1
|
Oliveira CM, Hayiou-Thomas ME, Henderson LM. Reliability of the serial reaction time task: If at first you don't succeed, try, try, try again. Q J Exp Psychol (Hove) 2024; 77:2256-2282. [PMID: 38311604 PMCID: PMC11529135 DOI: 10.1177/17470218241232347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 11/27/2023] [Accepted: 12/02/2023] [Indexed: 02/06/2024]
Abstract
Procedural memory is involved in the acquisition and control of skills and habits that underlie rule and procedural learning, including the acquisition of grammar and phonology. The serial reaction time task (SRTT), commonly used to assess procedural learning, has been shown to have poor stability (test-retest reliability). We investigated factors that may affect the stability of the SRTT in adults. Experiment 1 examined whether the similarity of sequences learned in two sessions would impact stability: test-retest correlations were low regardless of sequence similarity (r < .31). Experiment 2 added a third session to examine whether individual differences in learning would stabilise with further training. There was a small (but nonsignificant) improvement in stability for later sessions (Sessions 1 and 2: r = .42; Sessions 2 and 3: r = .60). Stability of procedural learning on the SRTT remained suboptimal in all conditions, posing a serious obstacle to the use of this task as a sensitive predictor of individual differences and ultimately theoretical advance.
Collapse
|
2
|
Hashemirad F, Zoghi M, Fitzgerald PB, Hashemirad M, Jaberzadeh S. Site Dependency of Anodal Transcranial Direct-Current Stimulation on Reaction Time and Transfer of Learning during a Sequential Visual Isometric Pinch Task. Brain Sci 2024; 14:408. [PMID: 38672057 PMCID: PMC11048073 DOI: 10.3390/brainsci14040408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/10/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Considering the advantages of brain stimulation techniques in detecting the role of different areas of the brain in human sensorimotor behaviors, we used anodal transcranial direct-current stimulation (a-tDCS) over three different brain sites of the frontoparietal cortex (FPC) in healthy participants to elucidate the role of these three brain areas of the FPC on reaction time (RT) during a sequential visual isometric pinch task (SVIPT). We also aimed to assess if the stimulation of these cortical sites affects the transfer of learning during SVIPT. A total of 48 right-handed healthy participants were randomly assigned to one of the four a-tDCS groups: (1) left primary motor cortex (M1), (2) left dorsolateral prefrontal cortex (DLPFC), (3) left posterior parietal cortex (PPC), and (4) sham. A-tDCS (0.3 mA, 20 min) was applied concurrently with the SVIPT, in which the participants precisely controlled their forces to reach seven different target forces from 10 to 40% of the maximum voluntary contraction (MVC) presented on a computer screen with the right dominant hand. Four test blocks were randomly performed at the baseline and 15 min after the intervention, including sequence and random blocks with either hand. Our results showed significant elongations in the ratio of RTs between the M1 and sham groups in the sequence blocks of both the right-trained and left-untrained hands. No significant differences were found between the DLPFC and sham groups and the PPC and sham groups in RT measurements within the SVIPT. Our findings suggest that RT improvement within implicit learning of an SVIPT is not mediated by single-session a-tDCS over M1, DLPFC, or PPC. Further research is needed to understand the optimal characteristics of tDCS and stimulation sites to modulate reaction time in a precision control task such as an SVIPT.
Collapse
Affiliation(s)
- Fahimeh Hashemirad
- Department of Physical Therapy, University of Social Welfare and Rehabilitation Sciences, Tehran 1985713871, Iran
- Monash Neuromodulation Research Unit, Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC 3199, Australia;
| | - Maryam Zoghi
- Discipline of Physiotherapy, Institute of Health and Wellbeing, Federation University, Ballart, VIC 3199, Australia;
| | - Paul B. Fitzgerald
- School of Medicine and Psychology, Australian National University, Canberra, NSW 2601, Australia;
| | | | - Shapour Jaberzadeh
- Monash Neuromodulation Research Unit, Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC 3199, Australia;
| |
Collapse
|
3
|
Eisenstein T, Furman-Haran E, Tal A. Early excitatory-inhibitory cortical modifications following skill learning are associated with motor memory consolidation and plasticity overnight. Nat Commun 2024; 15:906. [PMID: 38291029 PMCID: PMC10828487 DOI: 10.1038/s41467-024-44979-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 01/08/2024] [Indexed: 02/01/2024] Open
Abstract
Consolidation of motor memories is vital to offline enhancement of new motor skills and involves short and longer-term offline processes following learning. While emerging evidence link glutamate and GABA dynamics in the primary motor cortex (M1) to online motor skill practice, its relationship with offline consolidation processes in humans is unclear. Using two-day repeated measures of behavioral and multimodal neuroimaging data before and following motor sequence learning, we show that short-term glutamatergic and GABAergic responses in M1 within minutes after learning were associated with longer-term learning-induced functional, structural, and behavioral modifications overnight. Furthermore, Glutamatergic and GABAergic modifications were differentially associated with different facets of motor memory consolidation. Our results point to unique and distinct roles of Glutamate and GABA in motor memory consolidation processes in the human brain across timescales and mechanistic levels, tying short-term changes on the neurochemical level to overnight changes in macroscale structure, function, and behavior.
