1
|
Establishment and Validation of Fourier Transform Infrared Spectroscopy (FT–MIR) Methodology for the Detection of Linoleic Acid in Buffalo Milk. Foods 2023; 12:foods12061199. [PMID: 36981127 PMCID: PMC10048274 DOI: 10.3390/foods12061199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 02/28/2023] [Accepted: 03/10/2023] [Indexed: 03/14/2023] Open
Abstract
Buffalo milk is a dairy product that is considered to have a higher nutritional value compared to cow’s milk. Linoleic acid (LA) is an essential fatty acid that is important for human health. This study aimed to investigate and validate the use of Fourier transform mid-infrared spectroscopy (FT-MIR) for the quantification of the linoleic acid in buffalo milk. Three machine learning models were used to predict linoleic acid content, and random forest was employed to select the most important subset of spectra for improved model performance. The validity of the FT-MIR methods was evaluated in accordance with ICH Q2 (R1) guidelines using the accuracy profile method, and the precision, the accuracy, and the limit of quantification were determined. The results showed that Fourier transform infrared spectroscopy is a suitable technique for the analysis of linoleic acid, with a lower limit of quantification of 0.15 mg/mL milk. Our results showed that FT-MIR spectroscopy is a viable method for LA concentration analysis.
Collapse
|
2
|
Guo Q, Li T, Qu Y, Liang M, Ha Y, Zhang Y, Wang Q. New research development on trans fatty acids in food: Biological effects, analytical methods, formation mechanism, and mitigating measures. Prog Lipid Res 2023; 89:101199. [PMID: 36402189 DOI: 10.1016/j.plipres.2022.101199] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 11/13/2022] [Accepted: 11/13/2022] [Indexed: 11/18/2022]
Abstract
The trans fatty acids (TFAs) in food are mainly generated from the ruminant animals (meat and milk) and processed oil or oil products. Excessive intake of TFAs (>1% of total energy intake) caused more than 500,000 deaths from coronary heart disease and increased heart disease risk by 21% and mortality by 28% around the world annually, which will be eliminated in industrially-produced trans fat from the global food supply by 2023. Herein, we aim to provide a comprehensive overview of the biological effects, analytical methods, formation and mitigation measures of TFAs in food. Especially, the research progress on the rapid, easy-to-use, and newly validated analytical methods, new formation mechanism, kinetics, possible mitigation mechanism, and new or improved mitigation measures are highlighted. We also offer perspectives on the challenges, opportunities, and new directions for future development, which will contribute to the advances in TFAs research.
Collapse
Affiliation(s)
- Qin Guo
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100194, PR China.
| | - Tian Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100194, PR China
| | - Yang Qu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100194, PR China
| | - Manzhu Liang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100194, PR China
| | - Yiming Ha
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100194, PR China
| | - Yu Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Beijing 100081, PR China
| | - Qiang Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture, Beijing 100194, PR China.
| |
Collapse
|
3
|
Christin Brettschneider K, Zettel V, Sadeghi Vasafi P, Hummel D, Hinrichs J, Hitzmann B. Spectroscopic-Based Prediction of Milk Foam Properties for Barista Applications. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02822-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AbstractThe important quality parameters of cow’s milk for barista applications are frothability and foam stability. In the past, quality assessment was very time-consuming and could only be carried out after milk treatment had been completed. Since spectroscopy is already established in dairies, it could be advantageous to develop a spectrometer-based measurement method for quality control for barista applications. By integrating online spectroscopy to the processing of UHT (ultra-high temperature processing) milk before filling, it can be checked whether the currently processed product is suitable for barista applications. To test this hypothesis, a feasibility study was conducted. For this purpose, seasonal UHT whole milk samples were measured every 2 months over a period of more than 1 year, resulting in a total of 269 milk samples that were foamed. Samples were frothed using a self-designed laboratory frother. Frothability at the beginning and foam loss after 15 min describe the frothing characteristics of the milk and are predicted from the spectra. Near-infrared, Raman, and fluorescence spectra were recorded from each milk sample. These spectra were preprocessed using 15 different mathematical methods. For each spectrometer, 85% of the resulting spectral dataset was analyzed using partial least squares (PLS) regression and nine different variable selection (VS) algorithms. Using the remaining 15% of the spectral dataset, a prediction error was determined for each model and used to compare the models. Using spectroscopy and PLS modeling, the best results show a prediction error for milk frothability of 3% and foam stability of 2%.
