Física, Universidade Federal do Rio Grande do Sul, Caixa Postal 15051, CEP 91501-970 Porto Alegre, RS, Brazil
| | - Matheus Girotto
- Instituto de Física, Universidade Federal do Rio Grande do Sul, Caixa Postal 15051, CEP 91501-970 Porto Alegre, RS, Brazil
| | - Yan Levin
- Instituto de Física, Universidade Federal do Rio Grande do Sul, Caixa Postal 15051, CEP 91501-970 Porto Alegre, RS, Brazil
| |
Collapse
|
15
|
Aydin F, Dutt M. Surface Reconfiguration of Binary Lipid Vesicles via Electrostatically Induced Nanoparticle Adsorption. J Phys Chem B 2016; 120:6646-56. [DOI: 10.1021/acs.jpcb.6b02334] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Fikret Aydin
- Department
of Chemical and
Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Meenakshi Dutt
- Department
of Chemical and
Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States
| |
Collapse
|
16
|
Luque-Caballero G, Maldonado-Valderrama J, Quesada-Pérez M, Martín-Molina A. Atomic force microscopy as a tool to study the adsorption of DNA onto lipid interfaces. Microsc Res Tech 2016; 80:11-17. [PMID: 27014963 DOI: 10.1002/jemt.22654] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 01/25/2016] [Accepted: 02/05/2016] [Indexed: 11/08/2022]
Abstract
The Atomic Force Microscopy (AFM) technique appears as a central tool for the characterization of DNA adsorption onto lipid interfaces. Regardless of the huge number of surveys devoted to this issue, there are still fascinating phenomena in this field that have not been explored in detail by AFM. For instance, adsorption of DNA onto like-charged lipid surfaces mediated by cations is still not fully understood even though it is gaining popularity nowadays in gene therapy and nanotechnology. Studies related to the complexation of DNA with anionic lipids as a non-viral gene delivery vehicle as well as the formation of self-assembled nanoscale DNA constructs (DNA origami) are two of the most attractive systems. Unfortunately, molecular mechanisms underlying the adsorption of DNA onto anionic lipid interfaces remain unclear so far. In view of that, AFM becomes an appropriate technique to provide valuable information to understand the adsorption of DNA to anionic lipid surfaces. As a second part of this review we provide an illustrative example of application of the AFM technique to probe the DNA adsorption onto a model lipid monolayer negatively charged. Microsc. Res. Tech. 80:11-17, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Germán Luque-Caballero
- Departamento de Física Aplicada, Universidad de Granada, Campus de Fuentenueva sn, Granada, 18071, Spain
| | - Julia Maldonado-Valderrama
- Departamento de Física Aplicada, Universidad de Granada, Campus de Fuentenueva sn, Granada, 18071, Spain
| | - Manuel Quesada-Pérez
- Departamento de Física, Escuela Politécnica Superior de Linares, Universidad de Jaén, Linares, Jaén, 23700, Spain
| | - Alberto Martín-Molina
- Departamento de Física Aplicada, Universidad de Granada, Campus de Fuentenueva sn, Granada, 18071, Spain
| |
Collapse
|
17
|
Pavlovic M, Li L, Dits F, Gu Z, Adok-Sipiczki M, Szilagyi I. Aggregation of layered double hydroxide nanoparticles in the presence of heparin: towards highly stable delivery systems. RSC Adv 2016. [DOI: 10.1039/c5ra26072h] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Heparin coating significantly enhanced the colloidal stability of layered double hydroxide nanoparticles.
Collapse
Affiliation(s)
- Marko Pavlovic
- Department of Inorganic and Analytical Chemistry
- University of Geneva
- Geneva
- Switzerland
| | - Li Li
- Australian Institute for Bioengineering and Nanotechnology
- The University of Queensland
- Brisbane
- Australia
| | - Francois Dits
- Department of Inorganic and Analytical Chemistry
- University of Geneva
- Geneva
- Switzerland
| | - Zi Gu
- Australian Institute for Bioengineering and Nanotechnology
- The University of Queensland
- Brisbane
- Australia
| | - Monika Adok-Sipiczki
- Department of Inorganic and Analytical Chemistry
- University of Geneva
- Geneva
- Switzerland
| | - Istvan Szilagyi
- Department of Inorganic and Analytical Chemistry
- University of Geneva
- Geneva
- Switzerland
| |
Collapse
|
18
|
Szabó T, Tóth V, Horváth E, Forró L, Szilagyi I. Tuning the aggregation of titanate nanowires in aqueous dispersions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:42-9. [PMID: 25525741 DOI: 10.1021/la504521e] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Electrophoretic and dynamic light scattering (DLS) measurements revealed that aggregation in aqueous dispersion of titanate nanowires (TiONWs) can be tuned by poly(diallyldimethylammonium) chloride (PDADMAC) polyelectrolyte. The nanowires possessed negative charge under alkaline conditions which was compensated by the oppositely charged PDADMAC adsorbed on the surface. Such adsorption led to charge neutralization and subsequent charge reversal at the appropriate polyelectrolyte doses. The dispersions were stable at low PDADMAC concentration where the TiONWs possessed negative charge. However, fast aggregation of the nanowires occurred close to the charge neutralization point where the overall charge of the particles was zero. Charge inversion at high polyelectrolyte doses gave rise to restabilization of the samples and slow aggregation of the TiONWs even at higher ionic strengths where the original bare TiONW dispersions were unstable. The colloid stability of the bare nanowires can be explained well qualitatively by the Derjaguin, Landau, Verwey, and Overbeek (DLVO) theory; however, polyelectrolyte adsorption led to additional patch-charge attractions and osmotic repulsion between the particles. On the basis of the knowledge generated by the present work, experimental conditions (e.g., salt level, polyelectrolyte, and particle concentrations) can be adjusted in order to design stable and processable aqueous dispersions of TiONWs for further applications.
