1
|
Izadi M, Sadri N, Abdi A, Raeis Zadeh MM, Sadatipour S, Baghdadi G, Jalaei D, Tahmasebi S. Harnessing the fundamental roles of vitamins: the potent anti-oxidants in longevity. Biogerontology 2025; 26:58. [PMID: 39920477 DOI: 10.1007/s10522-025-10202-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Accepted: 01/30/2025] [Indexed: 02/09/2025]
Abstract
Aging is a complex and heterogeneous biological process characterized by telomere attrition, genomic instability, mitochondrial dysfunction, and disruption in nutrient sensing. Besides contributing to the progression of cancer, metabolic disorders, and neurodegenerative diseases, these manifestations of aging also adversely affect organ function. It is crucial to understand these mechanisms and identify interventions to modulate them to promote healthy aging and prevent age-related diseases. Vitamins have emerged as potential modulators of aging beyond their traditional roles in health maintenance. There is an increasing body of evidence that hormetic effects of vitamins are responsible for activating cellular stress responses, repair mechanisms, and homeostatic processes when mild stress is induced by certain vitamins. It is evident from this dual role that vitamins play a significant role in preventing frailty, promoting resilience, and mitigating age-related cellular damage. Moreover, addressing vitamin deficiencies in the elderly could have a significant impact on slowing aging and extending life expectancy. A review of recent advances in the role of vitamins in delaying aging processes and promoting multiorgan health is presented in this article. The purpose of this paper is to provide a comprehensive framework for using vitamins as strategic tools for fostering longevity and vitality. It offers a fresh perspective on vitamins' role in aging research by bridging biological mechanisms and clinical opportunities.
Collapse
Affiliation(s)
- Mehran Izadi
- Department of Infectious and Tropical Diseases, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Synapse Laboratory Diagnostic Technologies Accelerator, Tehran, Iran
- Department of Research & Technology, Zeenome Longevity Research Institute, Tehran, Iran
| | - Nariman Sadri
- Synapse Laboratory Diagnostic Technologies Accelerator, Tehran, Iran
- Department of Research & Technology, Zeenome Longevity Research Institute, Tehran, Iran
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amirhossein Abdi
- Synapse Laboratory Diagnostic Technologies Accelerator, Tehran, Iran
- Department of Research & Technology, Zeenome Longevity Research Institute, Tehran, Iran
- School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mahdi Raeis Zadeh
- Synapse Laboratory Diagnostic Technologies Accelerator, Tehran, Iran
- Department of Research & Technology, Zeenome Longevity Research Institute, Tehran, Iran
- School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Sana Sadatipour
- Synapse Laboratory Diagnostic Technologies Accelerator, Tehran, Iran
- Department of Research & Technology, Zeenome Longevity Research Institute, Tehran, Iran
- Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Ghazalnaz Baghdadi
- Synapse Laboratory Diagnostic Technologies Accelerator, Tehran, Iran
- Department of Research & Technology, Zeenome Longevity Research Institute, Tehran, Iran
- Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Dorsa Jalaei
- Synapse Laboratory Diagnostic Technologies Accelerator, Tehran, Iran
- Department of Research & Technology, Zeenome Longevity Research Institute, Tehran, Iran
- School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Safa Tahmasebi
- Synapse Laboratory Diagnostic Technologies Accelerator, Tehran, Iran.
- Department of Research & Technology, Zeenome Longevity Research Institute, Tehran, Iran.
