1
|
Gong Y, Hu L, Li M, Yang Y, Xu L, Hao J. Biophysical impact of lubricating base oil aerosols on natural pulmonary surfactant film. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135248. [PMID: 39029184 DOI: 10.1016/j.jhazmat.2024.135248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/07/2024] [Accepted: 07/16/2024] [Indexed: 07/21/2024]
Abstract
Lubricating base oils have been extensively employed for producing various industrial and consumer products. Therefore, their environmental and health impacts should be carefully evaluated. Although there have been many reports on pulmonary cytotoxicity and inflammatory responses of inhaled lubricating base oils, their potential influences on pulmonary surfactant (PS) films that play an essential role in maintaining respiratory mechanics and pulmonary immunity remains largely unknown. Here a systematic study on the interactions between an animal-derived natural PS and aerosols of water and representative mineral and vegetable base oils is performed using a novel biophysical assessing technique called constrained drop surfactometry capable of providing in vitro simulations of normal tidal breathing and physiologically relevant temperature and humidity in the lung. It was found that the mineral oil aerosols can impose strong inhibitions to the biophysical property of PS film, while the airborne vegetable oils and water show negligible adverse effects within the studied concentration range. The inhibitory effect is originated from the strong hydrophobicity of mineral oil, which makes it able to disrupt the interfacial molecular ordering of both phospholipid and protein compositions and consequently suppress the formation of condensed phase and multilayer scaffolds in a PS film. ENVIRONMENTAL IMPLICATION: Understanding the biophysical influence of airborne lubricating base oils on pulmonary surfactant (PS) films can provide new insights into the environmental impacts and health concerns of various industrial lubricant products. Here a comparative study on interactions between an animal-derived natural PS film and the aerosols of water and representative mineral and vegetable base oils under the true physiological conditions was conducted in situ using constrained drop surfactometry. We show that the most frequently used mineral base oil can cause strong inhibitions to the PS film by disrupting the molecular ordering of saturated phospholipids and surfactant-associated proteins at the interface.
Collapse
Affiliation(s)
- Yan Gong
- Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai 264000, PR China
| | - Lulin Hu
- Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai 264000, PR China; State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China
| | - Mingfei Li
- Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai 264000, PR China; Key Laboratory of Colloid and Interface Chemistry & Key Laboratory of Special Aggregated Materials, Shandong University, Jinan 250100, PR China
| | - Yi Yang
- Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai 264000, PR China; State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China.
| | - Lu Xu
- Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai 264000, PR China; State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China.
| | - Jingcheng Hao
- Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai 264000, PR China; Key Laboratory of Colloid and Interface Chemistry & Key Laboratory of Special Aggregated Materials, Shandong University, Jinan 250100, PR China
| |
Collapse
|
2
|
Bykov AG, Panaeva MA, Milyaeva OY, Michailov AV, Rafikova AR, Guzman E, Rubio R, Miller R, Noskov BA. Structural changes in layers of lipid mixtures at low surface tensions. Chem Phys Lipids 2024; 258:105365. [PMID: 38092233 DOI: 10.1016/j.chemphyslip.2023.105365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/21/2023] [Accepted: 12/06/2023] [Indexed: 12/21/2023]
Abstract
Layers of pulmonary lipids on an aqueous substrate at non-equilibrium conditions can decrease the surface tension of water to quite low values. This is connected with different relaxation processes occurring at the interface and the associated changes in the surface layer structure. Results of measurements by the combination of methods like surface rheology, ellipsometry, Brewster angle microscopy, and IRRAS for spread layers of lipid mixtures open a possibility to specify the dynamics of structural changes at conditions close to the physiological state. At sufficiently low surface tension values (below 5 mN/m) significant changes in the ellipsometric signal were observed for pure DPPC layers, which can be related to a transition from 2D to 3D structures caused by the layer folding. The addition of other lipids can accelerate the relaxation processes connected with squeezing-out of molecules or multilayer stacks formation hampering thereby a decrease of surface tension down to low values corresponding to the folding of the monolayer.
