1
|
Choudhary A, Tsunduru A, Tsianou M, Alexandridis P, Bedrov D. Structure, orientation, and dynamics of per- and polyfluoroalkyl substance (PFAS) surfactants at the air-water interface: Molecular-level insights. J Colloid Interface Sci 2025; 679:1207-1218. [PMID: 39426085 DOI: 10.1016/j.jcis.2024.10.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 10/01/2024] [Accepted: 10/07/2024] [Indexed: 10/21/2024]
Abstract
HYPOTHESIS Understanding the intricate molecular-level details of toxic per- and polyfluoroalkyl substances (PFAS) partitioning to the air-water interface holds paramount importance in evaluating their fate and transport, as well as for finding safer alternatives for various applications, including aqueous film forming foams. The behavior of these substances at interfaces strongly depends on molecular architecture, chemistry, and concentration, which define molecular packing, self-assembly, interfacial diffusion, and the surface tension. SIMULATIONS Modeling of three PFAS surfactants, namely, longer-tail (perfluorooctanoate (PFOA)) and shorter-tail (perfluorobutanoate (PFBA) and 2,3,3,3-tetrafluoro-2-(heptafluoropropoxy) propanoate (GenX)) has been conducted using atomistic molecular dynamics simulations. A systematic comparison between these representative PFAS of different sizes and structure reveals factors influencing their association behavior, mechanism of surface tension reduction, and interfacial mobility as a function of surface coverage. FINDINGS Shorter-chain PFAS surfactants (GenX or PFBA) require lower surface coverage compared to longer chain (PFOA) PFAS to achieve the same decrease in surface tension. However, a higher concentration of GenX and PFBA is necessary in the bulk aqueous solution to achieve the same surface coverage as PFOA, due to their higher solubility in water. The PFAS molecular orientation and mobility at the interface are found to be vastly influenced by the length and architecture of the hydrophobic fluorocarbon tail. A significant ordering of the water dipole moment near the anionic headgroup is apparent at high surface concentration. A direct correlation is established between the PFAS interfacial properties and PFAS-PFAS, PFAS-counterion, and PFAS-water interactions.
Collapse
Affiliation(s)
- Aditya Choudhary
- Department of Materials Science & Engineering, University of Utah, 122 S. Central Campus Drive, Room 304, Salt Lake City, UT 84112, USA
| | - Aashish Tsunduru
- Department of Materials Science & Engineering, University of Utah, 122 S. Central Campus Drive, Room 304, Salt Lake City, UT 84112, USA
| | - Marina Tsianou
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York (SUNY), Buffalo, NY 14260-4200, USA
| | - Paschalis Alexandridis
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York (SUNY), Buffalo, NY 14260-4200, USA
| | - Dmitry Bedrov
- Department of Materials Science & Engineering, University of Utah, 122 S. Central Campus Drive, Room 304, Salt Lake City, UT 84112, USA.
| |
Collapse
|
2
|
Rashtbari S, Dehghan G, Khataee A, Khataee S, Orooji Y. A sensitive and selective amperometric determination of perfluorooctanesulfonic acid on Mo 2Ti 2AlC 3 MXene precursor-modified electrode. CHEMOSPHERE 2024; 370:144012. [PMID: 39716601 DOI: 10.1016/j.chemosphere.2024.144012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/27/2024] [Accepted: 12/21/2024] [Indexed: 12/25/2024]
Abstract
Various commercial and industrial products widely use highly toxic eight-carbon-chain perfluorooctanesulfonate (PFOS), posing a significant threat to the health of living organisms. In this study, the electrochemical detection of PFOS was achieved by developing a carbon paste electrode (CPE) using the Mo2Ti2AlC3 MAX phase. Mo2Ti2AlC3 was synthesized and directly used to construct the CPE. The electrochemical performance of the prepared sensor was tested using various electrochemical techniques, such as cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), differential pulse voltammetry (DPV), and amperometric titration. The developed electrochemical sensor exhibited two linear ranges from 0.001 to 0.09 μM and from 1.1 to 62.6 μM, with a detection limit of 0.04 nM. The sensor demonstrated high sensitivity, measuring 145.1 μA μM-1 cm-2, and a response time of 5 s for PFOS quantification at a working potential of 0.3 V. Additionally, the sensor demonstrated outstanding resistance to typical interfering chemicals. The applicability and reliability of the developed sensor for PFOS determination were further tested in real samples, yielding recoveries in the range of 92.6-108.2%, with relative standard deviation (RSD) values between 1.8% and 3.7%. The Mo2Ti2AlC3 MAX phase-based electrochemical sensor is simple, rapid, sensitive, and cost-effective, making it a promising approach for the quantification of PFOS in environmental water and soil samples.