Collapse
Affiliation(s)
- Tamir Eisenstein
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel.
| | - Edna Furman-Haran
- Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Assaf Tal
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
4
|
Abeles D, Herszage J, Shahar M, Censor N. Initial motor skill performance predicts future performance, but not learning. Sci Rep 2023; 13:11359. [PMID: 37443195 PMCID: PMC10344907 DOI: 10.1038/s41598-023-38231-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023] Open
Abstract
People show vast variability in skill performance and learning. What determines a person's individual performance and learning ability? In this study we explored the possibility to predict participants' future performance and learning, based on their behavior during initial skill acquisition. We recruited a large online multi-session sample of participants performing a sequential tapping skill learning task. We used machine learning to predict future performance and learning from raw data acquired during initial skill acquisition, and from engineered features calculated from the raw data. Strong correlations were observed between initial and final performance, and individual learning was not predicted. While canonical experimental tasks developed and selected to detect average effects may constrain insights regarding individual variability, development of novel tasks may shed light on the underlying mechanism of individual skill learning, relevant for real-life scenarios.
Collapse
Affiliation(s)
- Dekel Abeles
- School of Psychological Sciences, Tel Aviv University, 69978, Tel Aviv, Israel
| | - Jasmine Herszage
- Sagol School of Neuroscience, Tel Aviv University, 69978, Tel Aviv, Israel
| | - Moni Shahar
- AI and Data Science Center of Tel Aviv University (TAD), 69978, Tel Aviv, Israel
| | - Nitzan Censor
- School of Psychological Sciences, Tel Aviv University, 69978, Tel Aviv, Israel.
- Sagol School of Neuroscience, Tel Aviv University, 69978, Tel Aviv, Israel.
| |
Collapse
|
5
|
Bracco M, Mutanen TP, Veniero D, Thut G, Robertson EM. Distinct frequencies balance segregation with interaction between different memory types within a prefrontal circuit. Curr Biol 2023:S0960-9822(23)00622-X. [PMID: 37269827 DOI: 10.1016/j.cub.2023.05.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 03/29/2023] [Accepted: 05/12/2023] [Indexed: 06/05/2023]
Abstract
Once formed, the fate of memory is uncertain. Subsequent offline interactions between even different memory types (actions versus words) modify retention.1,2,3,4,5,6 These interactions may occur due to different oscillations functionally linking together different memory types within a circuit.7,8,9,10,11,12,13 With memory processing driving the circuit, it may become less susceptible to external influences.14 We tested this prediction by perturbing the human brain with single pulses of transcranial magnetic stimulation (TMS) and simultaneously measuring the brain activity changes with electroencephalography (EEG15,16,17). Stimulation was applied over brain areas that contribute to memory processing (dorsolateral prefrontal cortex, DLPFC; primary motor cortex, M1) at baseline and offline, after memory formation, when memory interactions are known to occur.1,4,6,10,18 The EEG response decreased offline (compared with baseline) within the alpha/beta frequency bands when stimulation was applied to the DLPFC, but not to M1. This decrease exclusively followed memory tasks that interact, revealing that it was due specifically to the interaction, not task performance. It remained even when the order of the memory tasks was changed and so was present, regardless of how the memory interaction was produced. Finally, the decrease within alpha power (but not beta) was correlated with impairment in motor memory, whereas the decrease in beta power (but not alpha) was correlated with impairment in word-list memory. Thus, different memory types are linked to different frequency bands within a DLPFC circuit, and the power of these bands shapes the balance between interaction and segregation between these memories.
Collapse
Affiliation(s)
- Martina Bracco
- Sorbonne Université, Institut du Cerveau, Paris Brain Institute, ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, 47 Bd de l'Hôpital, 75013 Paris, France
| | - Tuomas P Mutanen
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, P.O. box 12200, FI-00076 Aalto, Finland
| | - Domenica Veniero
- School of Psychology, University of Nottingham, Nottingham NG7 2RD, UK
| | - Gregor Thut
- Institute of Neuroscience and Psychology, Centre for Cognitive Neuroimaging, University of Glasgow, Glasgow G12 8QB, UK
| | - Edwin M Robertson
- Institute of Neuroscience and Psychology, Centre for Cognitive Neuroimaging, University of Glasgow, Glasgow G12 8QB, UK.
| |
Collapse
|
6
|
Herszage J, Bönstrup M, Cohen LG, Censor N. Reactivation-induced motor skill modulation does not operate at a rapid micro-timescale level. Sci Rep 2023; 13:2930. [PMID: 36808164 PMCID: PMC9941091 DOI: 10.1038/s41598-023-29963-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
Abundant evidence shows that consolidated memories are susceptible to modifications following their reactivation. Processes of memory consolidation and reactivation-induced skill modulation have been commonly documented after hours or days. Motivated by studies showing rapid consolidation in early stages of motor skill acquisition, here we asked whether motor skill memories are susceptible to modifications following brief reactivations, even at initial stages of learning. In a set of experiments, we collected crowdsourced online motor sequence data to test whether post-encoding interference and performance enhancement occur following brief reactivations in early stages of learning. Results indicate that memories forming during early learning are not susceptible to interference nor to enhancement within a rapid reactivation-induced time window, relative to control conditions. This set of evidence suggests that reactivation-induced motor skill memory modulation might be dependent on consolidation at the macro-timescale level, requiring hours or days to occur.