Collapse
Affiliation(s)
- A G Bykov
- St. Petersburg State University, St. Petersburg, the Russian Federation.
| | - M A Panaeva
- St. Petersburg State University, St. Petersburg, the Russian Federation
| | - O Y Milyaeva
- St. Petersburg State University, St. Petersburg, the Russian Federation
| | - A V Michailov
- St. Petersburg State University, St. Petersburg, the Russian Federation
| | - A R Rafikova
- St. Petersburg State University, St. Petersburg, the Russian Federation
| | - E Guzman
- Departamento de Química Física, Universidad Complutense de Madrid, Madrid, Spain; Instituto Pluridisciplinar, Universidad Complutense de Madrid, Madrid, Spain
| | - R Rubio
- Departamento de Química Física, Universidad Complutense de Madrid, Madrid, Spain; Instituto Pluridisciplinar, Universidad Complutense de Madrid, Madrid, Spain
| | - R Miller
- Institute for Soft Matter Physics, Technical University Darmstadt, 64289 Darmstadt, Germany
| | - B A Noskov
- St. Petersburg State University, St. Petersburg, the Russian Federation
| |
Collapse
|
3
|
Santo KP, Neimark AV. Adsorption of pulmonary and exogeneous surfactants on SARS-CoV-2 spike protein. J Colloid Interface Sci 2023; 650:28-39. [PMID: 37392497 PMCID: PMC10279468 DOI: 10.1016/j.jcis.2023.06.121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/06/2023] [Accepted: 06/17/2023] [Indexed: 07/03/2023]
Abstract
COVID-19 is transmitted by airborne particles containing virions of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Coronavirus virions represent nanoparticles enveloped by a lipid bilayer decorated by a "crown" of Spike protein protrusions. Virus transmission into the cells is induced by binding of Spike proteins with ACE2 receptors of alveolar epithelial cells. Active clinical search is ongoing for exogenous surfactants and biologically active chemicals capable of hindering virion-receptor binding. Here, we explore by using coarse-grained molecular dynamics simulations the physico-chemical mechanisms of adsorption of selected pulmonary surfactants, zwitterionic dipalmitoyl phosphatidyl choline and cholesterol, and exogeneous anionic surfactant, sodium dodecyl sulfate, on the S1-domain of the Spike protein. We show that surfactants form micellar aggregates that selectively adhere to the specific regions of the S1-domain that are responsible for binding with ACE2 receptors. We find distinctly higher cholesterol adsorption and stronger cholesterol-S1 interactions in comparison with other surfactants, that is consistent with the experimental observations of the effects of cholesterol on COVID-19 infection. Distribution of adsorbed surfactant along the protein residue chain is highly specific and inhomogeneous with preferential adsorption around specific amino acid sequences. We observe preferential adsorption of surfactants on cationic arginine and lysine residues in the receptor-binding domain (RBD) that play an important role in ACE2 binding and are present in higher amounts in Delta and Omicron variants, which may lead to blocking direct Spike-ACE2 interactions. Our findings of strong selective adhesion of surfactant aggregates to Spike proteins have important implications for informing clinical search for therapeutic surfactants for curing and preventing COVID-19 caused by SARS-CoV-2 and its variants.
Collapse
Affiliation(s)
- Kolattukudy P Santo
- Department of Chemical and Biochemical Engineering, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA
| | - Alexander V Neimark
- Department of Chemical and Biochemical Engineering, Rutgers, the State University of New Jersey, Piscataway, NJ 08854, USA.