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Radhakrishnan AK, Ahmad B, Selvaduray KR, Abdul Hafid SR, Palanisamy UD, Zsien Zhin C. Single-centre, randomised clinical trial of the immunomodulatory mechanisms of daily supplementation of palm tocotrienol-rich fraction in healthy human volunteers following influenza vaccination. F1000Res 2024; 13:135. [PMID: 39268057 PMCID: PMC11391185 DOI: 10.12688/f1000research.137005.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/12/2024] [Indexed: 09/15/2024] Open
Abstract
Background Vitamin E from palm oil, known as the tocotrienol-rich fraction (TRF), has been shown to have immune-enhancing activity. To date, only one dose of TRF (400 mg daily) has been tested in a clinical trial. The proposed study will evaluate the immune-enhancing activity effects of lower doses (200, 100 and 50 mg) in a clinical trial using an influenza vaccine as the immunological challenge. Methods A single-centre, randomised, parallel, double-blinded, placebo-controlled clinical trial with balance allocation involving five arms will be conducted. The healthy volunteers recruited will be randomly assigned to one of the arms, and they will be asked to take the respective supplements (400 mg, 200 mg, 100 mg, 50 mg of TRF or placebo) daily with their dinner. The volunteers will receive the influenza vaccine after four weeks. They will be asked to return to the study site four weeks later. A blood sample will be taken for the study at baseline, four and eight weeks. Primary outcome measures will be antibody levels to influenza, blood leucocyte profile and cytokine production. Secondary outcomes will be correlating plasma vitamin E levels with immune responses, plasma proteins and gene expression patterns. The findings from this study will be published in relevant peer-reviewed journals and presented at relevant national and international scientific meetings. Conclusions The recent world events have created the awareness of having a healthy and functional immune system. Nutrition plays an important role in helping the immune system to function optimally. This study will show the effects of lower doses of TRF in boosting the immune response of healthy individuals and also elucidate the mechanisms through which TRF exerts its immune-enhancing effects. Clinical trial registration Australian New Zealand Clinical Trials Registry (ANZCTR) [ ACTRN12622000844741] dated 15 June 2022. Protocol version 2.
Collapse
Affiliation(s)
- Ammu Kutty Radhakrishnan
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Sunway, Selangor, 47500, Malaysia
| | - Badariah Ahmad
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Sunway, Selangor, 47500, Malaysia
| | - Kanga Rani Selvaduray
- Product Development and Advisory Services, Malaysian Palm Oil Board, Bandar Baru Bangi, Selangor, 43650, Malaysia
| | - Sitti Rahma Abdul Hafid
- Product Development and Advisory Services, Malaysian Palm Oil Board, Bandar Baru Bangi, Selangor, 43650, Malaysia
| | - Uma Devi Palanisamy
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Sunway, Selangor, 47500, Malaysia
| | | |
Collapse
|
3
|
Wang Y, Lu L, Ling C, Zhang P, Han R. Potential of Dietary HDAC2i in Breast Cancer Patients Receiving PD-1/PD-L1 Inhibitors. Nutrients 2023; 15:3984. [PMID: 37764768 PMCID: PMC10537481 DOI: 10.3390/nu15183984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/09/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Breast cancer (BC) is a lethal malignancy with high morbidity and mortality but lacks effective treatments thus far. Despite the introduction of immune checkpoint inhibitors (ICIs) (including PD-1/PD-L1 inhibitors), durable and optimal clinical benefits still remain elusive for a considerable number of BC patients. To break through such a dilemma, novel ICI-based combination therapy has been explored for enhancing the therapeutic effect. Recent evidence has just pointed out that the HDAC2 inhibitor (HDAC2i), which has been proven to exhibit an anti-cancer effect, can act as a sensitizer for ICIs therapy. Simultaneously, dietary intervention, as a crucial supportive therapy, has been reported to provide ingredients containing HDAC2 inhibitory activity. Thus, the novel integration of dietary intervention with ICIs therapy may offer promising possibilities for improving treatment outcomes. In this study, we first conducted the differential expression and prognostic analyses of HDAC2 and BC patients using the GENT2 and Kaplan-Meier plotter platform. Then, we summarized the potential diet candidates for such an integrated therapeutic strategy. This article not only provides a whole new therapeutic strategy for an HDAC2i-containing diet combined with PD-1/PD-L1 inhibitors for BC treatment, but also aims to ignite enthusiasm for exploring this field.