Collapse
Affiliation(s)
- Jasmine Herszage
- grid.12136.370000 0004 1937 0546School of Psychological Sciences and Sagol School of Neuroscience, Tel Aviv University, Sharet Building, 69978 Tel Aviv, Israel
| | - Marlene Bönstrup
- grid.9647.c0000 0004 7669 9786Department of Neurology, University of Leipzig, Leipzig, Germany
| | - Leonardo G. Cohen
- grid.416870.c0000 0001 2177 357XHuman Cortical Physiology and Neurorehabilitation Section, NINDS, NIH, Bethesda, MD USA
| | - Nitzan Censor
- School of Psychological Sciences and Sagol School of Neuroscience, Tel Aviv University, Sharet Building, 69978, Tel Aviv, Israel.
| |
Collapse
|
7
|
Leizerowitz GM, Gabai R, Plotnik M, Keren O, Karni A. Improving old tricks as new: Young adults learn from repeating everyday activities. PLoS One 2023; 18:e0285469. [PMID: 37167235 PMCID: PMC10174589 DOI: 10.1371/journal.pone.0285469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 04/24/2023] [Indexed: 05/13/2023] Open
Abstract
The notion that young healthy adults can substantially improve in activities that are part of their daily routine is often overlooked because it is assumed that such activities have come to be fully mastered. We followed, in young healthy adults, the effects of repeated executions of the Timed-Up-and-Go (TUG) task, a clinical test that assesses the ability to execute motor activities relevant to daily function-rising from a seated position, walking, turning and returning to a seated position. The participants (N = 15) performed 18 consecutive trials of the TUG in one session, and were retested on the following day and a week later. The participants were video recorded and wore inertial measurement units. Task execution times improved robustly; performance was well fitted by a power function, with large gains at the beginning of the session and nearing plateau in later trials, as one would expect in the learning of a novel task. Moreover, these gains were well retained overnight and a week later, with further gains accruing in the subsequent test-sessions. Significant intra-session and inter-session changes occurred in step kinematics as well; some aspects underwent inter-sessions recalibrations, but other aspects showed delayed inter-session changes, suggesting post-practice memory consolidation processes. Even common everyday tasks can be improved upon by practice; a small number of consecutive task repetitions can trigger lasting gains in young healthy individuals performing highly practiced routine tasks. This new learning in highly familiar tasks proceeded in a time-course characteristic of the acquisition of novel 'how to' (procedural) knowledge.
Collapse
Affiliation(s)
- Gil Meir Leizerowitz
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel
- The Rehabilitation Hospital, C. Sheba Medical Center, Ramat Gan, Israel
| | - Ran Gabai
- Technion-Israel Institute of Technology, Haifa, Israel
| | - Meir Plotnik
- Center of Advanced Technologies in Rehabilitation, C. Sheba Medical Center, Ramat Gan, Israel
- Faculty of Medicine & Sagol School of Neuroscience, Department of Physiology and Pharmacology, Tel Aviv University, Tel Aviv, Israel
| | - Ofer Keren
- The Rehabilitation Hospital, C. Sheba Medical Center, Ramat Gan, Israel
- Galilee Rehabilitation Center, Karmiel, Israel
| | - Avi Karni
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel
- The E. J. Safra Brain Research Center for the Study of Learning Disabilities, University of Haifa, Haifa, Israel
- Department of Diagnostic Imaging, C. Sheba Medical Center, Ramat Gan, Israel
| |
Collapse
|
8
|
Vandevoorde K, Vollenkemper L, Schwan C, Kohlhase M, Schenck W. Using Artificial Intelligence for Assistance Systems to Bring Motor Learning Principles into Real World Motor Tasks. SENSORS (BASEL, SWITZERLAND) 2022; 22:2481. [PMID: 35408094 PMCID: PMC9002555 DOI: 10.3390/s22072481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/18/2022] [Accepted: 03/20/2022] [Indexed: 11/03/2022]
Abstract
Humans learn movements naturally, but it takes a lot of time and training to achieve expert performance in motor skills. In this review, we show how modern technologies can support people in learning new motor skills. First, we introduce important concepts in motor control, motor learning and motor skill learning. We also give an overview about the rapid expansion of machine learning algorithms and sensor technologies for human motion analysis. The integration between motor learning principles, machine learning algorithms and recent sensor technologies has the potential to develop AI-guided assistance systems for motor skill training. We give our perspective on this integration of different fields to transition from motor learning research in laboratory settings to real world environments and real world motor tasks and propose a stepwise approach to facilitate this transition.
Collapse
Affiliation(s)
- Koenraad Vandevoorde
- Center for Applied Data Science (CfADS), Faculty of Engineering and Mathematics, Bielefeld University of Applied Sciences, 33619 Bielefeld, Germany; (L.V.); (C.S.); (M.K.)
| | | | | | | | - Wolfram Schenck
- Center for Applied Data Science (CfADS), Faculty of Engineering and Mathematics, Bielefeld University of Applied Sciences, 33619 Bielefeld, Germany; (L.V.); (C.S.); (M.K.)