| |
Collapse
|
4
|
Luo Z, Xu D, Xu Y, Zhao J, Hu G, Yue T. Dual role of pulmonary surfactant corona in modulating carbon nanotube toxicity and benzo[a]pyrene bioaccessibility. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131753. [PMID: 37279644 DOI: 10.1016/j.jhazmat.2023.131753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/27/2023] [Accepted: 05/30/2023] [Indexed: 06/08/2023]
Abstract
Inhaled carbon nanotubes (CNTs) can deposit in the deep lung, where they interact with pulmonary surfactant (PS) to form coronas, potentially altering the fate and toxicity profile of CNTs. However, the presence of other contaminants in combination with CNTs may affect these interactions. Here, we used passive dosing and fluorescence-based techniques confirm the partial solubilization of BaPs adsorbed on CNTs by PS in simulated alveolar fluid. MD simulations were performed to elucidate the competition of interactions between BaPs, CNTs, and PS. We found that PS play two opposing roles in altering the toxicity profile of the CNTs. First, the formation of PS coronas reduce CNTs' toxicity by decreasing the hydrophobicity of the CNTs and decreasing their aspect ratio. Second, the interaction with PS increases the bioaccessibility of BaP through interactions with PS, which may exacerbate the inhalation toxicity of CNTs. These findings suggest that the inhalation toxicity of PS-modified CNTs should consider the bioaccessibility of coexisting contaminants, with the CNT size and aggregation state playing an important role.
Collapse
Affiliation(s)
- Zhen Luo
- Department of Engineering Mechanics, State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China
| | - Dongfang Xu
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, China
| | - Yan Xu
- College of Electronic Engineering and Automation, Shandong University of Science and Technology, Qingdao 266590, China
| | - Jian Zhao
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, China.
| | - Guoqing Hu
- Department of Engineering Mechanics, State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China.
| | - Tongtao Yue
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, China.
| |
Collapse
|
5
|
Santamaria A, Batchu KC, Fragneto G, Laux V, Haertlein M, Darwish TA, Russell RA, Zaccai NR, Guzmán E, Maestro A. Investigation on the relationship between lipid composition and structure in model membranes composed of extracted natural phospholipids. J Colloid Interface Sci 2023; 637:55-66. [PMID: 36682118 DOI: 10.1016/j.jcis.2023.01.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 12/09/2022] [Accepted: 01/09/2023] [Indexed: 01/13/2023]
Abstract
HYPOTHESIS Unravelling the structural diversity of cellular membranes is a paramount challenge in life sciences. In particular, lipid composition affects the membrane collective behaviour, and its interactions with other biological molecules. EXPERIMENTS Here, the relationship between membrane composition and resultant structural features was investigated by surface pressure-area isotherms, Brewster angle microscopy and neutron reflectometry on in vitro membrane models of the mammalian plasma and endoplasmic-reticulum-Golgi intermediate compartment membranes in the form of Langmuir monolayers. Natural extracted yeast lipids were used because, unlike synthetic lipids, the acyl chain saturation pattern of yeast and mammalian lipids are similar. FINDINGS The structure of the model membranes, orthogonal to the plane of the membrane, as well as their lateral packing, were found to depend strongly on their specific composition, with cholesterol having a major influence on the in-plane morphology, yielding a coexistence of liquid-order and liquid-disorder phases.
Collapse
Affiliation(s)
- Andreas Santamaria
- Institut Laue-Langevin, 71 Avenue des Martyrs, 38042 Grenoble, Cedex 9, France; Departamento de Química Física, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
| | - Krishna C Batchu
- Institut Laue-Langevin, 71 Avenue des Martyrs, 38042 Grenoble, Cedex 9, France
| | - Giovanna Fragneto
- Institut Laue-Langevin, 71 Avenue des Martyrs, 38042 Grenoble, Cedex 9, France; École doctorale de Physique, Université Grenoble Alpes, 38400 Saint-Martin-d'Héres, France
| | - Valérie Laux
- Institut Laue-Langevin, 71 Avenue des Martyrs, 38042 Grenoble, Cedex 9, France
| | - Michael Haertlein
- Institut Laue-Langevin, 71 Avenue des Martyrs, 38042 Grenoble, Cedex 9, France
| | - Tamim A Darwish
- National Deuteration Facility, Australian Nuclear Science and Technology Organisation, Lucas Heights 2232, NSW, Australia
| | - Robert A Russell
- National Deuteration Facility, Australian Nuclear Science and Technology Organisation, Lucas Heights 2232, NSW, Australia
| | - Nathan R Zaccai
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB22 7QQ, United Kingdom
| | - Eduardo Guzmán
- Departamento de Química Física, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain; Instituto Pluridisciplinar, Universidad Complutense de Madrid, Paseo Juan XXIII 1, 28040 Madrid, Spain
| | - Armando Maestro
- Centro de Fı́sica de Materiales (CSIC, UPV/EHU) - Materials Physics Center MPC, Paseo Manuel de Lardizabal 5, E-20018 San Sebastián, Spain; IKERBASQUE-Basque Foundation for Science, Plaza Euskadi 5, Bilbao 48009, Spain.