Collapse
Affiliation(s)
- Samaneh Rashtbari
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, 51666-16471, Tabriz, Iran; Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471, Tabriz, Iran
| | - Gholamreza Dehghan
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, 51666-16471, Tabriz, Iran.
| | - Alireza Khataee
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471, Tabriz, Iran; Department of Chemical Engineering, Istanbul Technical University, 34469, Istanbul, Türkiye.
| | - Simin Khataee
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, 51666-16471, Tabriz, Iran
| | - Yasin Orooji
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| |
Collapse
|
3
|
Pranić M, Carlucci L, van der Wal A, Dykstra JE. Kinetic and isotherm study for the adsorption of per- and polyfluoroalkyl substances (PFAS) on activated carbon in the low ng/L range. CHEMOSPHERE 2024; 370:143889. [PMID: 39638126 DOI: 10.1016/j.chemosphere.2024.143889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 09/17/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
Activated carbon adsorption is a widely used technology for the removal of per- and polyfluoroalkyl substances (PFAS). However, the rapid breakthrough of PFAS in activated carbon filters poses a challenge to meet the very low allowable PFAS concentrations in drinking water, leading to high operational costs. In this study, we conducted batch isotherm and kinetic adsorption experiments using nine different types of PFAS molecules at concentrations typically found in water sources used for drinking water production (0.1-100 ng/L). The isotherm experiments at these low concentrations reveal that the maximum adsorption capacity of several PFAS is much lower than reported in literature. The estimated isotherms were included in a dynamic model that includes mass transport based on surface diffusion. This model effectively describes the experimental kinetic data, and the obtained surface diffusion coefficients indicate a very slow PFAS surface mobility. Additionally, our findings indicate that PFAS surface mobility decreases in scenarios with more available adsorption sites. Notably, mesoporous activated carbon, with its higher adsorption capacity, exhibits lower PFAS surface mobility than microporous carbon with lower PFAS adsorption capacity. Moreover, for both carbons, we observed a decrease in PFAS surface mobility at higher carbon loadings when the surface is less saturated with PFAS. Our findings suggest potential inherent limitations in activated carbon technology for PFAS removal under environmentally relevant conditions, as we observed lower adsorption capacities than previously reported at higher concentrations, and a decrease in PFAS surface mobility with more available adsorption sites.
Collapse
Affiliation(s)
- Marko Pranić
- Environmental Technology, Wageningen University & Research, P.O. Box 17, 6700 AA Wageningen, The Netherlands.
| | - Livio Carlucci
- Environmental Technology, Wageningen University & Research, P.O. Box 17, 6700 AA Wageningen, The Netherlands
| | - Albert van der Wal
- Environmental Technology, Wageningen University & Research, P.O. Box 17, 6700 AA Wageningen, The Netherlands; Evides Water Company, P.O. Box 4472, 3006 AL Rotterdam, The Netherlands
| | - Jouke E Dykstra
- Environmental Technology, Wageningen University & Research, P.O. Box 17, 6700 AA Wageningen, The Netherlands.
| |
Collapse
|
4
|
Moavenzadeh Ghaznavi S, Flores Azua AJ, Kopec AD, Zambrano Cruzatty L, Apul OG. Permeation of per- and polyfluoroalkyl substances (PFAS)-laden leachate in landfills as an outcome of puncture failures of high-density polyethylene geomembranes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125234. [PMID: 39489318 DOI: 10.1016/j.envpol.2024.125234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/28/2024] [Accepted: 11/01/2024] [Indexed: 11/05/2024]
Abstract
In response to growing environmental concerns regarding the presence of per- and polyfluoroalkyl substances (PFAS) in landfills, this study explores PFAS permeation through pinhole defects of high-density polyethylene (HDPE) geomembranes (GMs) experimentally. Specifically, this study aims to: (i) investigate the adsorption of PFAS onto HDPE GMs, (ii) evaluate the effectiveness of GMs experimentally in retaining PFAS-laden leachate in the event of a puncture failure, (iii) assess the critical conditions leading to puncture failure of GM using mechanical characterization testing with complementary finite element method (FEM) analyses with the input data from mechanical characterization. Our findings show limited intermolecular attractive interactions between PFAS and GMs, and surfactant properties of PFAS contribute to higher leachate permeation through pinholes. In general, highly fluorinated, short chain PFAS exhibit increased permeation rates, which was attributed to their size and greater propensity to align at the water-air interface. This study underlines the environmental implications of PFAS-laden leachates especially when there are no proper liner systems or leachate collection systems in place underscoring the necessity for modern landfill design and management practices to mitigate environmental risks associated with PFAS.
Collapse
Affiliation(s)
| | | | - A Dianne Kopec
- Senator George J. Mitchell Center for Sustainability Solutions, University of Maine, Orono, ME, 04473, USA
| | - Luis Zambrano Cruzatty
- Department of Civil and Environmental Engineering, University of Maine, Orono, ME, 04473, USA
| | - Onur G Apul
- Department of Civil and Environmental Engineering, University of Maine, Orono, ME, 04473, USA.
| |
Collapse
|
5
|
Zorigt N, Zarei A, Auras F, Khazdooz L, Khosropour A, Abbaspourrad A. Synthesis of Homoallylamine Covalent Organic Frameworks Via Hosomi-Sakurai Reaction Under Mild Conditions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2406805. [PMID: 39529562 DOI: 10.1002/smll.202406805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/18/2024] [Indexed: 11/16/2024]
Abstract
One-pot multicomponent reactions (MCRs) are a valuable strategy to synthesize functional covalent organic frameworks (COFs) in a single step. Most reported COF syntheses involve solvothermal processes, and because of the harsh reaction conditions, such as high temperature or high pressure, large-scale production of COFs has been limited. The synthesis of homoallylamine substituted COFs via a one-pot Hosomi-Sakurai reaction is reported. At room temperature the reaction of allyltriethylgermane with either terephthalaldehyde or [1,1'-biphenyl]-4,4'-dicarbaldehyde, and 1,3,5-tris(4-aminophenyl)benzene (TAPB) is catalyzed by Sc(OTf)3 to produce two COFs: TAPB-1P-Allyl COF and TAPB-BP-Allyl COF. The allyl functionalized COFs shows high crystallinity, with micropores ranging from 3.2 to 3.9 nm, for TAPB-1P-Allyl COF and TAPB-BP-Allyl COF respectively, and both COFs are hydrolytically stable at different pH levels. Post-synthetic modification of these COFs with iodomethane produces methylated cationic COFs that demonstrates >98% adsorption efficiencies below the detection limit of perfluorooctanoic acid (PFOA) and perfluorodecanoic acid (PFDA) from aqueous solutions. After four cycles adsorption efficiency remains high with concentrations of PFOA below the detection limit.