| |
Collapse
|
9
|
Bao S, Wang J, Wright DL, Buchanan JJ, Lei Y. The decay and consolidation of effector-independent motor memories. Sci Rep 2022; 12:3131. [PMID: 35210478 PMCID: PMC8873205 DOI: 10.1038/s41598-022-07032-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 02/01/2022] [Indexed: 11/08/2022] Open
Abstract
Learning a motor adaptation task produces intrinsically unstable or transient motor memories. Despite the presence of effector-independent motor memories following the learning of novel environmental dynamics, it remains largely unknown how those memory traces decay in different contexts and whether an "offline" consolidation period protects memories against decay. Here, we exploit inter-effector transfer to address these questions. We found that newly acquired motor memories formed with one effector could be partially retrieved by the untrained effector to enhance its performance when the decay occurred with the passage of time or "washout" trials on which error feedback was provided. The decay of motor memories was slower following "error-free" trials, on which errors were artificially clamped to zero or removed, compared with "washout" trials. However, effector-independent memory components were abolished following movements made in the absence of task errors, resulting in no transfer gains. The brain can stabilize motor memories during daytime wakefulness. We found that 6 h of wakeful resting increased the resistance of effector-independent memories to decay. Collectively, our results suggest that the decay of effector-independent motor memories is context-dependent, and offline processing preserves those memories against decay, leading to improvements of the subsequent inter-effector transfer.
Collapse
Affiliation(s)
- Shancheng Bao
- Department of Health and Kinesiology, Texas A&M University, College Station, TX, 77843, USA
| | - Jinsung Wang
- Department of Kinesiology, University of Wisconsin-Milwaukee, Milwaukee, WI, 53151, USA
| | - David L Wright
- Department of Health and Kinesiology, Texas A&M University, College Station, TX, 77843, USA
| | - John J Buchanan
- Department of Health and Kinesiology, Texas A&M University, College Station, TX, 77843, USA
| | - Yuming Lei
- Department of Health and Kinesiology, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
10
|
Tóth-Fáber E, Janacsek K, Németh D. Statistical and sequence learning lead to persistent memory in children after a one-year offline period. Sci Rep 2021; 11:12418. [PMID: 34127682 PMCID: PMC8203620 DOI: 10.1038/s41598-021-90560-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 05/10/2021] [Indexed: 01/09/2023] Open
Abstract
Extraction of environmental patterns underlies human learning throughout the lifespan and plays a crucial role not only in cognitive but also perceptual, motor, and social skills. At least two types of regularities contribute to acquiring skills: (1) statistical, probability-based regularities, and (2) serial order-based regularities. Memory performance of probability-based and/or serial order-based regularities over short periods (from minutes to weeks) has been widely investigated across the lifespan. However, long-term (months or year-long) memory performance of such knowledge has received relatively less attention and has not been assessed in children yet. Here, we aimed to test the long-term memory performance of probability-based and serial order-based regularities over a 1-year offline period in neurotypical children between the age of 9 and 15. Participants performed a visuomotor four-choice reaction time task designed to measure the acquisition of probability-based and serial order-based regularities simultaneously. Short-term consolidation effects were controlled by retesting their performance after a 5-h delay. They were then retested on the same task 1 year later without any practice between the sessions. Participants successfully acquired both probability-based and serial order-based regularities and retained both types of knowledge over the 1-year period. The successful retention was independent of age. Our study demonstrates that the representation of probability-based and serial order-based regularities remains stable over a long period of time. These findings offer indirect evidence for the developmental invariance model of skill consolidation.
Collapse
Affiliation(s)
- Eszter Tóth-Fáber
- Doctoral School of Psychology, ELTE Eötvös Loránd University, Izabella utca 46, 1064, Budapest, Hungary
- Institute of Psychology, ELTE Eötvös Loránd University, Izabella utca 46, 1064, Budapest, Hungary
- Brain, Memory and Language Research Group, Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Magyar tudósok körútja 2, 1117, Budapest, Hungary
| | - Karolina Janacsek
- Institute of Psychology, ELTE Eötvös Loránd University, Izabella utca 46, 1064, Budapest, Hungary
- Brain, Memory and Language Research Group, Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Magyar tudósok körútja 2, 1117, Budapest, Hungary
- Centre for Thinking and Learning, Institute for Lifecourse Development, School of Human Sciences, Faculty of Education, Health and Human Sciences, University of Greenwich, Old Royal Naval College, Park Row, 150 Dreadnought, London, SE10 9LS, UK
| | - Dezső Németh
- Institute of Psychology, ELTE Eötvös Loránd University, Izabella utca 46, 1064, Budapest, Hungary.
- Brain, Memory and Language Research Group, Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Magyar tudósok körútja 2, 1117, Budapest, Hungary.
- Lyon Neuroscience Research Center (CRNL), INSERM U1028, CNRS UMR5292, Centre Hospitalier Le Vinatier, Université de Lyon 1, Université de Lyon, Bâtiment 462 - Neurocampus 95 boulevard Pinel, 69675, Bron, Lyon, France.