Collapse
|
4
|
Ma C, Zhang Y, Yang C, Zhang Y, Zhang M, Tang J. Cetyl trimethyl ammonium bromide-activated lipase from Aspergillus oryzae immobilized with Cu3(PO4)2⋅3H2O via biomineralization for hydrolysis of olive oil. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
5
|
Current Status of Optical Systems for Measuring Lycopene Content in Fruits: Review. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11199332] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Optical systems are used for analysing the internal composition and the external properties in food. The measurement of the lycopene content in fruits and vegetables is important because of its benefits to human health. Lycopene prevents cardiovascular diseases, cataracts, cancer, osteoporosis, male infertility, and peritonitis. Among the optical systems focused on the estimation and identification of lycopene molecule are high-performance liquid chromatography (HPLC), the colorimeter, infrared near NIR spectroscopy, UV-VIS spectroscopy, Raman spectroscopy, and the systems of multispectral imaging (MSI) and hyperspectral imaging (HSI). The main objective of this paper is to present a review of the current state of optical systems used to measure lycopene in fruits. It also reports important factors to be considered in order to improve the design and implementation of those optical systems. Finally, it was observed that measurements with HPLC and spectrophotometry present the best results but use toxic solvents and require specialized personnel for their use. Moreover, another widely used technique is colorimetry, which correlates the lycopene content using color descriptors, typically those of CIELAB. Likewise, it was identified that spectroscopic techniques and multispectral images are gaining importance because they are fast and non-invasive.
Collapse
|
6
|
González-Martín MI, Vivar-Quintana AM, Revilla I, Salvador-Esteban J. The determination of fatty acids in cheeses of variable composition (cow, ewe's, and goat) by means of near infrared spectroscopy. Microchem J 2020. [DOI: 10.1016/j.microc.2020.104854] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
7
|
Gastélum-Barrios A, Soto-Zarazúa GM, Escamilla-García A, Toledano-Ayala M, Macías-Bobadilla G, Jauregui-Vazquez D. Optical Methods Based on Ultraviolet, Visible, and Near-Infrared Spectra to Estimate Fat and Protein in Raw Milk: A Review. SENSORS (BASEL, SWITZERLAND) 2020; 20:E3356. [PMID: 32545713 PMCID: PMC7348944 DOI: 10.3390/s20123356] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 06/09/2020] [Accepted: 06/09/2020] [Indexed: 11/29/2022]
Abstract
The present manuscript focuses on reviewing the optical techniques proposed to monitor milk quality in dairy farms to increase productivity and reduce costs. As is well known, the quality is linked to the fat and protein concentration; in addition, this issue is crucial to maintaining a healthy herd and preventing illnesses such as mastitis and ketosis. Usually, the quality of the milk is carried out with invasive methods employing chemical reagents that increase the time analysis. As a solution, several spectroscopy optical methods have been proposed, here, the benefits such as non-invasive measurement, online implementation, rapid estimation, and cost-effective execution. The most attractive optical methods to estimate fat and protein in cow's milk are compared and discussed considering their performance. The analysis is divided considering the wavelength operation (ultraviolet, visible, and infrared). Moreover, the weaknesses and strengths of the methods are fully analyzed. Finally, we provide the trends and a recent technique based on spectroscopy in the visible wavelength.
