1
|
Jadhav HB, Choudhary P, Annapure U, Ramniwas S, Mugabi R, Ahmad Nayik G. The role of sonication in developing synbiotic Beverages: A review. ULTRASONICS SONOCHEMISTRY 2024; 107:106941. [PMID: 38861817 PMCID: PMC11209632 DOI: 10.1016/j.ultsonch.2024.106941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/25/2024] [Accepted: 06/03/2024] [Indexed: 06/13/2024]
Abstract
Synbiotics are a combination of probiotic cells and prebiotic components and this harmonious association has numerous health benefits. Conventional processing technologies use high temperatures for processing which reduces the viability and the final quality of synbiotic beverages. Sonication is a rapidly growing technology in the food processing sector and can be employed for the formulation of synbiotic beverages with improved functionalities. The cavitation events generated during the sonication result in beneficial effects like increased viability of probiotic cells, enhanced bifidogenic characteristics of prebiotic components, less processing time, and high-quality products. The sonication process does not affect the sensory attributes of synbiotic beverages however, it alters the structure of prebiotics thus increasing the access by the probiotics. These positive effects are solely dependent on the type of ultrasound process and the ultrasound operating parameters. The review aims to provide information on the technological aspects of ultrasound, a brief about synbiotics, details on the ultrasound process used for the formulation of synbiotics, the influence of ultrasound operating parameters, and a focus on the research gap.
Collapse
Affiliation(s)
- Harsh B Jadhav
- Department of Food Engineering and Technology, Institute of Chemical Technology, Matunga, Mumbai 400019, India; PIHM, Unit UMET, INRAE, 369 Rue Jules Guesde 59650, Villeneuve d'Ascq -59650, France.
| | - Pintu Choudhary
- Department of Food Technology, CBL Government Polytechnic, Bhiwani, Haryana, India.
| | - Uday Annapure
- Department of Food Engineering and Technology, Institute of Chemical Technology, Matunga, Mumbai 400019, India
| | - Seema Ramniwas
- University Centre for Research and Development, Chandigarh University, Gharuan, Mohali 140413, Punjab, India
| | - Robert Mugabi
- Department of Food Technology and Nutrition, Makerere University, Kampala, Uganda.
| | - Gulzar Ahmad Nayik
- Department of Food Science & Technology, Govt. Degree College, Shopian 192303, J&K, India.
| |
Collapse
|
2
|
Cui L, Wu J, Wang X, Yang X, Ye Z, Mayo KH, Sun L, Zhou Y. Purification and identification of oligosaccharides from Cimicifuga heracleifolia Kom. rhizomes. Food Chem X 2023; 18:100706. [PMID: 37215199 PMCID: PMC10196342 DOI: 10.1016/j.fochx.2023.100706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/14/2023] [Accepted: 05/04/2023] [Indexed: 05/24/2023] Open
Abstract
Even though Cimicifuga sp. is widely used in functional foods around the world, the content and structure of its oligosaccharides remain unclear. Here, we isolated a mixture of oligosaccharides from Cimicifuga heracleifolia Kom. rhizomes with a yield of 9.5% w/w. Twenty-six oligosaccharide monomers from the mixture were purified using optimized SEC and HILIC techniques. The oligosaccharides were identified as belonging to two groups by using HPAEC-PAD, MALDI-TOF-MS, NMR and GC-MS methylation analyses. One group belongs to sucrose and inulin type fructo-oligosaccharides (FOS) {β-d-Fruf-(2 → 1)-[β-d-Fruf-(2 ↔ 1)]n=1-12-α-d-Glcp} with a 3-14 degree of polymerization (DP). Oligosaccharides in the other group belong to the inulo-n-ose type FOS {β-d-Fruf-(2 → 1)-[β-d-Fruf-(2 → 1)]m=0-12-β-d-Frup} with a DP of 2-14. This appears to be the first time that these oligosaccharides have been purified from Cimicifuga heracleifolia Kom., thus providing useful information concerning the utilization of Cimicifuga heracleifolia Kom. in functional foods.
Collapse
Affiliation(s)
- Liangnan Cui
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory on Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Jing Wu
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory on Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Xiang Wang
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory on Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Xiaotong Yang
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory on Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Zixin Ye
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory on Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Kevin H. Mayo
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, 6-155 Jackson Hall, Minneapolis, MN 55455, USA
| | - Lin Sun
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory on Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| | - Yifa Zhou
- Engineering Research Center of Glycoconjugates, Ministry of Education, Jilin Provincial Key Laboratory on Chemistry and Biology of Changbai Mountain Natural Drugs, School of Life Sciences, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
3
|
Cheong KL, Chen S, Teng B, Veeraperumal S, Zhong S, Tan K. Oligosaccharides as Potential Regulators of Gut Microbiota and Intestinal Health in Post-COVID-19 Management. Pharmaceuticals (Basel) 2023; 16:860. [PMID: 37375807 DOI: 10.3390/ph16060860] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
The COVID-19 pandemic has had a profound impact worldwide, resulting in long-term health effects for many individuals. Recently, as more and more people recover from COVID-19, there is an increasing need to identify effective management strategies for post-COVID-19 syndrome, which may include diarrhea, fatigue, and chronic inflammation. Oligosaccharides derived from natural resources have been shown to have prebiotic effects, and emerging evidence suggests that they may also have immunomodulatory and anti-inflammatory effects, which could be particularly relevant in mitigating the long-term effects of COVID-19. In this review, we explore the potential of oligosaccharides as regulators of gut microbiota and intestinal health in post-COVID-19 management. We discuss the complex interactions between the gut microbiota, their functional metabolites, such as short-chain fatty acids, and the immune system, highlighting the potential of oligosaccharides to improve gut health and manage post-COVID-19 syndrome. Furthermore, we review evidence of gut microbiota with angiotensin-converting enzyme 2 expression for alleviating post-COVID-19 syndrome. Therefore, oligosaccharides offer a safe, natural, and effective approach to potentially improving gut microbiota, intestinal health, and overall health outcomes in post-COVID-19 management.
Collapse
Affiliation(s)
- Kit-Leong Cheong
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Shutong Chen
- Department of Biology, College of Science, Shantou University, Shantou 515063, China
| | - Bo Teng
- Department of Biology, College of Science, Shantou University, Shantou 515063, China
| | - Suresh Veeraperumal
- Department of Biology, College of Science, Shantou University, Shantou 515063, China
| | - Saiyi Zhong
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Seafood, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Karsoon Tan
- Guangxi Key Laboratory of Beibu Gulf Biodiversity Conservation, Beibu Gulf University, Qinzhou 535000, China
| |
Collapse
|
4
|
Preparation methods, biological activities, and potential applications of marine algae oligosaccharides: a review. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2022.07.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
5
|
Magengelele M, Malgas S, Pletschke BI. Bioconversion of spent coffee grounds to prebiotic mannooligosaccharides - an example of biocatalysis in biorefinery. RSC Adv 2023; 13:3773-3780. [PMID: 36756573 PMCID: PMC9890647 DOI: 10.1039/d2ra07605e] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/13/2023] [Indexed: 01/27/2023] Open
Abstract
Spent coffee ground (SCG), an agro-industrial waste, have a high content of polysaccharides such as mannan, making it ideal for utilisation for the production of nutraceutical oligosaccharides. Recently, there has been growing interest in the production of mannooligosaccharides (MOS) for health promotion in humans and animals. MOS are reported to exhibit various bioactive properties, including prebiotic and antioxidant activity. In this study, SCG was Vivinal pretreated using NaOH, characterized and hydrolysed using a Bacillus sp. derived endo-β-1,4-mannanase, Man26A, for MOS production. Structural analyses using Fourier-transform infrared spectroscopy (FT-IR) and thermogravimetric analysis (TGA) were conducted to assess the efficacy of the pretreatment. Lignin removal by the pretreatment from SCG was clearly shown by TGA. FT-IR, on the other hand, showed the presence of α-linked d-galactopyranoside (812 cm-1) and β-linked d-mannopyranoside residues (817 cm-1) in both SCG samples, signifying the presence of mannan. Hydrolysis of pretreated SCG by Man26A produced mannobiose and mannotriose as the main MOS products. The effect of simulated gastric conditions on the MOS was investigated and showed this product to be suitable for oral administration. Finally, the prebiotic effect of the MOS on the growth of selected beneficial bacteria was investigated in vitro; showing that it enhanced Lactobacillus bulgaricus, Bacillus subtilis and Streptococcus thermophilus growth. These findings suggest that SCG is a viable source for the production of MOS which can be orally administered as prebiotics for effecting luxuriant growth of probiotic bacteria in the host's digestive tract, leading to a good health status.