Collapse
Affiliation(s)
| | - Amin Zarei
- Department of Food Science, Cornell University, Ithaca, NY, 14853, USA
| | - Florian Auras
- Faculty of Chemistry and Food Chemistry, TUD Dresden University of Technology, 01217, Dresden, Germany
| | - Leila Khazdooz
- Department of Food Science, Cornell University, Ithaca, NY, 14853, USA
| | | | | |
Collapse
|
6
|
Coffin ES, Reeves DM, Cassidy DP, Danielson ND, Henry MA. PFAS distribution in cascade derived foam at wastewater treatment plants: The role of non-linear drainage, collapse induced enrichment, and implications for removal. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135334. [PMID: 39096635 DOI: 10.1016/j.jhazmat.2024.135334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/08/2024] [Accepted: 07/25/2024] [Indexed: 08/05/2024]
Abstract
Per- and polyfluorinated alkyl substances (PFAS) enrichment in foam was investigated for the first time at a wastewater treatment plant cascade. A novel sampling device was utilized to allow spatial and temporal heterogeneity in PFAS concentrations and liquid content to be characterized. Concentrations of 8 PFAS compounds were normalized to liquid content and fit to a power law model revealing strong correlation (R2 = 0.91) between drainage induced enrichment and PFAS molar volume. Short chain PFAS such as perfluorobutanoate (PFBA) exhibited minor to no enrichment factors in foam (0.24-5.9) compared to effluent concentrations across the range of foam liquid contents (0.28-6.24 %), while long chain compounds such as perfluorooctane sulfonate (PFOS) became highly enriched with factors of 295-143,000. A conceptual model is proposed to explain higher than expected enrichment of more surface-active PFAS relative to liquid content, which combines continuous partitioning of PFAS to air bubbles during foam formation with additional partitioning during non-linear drainage and foam collapse, both controlled by their affinity for the air-water interface. Scoping calculations suggest the majority of PFOS and other long chain PFAS may be removed if foam is continuously collected with potential to reduce waste volume under economic barriers for current destructive technologies.
Collapse
Affiliation(s)
- Ethan S Coffin
- Department of Geological and Environmental Sciences, Western Michigan University, 1903 W. Michigan Ave, Kalamazoo, MI 49008-5241, USA.
| | - Donald M Reeves
- Department of Geological and Environmental Sciences, Western Michigan University, 1903 W. Michigan Ave, Kalamazoo, MI 49008-5241, USA
| | - Daniel P Cassidy
- Department of Geological and Environmental Sciences, Western Michigan University, 1903 W. Michigan Ave, Kalamazoo, MI 49008-5241, USA
| | - Neil D Danielson
- Department of Chemistry and Biochemistry, Miami University, 651 E. High Street, Oxford, OH 45056-1846, USA
| | - Mark A Henry
- M.H.E. Products, 3371 Sherman Rd, East Tawas, MI 48730, USA
| |
Collapse
|
7
|
Guo H, Hu T, Yang X, Liu Z, Cui Q, Qu C, Guo F, Liu S, Sweetman AJ, Hou J, Tan W. Roles of varying carbon chains and functional groups of legacy and emerging per-/polyfluoroalkyl substances in adsorption on metal-organic framework: Insights into mechanism and adsorption prediction. ENVIRONMENTAL RESEARCH 2024; 251:118679. [PMID: 38518904 DOI: 10.1016/j.envres.2024.118679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/21/2024] [Accepted: 03/09/2024] [Indexed: 03/24/2024]
Abstract
Metal-organic frameworks (MOFs) are promising adsorbents for legacy per-/polyfluoroalkyl substances (PFASs), but they are being replaced by emerging PFASs. The effects of varying carbon chains and functional groups of emerging PFASs on their adsorption behavior on MOFs require attention. This study systematically revealed the structure-adsorption relationships and interaction mechanisms of legacy and emerging PFASs on a typical MOF MIL-101(Cr). It also presented an approach reflecting the average electronegativity of PFAS moieties for adsorption prediction. We demonstrated that short-chain or sulfonate PFASs showed higher adsorption capacities (μmol/g) on MIL-101(Cr) than their long-chain or carboxylate counterparts, respectively. Compared with linear PFASs, their branched isomers were found to exhibit a higher adsorption potential on MIL-101(Cr). In addition, the introduction of ether bond into PFAS molecule (e.g., hexafluoropropylene oxide dimeric acid, GenX) increased the adsorption capacity, while the replacement of CF2 moieties in PFAS molecule with CH2 moieties (e.g., 6:2 fluorotelomer sulfonate, 6:2 FTS) caused a decrease in adsorption. Divalent ions (such as Ca2+ and SO42-) and solution pH have a greater effect on the adsorption of PFASs containing ether bonds or more CF2 moieties. PFAS adsorption on MIL-101(Cr) was governed by electrostatic interaction, complexation, hydrogen bonding, π-CF interaction, and π-anion interaction as well as steric effects, which were associated with the molecular electronegativity and chain length of each PFAS. The average electronegativity of individual moieties (named Me) for each PFAS was estimated and found to show a significantly positive correlation with the corresponding adsorption capacity on MIL-101(Cr). The removal rates of major PFASs in contaminated groundwater by MIL-101(Cr) were also correlated with the corresponding Me values. These findings will assist with the adsorption prediction for a wide range of PFASs and contribute to tailoring efficient MOF materials.