| |
Collapse
|
6
|
Santamaria A, Carrascosa-Tejedor J, Guzmán E, Zaccai NR, Maestro A. Unravelling the orientation of the inositol-biphosphate ring and its dependence on phosphatidylinositol 4,5-bisphosphate cluster formation in model membranes. J Colloid Interface Sci 2023; 629:785-795. [PMID: 36195018 DOI: 10.1016/j.jcis.2022.09.095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 09/03/2022] [Accepted: 09/18/2022] [Indexed: 10/14/2022]
Abstract
HYPOTHESIS Inositol phospholipids are well known to form clusters in the cytoplasmic leaflet of the plasma membrane that are responsible for the interaction and recruitment of proteins involved in key biological processes like endocytosis, ion channel activation and secondary messenger production. Although their phosphorylated inositol ring headgroup plays an important role in protein binding, its orientation with respect to the plane of the membrane and its lateral packing density has not been previously described experimentally. EXPERIMENTS Here, we study phosphatidylinositol 4,5-bisphosphate (PIP2) planar model membranes in the form of Langmuir monolayers by surface pressure-area isotherms, Brewster angle microscopy and neutron reflectometry to elucidate the relation between lateral (in-plane) and perpendicular (out-of-plane) molecular organization of PIP2. FINDINGS Different surface areas were explored through monolayer compression, allowing us to correlate the formation of transient PIP2 clusters with the change in orientation of the inositol-biphosphate headgroup, which was experimentally determined by neutron reflectometry.
Collapse
Affiliation(s)
- Andreas Santamaria
- Large Scale Structures Group, Institut Laue-Langevin, 71 Avenue des Martyrs, 38042 Grenoble, Cedex 9, France; Departamento de Química-Física, Facultad de Ciencias Químicas, Universidad Complutense, Ciudad Universitaria s/n, 28040 Madrid, Spain
| | - Javier Carrascosa-Tejedor
- Large Scale Structures Group, Institut Laue-Langevin, 71 Avenue des Martyrs, 38042 Grenoble, Cedex 9, France; Division of Pharmacy and Optometry, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Eduardo Guzmán
- Departamento de Química-Física, Facultad de Ciencias Químicas, Universidad Complutense, Ciudad Universitaria s/n, 28040 Madrid, Spain; Instituto Pluridisciplinar, Universidad Complutense de Madrid, Paseo Juan XXIII 1, 28040 Madrid, Spain.
| | - Nathan R Zaccai
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB22 7QQ, United Kingdom.
| | - Armando Maestro
- Centro de Fı́sica de Materiales (CSIC, UPV/EHU) - Materials Physics Center MPC, Paseo Manuel de Lardizabal 5, E-20018 San Sebastián, Spain; IKERBASQUE-Basque Foundation for Science, Plaza Euskadi 5, Bilbao 48009, Spain.