Collapse
Affiliation(s)
- Yuqian Wang
- Department of Chinese Medicine Oncology, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China
- Department of Chinese Medicine, Naval Medical University, Shanghai 200433, China
| | - Lingeng Lu
- Department of Chronic Disease Epidemiology, Yale School of Public Health, Yale University, 60 College Street, New Haven, CT 06520, USA
- School of Medicine, Center for Biomedical Data Science, Yale University, 60 College Street, New Haven, CT 06520, USA
- Yale Cancer Center, Yale University, 60 College Street, New Haven, CT 06520, USA
| | - Changquan Ling
- Department of Chinese Medicine Oncology, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China
- Department of Chinese Medicine, Naval Medical University, Shanghai 200433, China
| | - Ping Zhang
- Center for Integrative Conservation, Yunnan Key Laboratory for the Conservation of Tropical Rainforests and Asian Elephants, Xishuangbanna Tropical Botanical Garden, Xishuangbanna 666303, China
| | - Rui Han
- Department of Chinese Medicine Oncology, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China
- Department of Chinese Medicine, Naval Medical University, Shanghai 200433, China
- Department of Chronic Disease Epidemiology, Yale School of Public Health, Yale University, 60 College Street, New Haven, CT 06520, USA
- School of Medicine, Center for Biomedical Data Science, Yale University, 60 College Street, New Haven, CT 06520, USA
- Yale Cancer Center, Yale University, 60 College Street, New Haven, CT 06520, USA
- Department of Oncology, The First Hospital Affiliated to Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| |
Collapse
|
4
|
Gualtieri P, Trombetta D, Smeriglio A, Frank G, Alibrandi A, Leggeri G, Marchetti M, Zingale I, Fanelli S, Stocchi A, Di Renzo L. Effectiveness of Nutritional Supplements for Attenuating the Side Effects of SARS-CoV-2 Vaccines. Nutrients 2023; 15:nu15081807. [PMID: 37111026 PMCID: PMC10141698 DOI: 10.3390/nu15081807] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023] Open
Abstract
Supplementation is known to enhance the immune response and reduce infection. Therefore, the association between immune nutrients and vaccine side effects needs to be investigated. Our aim was to analyze the relationship between vaccination side effects and supplement intake among the Italian population. The study included a questionnaire asking for personal data, anthropometric information, COVID-19 infection and immunity response, and COVID-19 vaccination and supplementation. The survey was conducted from 8 February to 15 June 2022. In the study, 776 respondents were included, aged between 18 and 86 (71.3% females). We observed a statistically significant correlation between supplement consumption and side effects at the end of the vaccination cycle (p = 0.000), which was also confirmed by logistic regression (p = 0.02). Significant associations were observed between supplement intake and side effects of diarrhea and nausea at the end of the vaccination cycle (p = 0.001; p = 0.04, respectively). Significant associations were observed between side effects and omega-3 and mineral supplementation at the start of the vaccination cycle (p = 0.02; p = 0.001, respectively), and between side effects and vitamin supplementation at the end of the vaccination cycle (p = 0.005). In conclusion, our study shows a positive impact of supplementation on vaccination response, increasing host immune defenses, and reducing side effects.