Collapse
Affiliation(s)
- Hao Guo
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Tongyu Hu
- Beijing Construction Engineering Environmental Remediation Co., Ltd., Beijing 100101, China
| | - Xiaoman Yang
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhaoyang Liu
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China.
| | | | - Chenchen Qu
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Fayang Guo
- Institute of Resource and Environment, Henan Polytechnic University, Jiaozuo 454000, China
| | - Shun Liu
- The Seventh Geological Brigade of Hubei Geological Bureau, Yichang 443100, China
| | - Andrew J Sweetman
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| | - Jingtao Hou
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Wenfeng Tan
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
8
|
Shin J, An B. Effect of ligand interactions within modified granular activated carbon (GAC) on mixed perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) adsorption. CHEMOSPHERE 2024; 357:142025. [PMID: 38614400 DOI: 10.1016/j.chemosphere.2024.142025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 04/06/2024] [Accepted: 04/10/2024] [Indexed: 04/15/2024]
Abstract
A new adsorbent based on commercial granular activated carbon (GAC) and loaded with Cu(II) (GAC-Cu) was prepared to enhance the adsorption capacity of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS). The surface area (SA) and pore volume of GAC-Cu decreased by ∼15% compared to those of pristine GAC. The scanning electron microscopy-energy dispersive spectrometry (SEM-EDS) and leaching test results indicated that, compared with GAC, the Cu atomic ratio and Cu amount in GAC-Cu increased by 2.91 and 2.43 times, respectively. The point of zero charge (PZC) measured using a salt addition method obtained a pH of 6.0 (GAC) and 5.0 (GAC-Cu). According to the isotherm models obtaining highest coefficient of determination (R2), GAC-Cu exhibited a 20.4% and 35.2% increase for PFOA and PFOS in maximum uptake (qm), respectively, compared to those of GAC. In addition, the adsorption affinity (b) for GAC-Cu increased by 1045% and 175% for PFOA and PFOS, respectively. The pH effect on the adsorption capacity of GAC-Cu was investigated. The uptake of PFOA and PFOS decreased with an increase in pH for both GAC and GAC-Cu. GAC-Cu exhibited higher uptake than GAC at pH 6 and 7, but no enhanced uptake was observed at pH 4.0, 5.0, and 8.5. Therefore, ligand interaction was effective at weak acid or neutral pH.
Collapse
Affiliation(s)
- Jeongwoo Shin
- Department of Civil, Environmental, and Biomedical Engineering, Sangmyung University, Cheonan, 31066, Republic of Korea
| | - Byungryul An
- Department of Civil Engineering, Sangmyung University, Cheonan, 31066, Republic of Korea.
| |
Collapse
|
9
|
Creton B, Barraud E, Nieto-Draghi C. Prediction of critical micelle concentration for per- and polyfluoroalkyl substances. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2024; 35:309-324. [PMID: 38591134 DOI: 10.1080/1062936x.2024.2337011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 03/26/2024] [Indexed: 04/10/2024]
Abstract
In this study, we focus on the development of Quantitative Structure-Property Relationship (QSPR) models to predict the critical micelle concentration (CMC) for per- and polyfluoroalkyl substances (PFASs). Experimental CMC values for both fluorinated and non-fluorinated compounds were meticulously compiled from existing literature sources. Our approach involved constructing two distinct types of models based on Support Vector Machine (SVM) algorithms applied to the dataset. Type (I) models were trained exclusively on CMC values for fluorinated compounds, while Type (II) models were developed utilizing the entire dataset, incorporating both fluorinated and non-fluorinated compounds. Comparative analyses were conducted against reference data, as well as between the two model types. Encouragingly, both types of models exhibited robust predictive capabilities and demonstrated high reliability. Subsequently, the model having the broadest applicability domain was selected to complement the existing experimental data, thereby enhancing our understanding of PFAS behaviour.