| |
Collapse
|
11
|
Hamel R, Dallaire-Jean L, De La Fontaine É, Lepage JF, Bernier PM. Learning the same motor task twice impairs its retention in a time- and dose-dependent manner. Proc Biol Sci 2021; 288:20202556. [PMID: 33434470 DOI: 10.1098/rspb.2020.2556] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Anterograde interference emerges when two differing tasks are learned in close temporal proximity, an effect repeatedly attributed to a competition between differing task memories. However, recent development alternatively suggests that initial learning may trigger a refractory period that occludes neuroplasticity and impairs subsequent learning, consequently mediating interference independently of memory competition. Accordingly, this study tested the hypothesis that interference can emerge when the same motor task is being learned twice, that is when competition between memories is prevented. In a first experiment, the inter-session interval (ISI) between two identical motor learning sessions was manipulated to be 2 min, 1 h or 24 h. Results revealed that retention of the second session was impaired as compared to the first one when the ISI was 2 min but not when it was 1 h or 24 h, indicating a time-dependent process. Results from a second experiment replicated those of the first one and revealed that adding a third motor learning session with a 2 min ISI further impaired retention, indicating a dose-dependent process. Results from a third experiment revealed that the retention impairments did not take place when a learning session was preceded by simple rehearsal of the motor task without concurrent learning, thus ruling out fatigue and confirming that retention is impaired specifically when preceded by a learning session. Altogether, the present results suggest that competing memories is not the sole mechanism mediating anterograde interference and introduce the possibility that a time- and dose-dependent refractory period-independent of fatigue-also contributes to its emergence. One possibility is that learning transiently perturbs the homeostasis of learning-related neuronal substrates. Introducing additional learning when homeostasis is still perturbed may not only impair performance improvements, but also memory formation.
Collapse
Affiliation(s)
- R Hamel
- Département de pédiatrie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke; Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Québec, Canada.,Département de kinanthropologie, Faculté des sciences de l'activité physique, Université de Sherbrooke, 2500 Boulevard de l'Université, Sherbrooke, Québec, Canada J1K 2R1
| | - L Dallaire-Jean
- Département de kinanthropologie, Faculté des sciences de l'activité physique, Université de Sherbrooke, 2500 Boulevard de l'Université, Sherbrooke, Québec, Canada J1K 2R1
| | - É De La Fontaine
- Département de kinanthropologie, Faculté des sciences de l'activité physique, Université de Sherbrooke, 2500 Boulevard de l'Université, Sherbrooke, Québec, Canada J1K 2R1
| | - J F Lepage
- Département de pédiatrie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke; Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Québec, Canada
| | - P M Bernier
- Département de kinanthropologie, Faculté des sciences de l'activité physique, Université de Sherbrooke, 2500 Boulevard de l'Université, Sherbrooke, Québec, Canada J1K 2R1
| |
Collapse
|
12
|
Trofimova O, Mottaz A, Allaman L, Chauvigné LAS, Guggisberg AG. The "implicit" serial reaction time task induces rapid and temporary adaptation rather than implicit motor learning. Neurobiol Learn Mem 2020; 175:107297. [PMID: 32822865 DOI: 10.1016/j.nlm.2020.107297] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 08/10/2020] [Indexed: 11/25/2022]
Abstract
The serial reaction time task (SRTT) has been widely used to induce learning of a repeated motor sequence without the participants' awareness. The task has also been of major influence for defining current concepts of offline consolidation after motor learning. The present study intended to replicate previous findings in a larger population of 53 healthy individuals. We were unable to reproduce previous results of online and offline implicit motor learning with the SRTT. Trials with a repeated sequence rapidly induced shorter reaction times compared to random trials, but this improvement was lost in a post-test obtained a few minutes after the training block. Furthermore, no offline consolidation was observed as there was no change in sequence specific reaction time gain between the post-test immediately after training and a re-test obtained 8 h after training. Online or offline learning remained absent when we modulated the number of sequence repetitions, the error levels, and the structure of random sequences. We conclude that the SRTT induces a rapid and temporary adaptation to the sequence rather than learning, since the repeated motor sequence does not seem to be encoded in memory.
Collapse
Affiliation(s)
- Olga Trofimova
- Imaging-Assisted Neurorehabilitation Laboratory, Department of Clinical Neurosciences, University of Geneva, Geneva, Switzerland
| | - Anaïs Mottaz
- Imaging-Assisted Neurorehabilitation Laboratory, Department of Clinical Neurosciences, University of Geneva, Geneva, Switzerland
| | - Leslie Allaman
- Imaging-Assisted Neurorehabilitation Laboratory, Department of Clinical Neurosciences, University of Geneva, Geneva, Switzerland
| | - Léa A S Chauvigné
- Imaging-Assisted Neurorehabilitation Laboratory, Department of Clinical Neurosciences, University of Geneva, Geneva, Switzerland
| | - Adrian G Guggisberg
- Imaging-Assisted Neurorehabilitation Laboratory, Department of Clinical Neurosciences, University of Geneva, Geneva, Switzerland; Division of Neurorehabilitation, Department of Clinical Neurosciences, University Hospitals Geneva, Geneva, Switzerland.
| |
Collapse
|
13
|
Keinan A, Bar-Shalita T, Portnoy S. An Instrumented Assessment of a Rhythmic Finger Task among Children with Motor Coordination Difficulties. SENSORS (BASEL, SWITZERLAND) 2020; 20:s20164554. [PMID: 32823856 PMCID: PMC7472119 DOI: 10.3390/s20164554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/21/2020] [Accepted: 08/12/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Coordination is crucial for motor function, yet objective clinical evaluations are limited. We therefore developed and tested the reliability and validity of a low-cost sensorized evaluation of a rhythmic finger task. METHODS Children with coordination difficulties (n = 24) and typically developing children (n = 24) aged from 5 to 7 years performed the Sensorized Finger Sequencing Test (SFST), a finger sequencing test that records the correct sequence, total time, and the standard deviation (SD) of touch time. Additionally, motor performance tests and parents' reports were applied in order to test the reliability and validity of the SFST. RESULTS The study group had significantly greater thumb-finger test scores-total time in the dominant hand (p = 0.035) and the SD of the touch time in both dominant (p = 0.036) and non-dominant (p = 0.032) hands. Motor performance tests were not correlated with the SFST. Test-retest reliability in 10 healthy children was found for the SD of touch time in the dominant hand (r = 0.87, p = 0.003). CONCLUSIONS The SFST was successful in assessing the movement pattern variability reported in children with motor difficulties. This exploratory study indicates that the low-cost SFST could be utilized as an objective measure for the assessment of proprioception components, which currently are overlooked by standardized motor performance assessments.