| |
Collapse
|
7
|
Islam MZ, Hossain SI, Deplazes E, Luo Z, Saha SC. The concentration-dependent effect of hydrocortisone on the structure of model lung surfactant monolayer by using an in silico approach. RSC Adv 2022; 12:33313-33328. [PMID: 36506480 PMCID: PMC9680622 DOI: 10.1039/d2ra05268g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/14/2022] [Indexed: 11/23/2022] Open
Abstract
Understanding the adsorption mechanism of corticosteroids in the lung surfactant requires the knowledge of corticosteroid molecular interactions with lung surfactant monolayer (LSM). We employed coarse-grained molecular dynamics simulation to explore the action of hydrocortisone on an LSM comprised of a phospholipid, cholesterol and surfactant protein. The structural and dynamical morphology of the lung surfactant monolayer at different surface tensions were investigated to assess the monolayer compressibility. The simulations were also conducted at the two extreme ends of breathing cycles: exhalation (0 mN m-1 surface tension) and inhalation (20 mN m-1 surface tension). The impact of surface tension and hydrocortisone concentration on the monolayer compressibility and stability are significant, resulting the monolayer expansion at higher surface tension. However, at low surface tension, the highly compressed monolayer induces monolayer instability in the presence of the drug due to the accumulation of surfactant protein and drug. The constant area per lipid simulation results demonstrate that the surface pressure-area isotherms show a decrease in area-per-lipid with increased drug concentration. The drug-induced expansion causes considerable instability in the monolayer after a specific drug concentration is attained at inhalation breathing condition, whereas, for exhalation breathing, the monolayer gets more compressed, causing the LSM to collapse. The monolayer collapse occurs for inhalation due to the higher drug concentration, whereas for exhalation due to the accumulation of surfactant proteins and drugs. The findings from this study will aid in enhancing the knowledge of molecular interactions of corticosteroid drugs with lung surfactants to treat respiratory diseases.
Collapse
Affiliation(s)
- Mohammad Zohurul Islam
- School of Mechanical and Mechatronic Engineering, University of Technology Sydney 15 Broadway Ultimo 2007 NSW Australia
| | - Sheikh I Hossain
- School of Life Sciences, University of Technology Sydney 15 Broadway Ultimo 2007 NSW Australia
| | - E Deplazes
- School of Life Sciences, University of Technology Sydney 15 Broadway Ultimo 2007 NSW Australia
- School of Mechanical and Mechatronic Engineering, University of Technology Sydney 15 Broadway Ultimo 2007 NSW Australia
| | - Zhen Luo
- School of Mechanical and Mechatronic Engineering, University of Technology Sydney 15 Broadway Ultimo 2007 NSW Australia
| | - Suvash C Saha
- School of Mechanical and Mechatronic Engineering, University of Technology Sydney 15 Broadway Ultimo 2007 NSW Australia
| |
Collapse
|
8
|
García-Mouton C, Parra-Ortiz E, Malmsten M, Cruz A, Pérez-Gil J. Pulmonary surfactant and drug delivery: vehiculization of a tryptophan-tagged antimicrobial peptide over the air-liquid interfacial highway. Eur J Pharm Biopharm 2022; 180:33-47. [PMID: 36154903 DOI: 10.1016/j.ejpb.2022.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/31/2022] [Accepted: 09/18/2022] [Indexed: 11/04/2022]
Abstract
This work evaluates interaction of pulmonary surfactant (PS) and antimicrobial peptides (AMPs) in order to investigate (i) if PS can be used to transport AMPs, and (ii) to what extent PS interferes with AMP function and vice versa. This, in turn, is motivated by a need to find new strategies to treat bacterial infections in the airways. Low respiratory tract infections (LRTIs) are a leading cause of illness and death worldwide that, together with the problem of multidrug-resistant (MDR) bacteria, bring to light the necessity of developing effective therapies that ensure high bioavailability of the drug at the site of infection and display a potent antimicrobial effect. Here, we propose the combination of AMPs with PS to improve their delivery, exemplified for the hydrophobically end-tagged AMP, GRR10W4 (GRRPRPRPRPWWWW-NH2), with previously demonstrated potent antimicrobial activity against a broad spectrum of bacteria under various conditions. Experiments using model systems emulating the respiratory interface and an operating alveolus, based on surface balances and bubble surfactometry, served to demonstrate that a fluorescently labelled version of GRR10W4 (GRR10W4-F), was able to interact and insert into PS membranes without affecting its biophysical function. Therefore, vehiculization of the peptide along air-liquid interfaces was enabled, even for interfaces previously occupied by surfactants layers. Furthermore, breathing-like compression-expansion dynamics promoted the interfacial release of GRR10W4-F after its delivery, which could further allow the peptide to perform its antimicrobial function. PS/GRR10W4-F formulations displayed greater antimicrobial effects and reduced toxicity on cultured airway epithelial cells compared to that of the peptide alone. Taken together, these results open the door to the development of novel delivery strategies for AMPs in order to increase the bioavailability of these molecules at the infection site via inhaled therapies.