Collapse
Affiliation(s)
- Mihle Magengelele
- Enzyme Science Programme (ESP), Department of Biochemistry and Microbiology, Rhodes University Makhanda (Grahamstown) 6140 Eastern Cape South Africa
| | - Samkelo Malgas
- Department of Biochemistry, Genetics and Microbiology, University of PretoriaHatfield 0002GautengSouth Africa
| | - Brett I. Pletschke
- Enzyme Science Programme (ESP), Department of Biochemistry and Microbiology, Rhodes UniversityMakhanda (Grahamstown) 6140Eastern CapeSouth Africa
| |
Collapse
|
6
|
Cheon S, Kim G, Bae JH, Lee DH, Seong H, Kim DH, Han JS, Lim SY, Han NS. Comparative analysis of prebiotic effects of four oligosaccharides using in vitro gut model: digestibility, microbiome, and metabolome changes. FEMS Microbiol Ecol 2023; 99:6979797. [PMID: 36623850 PMCID: PMC9875365 DOI: 10.1093/femsec/fiad002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 11/09/2022] [Accepted: 01/06/2023] [Indexed: 01/11/2023] Open
Abstract
Fructooligosaccharides (FOS), Ad-fructooligosaccharides (Ad-FOS), resistant maltodextrin (RMD), and maltooligosaccharides (MOS) are commercially available prebiotic oligosaccharides. In this study, the effects of prebiotics on the human gut microbial ecosystem were evaluated using an in vitro gut model. FOS and Ad-FOS showed tolerance to digestion, whereas RMD and MOS showed moderate digestion by digestive enzymes. In in vitro fecal fermentation, Bifidobacterium spp. increased in the following order: FOS, Ad-FOS, MOS, and RMD, whereas Bacteroides spp. increased in RMD medium. Bacteroides xylanisolvens exhibited cross-feeding by enabling the growth of other beneficial bacteria during co-culture in RMD medium. In metabolome analysis, total short-chain fatty acids (SCFAs) were highly produced in the following order: RMD, FOS, MOS, and Ad-FOS; acetate in the order of FOS, MOS/RMD, and Ad-FOS; butyrate in the order of RMD, MOS, FOS, and Ad-FOS; and propionate only in RMD. In addition, the conversion of betaine to trimethylamine was rarely affected in the following order: MOS, RMD, FOS, and Ad-FOS. Lastly, the four oligosaccharides inhibited the adhesion of pathogenic Escherichia coli to human epithelial cells to a similar extent. The comparative analysis results obtained in this study will provide comprehensive information of these substances to manufacturers and customers.
Collapse
Affiliation(s)
| | | | - Jae-Han Bae
- Brain Korea 21 Center for Bio-Health Industry, Department of Food Science and Biotechnology, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Dong Hyeon Lee
- Brain Korea 21 Center for Bio-Health Industry, Department of Food Science and Biotechnology, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Hyunbin Seong
- Brain Korea 21 Center for Bio-Health Industry, Department of Food Science and Biotechnology, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Da Hye Kim
- Brain Korea 21 Center for Bio-Health Industry, Department of Food Science and Biotechnology, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Jung-Sook Han
- Samyang Corp. 295 Pangyo-ro, Samyang Corporation Food Biotech R&D Center, Bundang-gu, Seongnam-si Gyeonggi-do 13488, Republic of Korea
| | - Su-Youn Lim
- Samyang Corp. 295 Pangyo-ro, Samyang Corporation Food Biotech R&D Center, Bundang-gu, Seongnam-si Gyeonggi-do 13488, Republic of Korea
| | - Nam Soo Han
- Corresponding author: Brain Korea 21 Center for Bio-Health Industry, Department of Food Science and Biotechnology, Chungbuk National University, Cheongju 28644, Republic of Korea. Tel: +82-43-261-2567; Fax: +82-43-271-4412; E-mail:
| |
Collapse
|
7
|
In vitro digestibility of oligosaccharides synthesized by dairy propionibacteria β-galactosidase from lactose, lactulose and lactitol. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
8
|
Dai J, He J, Chen Z, Qin H, Du M, Lei A, Zhao L, Wang J. Euglena gracilis Promotes Lactobacillus Growth and Antioxidants Accumulation as a Potential Next-Generation Prebiotic. Front Nutr 2022; 9:864565. [PMID: 35811960 PMCID: PMC9257220 DOI: 10.3389/fnut.2022.864565] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
Euglena gracilis, a single-celled microalga with various trophic growth styles under different cultivation conditions, contains nutrients, such as ß-1,3-glucans, essential amino acids, fatty acids, vitamins, and minerals. It has recently attracted attention as a new health food. Among them, ß-1,3-glucans, paramylon of Euglena, is an insoluble dietary fiber and is well known as an immune booster, attenuator of obesity and diabetes, reducer of acute liver injury, and suppressor of atopic dermatitis, and other chronic inflammatory disorders. Recently, evidence has appeared for the positive health effects of foods, food ingredients, or biochemical compounds derived from several other microalgae, such as Chlorella, Spirulina, Dunaliella, Phaeodactylum, and Pavlova. Until most recently, the prebiotic activity of Euglena and paramylon was reported. Emerging prospects of microalgae as prebiotics were well summarized, but the mechanisms behind the bacterial growth promotion by microalgae are not elucidated yet. Thus, we evaluated the prebiotic prospects of both autotrophic and heterotrophic Euglena on six different Lactobacillus. What’s more, the stimulated mechanism was revealed by bacterial culture medium metabolomic analysis. This study could widen the knowledge about the prebiotic activity of Euglena as a next-generation prebiotic and other microalgae-derived compounds as potential health foods.
Collapse
Affiliation(s)
- Junjie Dai
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Jiayi He
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Zixi Chen
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Huan Qin
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Ming Du
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Anping Lei
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Liqing Zhao
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China
- *Correspondence: Liqing Zhao,
| | - Jiangxin Wang
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
- Jiangxin Wang,
| |
Collapse
|
9
|
Rastall RA, Diez-Municio M, Forssten SD, Hamaker B, Meynier A, Moreno FJ, Respondek F, Stah B, Venema K, Wiese M. Structure and function of non-digestible carbohydrates in the gut microbiome. Benef Microbes 2022; 13:95-168. [PMID: 35729770 DOI: 10.3920/bm2021.0090] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Together with proteins and fats, carbohydrates are one of the macronutrients in the human diet. Digestible carbohydrates, such as starch, starch-based products, sucrose, lactose, glucose and some sugar alcohols and unusual (and fairly rare) α-linked glucans, directly provide us with energy while other carbohydrates including high molecular weight polysaccharides, mainly from plant cell walls, provide us with dietary fibre. Carbohydrates which are efficiently digested in the small intestine are not available in appreciable quantities to act as substrates for gut bacteria. Some oligo- and polysaccharides, many of which are also dietary fibres, are resistant to digestion in the small intestines and enter the colon where they provide substrates for the complex bacterial ecosystem that resides there. This review will focus on these non-digestible carbohydrates (NDC) and examine their impact on the gut microbiota and their physiological impact. Of particular focus will be the potential of non-digestible carbohydrates to act as prebiotics, but the review will also evaluate direct effects of NDC on human cells and systems.
Collapse
Affiliation(s)
- R A Rastall
- Department of Food and Nutritional Sciences, The University of Reading, P.O. Box 226, Whiteknights, Reading, RG6 6AP, United Kingdom
| | - M Diez-Municio
- Instituto de Investigación en Ciencias de la Alimentación, CIAL (CSIC-UAM), CEI (UAM+CSIC), Nicolás Cabrera 9, 28049 Madrid, Spain
| | - S D Forssten
- IFF Health & Biosciences, Sokeritehtaantie 20, 02460 Kantvik, Finland
| | - B Hamaker
- Whistler Center for Carbohydrate Research, Department of Food Science, Purdue University, 745 Agriculture Mall Drive, West Lafayette, IN 47907-2009, USA
| | - A Meynier
- Nutrition Research, Mondelez France R&D SAS, 6 rue René Razel, 91400 Saclay, France
| | - F Javier Moreno
- Instituto de Investigación en Ciencias de la Alimentación, CIAL (CSIC-UAM), CEI (UAM+CSIC), Nicolás Cabrera 9, 28049 Madrid, Spain
| | - F Respondek
- Tereos, Zoning Industriel Portuaire, 67390 Marckolsheim, France
| | - B Stah
- Human Milk Research & Analytical Science, Danone Nutricia Research, Uppsalalaan 12, 3584 CT Utrecht, the Netherlands.,Department of Chemical Biology & Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, the Netherlands
| | - K Venema
- Centre for Healthy Eating & Food Innovation (HEFI), Maastricht University - campus Venlo, St. Jansweg 20, 5928 RC Venlo, the Netherlands
| | - M Wiese
- Department of Microbiology and Systems Biology, TNO, Utrechtseweg 48, 3704 HE, Zeist, the Netherlands
| |
Collapse
|
10
|
Hu TG, Wu H, Yu YS, Xu YJ, Li EN, Liao ST, Wen P, Zou YX. Preparation, structural characterization and prebiotic potential of mulberry leaf oligosaccharides. Food Funct 2022; 13:5287-5298. [PMID: 35441628 DOI: 10.1039/d1fo04048k] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The present study shows the purification of a main oligosaccharide fraction (MLO 1-2) from the enzymatic hydrolysate of mulberry leaf polysaccharides by DEAE-52 cellulose and gel column chromatography. The physicochemical properties of MLO 1-2 were characterized. The structure of MLO 1-2 was obtained as follows: α-(2-OAc)-Manp-1 → 2-β-Glcp-1 → 4-β-Glcp-1 → 4-α-Glcp-1 → 2-α-Glcp-1 → 2-α-Galp-1 → 2-β-Galp-1 → 2-β-Galp-1, which was elucidated by methylation and NMR analysis. The molecular weight of MLO 1-2 showed no significant change after simulated saliva, gastric and intestinal digestion. This indicated that MLO 1-2 could pass through the digestive system without being degraded to safely reach the colon to regulate the gut microbiota. Additionally, MLO 1-2, more than glucose or galactooligosaccharides, promoted the proliferation of Bifidobacterium bifidum, B. adolescentis, Lacticaseibacillus rhamnosus and Lactobacillus acidophilus. Furthermore, the acetic and lactic acid concentrations of bacterial cultures inoculated with MLO 1-2 were higher than those inoculated with glucose and galactooligosaccharide (GOS). These results suggest that MLO 1-2 could be an excellent prebiotic for intestinal flora regulation and the promotion of gut health.