Collapse
Affiliation(s)
- B Creton
- Thermodynamics and Molecular Simulation, IFP Energies nouvelles, Rueil-Malmaison, France
| | - E Barraud
- Thermodynamics and Molecular Simulation, IFP Energies nouvelles, Rueil-Malmaison, France
| | - C Nieto-Draghi
- Thermodynamics and Molecular Simulation, IFP Energies nouvelles, Rueil-Malmaison, France
| |
Collapse
|
10
|
Pederick JL, Frkic RL, McDougal DP, Bruning JB. A structural basis for the activation of peroxisome proliferator-activated receptor gamma (PPARγ) by perfluorooctanoic acid (PFOA). CHEMOSPHERE 2024; 354:141723. [PMID: 38494006 DOI: 10.1016/j.chemosphere.2024.141723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/12/2024] [Accepted: 03/13/2024] [Indexed: 03/19/2024]
Abstract
Perfluorooctanoic acid (PFOA) is a widespread environmental pollutant of the perfluoroalkyl substance (PFAS) class that is extremely resistant to environmental and metabolic degradation, leading to bioaccumulation. PFOA exposure has been linked to many health effects including endocrine disruption and metabolic dysregulation, but our understanding of the molecular mechanisms resulting in these outcomes remains incomplete. One target affected by PFOA is the ligand regulated nuclear receptor peroxisome proliferator-activated receptor gamma (PPARγ) which plays a critical role in controlling metabolic homeostasis through regulating processes such as adipogenesis, glucose homeostasis, inflammation and osteogenesis. It has been previously established that PFOA activates PPARγ through binding to the PPARγ ligand binding domain (PPARγ LBD) leading to increased expression of PPARγ controlled target genes. However, the mechanism by which PFOA achieves this has remained elusive. Here, we employed a combination of X-ray crystallography and fluorescence polarization assays to provide a structural basis for PFOA mediated activation of PPARγ via binding to the PPARγ LBD. Using X-ray crystallography, the cocrystal structure of the PPARγ LBD:PFOA complex was solved. This revealed that PFOA occupies three distinct sites, two within the PPARγ LBD and one within the activation function 2 (AF2) on the protein surface. Structural comparison of PFOA binding with previously reported PPARγ:ligand complexes supports that PFOA activates PPARγ by a partial agonist mechanism at micromolar concentrations. Fluorescence polarization assays also revealed that PFOA binding to the AF2 is unlikely to occur in a cellular context and confirmed that PFOA behaves as a partial agonist in vitro, weakly recruiting a coactivator peptide to the AF2 of the PPARγ LBD. This discovery provides an advancement in understanding PFOA mediated regulation of PPARγ, giving new insight regarding regulation of PPARγ by PFAS and PFAS substitutes in general and can be applied to the design and assessment of safer PFAS.
Collapse
Affiliation(s)
- J L Pederick
- Institute for Photonics and Advanced Sensing (IPAS), School of Biological Sciences, The University of Adelaide, SA, Australia
| | - R L Frkic
- Institute for Photonics and Advanced Sensing (IPAS), School of Biological Sciences, The University of Adelaide, SA, Australia
| | - D P McDougal
- Institute for Photonics and Advanced Sensing (IPAS), School of Biological Sciences, The University of Adelaide, SA, Australia
| | - J B Bruning
- Institute for Photonics and Advanced Sensing (IPAS), School of Biological Sciences, The University of Adelaide, SA, Australia.
| |
Collapse
|
11
|
Ilango AK, Liang Y. Surface modifications of biopolymers for removal of per- and polyfluoroalkyl substances from water: Current research and perspectives. WATER RESEARCH 2024; 249:120927. [PMID: 38042065 DOI: 10.1016/j.watres.2023.120927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 11/02/2023] [Accepted: 11/24/2023] [Indexed: 12/04/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are highly recalcitrant organic contaminants that have attracted ever-increasing attention from the general public, government agencies and scientific communities. To remove PFAS from water, especially the enormous volume of drinking water, stormwater, and groundwater, sorption is the most practical approach. Success of this approach demands green, renewable, and sustainable materials for capturing PFAS at ng/L or µg/L levels. To meet this demand, this manuscript critically reviewed sorbents developed from biopolymers, such as chitosan (CTN), alginate (ALG), and cellulose (CEL) covering the period from 2008 to 2023. The use of different cross-linkers for the surface modifications of biopolymers were described. The underlying removal mechanism of biosorbents for PFAS adsorption from molecular perspectives was discussed. Besides reviewing and comparing the performance of different bio-based sorbents with respect to environmental factors like pH, and sorption kinetics and capacity, strategies for modifying biosorbents for better performance were proposed. Additionally, approaches for regeneration and reuse of the biosorbents were discussed. This was followed by further discussion of challenges facing the development of biosorbents for PFAS removal.
Collapse
Affiliation(s)
- Aswin Kumar Ilango
- Department of Environmental and Sustainable Engineering, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, United States.
| | - Yanna Liang
- Department of Environmental and Sustainable Engineering, University at Albany, State University of New York, 1400 Washington Avenue, Albany, NY 12222, United States
| |
Collapse
|
12
|
Lauwers A, Vercammen J, De Vos D. Adsorption of PFAS by All-Silica Zeolite β: Insights into the Effect of the Water Matrix, Regeneration of the Material, and Continuous PFAS Adsorption. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37932926 DOI: 10.1021/acsami.3c12321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are man-made organic compounds ubiquitously present in the environment. Due to their persistency and bioaccumulative nature, and because of increasingly stringent regulations of PFAS, their removal from the environment is necessary. Our initial study identified all-silica zeolite β as an alternative adsorbent with a high selectivity, affinity, and capacity for perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) removal. Here, we study the influence of the PFAS chain length on the affinity and capacity of a novel material, all-silica zeolite β, showing that the *BEA zeolite is an ideal sorbent for the removal of PFAS with 8 carbons. The solution pH and the addition of cations or natural organic substances to the water matrix have minimal influence on PFOA/PFOS removal with the zeolite. Next, regeneration of a PFOS-loaded zeolite was assessed; besides thermal, solvent-driven regeneration of the zeolite is also possible, using well-selected combinations of non-noxious solvents. Lastly, continuous adsorption experiments show that zeolite can be used for larger-scale applications.