Collapse
Affiliation(s)
- Cristina García-Mouton
- Department of Biochemistry and Molecular Biology, Faculty of Biology, and Research Institute "Hospital 12 de Octubre (imas12)", Complutense University, 28040 Madrid, Spain
| | - Elisa Parra-Ortiz
- Department of Pharmacy, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Martin Malmsten
- Department of Pharmacy, University of Copenhagen, DK-2100 Copenhagen, Denmark; Department of Physical Chemistry 1, University of Lund, SE-22100 Lund, Sweden
| | - Antonio Cruz
- Department of Biochemistry and Molecular Biology, Faculty of Biology, and Research Institute "Hospital 12 de Octubre (imas12)", Complutense University, 28040 Madrid, Spain
| | - Jesús Pérez-Gil
- Department of Biochemistry and Molecular Biology, Faculty of Biology, and Research Institute "Hospital 12 de Octubre (imas12)", Complutense University, 28040 Madrid, Spain.
| |
Collapse
|
9
|
Islam MZ, Hossain SI, Deplazes E, Saha SC. Concentration-dependent cortisone adsorption and interaction with model lung surfactant monolayer. MOLECULAR SIMULATION 2022. [DOI: 10.1080/08927022.2022.2113397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Affiliation(s)
- Mohammad Zohurul Islam
- School of Mechanical and Mechatronic Engineering, University of Technology Sydney, Ultimo, Australia
| | - Sheikh I. Hossain
- School of Life Sciences, University of Technology Sydney, Ultimo, Australia
| | - Evelyne Deplazes
- School of Life Sciences, University of Technology Sydney, Ultimo, Australia
| | - Suvash C. Saha
- School of Mechanical and Mechatronic Engineering, University of Technology Sydney, Ultimo, Australia
| |
Collapse
|
10
|
Effect of Divalent and Monovalent Salts on Interfacial Dilational Rheology of Sodium Dodecylbenzene Sulfonate Solutions. COLLOIDS AND INTERFACES 2022. [DOI: 10.3390/colloids6030041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
This study presents the equilibrium surface tension (ST), critical micelle concentration (CMC) and the dilational viscoelasticity of sodium dodecylbenzene sulfonate (SDBS)-adsorbed layers in the presence of NaCl, KCl, LiCl, CaCl2 and MgCl2 at 0.001–0.1 M salt concentration. The ST and surface dilational viscoelasticity were determined using bubble-shape analysis technique. To capture the complete profile of dilational viscoelastic properties of SDBS-adsorbed layers, experiments were conducted within a wide range of SDBS concentrations at a fixed oscillating frequency of 0.01 Hz. Salts were found to lower the ST and induce micellar formation at all concentrations. However, the addition of salts increased dilational viscoelastic modulus only at a certain range of SDBS concentration (below 0.01–0.02 mM SDBS). Above this concentration range, salts decreased dilational viscoelasticity due to the domination of the induced molecular exchange dampening the ST gradient. The dilational viscoelasticity of the salts of interest were in the order CaCl2 > MgCl2 > KCl > NaCl > LiCl. The charge density of ions was found as the corresponding factor for the higher impact of divalent ions compared to monovalent ions, while the impact of monovalent ions was assigned to the degree of matching in water affinities, and thereby the tendency for ion-pairing between SDBS head groups and monovalent ions.