Collapse
Affiliation(s)
- Teng-Gen Hu
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, China.
| | - Hong Wu
- School of Food Science and Engineering, South China University of Technology/Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, China
| | - Yuan-Shan Yu
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, China.
| | - Yu-Juan Xu
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, China.
| | - Er-Na Li
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, China.
| | - Sen-Tai Liao
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, China.
| | - Peng Wen
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, China.
| | - Yu-Xiao Zou
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, China.
| |
Collapse
|
11
|
de la Rosa O, Flores‐Gallegos AC, Ascacio‐Valdés JA, Sepúlveda L, Montáñez JC, Aguilar CN. Fructooligosaccharides as Prebiotics, their Metabolism, and Health Benefits. PROBIOTICS, PREBIOTICS AND SYNBIOTICS 2022:307-337. [DOI: 10.1002/9781119702160.ch13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
12
|
Voss GB, Machado D, Barbosa JC, Campos DA, Gomes AM, Pintado M. Interplay between probiotics and prebiotics for human nutrition and health. PROBIOTICS FOR HUMAN NUTRITION IN HEALTH AND DISEASE 2022:231-254. [DOI: 10.1016/b978-0-323-89908-6.00027-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
13
|
Cai B, Yi X, Han Q, Pan J, Chen H, Sun H, Wan P. Structural characterization of oligosaccharide from Spirulina platensis and its effect on the faecal microbiota in vitro. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2021.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
14
|
Xie XT, Zheng LX, Duan HM, Liu Y, Chen XQ, Cheong KL. Structural characteristics of Gracilaria lemaneiformis oligosaccharides and their alleviation of dextran sulphate sodium-induced colitis by modulating the gut microbiota and intestinal metabolites in mice. Food Funct 2021; 12:8635-8646. [PMID: 34346464 DOI: 10.1039/d1fo01201k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Ulcerative colitis (UC) is a chronic lifetime disorder with a high incidence worldwide. A functional food-based method to prevent UC would be a good option for disease control. G. lemaneiformis oligosaccharides (GLOs) should have potent benefits for the gastrointestinal tract, based on in vitro fermentation assessed in our previous study. This study evaluated the therapeutic potential of GLOs in UC, as well as their possible mechanisms of action. The administration of GLOs was able to reduce the severity of dextran sulphate sodium-induced colitis by protecting mice from weight loss, reductions in colon length, inflammatory infiltration, and colon damage. Gut microbiota composition analysis showed that at the phylum level, GLOs could restore the composition of Bacteroidetes and decrease the level of Firmicutes. Consistently, it increased the contents of beneficial microbial metabolites and short-chain fatty acids in the mouse colitis model. In conclusion, GLOs could comprise a promising functional food strategy to alleviate UC symptoms.
Collapse
Affiliation(s)
- Xu-Ting Xie
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Department of Biology, College of Science, Shantou University, Shantou 515063, Guangdong, China.
| | - Li-Xin Zheng
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Department of Biology, College of Science, Shantou University, Shantou 515063, Guangdong, China.
| | - Hui-Min Duan
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Department of Biology, College of Science, Shantou University, Shantou 515063, Guangdong, China.
| | - Yang Liu
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Department of Biology, College of Science, Shantou University, Shantou 515063, Guangdong, China.
| | - Xian-Qiang Chen
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, Guangxi, China.
| | - Kit-Leong Cheong
- Guangdong Provincial Key Laboratory of Marine Biotechnology, Department of Biology, College of Science, Shantou University, Shantou 515063, Guangdong, China.
| |
Collapse
|
15
|
Hlalukana N, Magengelele M, Malgas S, Pletschke BI. Enzymatic Conversion of Mannan-Rich Plant Waste Biomass into Prebiotic Mannooligosaccharides. Foods 2021; 10:2010. [PMID: 34574120 PMCID: PMC8468410 DOI: 10.3390/foods10092010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/20/2021] [Accepted: 08/22/2021] [Indexed: 01/16/2023] Open
Abstract
A growing demand in novel food products for well-being and preventative medicine has attracted global attention on nutraceutical prebiotics. Various plant agro-processes produce large amounts of residual biomass considered "wastes", which can potentially be used to produce nutraceutical prebiotics, such as manno-oligosaccharides (MOS). MOS can be produced from the degradation of mannan. Mannan has a main backbone consisting of β-1,4-linked mannose residues (which may be interspersed by glucose residues) with galactose substituents. Endo-β-1,4-mannanases cleave the mannan backbone at cleavage sites determined by the substitution pattern and thus give rise to different MOS products. These MOS products serve as prebiotics to stimulate various types of intestinal bacteria and cause them to produce fermentation products in different parts of the gastrointestinal tract which benefit the host. This article reviews recent advances in understanding the exploitation of plant residual biomass via the enzymatic production and characterization of MOS, and the influence of MOS on beneficial gut microbiota and their biological effects (i.e., immune modulation and lipidemic effects) as observed on human and animal health.
Collapse
Affiliation(s)
| | | | - Samkelo Malgas
- Enzyme Science Programme (ESP), Department of Biochemistry and Microbiology, Rhodes University, Makhanda 6140, Eastern Cape, South Africa; (N.H.); (M.M.); (B.I.P.)
| | | |
Collapse
|
16
|
Leite AK, Santos BN, Fonteles TV, Rodrigues S. Cashew apple juice containing gluco-oligosaccharides, dextran, and tagatose promotes probiotic microbial growth. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101080] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
17
|
Choukade R, Kango N. Production, properties, and applications of fructosyltransferase: a current appraisal. Crit Rev Biotechnol 2021; 41:1178-1193. [PMID: 34015988 DOI: 10.1080/07388551.2021.1922352] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
BACKGROUND Fructosyltransferases (FTases) are drawing increasing attention due to their application in prebiotic fructooligosaccharide (FOS) generation. FTases have been reported to occur in a variety of microorganisms but are predominantly found in filamentous fungi. These are employed at the industrial scale for generating FOS which make the key ingredient in functional food supplements and nutraceuticals due to their bifidogenic and various other health-promoting properties. SCOPE AND APPROACH This review is aimed to discuss recent developments made in the area of FTase production, characterization, and application in order to present a comprehensive account of their present status to the reader. Structural features, catalytic mechanisms, and FTase improvement strategies have also been discussed in order to provide insight into these aspects. KEY FINDINGS AND CONCLUSIONS Although FTases occur in several plants and microorganisms, fungal FTases are being exploited commercially for industrial-scale FOS generation. Several fungal FTases have been characterized and heterologously expressed. However, considerable scope exists for improved production and application of FTases for cost-effective production of prebiotic FOS.HIGHLIGHTSFructosyltrasferase (FTase) is a key enzyme in fructo-oligosaccharide (FOS) generationDevelopments in the production, properties, and functional aspects of FTasesMolecular modification and immobilization strategies for improved FOS generationFructosyltransferases are innovation hotspots in the food and nutraceutical industries.
Collapse
Affiliation(s)
- Ritumbhara Choukade
- Department of Microbiology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, India
| | - Naveen Kango
- Department of Microbiology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, India
| |
Collapse
|
18
|
Xie XT, Cheong KL. Recent advances in marine algae oligosaccharides: structure, analysis, and potential prebiotic activities. Crit Rev Food Sci Nutr 2021; 62:7703-7717. [PMID: 33939558 DOI: 10.1080/10408398.2021.1916736] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Marine algae contain abundant polysaccharides that support a range of health-promoting activities; however, the high molecular weight, high viscosity, and low solubility of marine algae polysaccharides (MAPs) limit their application in food, agriculture and medicine. Thus, as the degradation products of MAPs, marine algae oligosaccharides (MAOs) have drawn increasing attention. Most MAOs are non-digestible by digestive enzyme in the human gastrointestinal tract, but are fermented by bacteria in the gut and converted into short-chain fatty acids (SCFAs). MAOs can selectively enhance the activities of some populations of beneficial bacteria and stimulate a series of prebiotic effects, such as anti-oxidant, anti-diabetic, anti-tumour. However, the exact structures of MAOs and their prebiotic activities are, to a large extent, unexplored. This review summarizes recent advances in the sources, categories, and structure analysis methods of MAOs, emphasizing their effects on gut microbiota and its metabolite SCFAs as well as the resulting range of probiotic activities.