Collapse
Affiliation(s)
- Abraham Gastélum-Barrios
- Facultad de Ingeniería Campus Amazcala, Universidad Autónoma de Querétaro, Carr. Chichimequillas S/N Km 1, Amazcala, El Marqués 76265, Mexico; (A.E.-G.); (M.T.-A.); (G.M.-B.)
| | - Genaro M. Soto-Zarazúa
- Facultad de Ingeniería Campus Amazcala, Universidad Autónoma de Querétaro, Carr. Chichimequillas S/N Km 1, Amazcala, El Marqués 76265, Mexico; (A.E.-G.); (M.T.-A.); (G.M.-B.)
| | - Axel Escamilla-García
- Facultad de Ingeniería Campus Amazcala, Universidad Autónoma de Querétaro, Carr. Chichimequillas S/N Km 1, Amazcala, El Marqués 76265, Mexico; (A.E.-G.); (M.T.-A.); (G.M.-B.)
| | - Manuel Toledano-Ayala
- Facultad de Ingeniería Campus Amazcala, Universidad Autónoma de Querétaro, Carr. Chichimequillas S/N Km 1, Amazcala, El Marqués 76265, Mexico; (A.E.-G.); (M.T.-A.); (G.M.-B.)
| | - Gonzalo Macías-Bobadilla
- Facultad de Ingeniería Campus Amazcala, Universidad Autónoma de Querétaro, Carr. Chichimequillas S/N Km 1, Amazcala, El Marqués 76265, Mexico; (A.E.-G.); (M.T.-A.); (G.M.-B.)
| | - Daniel Jauregui-Vazquez
- Departamento de Electrónica, División de Ingenierías, Campus Irapuato-Salamanca, Universidad de Guanajuato, Carretera Salamanca-Valle de Santiago Km. 3.5+1.8 Comunidad de Palo Blanco, Salamanca, Guanajuato 36787, Mexico;
| |
Collapse
|
8
|
Alinovi M, Mucchetti G, Andersen U, Rovers TAM, Mikkelsen B, Wiking L, Corredig M. Applicability of Confocal Raman Microscopy to Observe Microstructural Modifications of Cream Cheeses as Influenced by Freezing. Foods 2020; 9:E679. [PMID: 32466185 PMCID: PMC7278691 DOI: 10.3390/foods9050679] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/21/2020] [Accepted: 05/22/2020] [Indexed: 11/16/2022] Open
Abstract
Confocal Raman microscopy is a promising technique to derive information about microstructure, with minimal sample disruption. Raman emission bands are highly specific to molecular structure and with Raman spectroscopy it is thus possible to observe different classes of molecules in situ, in complex food matrices, without employing fluorescent dyes. In this work confocal Raman microscopy was employed to observe microstructural changes occurring after freezing and thawing in high-moisture cheeses, and the observations were compared to those obtained with confocal laser scanning microscopy. Two commercially available cream cheese products were imaged with both microscopy techniques. The lower resolution (1 µm/pixel) of confocal Raman microscopy prevented the observation of particles smaller than 1 µm that may be part of the structure (e.g., sugars). With confocal Raman microscopy it was possible to identify and map the large water domains formed during freezing and thawing in high-moisture cream cheese. The results were supported also by low resolution NMR analysis. NMR and Raman microscopy are complementary techniques that can be employed to distinguish between the two different commercial formulations, and different destabilization levels.
Collapse
Affiliation(s)
- Marcello Alinovi
- Food and Drug, University of Parma, Parco Area delle Scienze, 47/A 43124 Parma, Italy;
| | - Germano Mucchetti
- Food and Drug, University of Parma, Parco Area delle Scienze, 47/A 43124 Parma, Italy;
| | - Ulf Andersen
- Arla Innovation Centre, Arla Foods, Agro Food Park 19, 8200 Aarhus, Denmark; (U.A.); (T.A.M.R.); (B.M.)