Collapse
Affiliation(s)
- Paola Gualtieri
- Section of Clinical Nutrition and Nutrigenomic, Department of Biomedicine and Prevention, University of Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Domenico Trombetta
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Antonella Smeriglio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Giulia Frank
- Ph.D. School of Applied Medical-Surgical Sciences, University of Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Angela Alibrandi
- Department of Economy, University of Messina, Via dei Verdi 75, 98122 Messina, Italy
| | - Giulia Leggeri
- Section of Clinical Nutrition and Nutrigenomic, Department of Biomedicine and Prevention, University of Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Marco Marchetti
- School of Specialization in Food Science, University of Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Ilaria Zingale
- School of Specialization in Food Science, University of Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Silvia Fanelli
- School of Specialization in Food Science, University of Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Arianna Stocchi
- School of Specialization in Food Science, University of Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Laura Di Renzo
- Section of Clinical Nutrition and Nutrigenomic, Department of Biomedicine and Prevention, University of Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| |
Collapse
|
5
|
Calder PC, Berger MM, Gombart AF, McComsey GA, Martineau AR, Eggersdorfer M. Micronutrients to Support Vaccine Immunogenicity and Efficacy. Vaccines (Basel) 2022; 10:568. [PMID: 35455317 PMCID: PMC9024865 DOI: 10.3390/vaccines10040568] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 03/31/2022] [Accepted: 04/03/2022] [Indexed: 02/07/2023] Open
Abstract
The world has entered the third year of the coronavirus disease 2019 (COVID-19) pandemic. Vaccination is the primary public health strategy to protect against infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), in addition to other measures, such as mask wearing and social distancing. Vaccination has reduced COVID-19 severity and mortality dramatically. Nevertheless, incidence globally remains high, and certain populations are still at risk for severe outcomes. Additional strategies to support immunity, including potentially enhancing the response to vaccination, are needed. Many vitamins and trace minerals have recognized immunomodulatory actions, and their status and/or supplementation have been reported to correspond to the incidence and severity of infection. Furthermore, a variety of observational and some interventional studies report that adequate micronutrient status or micronutrient supplementation is associated with enhanced vaccine responses, including to COVID-19 vaccination. Such data suggest that micronutrient supplementation may hold the potential to improve vaccine immunogenicity and effectiveness, although additional interventional studies to further strengthen the existing evidence are needed. Positive findings from such research could have important implications for global public health, since deficiencies in several micronutrients that support immune function are prevalent in numerous settings, and supplementation can be implemented safely and inexpensively.
Collapse
Affiliation(s)
- Philip C. Calder
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, University of Southampton, Tremona Road, Southampton SO16 6YD, UK;
| | - Mette M. Berger
- Lausanne University Hospital (CHUV), University of Lausanne, 1011 Lausanne, Switzerland;
| | - Adrian F. Gombart
- Department of Biochemistry and Biophysics, Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA;
| | - Grace A. McComsey
- University Hospitals of Cleveland, Case Western Reserve University, 11100 Euclid Avenue, Cleveland, OH 44106, USA;
| | - Adrian R. Martineau
- Centre for Immunobiology, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK;
| | - Manfred Eggersdorfer
- Department of Internal Medicine, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| |
Collapse
|
6
|
Kagawa Y. Influence of Nutritional Intakes in Japan and the United States on COVID-19 Infection. Nutrients 2022; 14:633. [PMID: 35276992 PMCID: PMC8839931 DOI: 10.3390/nu14030633] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/27/2022] [Accepted: 01/31/2022] [Indexed: 02/07/2023] Open
Abstract
The U.S. and Japan are both democratic industrialized societies, but the numbers of COVID-19 cases and deaths per million people in the U.S. (including Japanese Americans) are 12.1-times and 17.4-times higher, respectively, than those in Japan. The aim of this study was to investigate the effects of diet on preventing COVID-19 infection. An analysis of dietary intake and the prevalence of obesity in the populations of both countries was performed, and their effects on COVID-19 infection were examined. Approximately 1.5-times more saturated fat and less eicosapentaenoic acid/docosahexaenoic acid are consumed in the U.S. than in Japan. Compared with food intakes in Japan (100%), those in the U.S. were as follows: beef 396%, sugar and sweeteners 235%, fish 44.3%, rice 11.5%, soybeans 0.5%, and tea 54.7%. The last four of these foods contain functional substances that prevent COVID-19. The prevalence of obesity is 7.4- and 10-times greater in the U.S. than in Japan for males and females, respectively. Mendelian randomization established a causal relationship between obesity and COVID-19 infection. Large differences in nutrient intakes and the prevalence of obesity, but not racial differences, may be partly responsible for differences in the incidence and mortality of COVID-19 between the U.S. and Japan.
Collapse
Affiliation(s)
- Yasuo Kagawa
- Department of Medical Chemistry, Kagawa Nutrition University, Saitama 350-0288, Japan
| |
Collapse
|