Collapse
Affiliation(s)
- Xu-Ting Xie
- Guangdong Provincial Key Laboratory of Marine Biotechnology, STU-UNIVPM Joint Algal Research Center, Institute of Marine Sciences, Shantou University, Shantou, Guangdong, PR China
| | - Kit-Leong Cheong
- Guangdong Provincial Key Laboratory of Marine Biotechnology, STU-UNIVPM Joint Algal Research Center, Institute of Marine Sciences, Shantou University, Shantou, Guangdong, PR China
| |
Collapse
|
19
|
Jagtap AS, Manohar CS. Overview on Microbial Enzymatic Production of Algal Oligosaccharides for Nutraceutical Applications. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2021; 23:159-176. [PMID: 33763808 DOI: 10.1007/s10126-021-10027-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/15/2021] [Indexed: 06/12/2023]
Abstract
Global requirement for algal foods is increasing, as they are progressively consumed for its nutrition and health. Macroalgae is a proven source of metabolites, proteins, pigments, bioactive compounds, and algal polysaccharides. The unique polysaccharides such as agar, carrageenan, porphyran, alginate, fucoidan, laminarin, and ulvan are known for its wide range of bioactivities and extensively used for applications from tissue engineering to drug delivery. However, there are few limitations due to its high molecular size, low compatibility, and hydrocolloid nature. Hence, the enzymatically produced algal oligosaccharides have drawn tremendous attention due to its green synthesis, solubility, and lower molecular size. They are reported to have bioactivities including antioxidant, antiglycemic, immunostimulatory, anti-inflammatory, and prebiotic activities, which can be used in the healthcare and nutraceutical industry for the manufacture of functional foods and dietary supplements. However, identification of potential microorganisms, producing polysaccharide hydrolyzing enzymes, remains a major bottle neck for efficient utilization of bioactive algal oligosaccharides. This review summarizes the recent developments in the identification and characterization of microbial enzymes for the production of bioactive algal oligosaccharides. This can improve our understanding of bioactive algal oligosaccharides and pave way for efficient utilization of macroalgae to prevent various chronic diseases.
Collapse
Affiliation(s)
- Ashok S Jagtap
- Biological Oceanography Division, CSIR-National Institute of Oceanography, Dona Paula, Goa, 403004, India
- School of Earth, Ocean and Atmospheric Sciences, Goa University, Taleigao Plateau, Goa, 403206, India
| | - Cathrine S Manohar
- Biological Oceanography Division, CSIR-National Institute of Oceanography, Dona Paula, Goa, 403004, India.
| |
Collapse
|
20
|
Catenza KF, Donkor KK. Recent approaches for the quantitative analysis of functional oligosaccharides used in the food industry: A review. Food Chem 2021; 355:129416. [PMID: 33774226 DOI: 10.1016/j.foodchem.2021.129416] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 01/15/2021] [Accepted: 02/17/2021] [Indexed: 02/07/2023]
Abstract
Functional oligosaccharides (OS) are diverse groups of carbohydrates that confer several health benefits stemming from their prebiotic activity. Commonly used oligosaccharides, fructooligosaccharides and galactooligosaccharides, are used in a wide range of applications from food ingredients to mimic the prebiotic activity of human milk oligosaccharides (HMOs) in infant formula to sugar and fat replacers in dairy and bakery products. However, while consumption of these compounds is associated with several positive health effects, increased consumption can cause intestinal discomfort and aggravation of intestinal bowel syndrome symptoms. Hence, it is essential to develop rapid and reliable techniques to quantify OS for quality control and proper assessment of their functionality in food and food products. The present review will focus on recent analytical techniques used to quantify OS in different matrices such as food and beverage products.
Collapse
Affiliation(s)
- K F Catenza
- Department of Physical Sciences (Chemistry), Thompson Rivers University, 805 TRU Way, Kamloops, BC V2C 0C8, Canada
| | - K K Donkor
- Department of Physical Sciences (Chemistry), Thompson Rivers University, 805 TRU Way, Kamloops, BC V2C 0C8, Canada.
| |
Collapse
|
21
|
Prebiotic Potential of Oligosaccharides Obtained by Acid Hydrolysis of α-(1→3)-Glucan from Laetiporus sulphureus: A Pilot Study. Molecules 2020; 25:molecules25235542. [PMID: 33255915 PMCID: PMC7728339 DOI: 10.3390/molecules25235542] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/18/2020] [Accepted: 11/23/2020] [Indexed: 11/17/2022] Open
Abstract
Increasing knowledge of the role of the intestinal microbiome in human health and well-being has resulted in increased interest in prebiotics, mainly oligosaccharides of various origins. To date, there are no reports in the literature on the prebiotic properties of oligosaccharides produced by the hydrolysis of pure fungal α-(1→3)-glucan. The aim of this study was to prepare α-(1→3)-glucooligosaccharides (α-(1→3)-GOS) and to perform initial evaluation of their prebiotic potential. The oligosaccharides were obtained by acid hydrolysis of α-(1→3)-glucan isolated from the fruiting bodies of Laetiporus sulphureus and then, characterized by HPLC. Fermentation of α-(1→3)-GOS and reference prebiotics was compared in in vitro pure cultures of Lactobacillus, Bifidobacterium, and enteric bacterial strains. A mixture of α-(1→3)-GOS, notably with a degree of polymerization of 2 to 9, was obtained. The hydrolysate was utilized for growth by most of the Lactobacillus strains tested and showed a strong bifidogenic effect, but did not promote the growth of Escherichia coli and Enterococcus faecalis. α-(1→3)-GOS proved to be effective in the selective stimulation of beneficial bacteria and can be further tested to determine their prebiotic functionality.
Collapse
|
22
|
Kruschitz A, Nidetzky B. Downstream processing technologies in the biocatalytic production of oligosaccharides. Biotechnol Adv 2020; 43:107568. [DOI: 10.1016/j.biotechadv.2020.107568] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 04/27/2020] [Accepted: 05/17/2020] [Indexed: 12/22/2022]
|
23
|
Rico-Rodríguez F, Villamiel M, Ruiz-Aceituno L, Serrato JC, Montilla A. Effect of the lactose source on the ultrasound-assisted enzymatic production of galactooligosaccharides and gluconic acid. ULTRASONICS SONOCHEMISTRY 2020; 67:104945. [PMID: 32278244 DOI: 10.1016/j.ultsonch.2019.104945] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 12/17/2019] [Accepted: 12/21/2019] [Indexed: 06/11/2023]
Abstract
It is well known that one of the main problems in galactooligosaccharide production (GOS) via tranglycosylation of lactose is the presence of monosaccharides that contribute to increasing the glycaemic index, as is the case of glucose. In this work, as well as studying the effect of ultrasound (US) on glucose oxidase (Gox) activation during gluconic acid (GA) production, we have carried out an investigation into the selective oxidation of glucose to gluconic acid in multienzymatic reactions (β-galactosidase (β-gal) and Gox) assisted by power US using different sources of lactose as substrate (lactose solution, whey permeate, cheese whey). In terms of the influence of matrix on GOS and GA production, lactose solution gave the best results, followed by cheese whey and whey permeate, salt composition being the most influential factor. The highest yields of GOS production with the lowest glucose concentration and highest GA production were obtained with lactose solution in multienzymatic systems in the presence of ultrasound (30% amplitude) when Gox was added after 1 h of treatment with β-gal. This work demonstrates the ability of US to enhance efficiently the obtainment of prebiotic mixtures of low glycaemic index.
Collapse
Affiliation(s)
- Fabián Rico-Rodríguez
- Departamento de Ingeniería Química y Ambiental, Facultad de Ingeniería. Universidad Nacional de Colombia - Sede Bogotá, Carrera 30 N° 45-03 Bogotá, Colombia
| | - Mar Villamiel
- Instituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC-UAM) CEI (CSIC+UAM), Nicolás Cabrera, 9, Campus de la Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| | - Laura Ruiz-Aceituno
- Instituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC-UAM) CEI (CSIC+UAM), Nicolás Cabrera, 9, Campus de la Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Juan Carlos Serrato
- Departamento de Ingeniería Química y Ambiental, Facultad de Ingeniería. Universidad Nacional de Colombia - Sede Bogotá, Carrera 30 N° 45-03 Bogotá, Colombia
| | - Antonia Montilla
- Instituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC-UAM) CEI (CSIC+UAM), Nicolás Cabrera, 9, Campus de la Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
24
|
Hurtado-Romero A, Del Toro-Barbosa M, Garcia-Amezquita LE, García-Cayuela T. Innovative technologies for the production of food ingredients with prebiotic potential: Modifications, applications, and validation methods. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.08.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
25
|
Azam M, Saeed M, Pasha I, Shahid M. A prebiotic-based biopolymeric encapsulation system for improved survival of Lactobacillus rhamnosus. FOOD BIOSCI 2020. [DOI: 10.1016/j.fbio.2020.100679] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
26
|
da Silva RM, Gonçalves LRB, Rodrigues S. Different strategies to co-immobilize dextransucrase and dextranase onto agarose based supports: Operational stability study. Int J Biol Macromol 2020; 156:411-419. [PMID: 32302628 DOI: 10.1016/j.ijbiomac.2020.04.077] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 04/02/2020] [Accepted: 04/07/2020] [Indexed: 12/14/2022]
Abstract
Co-immobilization is a groundbreaking technique for enzymatic catalysis, sometimes strategic, as for dextransucrase and dextranase. In this approach, dextranase hydrolytic action removes the dextran layer that covers dextransucrase reactive groups, improving the immobilization. Another advantage is the synergic effect of the two enzymes towards prebiotic oligosaccharides production. Thus, both enzymes were co-immobilized onto the heterobifunctional support Amino-Epoxy-Glyoxyl-Agarose (AMEG) and the ion exchanger support monoaminoethyl-N-ethyl-agarose (Manae) at pH 5.2 and 10, followed or not by glutaraldehyde treatment. This work is the first attempt to immobilize dextransucrase under alkaline conditions. The immobilized dextransucrase on AMEG support at pH 10 (12.78 ± 0.70 U/g) presents a similar activity of the biocatalyst produced at pH 5.2 (14.95 ± 0.82 U/g). The activity of dextranase immobilized onto Manae was 5-fold higher than the obtained onto AMEG support. However, the operational stability test showed that the biocatalyst produced on AMEG at pH 5.2 kept >60% of both enzyme activities for five batches. The glutaraldehyde treatment was not worthwhile to improve the operational stability of this biocatalyst.