Collapse
Affiliation(s)
- Tamás Szabó
- Department of Inorganic and Analytical Chemistry, University of Geneva , 1205 Geneva, Switzerland
| | | | | | | | | |
Collapse
|
19
|
Moncho-Jordá A, Adroher-Benítez I. Ion permeation inside microgel particles induced by specific interactions: from charge inversion to overcharging. SOFT MATTER 2014; 10:5810-5823. [PMID: 24974885 DOI: 10.1039/c4sm00243a] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
In this work we have performed a theoretical study of a system formed by ionic microgels in the presence of monovalent salt with the help of Ornstein-Zernike integral equations within the hypernetted-chain (HNC) approximation. We focus in particular on analysing the role that the short-range specific interactions between the polymer fibres of the microgel and the incoming ions have on the equilibrium ion distribution inside and outside the microgel. For this purpose, a theoretical model based on the equilibrium partitioning effect is developed to determine the interaction between the microgel particle and a single ion. The results indicate that when counterions are specifically attracted to the polymer fibres of the microgel, an enhanced counterion accumulation occurs that induces the charge inversion of the microgel and a strong increase of the microgel net charge (or overcharging). In the case of coions, the specific attraction is also able to provoke the coion adsorption even though they are electrostatically repelled, and so increasing the microgel charge (true overcharging). Moreover, we show that ion adsorption onto the microgel particle is very different in swollen and shrunken states due to the competition between specific attraction and steric repulsion. In particular, ion adsorption occurs preferentially in the internal core of the particle for swollen states, whereas it is mainly concentrated in the external shell for de-swollen configurations. Finally, we observe the existence of a critical salt concentration, where the net charge of the microgels vanishes; above this inversion point the net charge of the microgels increases again, thus leading to reentrant stability of microgel suspensions.
Collapse
Affiliation(s)
- A Moncho-Jordá
- Departamento de Física Aplicada, Facultad de Ciencias, Universidad de Granada, Campus Fuentenueva S/N, 18071 Granada, Spain.
| | | |
Collapse
|
20
|
Luque-Caballero G, Martín-Molina A, Quesada-Pérez M. Polyelectrolyte adsorption onto like-charged surfaces mediated by trivalent counterions: A Monte Carlo simulation study. J Chem Phys 2014; 140:174701. [DOI: 10.1063/1.4872263] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
|
21
|
Luque-Caballero G, Martín-Molina A, Sánchez-Treviño AY, Rodríguez-Valverde MA, Cabrerizo-Vílchez MA, Maldonado-Valderrama J. Using AFM to probe the complexation of DNA with anionic lipids mediated by Ca(2+): the role of surface pressure. SOFT MATTER 2014; 10:2805-2815. [PMID: 24668321 DOI: 10.1039/c3sm52428k] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Complexation of DNA with lipids is currently being developed as an alternative to classical vectors based on viruses. Most of the research to date focuses on cationic lipids owing to their spontaneous complexation with DNA. Nonetheless, recent investigations have revealed that cationic lipids induce a large number of adverse effects on DNA delivery. Precisely, the lower cytotoxicity of anionic lipids accounts for their use as a promising alternative. However, the complexation of DNA with anionic lipids (mediated by cations) is still in early stages and is not yet well understood. In order to explore the molecular mechanisms underlying the complexation of anionic lipids and DNA we proposed a combined methodology based on the surface pressure-area isotherms, Gibbs elasticity and Atomic Force Microscopy (AFM). These techniques allow elucidation of the role of the surface pressure in the complexation and visualization of the interfacial aggregates for the first time. We demonstrate that the DNA complexes with negatively charged model monolayers (DPPC/DPPS 4 : 1) only in the presence of Ca(2+), but is expelled at very high surface pressures. Also, according to the Gibbs elasticity plot, the complexation of lipids and DNA implies a whole fluidisation of the monolayer and a completely different phase transition map in the presence of DNA and Ca(2+). AFM imaging allows identification for the first time of specific morphologies associated with different packing densities. At low surface coverage, a branched net like structure is observed whereas at high surface pressure fibers formed of interfacial aggregates appear. In summary, Ca(2+) mediates the interaction between DNA and negatively charged lipids and also the conformation of the ternary system depends on the surface pressure. Such observations are important new generic features of the interaction between DNA and anionic lipids.