Collapse
|
14
|
McCulloch AT, Park I, Wright DL, Buchanan JJ. Off-line learning in a rhythmic bimanual task: early feedback dependency is reduced over wakefulness. PSYCHOLOGICAL RESEARCH 2020; 85:1503-1514. [PMID: 32367224 DOI: 10.1007/s00426-020-01347-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 04/17/2020] [Indexed: 10/24/2022]
Abstract
Research has supported two distinct forms of motor skill consolidation that can occur between practice sessions: (1) off-line learning, and (2) memory stabilization. Off-line learning describes performance improvement between practice sessions that is above the gain observed at the end of practice, while memory stabilization describes a gain in performance that is maintained between practice sessions. This study used a Lissajous plot to provide concurrent feedback to train participants to produce a 90° relative phase between the index fingers (flexion/extension motion). Significant improvements in performance emerged after ten trials (5 min) of practice. At the end of training, participants were divided into two delay interval groups before retesting, 2-h and 6-h. The retesting session started with participants performing an interference task (10 trials, 5 min) that required training on a 45° relative phase between the fingers with concurrent feedback from the Lissajous plot. When training with the interference task was completed participants were retested with the 90° relative phase without the Lissajous plot feedback. In the retest of the 90° pattern, a performance loss was found in the 2-h delay group, whereas the 6-h delay group maintained the end of practice performance level. Maintenance of the same level of performance without the Lissajous plot represents memory stabilization of the initially trained 90° pattern. The findings are discussed within the context of current positions regarding procedural consolidation and the coordination dynamics framework wherein action and perception are linked through the informational nature of relative phase.
Collapse
Affiliation(s)
- A T McCulloch
- Department of Health and Kinesiology, Perception-Action Dynamics Lab, Texas A&M University, College Station, TX, USA
| | - I Park
- Department of Health and Kinesiology, Perception-Action Dynamics Lab, Texas A&M University, College Station, TX, USA
| | - D L Wright
- Department of Health and Kinesiology, Perception-Action Dynamics Lab, Texas A&M University, College Station, TX, USA
| | - John J Buchanan
- Department of Health and Kinesiology, Perception-Action Dynamics Lab, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
15
|
Park I, Buchanan JJ, McCulloch AT, Chen J, Wright DL. Motor and spatial representations of action: corticospinal excitability in M1 after training with a bimanual skill. Exp Brain Res 2020; 238:1191-1202. [DOI: 10.1007/s00221-020-05795-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 03/19/2020] [Indexed: 11/28/2022]
|
16
|
Mutanen TP, Bracco M, Robertson EM. A Common Task Structure Links Together the Fate of Different Types of Memories. Curr Biol 2020; 30:2139-2145.e5. [PMID: 32302588 DOI: 10.1016/j.cub.2020.03.043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 02/06/2020] [Accepted: 03/17/2020] [Indexed: 12/28/2022]
Abstract
Our memories frequently have features in common. For example, a learned sequence of words or actions can follow a common rule, which determines their serial order, despite being composed of very different events [1, 2]. This common abstract structure might link the fates of memories together. We tested this idea by creating different types of memory task: a sequence of words or actions that either did or did not have a common structure. Participants learned one of these memory tasks and then they learned another type of memory task 6 h later, either with or without the same structure. We then tested the newly formed memory's susceptibility to interference. We found that the newly formed memory was protected from interference when it shared a common structure with the earlier memory. Specifically, learning a sequence of words protected a subsequent sequence of actions learned hours later from interference, and conversely, learning a sequence of actions protected a subsequent sequence of words learned hours later from interference provided the sequences shared a common structure. Yet this protection of the newly formed memory came at a cost. The earlier memory had disrupted recall when it had the same rather than a different structure to the newly formed and protected memory. Thus, a common structure can determine what is retained (i.e., protected) and what is modified (i.e., disrupted). Our work reveals that a shared common structure links the fate of otherwise different types of memories together and identifies a novel mechanism for memory modification.