Collapse
Affiliation(s)
- Aline Lauwers
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS), KU Leuven, Celestijnenlaan 200F, Leuven 3001, Belgium
| | - Jannick Vercammen
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS), KU Leuven, Celestijnenlaan 200F, Leuven 3001, Belgium
| | - Dirk De Vos
- Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS), KU Leuven, Celestijnenlaan 200F, Leuven 3001, Belgium
| |
Collapse
|
13
|
Tunioli F, Marforio TD, Favaretto L, Mantovani S, Pintus A, Bianchi A, Kovtun A, Agnes M, Palermo V, Calvaresi M, Navacchia ML, Melucci M. Chemical Tailoring of β-Cyclodextrin-Graphene Oxide for Enhanced Per- and Polyfluoroalkyl Substances (PFAS) Adsorption from Drinking Water. Chemistry 2023; 29:e202301854. [PMID: 37548167 DOI: 10.1002/chem.202301854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/05/2023] [Accepted: 08/07/2023] [Indexed: 08/08/2023]
Abstract
We report on the synthesis of β-cyclodextrin (βCD) modified graphene oxide (GO) nanosheets, having different sized alkyl linkers (GO-Cn -βCD) and their exploitation as sorbent of per- and polyfluoroalkyl substances (PFAS) from drinking water. βCD were functionalized with a pending amino group, and the resulting precursors grafted to GO nanosheets by epoxide ring opening reaction. Loading of βCD units in the range 12 %-36 % was estimated by combined XPS and elemental analysis. Adsorption tests on perfluorobutanoic acid (PFBA), a particularly persistent PFAS selected as case study, revealed a strong influence of the alkyl linker length on the adsorption efficiency, with the hexyl linker derivative GO-C6 -βCD outperforming both pristine GO and granular activated carbon (GAC), the standard sorbent benchmark. Molecular dynamic simulations ascribed this evidence to the favorable orientation of the βCD unit on the surface of GO which enables a strong contaminant molecules retention.
Collapse
Affiliation(s)
- Francesca Tunioli
- Institute for Organic Synthesis and Photoreactivity (ISOF), Consiglio Nazionale delle Ricerche (CNR), Via Gobetti 101, 40129, Bologna, BO, Italy
| | - Tainah D Marforio
- Department of Chemistry "G. Ciamician" Alma Mater Studiorum -, University of Bologna, Via Selmi 2, 40126, Bologna, BO, Italy
| | - Laura Favaretto
- Institute for Organic Synthesis and Photoreactivity (ISOF), Consiglio Nazionale delle Ricerche (CNR), Via Gobetti 101, 40129, Bologna, BO, Italy
| | - Sebastiano Mantovani
- Institute for Organic Synthesis and Photoreactivity (ISOF), Consiglio Nazionale delle Ricerche (CNR), Via Gobetti 101, 40129, Bologna, BO, Italy
| | - Angela Pintus
- Institute for Organic Synthesis and Photoreactivity (ISOF), Consiglio Nazionale delle Ricerche (CNR), Via Gobetti 101, 40129, Bologna, BO, Italy
| | - Antonio Bianchi
- Institute for Organic Synthesis and Photoreactivity (ISOF), Consiglio Nazionale delle Ricerche (CNR), Via Gobetti 101, 40129, Bologna, BO, Italy
| | - Alessandro Kovtun
- Institute for Organic Synthesis and Photoreactivity (ISOF), Consiglio Nazionale delle Ricerche (CNR), Via Gobetti 101, 40129, Bologna, BO, Italy
| | - Marco Agnes
- Institute for Organic Synthesis and Photoreactivity (ISOF), Consiglio Nazionale delle Ricerche (CNR), Via Gobetti 101, 40129, Bologna, BO, Italy
| | - Vincenzo Palermo
- Institute for Organic Synthesis and Photoreactivity (ISOF), Consiglio Nazionale delle Ricerche (CNR), Via Gobetti 101, 40129, Bologna, BO, Italy
- Department of Industrial and Materials Science, Chalmers University of Technology, 41258, Göteborg, Sweden
| | - Matteo Calvaresi
- Department of Chemistry "G. Ciamician" Alma Mater Studiorum -, University of Bologna, Via Selmi 2, 40126, Bologna, BO, Italy
| | - Maria Luisa Navacchia
- Institute for Organic Synthesis and Photoreactivity (ISOF), Consiglio Nazionale delle Ricerche (CNR), Via Gobetti 101, 40129, Bologna, BO, Italy
| | - Manuela Melucci
- Institute for Organic Synthesis and Photoreactivity (ISOF), Consiglio Nazionale delle Ricerche (CNR), Via Gobetti 101, 40129, Bologna, BO, Italy
| |
Collapse
|
14
|
Brahana PJ, Al Harraq A, Saab LE, Roberg R, Valsaraj KT, Bharti B. Uptake and release of perfluoroalkyl carboxylic acids (PFCAs) from macro and microplastics. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2023; 25:1519-1531. [PMID: 37602395 DOI: 10.1039/d3em00209h] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Microplastics and per- and polyfluoroalkyl substances (PFAS) are two of the most notable emerging contaminants reported in the environment. Micron and nanoscale plastics possess a high surface area-to-volume ratio, which could increase their potential to adsorb pollutants such as PFAS. One of the most concerning sub-classes of PFAS are the perfluoroalkyl carboxylic acids (PFCAs). PFCAs are often studied in the same context as other environmental contaminants, but their amphiphilic properties are often overlooked in determining their fate in the environment. This lack of consideration has resulted in a diminished understanding of the environmental mobility of PFCAs, as well as their interactions with environmental media. Here, we investigate the interaction of PFCAs with polyethylene microplastics, and identify the role of environmental weathering in modifying the nature of interactions. Through a series of adsorption-desorption experiments, we delineate the role of the fluoroalkyl tail in the binding of PFCAs to microplastics. As the number of carbon atoms in the fluoroalkyl chain increases, there is a corresponding increase in the adsorption of PFCAs onto microplastics. This relationship can become modified by environmental weathering, where the PFCAs are released from the macro and microplastic surface after exposure to simulated sunlight. This study identifies the fundamental relationship between PFCAs and plastic pollutants, where they can mutually impact their thermodynamic and transport properties.