Collapse
Affiliation(s)
- Rhonyele Maciel da Silva
- Federal University of Ceará, Chemical Engineering Department, Campus do Pici, Bloco 709, CEP 60440-900 Fortaleza, CE, Brazil
| | - Luciana R B Gonçalves
- Federal University of Ceará, Chemical Engineering Department, Campus do Pici, Bloco 709, CEP 60440-900 Fortaleza, CE, Brazil
| | - Sueli Rodrigues
- Federal University of Ceará, Food Engineering Department, Campus do Pici, Bloco 858, CEP 60440-900 Fortaleza, CE, Brazil.
| |
Collapse
|
27
|
Comerlato CB, Ritter AC, Miyamoto KN, Brandelli A. Proteomic study of Enterococcus durans LAB18S growing on prebiotic oligosaccharides. Food Microbiol 2020; 89:103430. [DOI: 10.1016/j.fm.2020.103430] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 01/09/2020] [Accepted: 01/11/2020] [Indexed: 02/07/2023]
|
28
|
Kjeldsen C, Ardenkjær-Larsen JH, Duus JØ. Unexpected Anomeric Acceptor Preference Observed Using dDNP NMR for Transglycosylation Studies of β-Galactosidases. Biochemistry 2020; 59:2903-2908. [DOI: 10.1021/acs.biochem.0c00390] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
29
|
Wojciechowska A, Klewicki R, Klewicka E. The potential of new bionic acids as prebiotics and antimicrobials. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109246] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
30
|
Ricigliano VA. Microalgae as a promising and sustainable nutrition source for managed honey bees. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2020; 104:e21658. [PMID: 31976574 DOI: 10.1002/arch.21658] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Managed honey bee colony losses are attributed to a number of interacting stressors, but many lines of evidence point to malnutrition as a primary factor. Commercial beekeepers have become increasingly reliant on artificial pollen substitute diets to nourish colonies during periods of forage scarcity and to bolster colony size before pollination services. These artificial diets may be deficient in essential macronutrients (proteins, lipids, prebiotic fibers), micronutrients (vitamins, minerals), and antioxidants. Therefore, improving the efficacy of pollen substitutes can be considered vital to modern beekeeping. Microalgae are prolific sources of plant-based nutrition with many species exhibiting biochemical profiles that are comparable to natural pollen. This emerging feed source has been employed in a variety of organisms, including limited applications in honey bees. Herein, I introduce the nutritional value and functional properties of microalgae, extrapolating to central aspects of honey bee physiology and health. To conclude, I discuss the potential of microalgae-based feeds to sustainably provision managed colonies on an agricultural scale.
Collapse
Affiliation(s)
- Vincent A Ricigliano
- Honey Bee Breeding, Genetics and Physiology Research, USDA-ARS, Baton Rouge, Louisiana
| |
Collapse
|
31
|
Iorgacheva Е, Korkach G, Lebedenko T, Kotuzaki O. AN INNOVATIVE TECHNOLOGY OF WAFFLES WITH FUNCTIONAL PROPERTIES. FOOD SCIENCE AND TECHNOLOGY 2020. [DOI: 10.15673/fst.v14i1.1645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The high-priority tasks of today’s confectionery industry include the development and introduction of functional-purpose confections. These products are supposed to be of high technological qualities, be effective in production to the extent possible, and have physiological functional properties due to the physiologically valuable ingredients in their composition. These ingredients include the synbiotic complex composed of probiotics (bifidobacteria, lactobacilli) and prebiotics (inulin and lactulose). This complex has been studied in this research. The paper gives reasons why waffles with fatty fillings are the ones to which the synbiotic complex should be added. It has been established what mass fraction of the ingredients at what stage of fatty filling production should be added. It has been studied how the synbiotic complex affects the structural and mechanical properties of the fatty filling: its effective viscosity, adhesive strength, and critical shear stress. It has been found that the maximum shear rate that still allows obtaining a high-quality filling is 5.4 s-1. The specific pull-off force of the fatty filling with the synbiotic added becomes lower compared to that of the control sample. This helps reduce the energy consumed in the course of moulding waffles. An innovative manufacturing technology for waffles with synbiotic supplements has been developed and proved practical. It includes the stages of preparing microencapsulated microorganisms and adding prebiotics, and provides the technological parameters of fatty filling preparation. It has been established that the synbiotic included into the composition of the new fatty filling decreases the maturation of waffle blocks by 40–45%, and allows reducing the layer of filling to 1–1.5 mm. It has been proven that the synbiotic complex as an ingredient in the fatty filling of waffles will allow developing and manufacturing confections that improve human microflora. These new specialised products will be socially significant, as they will help solve a topical and important task of the confectionery industry: prevent gastrointestinal diseases.
Collapse
|
32
|
Chen C, Deng J, Lv X, Li J, Du G, Li H, Liu L. Biocatalytic synthesis of lactosucrose using a recombinant thermostable β-fructofuranosidase from Arthrobacter sp. 10138. Bioengineered 2020; 11:416-427. [PMID: 32175807 PMCID: PMC7161541 DOI: 10.1080/21655979.2020.1739404] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
As a prebiotics, lactosucrose plays an important role in maintaining human gastrointestinal homeostasis. In this study, a thermostable enzyme from Arthrobacter sp. 10138 was screened from six β-fructofuranosidase-producing strains for the lactosucrose production and the coding gene was heterologously expressed in Escherichia coli for efficient expression. Recombinant β-fructofuranosidase was purified and biochemically characterized by MALDI-TOFMS spectrometry. The transfructosylation product by this recombinant enzyme was determined to be lactosucrose rather than other oligosaccharides or polysaccharides by HPLC and LC-MS. Efficient extracellular secretion of β-fructofuranosidase was achieved by the optimization of signal peptide and induction conditions. It was found that with the signal peptide torT, the highest extracellular activity reached 111.01 U/mL, which was 38.4-fold higher than that with the OmpA signal peptide. Under the optimal conditions (pH 6.0, temperature 50°C, enzyme amount 40 μg/ml, sucrose 150 g/L and lactose 150 g/L), 109 g/L lactosucrose was produced with a molar conversion ratio of 49.3%. Here the thermostable β-fructofuranosidase from Arthrobacter sp. 10138 can be used for efficient synthesis of lactosucrose, and this provides a good startpoint for the industrial production of lactosucrose in the future.
Collapse
Affiliation(s)
- Chunmei Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| | - Jieying Deng
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| | - Xueqin Lv
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| | - Jianghua Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| | - Guocheng Du
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| | - Huazhong Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| |
Collapse
|
33
|
Rational use of prebiotics for gut microbiota alterations: Specific bacterial phylotypes and related mechanisms. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.103838] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
34
|
Zhang X, Aweya JJ, Huang ZX, Kang ZY, Bai ZH, Li KH, He XT, Liu Y, Chen XQ, Cheong KL. In vitro fermentation of Gracilaria lemaneiformis sulfated polysaccharides and its agaro-oligosaccharides by human fecal inocula and its impact on microbiota. Carbohydr Polym 2020; 234:115894. [PMID: 32070514 DOI: 10.1016/j.carbpol.2020.115894] [Citation(s) in RCA: 146] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/18/2020] [Accepted: 01/18/2020] [Indexed: 01/04/2023]
Abstract
The fermentation behaviour of sulfated polysaccharides (GLP) and their agaro-oligosaccharides (GLO) derived from Gracilaria lemaneiformis were examined. During in vitro fermentation, GLP and GLO increased the concentrations of short chain fatty acids (SCFAs) and modulated the composition and diversity of gut microorganisms compared with control groups. GLP increased the abundance of Bacteroidetes and decreased the abundance of Firmicutes, while GLO increased the abundance of Firmicutes and Actinobacteria. Moreover, the abundances of potential pathogenic bacteria were reduced. Molecular weight and intrinsic viscosity of GLP decreased significantly from 2.15 × 105 to 1.22 × 105 Da, 374.45-113.91 mL/g, respectively. Furthermore, GLP was degraded into smaller degree of polymerization of oligosaccharides, with no significant change observed in GLO. Overall, this study revealed GLP and GLO could be beneficial for gastrointestinal tract by producing SCFAs and modulating intestinal microbes, indicating GLP and GLO are potentially sources of prebiotics in functional foods.