Collapse
|
11
|
Guzmán E, Santini E, Ferrari M, Liggieri L, Ravera F. Evaluating the Impact of Hydrophobic Silicon Dioxide in the Interfacial Properties of Lung Surfactant Films. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:7308-7318. [PMID: 35078318 PMCID: PMC9178919 DOI: 10.1021/acs.est.1c06885] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/13/2022] [Accepted: 01/14/2022] [Indexed: 06/14/2023]
Abstract
The interaction of hydrophobic silicon dioxide particles (fumed silicon dioxide), as model air pollutants, and Langmuir monolayers of a porcine lung surfactant extract has been studied in order to try to shed light on the physicochemical bases underlying the potential adverse effects associated with pollutant inhalation. The surface pressure-area isotherms of lung surfactant (LS) films including increasing amounts of particles revealed that particle incorporation into LS monolayers modifies the organization of the molecules at the water/vapor interface, which alters the mechanical resistance of the interfacial films, hindering the ability of LS layers for reducing the surface tension, and reestablishing the interface upon compression. This influences the normal physiological function of LS as is inferred from the analysis of the response of the Langmuir films upon the incorporation of particles against harmonic changes of the interfacial area (successive compression-expansion cycles). These experiments evidenced that particles alter the relaxation mechanisms of LS films, which may be correlated to a modification of the transport of material within the interface and between the interface and the adjacent fluid during the respiratory cycle.
Collapse
Affiliation(s)
- Eduardo Guzmán
- Departamento
de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040-Madrid, Spain
- Instituto
Pluridisciplinar, Universidad Complutense
de Madrid, Paseo de Juan XXIII 1, 28040 Madrid, Spain
| | - Eva Santini
- Istituto
di Chimica della Materia Condensata e di Tecnologia
per l’Energia, UOS Genova-Consiglio Nazionale delle Ricerche
(ICMATE-CNR), Via De
Marini 6, 16149 Genova, Italy
| | - Michele Ferrari
- Istituto
di Chimica della Materia Condensata e di Tecnologia
per l’Energia, UOS Genova-Consiglio Nazionale delle Ricerche
(ICMATE-CNR), Via De
Marini 6, 16149 Genova, Italy
| | - Libero Liggieri
- Istituto
di Chimica della Materia Condensata e di Tecnologia
per l’Energia, UOS Genova-Consiglio Nazionale delle Ricerche
(ICMATE-CNR), Via De
Marini 6, 16149 Genova, Italy
| | - Francesca Ravera
- Istituto
di Chimica della Materia Condensata e di Tecnologia
per l’Energia, UOS Genova-Consiglio Nazionale delle Ricerche
(ICMATE-CNR), Via De
Marini 6, 16149 Genova, Italy
| |
Collapse
|
12
|
The lung surfactant activity probed with molecular dynamics simulations. Adv Colloid Interface Sci 2022; 304:102659. [PMID: 35421637 DOI: 10.1016/j.cis.2022.102659] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 03/18/2022] [Accepted: 03/31/2022] [Indexed: 01/17/2023]
Abstract
The surface of pulmonary alveolar subphase is covered with a mixture of lipids and proteins. This lung surfactant plays a crucial role in lung functioning. It shows a complex phase behavior which can be altered by the interaction with third molecules such as drugs or pollutants. For studying multicomponent biological systems, it is of interest to couple experimental approach with computational modelling yielding atomic-scale information. Simple two, three, or four-component model systems showed to be useful for getting more insight in the interaction between lipids, lipids and proteins or lipids and proteins with drugs and impurities. These systems were studied theoretically using molecular dynamic simulations and experimentally by means of the Langmuir technique. A better understanding of the structure and behavior of lung surfactants obtained from this research is relevant for developing new synthetic surfactants for efficient therapies, and may contribute to public health protection.