| | - Tijs A. M. Rovers
- Arla Innovation Centre, Arla Foods, Agro Food Park 19, 8200 Aarhus, Denmark; (U.A.); (T.A.M.R.); (B.M.)
| | - Betina Mikkelsen
- Arla Innovation Centre, Arla Foods, Agro Food Park 19, 8200 Aarhus, Denmark; (U.A.); (T.A.M.R.); (B.M.)
| | - Lars Wiking
- Department of Food Science and iFOOD Center for Innovative Food, Aarhus University, Agro Food Park 48, 8200 Aarhus, Denmark; (L.W.); (M.C.)
| | - Milena Corredig
- Department of Food Science and iFOOD Center for Innovative Food, Aarhus University, Agro Food Park 48, 8200 Aarhus, Denmark; (L.W.); (M.C.)
| |
Collapse
|
9
|
Sun Q, Zhang M, Yang P. Combination of LF-NMR and BP-ANN to monitor water states of typical fruits and vegetables during microwave vacuum drying. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.108548] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
10
|
Abstract
Dairy fat is one of the most complex natural fats because of its fatty acid (FA) composition. Ruminant dairy fat contains more than 400 different FA varying in carbon chain length, and degree, position and configuration of unsaturation. The following article reviews the different methods available to analyze FA (both total and free) in milk and dairy products. The most widely used methodology for separating and analyzing dairy FA is gas chromatography, coupled to a flame ionization detector (CG-FID). Alternatively, gas chromatography coupled to a mass spectrometer (GC-MS) is also used. After lipid extraction, total FA (TFA) are commonly converted into their methyl esters (fatty acid methyl esters, FAME) prior to chromatographic analysis. In contrast, free FA (FFA) can be analyzed after conversion to FAME or directly as FFA after extraction from the product. One of the key questions when analyzing FAME from TFA is the selection of a proper column for separating them, which depends mainly on the objective of the analysis. Quantification is best achieved by the internal standard method. Recently, near-infrared spectroscopy (NIRS), Raman spectroscopy (RS) and nuclear magnetic resonance (NMR) have been reported as promising techniques to analyze FA in milk and dairy products.
Collapse
|
11
|
Wiedemair V, Langore D, Garsleitner R, Dillinger K, Huck C. Investigations into the Performance of a Novel Pocket-Sized Near-Infrared Spectrometer for Cheese Analysis. Molecules 2019; 24:E428. [PMID: 30682872 PMCID: PMC6385083 DOI: 10.3390/molecules24030428] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/18/2019] [Accepted: 01/22/2019] [Indexed: 11/16/2022] Open
Abstract
The performance of a newly developed pocket-sized near-infrared (NIR) spectrometer was investigated by analysing 46 cheese samples for their water and fat content, and comparing results with a benchtop NIR device. Additionally, the automated data analysis of the pocket-sized spectrometer and its cloud-based data analysis software, designed for laypeople, was put to the test by comparing performances to a highly sophisticated multivariate data analysis software. All developed partial least squares regression (PLS-R) models yield a coefficient of determination (R²) of over 0.9, indicating high correlation between spectra and reference data for both spectrometers and all data analysis routes taken. In general, the analysis of grated cheese yields better results than whole pieces of cheese. Additionally, the ratios of performance to deviation (RPDs) and standard errors of prediction (SEPs) suggest that the performance of the pocket-sized spectrometer is comparable to the benchtop device. Small improvements are observable, when using sophisticated data analysis software, instead of automated tools.