Collapse
Affiliation(s)
- Xiao Zhang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, STU-UNIVPM Joint Algal Research Center, Department of Biology, College of Science, Shantou University, Shantou 515063, Guangdong, China
| | - Jude Juventus Aweya
- Guangdong Provincial Key Laboratory of Marine Biotechnology, STU-UNIVPM Joint Algal Research Center, Department of Biology, College of Science, Shantou University, Shantou 515063, Guangdong, China
| | - Zong-Xun Huang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, STU-UNIVPM Joint Algal Research Center, Department of Biology, College of Science, Shantou University, Shantou 515063, Guangdong, China
| | - Zhuo-Ying Kang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, STU-UNIVPM Joint Algal Research Center, Department of Biology, College of Science, Shantou University, Shantou 515063, Guangdong, China
| | - Zi-Hao Bai
- Guangdong Provincial Key Laboratory of Marine Biotechnology, STU-UNIVPM Joint Algal Research Center, Department of Biology, College of Science, Shantou University, Shantou 515063, Guangdong, China
| | - Kun-Huan Li
- Guangdong Provincial Key Laboratory of Marine Biotechnology, STU-UNIVPM Joint Algal Research Center, Department of Biology, College of Science, Shantou University, Shantou 515063, Guangdong, China
| | - Xiao-Tong He
- Guangdong Provincial Key Laboratory of Marine Biotechnology, STU-UNIVPM Joint Algal Research Center, Department of Biology, College of Science, Shantou University, Shantou 515063, Guangdong, China
| | - Yang Liu
- Guangdong Provincial Key Laboratory of Marine Biotechnology, STU-UNIVPM Joint Algal Research Center, Department of Biology, College of Science, Shantou University, Shantou 515063, Guangdong, China
| | - Xian-Qiang Chen
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, Guangxi, China
| | - Kit-Leong Cheong
- Guangdong Provincial Key Laboratory of Marine Biotechnology, STU-UNIVPM Joint Algal Research Center, Department of Biology, College of Science, Shantou University, Shantou 515063, Guangdong, China.
| |
Collapse
|
35
|
|
36
|
Guimarães JT, Balthazar CF, Scudino H, Pimentel TC, Esmerino EA, Ashokkumar M, Freitas MQ, Cruz AG. High-intensity ultrasound: A novel technology for the development of probiotic and prebiotic dairy products. ULTRASONICS SONOCHEMISTRY 2019; 57:12-21. [PMID: 31208607 DOI: 10.1016/j.ultsonch.2019.05.004] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/15/2019] [Accepted: 05/05/2019] [Indexed: 05/08/2023]
Abstract
High-intensity ultrasound (HIUS) can be used as a mild-preservation technology in dairy products, due to its ability to inactivate pathogenic microorganisms and enzymes. In addition, it can result in physical and chemical alterations in the products and has impact on the probiotic viability and metabolic activity. This review provides an overview of the effects of HIUS on dairy products manufactured with probiotics and prebiotics. Furthermore, it presents perspectives of HIUS application on paraprobiotics and postbiotics products. HIUS has been proven to be a potential technology and its application to fermented dairy products can result in shorter processing time, increased probiotic viability, and products with low lactose content, higher oligosaccharides concentration, less undesirable taste (lower propionic and acetic acids content) and reduced ingredients (no need of prebiotic addition or β-galactosidase inclusion). In cheeses, HIUS can reduce the ripening time and accelerate proteolysis, resulting in products with better sensory, textural and nutritional (bioactive peptides) characteristics. Furthermore, it can change the prebiotic structure, facilitating the access for the probiotics. The impact of the HIUS is highly dependent on the process parameters (frequency, power, processing time, pulse mode and duration), type of probiotic culture and food composition. Therefore, HIUS process parameters must be precisely quantified and controlled. The HIUS can also be applied to the inactivation of probiotic cultures and development of paraprobiotic products or to the improvement in the production of soluble factors (postbiotics) with health effects. Further researches should be conducted to evaluate the efficiency of this methodology in the cases of paraprobiotic and postbiotic products.
Collapse
Affiliation(s)
- Jonas T Guimarães
- Department of Food Technology, Faculty of Veterinary, Fluminense Federal University (UFF), Niterói, RJ, Brazil.
| | - Celso F Balthazar
- Department of Food Technology, Faculty of Veterinary, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| | - Hugo Scudino
- Department of Food Technology, Faculty of Veterinary, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| | - Tatiana C Pimentel
- Federal Institute of Paraná (IFPR), Campus Paranavaí, 87703-536 Paranavaí, PR, Brazil
| | - Erick A Esmerino
- Department of Food Technology, Federal Rural University of Rio de Janeiro (UFRRJ), 23890-000 Seropédica, RJ, Brazil
| | | | - Monica Q Freitas
- Department of Food Technology, Faculty of Veterinary, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| | - Adriano G Cruz
- Department of Food, Federal Institute of Science and Technology of Rio de Janeiro (IFRJ), Rio de Janeiro, RJ, Brazil
| |
Collapse
|
37
|
An overview of extraction and purification techniques of seaweed dietary fibers for immunomodulation on gut microbiota. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.08.011] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
38
|
Isolation of crude oligosaccharides from Hericium erinaceus by integrated membrane technology and its proliferative activity. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2019.04.068] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
39
|
Lappa IK, Papadaki A, Kachrimanidou V, Terpou A, Koulougliotis D, Eriotou E, Kopsahelis N. Cheese Whey Processing: Integrated Biorefinery Concepts and Emerging Food Applications. Foods 2019; 8:E347. [PMID: 31443236 PMCID: PMC6723228 DOI: 10.3390/foods8080347] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 08/07/2019] [Accepted: 08/10/2019] [Indexed: 12/27/2022] Open
Abstract
Cheese whey constitutes one of the most polluting by-products of the food industry, due to its high organic load. Thus, in order to mitigate the environmental concerns, a large number of valorization approaches have been reported; mainly targeting the recovery of whey proteins and whey lactose from cheese whey for further exploitation as renewable resources. Most studies are predominantly focused on the separate implementation, either of whey protein or lactose, to configure processes that will formulate value-added products. Likewise, approaches for cheese whey valorization, so far, do not exploit the full potential of cheese whey, particularly with respect to food applications. Nonetheless, within the concept of integrated biorefinery design and the transition to circular economy, it is imperative to develop consolidated bioprocesses that will foster a holistic exploitation of cheese whey. Therefore, the aim of this article is to elaborate on the recent advances regarding the conversion of whey to high value-added products, focusing on food applications. Moreover, novel integrated biorefining concepts are proposed, to inaugurate the complete exploitation of cheese whey to formulate novel products with diversified end applications. Within the context of circular economy, it is envisaged that high value-added products will be reintroduced in the food supply chain, thereby enhancing sustainability and creating "zero waste" processes.
Collapse
Affiliation(s)
- Iliada K Lappa
- Department of Food Science and Technology, Ionian University, Argostoli, 28100 Kefalonia, Greece
| | - Aikaterini Papadaki
- Department of Food Science and Technology, Ionian University, Argostoli, 28100 Kefalonia, Greece
| | - Vasiliki Kachrimanidou
- Department of Food Science and Technology, Ionian University, Argostoli, 28100 Kefalonia, Greece.
- Department of Food and Nutritional Sciences, University of Reading, Berkshire RG6 6AP, UK.
| | - Antonia Terpou
- Department of Food Science and Technology, Ionian University, Argostoli, 28100 Kefalonia, Greece
| | | | - Effimia Eriotou
- Department of Food Science and Technology, Ionian University, Argostoli, 28100 Kefalonia, Greece
| | - Nikolaos Kopsahelis
- Department of Food Science and Technology, Ionian University, Argostoli, 28100 Kefalonia, Greece.
| |
Collapse
|
40
|
An overview of levan-degrading enzyme from microbes. Appl Microbiol Biotechnol 2019; 103:7891-7902. [PMID: 31401753 DOI: 10.1007/s00253-019-10037-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 07/14/2019] [Accepted: 07/15/2019] [Indexed: 01/24/2023]
Abstract
Functional carbohydrates are ideal substitutes for table sugar and make up a large share of the worldwide functional food market because of their numerous physiological benefits. Growing attention has been focused on levan, a β-(2,6) fructan that possesses more favorable physicochemical properties, such as lower intrinsic viscosity and greater colloidal stability, than β-(2,1) inulin. Levan can be used not only as a functional carbohydrate but also as feedstock for the production of levan-type fructooligosaccharides (L-FOSs). Three types of levan-degrading enzymes (LDEs), including levanase (EC 3.2.1.65), β-(2,6)-fructan 6-levanbiohydrolase (LF2ase, EC 3.2.1.64), and levan fructotransferase (LFTase, EC 4.2.2.16), play significant roles in the biological production of L-FOSs. These three enzymes convert levan into different L-FOSs, levanbiose, and difructose anhydride IV (DFA IV), respectively. The prebiotic properties of both L-FOSs and DFA IV have been confirmed in recent years. Although levanase, LF2ase, and LFTase belong to the same O-glycoside hydrolase 32 family (GH32), their catalytic properties and product spectra differ significantly. In this paper, recent studies on these LDEs are reviewed, including those investigating microbial source and catalytic properties. Additionally, comparisons of LDEs, including those of their differing cleavage behavior and applications for different L-FOSs, are presented in detail.