Collapse
Affiliation(s)
- Philip J Brahana
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana, 70803, USA.
| | - Ahmed Al Harraq
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana, 70803, USA.
| | - Luis E Saab
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana, 70803, USA.
| | - Ruby Roberg
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana, 70803, USA.
| | - Kaillat T Valsaraj
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana, 70803, USA.
| | - Bhuvnesh Bharti
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana, 70803, USA.
| |
Collapse
|
15
|
Yan W, Song M, Zhou Y. Redistribution of perfluorooctanoic acid in sludge after thermal hydrolysis: Location of protein plays a major role. WATER RESEARCH 2023; 241:120135. [PMID: 37267707 DOI: 10.1016/j.watres.2023.120135] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 06/04/2023]
Abstract
Perfluorinated compounds (PFCs) are a group of bio-recalcitrant pollutants that remain in waste activated sludge and may subsequently be transferred with sludge to thermal hydrolysis pretreatment (THP) process. Instead of reduction, it is observed previously that the concentration of free PFCs elevated after THP. By employing perfluorooctanoic acid (PFOA) as a representative, this study developed a hierarchical scheme to pinpoint the key factors that contribute to free PFOA elevation from the complex sludge transformations. According to the results, the relative abundance of PFOA in the liquid phase increased by 11.7 - 22.9% during THP. In the solid phase, the amide groups reduction and the spatial structure change of proteins weakened the sorption capability of solids for PFOA. In the liquid phase, the increase of proteins, which could bind and form static hindrance to regulate the behavior of PFOA, was the main factor to retain PFOA in liquid. In contrast, other sludge transformations including changes in pH, zeta potential, ionic condition and specific surface area, displayed insignificant impact on the redistribution process. The study presents a detailed picture on how sludge transformations would regulate PFCs distribution that ultimately direct the selection of further treatment processes.
Collapse
Affiliation(s)
- Wangwang Yan
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-Sen University, Gongchang Road, Guangming District, Guangdong 518107, China; Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Cleantech One #06-08, 637141, Singapore
| | - Mengsha Song
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus of Sun Yat-Sen University, Gongchang Road, Guangming District, Guangdong 518107, China
| | - Yan Zhou
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Cleantech One #06-08, 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, 639798, Singapore.
| |
Collapse
|
16
|
Castellani F, Galletti M, Charavgis F, Cingolani A, Renzi S, Nucci M, Protano C, Vitali M. Perfluorinated Compounds (PFCs) in River Waters of Central Italy: Monthly Variation and Ecological Risk Assessment (ERA). ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2023; 84:332-346. [PMID: 37022436 PMCID: PMC10130131 DOI: 10.1007/s00244-023-00993-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 03/22/2023] [Indexed: 06/19/2023]
Abstract
Perfluorinated compounds (PFCs) are a wide class of emerging pollutants. In this study, we applied the US EPA method 533 for the determination of 21 PFCs in river water samples. In particular, this method was used to investigate the presence of the target PFCs in six rivers in central Italy during a 4-month-long monitoring campaign. In 73% of the analyzed samples, at least some of the target PFCs were detected at concentrations higher than the limit of detection (LOD). The sum of the 21 target analytes (∑21PFCs) ranged from 4.3 to 68.5 ng L-1, with the highest concentrations measured in the month of June, probably due to a minor river streamflow occurring in the warmer summer months. Considering the individual congeners, PFBA and PFPeA, followed by PFHxA and PFOA, were the predominantly detected compounds. Short- and medium-chain PFCs (C4-C9) prevail over the long-chain PFCs (C10-C18), likely due to the increased industrial use and the higher solubility of short-chain PFCs compared to long-chain PFCs. The ecological risk assessment, conducted by using the risk quotient method, highlighted that the risk for aquatic environments associated with PFBA, PFPeA, PFBS, PFHxA and PFOA was low or negligible. Only for PFOA, there was a medium level of risk in two rivers in the month of June. With regard to PFOS, 54% of the river water samples were classified as "high risk" for the aquatic environment. The remaining 46% of the samples were classified as "medium risk."