Collapse
Affiliation(s)
- Tuomas P Mutanen
- Department of Neuroscience & Biomedical Engineering, Aalto University, School of Science, 00076 Aalto, Espoo, Finland
| | - Martina Bracco
- Institute of Neuroscience & Psychology, Centre for Cognitive Neuroimaging, University of Glasgow, Glasgow G12 8QB, UK
| | - Edwin M Robertson
- Institute of Neuroscience & Psychology, Centre for Cognitive Neuroimaging, University of Glasgow, Glasgow G12 8QB, UK.
| |
Collapse
|
17
|
Robertson EM, Genzel L. Memories replayed: reactivating past successes and new dilemmas. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190226. [PMID: 32248775 DOI: 10.1098/rstb.2019.0226] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Our experiences continue to be processed 'offline' in the ensuing hours of both wakefulness and sleep. During these different brain states, the memory formed during our experience is replayed or reactivated. Here, we discuss the unique challenges in studying offline reactivation, the growth in both the experimental and analytical techniques available across different animals from rodents to humans to capture these offline events, the important challenges this innovation has brought, our still modest understanding of how reactivation drives diverse synaptic changes across circuits, and how these changes differ (if at all), and perhaps complement, those at memory formation. Together, these discussions highlight critical emerging issues vital for identifying how reactivation affects circuits, and, in turn, behaviour, and provides a broader context for the contributions in this special issue. This article is part of the Theo Murphy meeting issue 'Memory reactivation: replaying events past, present and future'.
Collapse
Affiliation(s)
- Edwin M Robertson
- Institute of Neuroscience & Psychology, University of Glasgow, Glasgow, UK
| | - Lisa Genzel
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| |
Collapse
|
18
|
Dandolo LC, Schwabe L. Time-dependent motor memory representations in prefrontal cortex. Neuroimage 2019; 197:143-155. [PMID: 31015028 DOI: 10.1016/j.neuroimage.2019.04.051] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 03/22/2019] [Accepted: 04/17/2019] [Indexed: 11/30/2022] Open
Abstract
How memories evolve over time is fundamental for understanding memory. Hippocampus-dependent episodic memories are generally assumed to undergo a time-dependent neural reorganization involving an increased reliance on neocortical areas. Yet, whether other forms of memory undergo a similar reorganization over time remains unclear. Here, we examined whether the neural underpinnings of motor sequence memories change over time. Participants were trained on a motor sequence learning task. Either 1d or 28d later, they performed a retention test for this task in the fMRI scanner. Sequence-specific motor memory was observed both 1d and 28d after initial training. Bayesian second-level fMRI analyses suggested a higher probability for task activity in the middle frontal gyrus and frontal pole 28d compared to 1d after initial motor learning. Searchlight representational similarity analysis indicated that areas in middle and superior frontal cortex were more involved in differentiating between multivariate activity patterns for old motor sequence memories and newly learned motor sequences in the 28d-group compared to the 1d-group. This increased involvement of lateral frontal areas during the task after 28 days was not paralleled by a decrease in those areas that were involved in performing the motor sequence retention task after 1d. These novel findings provide insights into how memories beyond the hippocampus evolve over time.
Collapse
Affiliation(s)
- Lisa C Dandolo
- Department of Cognitive Psychology, University of Hamburg, 20146, Hamburg, Germany
| | - Lars Schwabe
- Department of Cognitive Psychology, University of Hamburg, 20146, Hamburg, Germany.
| |
Collapse
|
19
|
|
20
|
Adi-Japha E, Berke R, Shaya N, Julius MS. Different post-training processes in children's and adults' motor skill learning. PLoS One 2019; 14:e0210658. [PMID: 30629711 PMCID: PMC6328138 DOI: 10.1371/journal.pone.0210658] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 12/28/2018] [Indexed: 12/31/2022] Open
Abstract
Do young children and adults share similar underlying motor skill learning mechanisms? Past studies have shown that school-aged children's speed of performance developed over wake periods of a few hours post-training. Such training-dependent gains were not found in adults. In the current study of children as young as 5-years-old and young adults who practiced a simple grapho-motor task, this finding was replicated only by the children that showed faster performance a few hours post-training. These positive gains in performance speed were retained two weeks later. Furthermore, among the children, variations in gains attained a few hours post-training were associated with initial performance level. These behavioral findings indicate different underlying post-training processes in children's and adults' motor skill learning thus, supporting differential tutoring of skills.
Collapse
Affiliation(s)
- Esther Adi-Japha
- School of Education, Bar-Ilan University, Ramat-Gan, Israel
- Gonda (Goldschmied) Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel
- * E-mail:
| | - Roni Berke
- School of Education, Bar-Ilan University, Ramat-Gan, Israel
| | - Nehama Shaya
- School of Education, Bar-Ilan University, Ramat-Gan, Israel
| | - Mona S. Julius
- Special Education Studies, Levinsky College of Education, Tel Aviv, Israel
| |
Collapse
|
21
|
Resting-state connectivity after visuo-motor skill learning is inversely associated with offline consolidation in Parkinson's disease and healthy controls. Cortex 2018; 106:237-247. [DOI: 10.1016/j.cortex.2018.06.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 05/02/2018] [Accepted: 06/08/2018] [Indexed: 01/22/2023]
|
22
|
Manuel AL, Guggisberg AG, Thézé R, Turri F, Schnider A. Resting-state connectivity predicts visuo-motor skill learning. Neuroimage 2018; 176:446-453. [DOI: 10.1016/j.neuroimage.2018.05.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 04/30/2018] [Accepted: 05/01/2018] [Indexed: 02/06/2023] Open
|
23
|
Selective improvements in balancing associated with offline periods of spaced training. Sci Rep 2018; 8:7836. [PMID: 29777133 PMCID: PMC5959909 DOI: 10.1038/s41598-018-26228-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 05/09/2018] [Indexed: 11/15/2022] Open
Abstract
Benefits from post-training memory processing have been observed in learning many procedural skills. Here, we show that appropriate offline periods produce a performance gain during learning to stand on a multiaxial balance board. The tilt angle and the area of sway motion of the board were much more reduced in participants performing a training spaced by an interval of one day with respect to participants executing the same amount of practice over a concentrated period. In particular, offline memory encoding was specifically associated with the motion along the anterior-posterior direction, the spatio-temporal dynamics, and the frequency contents of the board sway. Overall, quantification of spaced learning in a whole-body postural task reveals that offline memory processes enhance the performance by encoding single movement components. From a practical perspective, we believe that the amount of practice and the length of inter-session interval, adopted in this study, may provide objective insights to develop appropriate programs of postural training.