Collapse
|
41
|
Camacho F, Macedo A, Malcata F. Potential Industrial Applications and Commercialization of Microalgae in the Functional Food and Feed Industries: A Short Review. Mar Drugs 2019; 17:E312. [PMID: 31141887 PMCID: PMC6628611 DOI: 10.3390/md17060312] [Citation(s) in RCA: 141] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/23/2019] [Accepted: 05/25/2019] [Indexed: 12/23/2022] Open
Abstract
Bioactive compounds, e.g., protein, polyunsaturated fatty acids, carotenoids, vitamins and minerals, found in commercial form of microalgal biomass (e.g., powder, flour, liquid, oil, tablet, or capsule forms) may play important roles in functional food (e.g., dairy products, desserts, pastas, oil-derivatives, or supplements) or feed (for cattle, poultry, shellfish, and fish) with favorable outcomes upon human health, including antioxidant, anti-inflammatory, antimicrobial, and antiviral effects, as well as prevention of gastric ulcers, constipation, anemia, diabetes, and hypertension. However, scale up remains a major challenge before commercial competitiveness is attained. Notwithstanding the odds, a few companies have already overcome market constraints, and are successfully selling extracts of microalgae as colorant, or supplement for food and feed industries. Strong scientific evidence of probiotic roles of microalgae in humans is still lacking, while scarce studies have concluded on probiotic activity in marine animals upon ingestion. Limitations in culture harvesting and shelf life extension have indeed constrained commercial viability. There are, however, scattered pieces of evidence that microalgae play prebiotic roles, owing to their richness in oligosaccharides-hardly fermented by other members of the intestinal microbiota, or digested throughout the gastrointestinal tract of humans/animals for that matter. However, consistent applications exist only in the dairy industry and aquaculture. Despite the underlying potential in formulation of functional food/feed, extensive research and development efforts are still required before microalgae at large become a commercial reality in food and feed formulation.
Collapse
Affiliation(s)
- Franciele Camacho
- LEPABE-Laboratory of Process Engineering, Environment, Biotechnology and Energy, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal.
| | - Angela Macedo
- LEPABE-Laboratory of Process Engineering, Environment, Biotechnology and Energy, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal.
- UNICES-ISMAI-University Institute of Maia, Av. Carlos Oliveira Campos, 4475-690 Maia, Portugal.
| | - Francisco Malcata
- LEPABE-Laboratory of Process Engineering, Environment, Biotechnology and Energy, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal.
- Department of Chemical Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal.
| |
Collapse
|
42
|
Ferreira-Lazarte A, Gallego-Lobillo P, Moreno FJ, Villamiel M, Hernandez-Hernandez O. In Vitro Digestibility of Galactooligosaccharides: Effect of the Structural Features on Their Intestinal Degradation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:4662-4670. [PMID: 30986057 DOI: 10.1021/acs.jafc.9b00417] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Small intestinal brush border membrane vesicles from pig were used to digest galactooligosaccharides from lactose (GOS) and from lactulose (OsLu). Dissimilar hydrolysis rates were detected after digestion. Predominant glycosidic linkages and monomeric composition affected the resistance to intestinal digestive enzymes. The β(1→3) GOS mixture was the most susceptible to hydrolysis (50.2%), followed by β(1→4) (34.9%), whereas β(1→6) linkages were highly resistant to digestion (27.1%). Monomeric composition provided a better resistance in β(1→6) OsLu (22.8%) compared to β(1→6) GOS (27.1%). This was also observed for β-galactosyl fructoses and β-galactosyl glucoses, where the presence of fructose provided higher resistance to digestion. Thus, the resistance to small intestinal digestive enzymes highly depends upon the structure and composition of prebiotics. Increasing knowledge in this regard could contribute to the future synthesis of new mixtures of carbohydrates, highly resistant to digestion and with potential to be tailored prebiotics with specific properties, targeting, for instance, specific probiotic species.
Collapse
Affiliation(s)
- Alvaro Ferreira-Lazarte
- Instituto de Investigación en Ciencias de la Alimentación (CIAL) , Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM) , C/Nicolás Cabrera, 9 , Campus de la Universidad Autónoma de Madrid, 28049 Madrid , Spain
| | - Pablo Gallego-Lobillo
- Instituto de Investigación en Ciencias de la Alimentación (CIAL) , Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM) , C/Nicolás Cabrera, 9 , Campus de la Universidad Autónoma de Madrid, 28049 Madrid , Spain
| | - F Javier Moreno
- Instituto de Investigación en Ciencias de la Alimentación (CIAL) , Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM) , C/Nicolás Cabrera, 9 , Campus de la Universidad Autónoma de Madrid, 28049 Madrid , Spain
| | - Mar Villamiel
- Instituto de Investigación en Ciencias de la Alimentación (CIAL) , Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM) , C/Nicolás Cabrera, 9 , Campus de la Universidad Autónoma de Madrid, 28049 Madrid , Spain
| | - Oswaldo Hernandez-Hernandez
- Instituto de Investigación en Ciencias de la Alimentación (CIAL) , Consejo Superior de Investigaciones Científicas (CSIC)-Universidad Autónoma de Madrid (UAM) , C/Nicolás Cabrera, 9 , Campus de la Universidad Autónoma de Madrid, 28049 Madrid , Spain
| |
Collapse
|
43
|
Mao B, Tang H, Gu J, Li D, Cui S, Zhao J, Zhang H, Chen W. In vitro fermentation of raffinose by the human gut bacteria. Food Funct 2019; 9:5824-5831. [PMID: 30357216 DOI: 10.1039/c8fo01687a] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Raffinose has become a major focus of research interest and recent studies have shown that besides beneficial bifidobacteria and lactobacilli, Escherichia coli, Enterococcus faecium and Streptococcus pneumoniae can also utilize raffinose and raffinose might lead to flatulence in some hosts. Therefore, it is required to find out the raffinose-metabolizing bacteria in the gut and the bacteria responsible for the flatulence. The BLASTP search results showed that the homologous proteins of glycosidases related to raffinose utilization are widely distributed in 196 of the 528 gut bacterial strains. Fifty-nine bacterial strains belonging to nine species of five genera were isolated from human feces and were found to be capable of utilizing raffinose; of these species, Enterococcus avium and Streptococcus salivarius were reported for the first time. High-performance liquid chromatography (HPLC) analysis of the supernatants of the nine species revealed that the bacteria could utilize raffinose in different manners. Glucose and melibiose were detected in the supernatants of Enterococcus avium E5 and Streptococcus salivarius B5, respectively. However, no resulting saccharides of raffinose degradation were detected in the supernatants of other seven strains, indicating that they had different raffinose utilization types from Enterococcus avium E5 and Streptococcus salivarius B5. Gas was produced with raffinose utilization by Escherichia coli, Enterococcus faecium, Streptococcus macedonicus, Streptococcus pasteurianus and Enterococcus avium. Thus, more attention should be paid to the raffinose-utilizing bacteria besides bifidobacteria and further studies are required to reveal the mechanisms of raffinose utilization to clarify the relationship between raffinose and gut bacteria.
Collapse
Affiliation(s)
- Bingyong Mao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, P. R China
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Young ID, Montilla A, Olano A, Wittmann A, Kawasaki N, Villamiel M. Effect of purification of galactooligosaccharides derived from lactulose with Saccharomyces cerevisiae on their capacity to bind immune cell receptor Dectin-2. Food Res Int 2019; 115:10-15. [DOI: 10.1016/j.foodres.2018.07.039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 07/19/2018] [Accepted: 07/28/2018] [Indexed: 10/28/2022]
|
45
|
Oligosaccharides Derived from Red Seaweed: Production, Properties, and Potential Health and Cosmetic Applications. Molecules 2018; 23:molecules23102451. [PMID: 30257445 PMCID: PMC6222765 DOI: 10.3390/molecules23102451] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 09/17/2018] [Accepted: 09/21/2018] [Indexed: 12/30/2022] Open
Abstract
Because of their potential use as functional ingredients in human nutrition, oligosaccharides derived from natural sources are receiving paramount consideration. Red seaweed, a proven rich source of agar and carrageenan, is one of the most abundantly present sources of such oligosaccharides. Agaro-oligosaccharides (AOS) and carrageenan-oligosaccharides (COS) are produced from agar and carrageenan, respectively, through chemical and enzymatic hydrolyses. Enzymatic hydrolysis of agar and carrageenan into oligosaccharides is preferred in industrial production because of certain problems associated with chemical hydrolysis, including the release of high amounts of monosaccharides and undesirable toxic products, such as furfural. AOS and COS possess many biological activities, including prebiotic, immuno-modulatory, anti-oxidant, and anti-tumor activities. These activities are related to their chemical structure, molecular weight, degree of polymerization, and the flexibility of the glycosidic linkages. Therefore, the structure–function relationship and the mechanisms occurring during the specific biological applications of AOS and COS are discussed herein. Moreover, the chromatographic separation, purification, and characterization of AOS and COS are also part of this review. This piece of writing strives to create a new perspective on the potential applications of AOS and COS in the functional food and pharmaceutical industry.