Collapse
|
13
|
Santo KP, Neimark AV. Adsorption of Pulmonary and Exogeneous Surfactants on SARS-CoV-2 Spike Protein. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.05.04.490631. [PMID: 35547841 PMCID: PMC9094101 DOI: 10.1101/2022.05.04.490631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
COVID-19 is transmitted by inhaling SARS-CoV-2 virions, which are enveloped by a lipid bilayer decorated by a "crown" of Spike protein protrusions. In the respiratory tract, virions interact with surfactant films composed of phospholipids and cholesterol that coat lung airways. Here, we explore by using coarse-grained molecular dynamics simulations the physico-chemical mechanisms of surfactant adsorption on Spike proteins. With examples of zwitterionic dipalmitoyl phosphatidyl choline, cholesterol, and anionic sodium dodecyl sulphate, we show that surfactants form micellar aggregates that selectively adhere to the specific regions of S1 domain of the Spike protein that are responsible for binding with ACE2 receptors and virus transmission into the cells. We find high cholesterol adsorption and preferential affinity of anionic surfactants to Arginine and Lysine residues within S1 receptor binding motif. These findings have important implications for informing the search for extraneous therapeutic surfactants for curing and preventing COVID-19 by SARS-CoV-2 and its variants.
Collapse
|
14
|
Abstract
The application of surface rheology and Brewster angle microscopy on mixed monolayers of DPPC and polymeric nanoparticles (cationic and anionic) showed that the sign of the particle charge affects the dynamic properties of the monolayers less than the nanoparticles’ ability to aggregate. Under almost physiological conditions, the effect of nanoparticles on the elasticity of DPPC monolayer is insignificant. However, the particles prevent the surface tension from decreasing to extremely low values. This effect could affect the functionality of pulmonary surfactants.
Collapse
|
15
|
Fluid Films as Models for Understanding the Impact of Inhaled Particles in Lung Surfactant Layers. COATINGS 2022. [DOI: 10.3390/coatings12020277] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Pollution is currently a public health problem associated with different cardiovascular and respiratory diseases. These are commonly originated as a result of the pollutant transport to the alveolar cavity after their inhalation. Once pollutants enter the alveolar cavity, they are deposited on the lung surfactant (LS) film, altering their mechanical performance which increases the respiratory work and can induce a premature alveolar collapse. Furthermore, the interactions of pollutants with LS can induce the formation of an LS corona decorating the pollutant surface, favoring their penetration into the bloodstream and distribution along different organs. Therefore, it is necessary to understand the most fundamental aspects of the interaction of particulate pollutants with LS to mitigate their effects, and design therapeutic strategies. However, the use of animal models is often invasive, and requires a careful examination of different bioethics aspects. This makes it necessary to design in vitro models mimicking some physico-chemical aspects with relevance for LS performance, which can be done by exploiting the tools provided by the science and technology of interfaces to shed light on the most fundamental physico-chemical bases governing the interaction between LS and particulate matter. This review provides an updated perspective of the use of fluid films of LS models for shedding light on the potential impact of particulate matter in the performance of LS film. It should be noted that even though the used model systems cannot account for some physiological aspects, it is expected that the information contained in this review can contribute on the understanding of the potential toxicological effects of air pollution.
Collapse
|
16
|
Evaluation of the impact of carbonaceous particles in the mechanical performance of lipid Langmuir monolayers. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.127974] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Salt effects on the dilational viscoelasticity of surfactant adsorption layers. Curr Opin Colloid Interface Sci 2022. [DOI: 10.1016/j.cocis.2021.101538] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
18
|
Liggieri L, Miller R. Editorial Overview: Hot Topic: COVID-19: Colloid and Interface Aspects of COVID-19. Curr Opin Colloid Interface Sci 2021; 56:101525. [PMID: 34690523 PMCID: PMC8520281 DOI: 10.1016/j.cocis.2021.101525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|