Collapse
Affiliation(s)
- Federica Castellani
- Department of Public Health and Infectious Diseases, University of Rome la Sapienza, P.le Aldo Moro, 5, 00185, Rome, Italy
- Department of Ecological and Biological Sciences, Tuscia University, Largo dell'Università snc, 01100, Viterbo, Italy
| | - Mara Galletti
- ARPA Umbria, Via Carlo Alberto Dalla Chiesa, 23, 05100, Terni, Italy
| | | | | | - Sonia Renzi
- ARPA Umbria, Via Pievaiola 207/B-3, 06132, Perugia, Italy
| | - Mirko Nucci
- ARPA Umbria, Via Pievaiola 207/B-3, 06132, Perugia, Italy
| | - Carmela Protano
- Department of Public Health and Infectious Diseases, University of Rome la Sapienza, P.le Aldo Moro, 5, 00185, Rome, Italy
| | - Matteo Vitali
- Department of Public Health and Infectious Diseases, University of Rome la Sapienza, P.le Aldo Moro, 5, 00185, Rome, Italy.
| |
Collapse
|
17
|
Shah MM, Ahmad K, Boota S, Jensen T, La Frano MR, Irudayaraj J. Sensor technologies for the detection and monitoring of endocrine-disrupting chemicals. Front Bioeng Biotechnol 2023; 11:1141523. [PMID: 37051269 PMCID: PMC10083357 DOI: 10.3389/fbioe.2023.1141523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/14/2023] [Indexed: 03/29/2023] Open
Abstract
Endocrine-disrupting chemicals (EDCs) are a class of man-made substances with potential to disrupt the standard function of the endocrine system. These EDCs include phthalates, perchlorates, phenols, some heavy metals, furans, dimethoate, aromatic hydrocarbons, some pesticides, and per- and polyfluoroalkyl substances (PFAS). EDCs are widespread in the environment given their frequent use in daily life. Their production, usage, and consumption have increased many-fold in recent years. Their ability to interact and mimic normal endocrine functions makes them a potential threat to human health, aquatics, and wild life. Detection of these toxins has predominantly been done by mass spectroscopy and/or chromatography-based methods and to a lesser extent by advanced sensing approaches such as electrochemical and/or colorimetric methods. Instrument-based analytical techniques are often not amenable for onsite detection due to the lab-based nature of these detecting systems. Alternatively, analytical approaches based on sensor/biosensor techniques are more attractive because they are rapid, portable, equally sensitive, and eco-friendly. Advanced sensing systems have been adopted to detect a range of EDCs in the environment and food production systems. This review will focus on advances and developments in portable sensing techniques for EDCs, encompassing electrochemical, colorimetric, optical, aptamer-based, and microbial sensing approaches. We have also delineated the advantages and limitations of some of these sensing techniques and discussed future developments in sensor technology for the environmental sensing of EDCs.
Collapse
Affiliation(s)
- Muhammad Musaddiq Shah
- Department of Biological Sciences, Faculty of Sciences, University of Sialkot, Sialkot, Pakistan
| | - Khurshid Ahmad
- College of Food Sciences and Engineering, Ocean University of China, Qingdao, Shandong, China
| | - Sonia Boota
- Department of Biological Sciences, Faculty of Sciences, University of Sialkot, Sialkot, Pakistan
| | - Tor Jensen
- Biomedical Research Center, Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, IL, United States
| | - Michael R. La Frano
- Metabolomics Core Facility, Roy J Carver Biotechnology Center, The University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Joseph Irudayaraj
- Biomedical Research Center, Mills Breast Cancer Institute, Carle Foundation Hospital, Urbana, IL, United States
- Department of Bioengineering, The University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Micro and Nanotechnology Laboratory, The University of Illinois at Urbana-Champaign, Urbana, IL, United States
- *Correspondence: Joseph Irudayaraj,
| |
Collapse
|
18
|
Zhang Y, Placek TL, Jahan R, Alexandridis P, Tsianou M. Rhamnolipid Micellization and Adsorption Properties. Int J Mol Sci 2022; 23:ijms231911090. [PMID: 36232408 PMCID: PMC9570487 DOI: 10.3390/ijms231911090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/09/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
Biosurfactants are naturally occurring amphiphiles that are being actively pursued as alternatives to synthetic surfactants in cleaning, personal care, and cosmetic products. On the basis of their ability to mobilize and disperse hydrocarbons, biosurfactants are also involved in the bioremediation of oil spills. Rhamnolipids are low molecular weight glycolipid biosurfactants that consist of a mono- or di-rhamnose head group and a hydrocarbon fatty acid chain. We examine here the micellization of purified mono-rhamnolipids and di-rhamnolipids in aqueous solutions and their adsorption on model solid surfaces. Rhamnolipid micellization in water is endothermic; the CMC (critical micellization concentration) of di-rhamnolipid is lower than that of mono-rhamnolipid, and both CMCs decrease upon NaCl addition. Rhamnolipid adsorption on gold surface is mostly reversible and the adsorbed layer is rigid. A better understanding of biosurfactant self-assembly and adsorption properties is important for their utilization in consumer products and environmental applications.
Collapse
|
19
|
Kancharla S, Dong D, Bedrov D, Alexandridis P, Tsianou M. Binding of Perfluorooctanoate to Poly(ethylene oxide). Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Samhitha Kancharla
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York (SUNY), Buffalo, New York 14260-4200, United States
| | - Dengpan Dong
- Department of Materials Science and Engineering, University of Utah, 122 South Central Campus Drive, Room 304, Salt Lake City, Utah 84112, United States
| | - Dmitry Bedrov
- Department of Materials Science and Engineering, University of Utah, 122 South Central Campus Drive, Room 304, Salt Lake City, Utah 84112, United States
| | - Paschalis Alexandridis
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York (SUNY), Buffalo, New York 14260-4200, United States
| | - Marina Tsianou
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York (SUNY), Buffalo, New York 14260-4200, United States
| |
Collapse
|