Collapse
|
46
|
Caporgno MP, Mathys A. Trends in Microalgae Incorporation Into Innovative Food Products With Potential Health Benefits. Front Nutr 2018; 5:58. [PMID: 30109233 PMCID: PMC6080594 DOI: 10.3389/fnut.2018.00058] [Citation(s) in RCA: 221] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 06/14/2018] [Indexed: 12/25/2022] Open
Abstract
Microalgae have demonstrated potential to meet the population's need for a more sustainable food supply, specifically with respect to protein demand. These promising protein sources present several advantages over other currently used raw materials from an environmental point of view. Additionally, one of the main characteristics of microalgae is the production of bioactive compounds with potential benefits for human health. Microalgae exploitation as a source of protein (bulk protein) and other valuable products within the food industry still presents some drawbacks, mainly because of the underdeveloped technologies and processes currently available for microalgae processing. The systematic improvement of the technology readiness level (TRL) could help change the current situation if applied to microalgae cultivation and processing. High maturity in microalgae cultivation and processing technologies also requires improvement of the economy of scale and investment of resources in new facilities and research. Antioxidative, antihypertensive, immunomodulatory, anticancerogenic, hepato-protective, and anticoagulant activities have been attributed to some microalgae-derived compounds such as peptides. Nevertheless, research on this topic is scarce and the evidence on potential health benefits is not strong. In the last years, the possibility of using microalgae-derived compounds for innovative functional food products has become of great interest, but the literature available mainly focuses more on the addition of the whole cells or some compound already available on the market. This review describes the status of utilising microalgae as an ingredient in innovative food products with potential health benefits.
Collapse
Affiliation(s)
- Martín P. Caporgno
- Laboratory of Sustainable Food Processing, Institute of Food Nutrition and Health IFNH, ETH Zurich, Zurich, Switzerland
| | | |
Collapse
|
47
|
Kerry RG, Patra JK, Gouda S, Park Y, Shin HS, Das G. Benefaction of probiotics for human health: A review. J Food Drug Anal 2018; 26:927-939. [PMID: 29976412 PMCID: PMC9303019 DOI: 10.1016/j.jfda.2018.01.002] [Citation(s) in RCA: 440] [Impact Index Per Article: 62.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 12/26/2017] [Accepted: 01/11/2018] [Indexed: 02/07/2023] Open
Abstract
Humans are a unique reservoir of heterogeneous and vivacious group of microbes, which together forms the human-microbiome superorganism. Human gut serves as a home to over 100-1000 microbial species, which primarily modulate the host internal environment and thereby, play a major role in host health. This spectacular symbiotic relationship has attracted extensive research in this field. More specifically, these organisms play key roles in defense function, eupepsia along with catabolism and anabolism, and impact brain-gut responses. The emergence of microbiota with resistance and tolerance to existing conventional drugs and antibiotics has decreased the drug efficacies. Furthermore, the modern biotechnology mediated nano-encapsulated multiplex supplements appear to be high cost and inconvenient. Henceforth, a simple, low-cost, receptive and intrinsic approach to achieve health benefits is vital in the present era. Supplementation with probiotics, prebiotics, and synbiotics has shown promising results against various enteric pathogens due to their unique ability to compete with pathogenic microbiota for adhesion sites, to alienate pathogens or to stimulate, modulate and regulate the host's immune response by initiating the activation of specific genes in and outside the host intestinal tract. Probiotics have also been shown to regulate fat storage and stimulate intestinal angiogenesis. Hence, this study aims to underline the possible beneficial impact of probiotics for human health and medical sectors and for better lifestyle.
Collapse
Affiliation(s)
- Rout George Kerry
- P.G. Department of Biotechnology, Academy of Management & Information Technology, Khurda, 752057, Odisha,
India
| | - Jayanta Kumar Patra
- P.G. Department of Biotechnology, Academy of Management & Information Technology, Khurda, 752057, Odisha,
India
- Research Institute of Biotechnology and Medical Converged Science, Dongguk University-Seoul, Gyeonggi-do, 10326,
Republic of Korea
| | - Sushanto Gouda
- Amity Institute of Wildlife Science, Noida, 201303, Uttar Pradesh,
India
| | - Yooheon Park
- Research Institute of Biotechnology and Medical Converged Science, Dongguk University-Seoul, Gyeonggi-do, 10326,
Republic of Korea
| | - Han-Seung Shin
- Department of Food Science and Biotechnology, Dongguk University-Seoul, Gyeonggi-do, 10326,
Republic of Korea
| | - Gitishree Das
- Research Institute of Biotechnology and Medical Converged Science, Dongguk University-Seoul, Gyeonggi-do, 10326,
Republic of Korea
- Corresponding author. E-mail address: (G. Das)
| |
Collapse
|
48
|
Rico-Rodríguez F, Serrato JC, Montilla A, Villamiel M. Impact of ultrasound on galactooligosaccharides and gluconic acid production throughout a multienzymatic system. ULTRASONICS SONOCHEMISTRY 2018; 44:177-183. [PMID: 29680601 DOI: 10.1016/j.ultsonch.2018.02.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 01/30/2018] [Accepted: 02/10/2018] [Indexed: 06/08/2023]
Abstract
Galactooligosaccharides (GOS), recognised prebiotic, can be industrially produced from lactose and commercial β-galactosidase (β-gal) from Kluyveromyces lactis. Residual lactose and glucose limit GOS applications. To handle this problem, a multienzymatic system, with β-gal and glucose oxidase (Gox), was proposed to reduce glucose content in reaction media through its oxidation to gluconic acid (GA). Besides, ultrasound (US) probe effect over the multienzymatic system to produce GOS and GA has been evaluated. A production around 40% of GOS was found in all treatments after the first hour of reaction. However, glucose consumption and GA production was significantly higher (P < 0.05) for sequential reaction assisted by US, obtaining the best production of GOS (49%) and GA (28%) after 2 h of reaction. The conformational and residual activity changes of enzymes under US conditions were also evaluated, Gox being positively affected whereas in β-gal hardly any change was found.
Collapse
Affiliation(s)
- Fabián Rico-Rodríguez
- Departamento de Ingeniería Química y Ambiental, Facultad de Ingeniería, Universidad Nacional de Colombia Sede Bogotá, Carrera 30 N° 45-03, Bogotá, Colombia
| | - Juan Carlos Serrato
- Departamento de Ingeniería Química y Ambiental, Facultad de Ingeniería, Universidad Nacional de Colombia Sede Bogotá, Carrera 30 N° 45-03, Bogotá, Colombia
| | - Antonia Montilla
- Instituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC-UAM) CEI (CSIC+UAM), Nicolás Cabrera, 9. Campus de la Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| | - Mar Villamiel
- Instituto de Investigación en Ciencias de la Alimentación (CIAL) (CSIC-UAM) CEI (CSIC+UAM), Nicolás Cabrera, 9. Campus de la Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
49
|
Wojciechowska A, Klewicki R, Sójka M. Glucoheptonic acid derivative as a new transgalactosylation product. BIOCATAL BIOTRANSFOR 2018. [DOI: 10.1080/10242422.2018.1477760] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Aleksandra Wojciechowska
- Institute of Food Technology and Analysis, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Łódź, Poland
| | - Robert Klewicki
- Institute of Food Technology and Analysis, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Łódź, Poland
| | - Michał Sójka
- Institute of Food Technology and Analysis, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Łódź, Poland
| |
Collapse
|
50
|
Bivolarski V, Vasileva T, Gabriel V, Iliev I. Synthesis of glucooligosaccharides with prebiotic potential by glucansucrase URE 13-300 acceptor reactions with maltose, raffinose and lactose. Eng Life Sci 2018; 18:904-913. [PMID: 32624884 DOI: 10.1002/elsc.201800047] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 04/17/2018] [Accepted: 04/18/2018] [Indexed: 01/12/2023] Open
Abstract
In the present work, we report an efficient synthesis of glucooligosaccharides (GOSs) with prebiotic potential by novel glucansucrase URE 13-300 from Leuconostoc mesenteroides URE 13 strain. The highest total yield of GOSs with degree of polymerization (DP) from 3 to 6 was obtained with maltose as an acceptor and maltose/sucrose (M/S) ratio 1-136 g/L. An efficient modulation of GOSs composition is achieved by varying the M/S ratio. At M/S = 1, 2, 4 and 7 the content of DP3 products gradually increase from 54.50 to 91.70%. When the M/S ratio was decreased the synthesis of DP>3 GOSs is predominant and reaches 75.60% (M/S = 0.25). In addition, the maltose derived GOSs with DP>3, as well as raffinose and lactose glucosylation products have a branched structure which is prerequisite for increased prebiotic potential. The synthesized GOSs were efficiently metabolized by probiotic strains of Lb. plantarum S26, Lb. brevis S27 and Lb. sakei S16, and the calculated values of specific growth rate (μ) were nearly identical to this on glucose media, when maltose derived GOSs were used as a carbohydrate source. Strain specific features were observed in the utilization of the synthesized GOSs, as well as in the production of lactic acid and acetic acid.
Collapse
Affiliation(s)
- Veselin Bivolarski
- Department of Biochemistry and Microbiology Plovdiv University "Paisii Hilendarski" Plovdiv Bulgaria
| | - Tonka Vasileva
- Department of Biochemistry and Microbiology Plovdiv University "Paisii Hilendarski" Plovdiv Bulgaria
| | - Valerie Gabriel
- Laboratory of Food and Environmental Biotechnology (LBAE-EA4565) University Institute of Technology "Paul Sabatier" Auch France
| | - Ilia Iliev
- Department of Biochemistry and Microbiology Plovdiv University "Paisii Hilendarski" Plovdiv Bulgaria
| |
Collapse
|