Collapse
Affiliation(s)
- Verena Wiedemair
- CCB-Center for Chemistry and Biomedicine, Institute of Analytical Chemistry and Radiochemistry, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria.
| | - Dominik Langore
- CCB-Center for Chemistry and Biomedicine, Institute of Analytical Chemistry and Radiochemistry, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria.
| | - Roman Garsleitner
- Chemical devision, HBLFA für Landwirtschaft und Ernährung, Lebensmittel und Biotechnologie Tirol,Rotholz 50a, 6200 Strass im Zillertal, Austria.
| | - Klaus Dillinger
- Chemical devision, HBLFA für Landwirtschaft und Ernährung, Lebensmittel und Biotechnologie Tirol,Rotholz 50a, 6200 Strass im Zillertal, Austria.
| | - Christian Huck
- CCB-Center for Chemistry and Biomedicine, Institute of Analytical Chemistry and Radiochemistry, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria.
| |
Collapse
|
12
|
Czaja T, Baranowska M, Mazurek S, Szostak R. Determination of nutritional parameters of yoghurts by FT Raman spectroscopy. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 196:413-417. [PMID: 29499570 DOI: 10.1016/j.saa.2018.02.054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 02/15/2018] [Accepted: 02/19/2018] [Indexed: 06/08/2023]
Abstract
FT-Raman quantitative analysis of nutritional parameters of yoghurts was performed with the help of partial least squares models. The relative standard errors of prediction for fat, lactose and protein determination in the quantified commercial samples equalled to 3.9, 3.2 and 3.6%, respectively. Models based on attenuated total reflectance spectra of the liquid yoghurt samples and of dried yoghurt films collected with the single reflection diamond accessory showed relative standard errors of prediction values of 1.6-5.0% and 2.7-5.2%, respectively, for the analysed components. Despite a relatively low signal-to-noise ratio in the obtained spectra, Raman spectroscopy, combined with chemometrics, constitutes a fast and powerful tool for macronutrients quantification in yoghurts. Errors received for attenuated total reflectance method were found to be relatively higher than those for Raman spectroscopy due to inhomogeneity of the analysed samples.
Collapse
Affiliation(s)
- Tomasz Czaja
- Department of Chemistry, University of Wrocław, 14 F. Joliot-Curie, 50-383 Wrocław, Poland
| | - Maria Baranowska
- Chair of Dairy Science and Quality Management, University of Warmia and Mazury, 7 Oczapowskiego, 10-719 Olsztyn, Poland
| | - Sylwester Mazurek
- Department of Chemistry, University of Wrocław, 14 F. Joliot-Curie, 50-383 Wrocław, Poland
| | - Roman Szostak
- Department of Chemistry, University of Wrocław, 14 F. Joliot-Curie, 50-383 Wrocław, Poland.
| |
Collapse
|
13
|
Fan K, Zhang M. Recent developments in the food quality detected by non-invasive nuclear magnetic resonance technology. Crit Rev Food Sci Nutr 2018; 59:2202-2213. [PMID: 29451810 DOI: 10.1080/10408398.2018.1441124] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Nuclear magnetic resonance (NMR) is a rapid, accurate and non-invasive technology and widely used to detect the quality of food, particularly to fruits and vegetables, meat and aquatic products. This review is a survey of recent developments in experimental results for the quality of food on various NMR technologies in processing and storage over the past decade. Following a discussion of the quality discrimination and classification of food, analysis of food compositions and detection of physical, chemical, structural and microbiological properties of food are outlined. Owing to high cost, low detection limit and sensitivity, the professional knowledge involved and the safety issues related to the maintenance of the magnetic field, so far the practical applications are limited to detect small range of food. In order to promote applications for a broader range of foods further research and development efforts are needed to overcome the limitations of NMR in the detection process. The needs and opportunities for future research and developments are outlined.
Collapse
Affiliation(s)
- Kai Fan
- a State Key Laboratory of Food Science and Technology, Jiangnan University , Wuxi , Jiangsu , China.,b International Joint Laboratory on Food Safety, Jiangnan University , Wuxi , Jiangsu , China
| | - Min Zhang
- a State Key Laboratory of Food Science and Technology, Jiangnan University , Wuxi , Jiangsu , China.,c Jiangsu Province Key Laboratory of Advanced Food Manufacturing Equipment and Technology, Jiangnan University , Wuxi , Jiangsu , China
| |
Collapse
|