Collapse
Affiliation(s)
- Germán Luque-Caballero
- Department of Applied Physics, University of Granada, Campus de Fuentenueva sn, 18071, Granada, Spain.
| | | | | | | | | | | |
Collapse
|
22
|
Martín-Molina A, Luque-Caballero G, Faraudo J, Quesada-Pérez M, Maldonado-Valderrama J. Adsorption of DNA onto anionic lipid surfaces. Adv Colloid Interface Sci 2014; 206:172-85. [PMID: 24359695 DOI: 10.1016/j.cis.2013.11.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 10/16/2013] [Accepted: 11/11/2013] [Indexed: 01/05/2023]
Abstract
Currently self-assembled DNA delivery systems composed of DNA multivalent cations and anionic lipids are considered to be promising tools for gene therapy. These systems become an alternative to traditional cationic lipid-DNA complexes because of their low cytotoxicity lipids. However, currently these nonviral gene delivery methods exhibit low transfection efficiencies. This feature is in large part due to the poorly understood DNA complexation mechanisms at the molecular level. It is well-known that the adsorption of DNA onto like charged lipid surfaces requires the presence of multivalent cations that act as bridges between DNA and anionic lipids. Unfortunately, the molecular mechanisms behind such adsorption phenomenon still remain unclear. Accordingly a historical background of experimental evidence related to adsorption and complexation of DNA onto anionic lipid surfaces mediated by different multivalent cations is firstly reviewed. Next, recent experiments aimed to characterise the interfacial adsorption of DNA onto a model anionic phospholipid monolayer mediated by Ca(2+) (including AFM images) are discussed. Afterwards, modelling studies of DNA adsorption onto charged surfaces are summarised before presenting preliminary results obtained from both CG and all-atomic MD computer simulations. Our results allow us to establish the optimal conditions for cation-mediated adsorption of DNA onto negatively charged surfaces. Moreover, atomistic simulations provide an excellent framework to understand the interaction between DNA and anionic lipids in the presence of divalent cations. Accordingly,our simulation results in conjunction go beyond the macroscopic picture in which DNA is stuck to anionic membranes by using multivalent cations that form glue layers between them. Structural aspects of the DNA adsorption and molecular binding between the different charged groups from DNA and lipids in the presence of divalent cations are reported in the last part of the study. Although this research work is far from biomedical applications, we truly believe that scientific advances in this line will assist, at least in part, in the rational design and development of optimal carrier systems for genes and applicable to other drugs.
Collapse
|
23
|
Boroudjerdi H, Naji A, Naji A, Netz R. Global analysis of the ground-state wrapping conformation of a charged polymer on an oppositely charged nano-sphere. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2014; 37:21. [PMID: 24676863 DOI: 10.1140/epje/i2014-14021-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 02/28/2014] [Accepted: 03/03/2014] [Indexed: 06/03/2023]
Abstract
We investigate the wrapping conformations of a single, strongly adsorbed polymer chain on an oppositely charged nano-sphere by employing a reduced (dimensionless) representation of a primitive chain-sphere model. This enables us to determine the global behavior of the chain conformation in a wide range of values for the system parameters including the chain contour length, its linear charge density and persistence length as well as the nano-sphere charge and radius, and also the salt concentration in the bathing solution. The structural behavior of a charged chain-sphere complex can be described in terms of a few distinct conformational symmetry classes separated by continuous or discontinuous transition lines which are determined by means of appropriately defined (order) parameters. Our results can be applied to a wide class of strongly coupled polymer-sphere complexes including, for instance, complexes that comprise a mechanically flexible or semiflexible polymer chain or an extremely short or long chain and, as a special case, include the biologically relevant example of DNA-histone complexes.
Collapse
Affiliation(s)
- Hoda Boroudjerdi
- Fachbereich Physik, Freie Universität Berlin, Arnimalle 14, 14195, Berlin, Germany
| | | | | | | |
Collapse
|
24
|
de Carvalho SJ, Metzler R, Cherstvy AG. Critical adsorption of polyelectrolytes onto charged Janus nanospheres. Phys Chem Chem Phys 2014; 16:15539-50. [DOI: 10.1039/c4cp02207f] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The conditions of critical polyelectrolyte adsorption onto spherical charged Janus nano-particles are exploited by Monte-Carlo computer simulations and theoretically.
Collapse
Affiliation(s)
| | - Ralf Metzler
- Institute for Physics and Astronomy
- University of Potsdam
- Potsdam-Golm, Germany
- Department of Physics
- Tampere University of Technology
| | - Andrey G. Cherstvy
- Institute for Physics and Astronomy
- University of Potsdam
- Potsdam-Golm, Germany
| |
Collapse
|