Collapse
|
24
|
No effects of transcranial DLPFC stimulation on implicit task sequence learning and consolidation. Sci Rep 2017; 7:9649. [PMID: 28852114 PMCID: PMC5575284 DOI: 10.1038/s41598-017-10128-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 07/27/2017] [Indexed: 12/11/2022] Open
Abstract
Neurostimulation of the dorsolateral prefrontal cortex (DLPFC) can modulate performance in cognitive tasks. In a recent study, however, transcranial direct current stimulation (tDCS) of the DLPFC did not affect implicit task sequence learning and consolidation in a paradigm that involved bimanual responses. Because bimanual performance increases the coupling between homologous cortical areas of the hemispheres and left and right DLPFC were stimulated separately the null findings may have been due to the bimanual setup. The aim of the present study was to test the effect of neuro-stimulation on sequence learning in a uni-manual setup. For this purpose two experiments were conducted. In Experiment 1, the DLPFC was stimulated with tDCS. In Experiment 2 the DLPFC was stimulated with transcranial magnetic stimulation (TMS). In both experiments, consolidation was measured 24 hours later. The results showed that sequence learning was present in all conditions and sessions, but it was not influenced by stimulation. Likewise, consolidation of sequence learning was robust across sessions, but it was not influenced by stimulation. These results replicate and extend previous findings. They indicate that established tDCS and TMS protocols on the DLPFC do not influence implicit task sequence learning and consolidation.
Collapse
|
25
|
Breton J, Robertson EM. Dual enhancement mechanisms for overnight motor memory consolidation. Nat Hum Behav 2017; 1:0111. [PMID: 29520375 PMCID: PMC5839513 DOI: 10.1038/s41562-017-0111] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 04/10/2017] [Indexed: 12/04/2022]
Abstract
Our brains are constantly processing past events [1]. These off-line processes consolidate memories, leading in the case of motor skill memories to an enhancement in performance between training sessions. A similar magnitude of enhancement develops over a night of sleep following an implicit task, when a sequence of movements is acquired unintentionally, or following an explicit task, when the same sequence is acquired intentionally [2]. What remains poorly understood, however, is whether these similar offline improvements are supported by similar circuits, or through distinct circuits. We set out to distinguish between these possibilities by applying Transcranial Magnetic Stimulation (TMS), over the primary motor cortex (M1) or the inferior parietal lobule (IPL) immediately after learning in either the explicit or implicit task. These brain areas have both been implicated in encoding aspects of a motor sequence, and subsequently supporting offline improvements over sleep [3-5]. Here we show that offline improvements following the explicit task are dependent upon a circuit that includes M1 but not IPL. By contrast, offline improvements following the implicit task are dependent upon a circuit that includes IPL but not M1. Our work establishes the critical contribution made by M1 and IPL circuits to offline memory processing, and reveals that distinct circuits support similar offline improvements.
Collapse
Affiliation(s)
- Jocelyn Breton
- Institute of Neuroscience & Psychology, Centre for Cognitive Neuroimaging, University of Glasgow, Glasgow, G12 8QB, UK
| | - Edwin M Robertson
- Institute of Neuroscience & Psychology, Centre for Cognitive Neuroimaging, University of Glasgow, Glasgow, G12 8QB, UK
| |
Collapse
|
26
|
Robertson EM, Takacs A. Exercising Control Over Memory Consolidation. Trends Cogn Sci 2017; 21:310-312. [DOI: 10.1016/j.tics.2017.03.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 02/21/2017] [Accepted: 03/01/2017] [Indexed: 11/25/2022]
|
27
|
Kóbor A, Janacsek K, Takács Á, Nemeth D. Statistical learning leads to persistent memory: Evidence for one-year consolidation. Sci Rep 2017; 7:760. [PMID: 28396586 PMCID: PMC5429700 DOI: 10.1038/s41598-017-00807-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 03/13/2017] [Indexed: 12/15/2022] Open
Abstract
Statistical learning is a robust mechanism of the brain that enables the extraction of environmental patterns, which is crucial in perceptual and cognitive domains. However, the dynamical change of processes underlying long-term statistical memory formation has not been tested in an appropriately controlled design. Here we show that a memory trace acquired by statistical learning is resistant to inference as well as to forgetting after one year. Participants performed a statistical learning task and were retested one year later without further practice. The acquired statistical knowledge was resistant to interference, since after one year, participants showed similar memory performance on the previously practiced statistical structure after being tested with a new statistical structure. These results could be key to understand the stability of long-term statistical knowledge.
Collapse
Affiliation(s)
- Andrea Kóbor
- Brain Imaging Centre, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2., H-1117, Budapest, Hungary
| | - Karolina Janacsek
- Institute of Psychology, Eötvös Loránd University, Izabella utca 46., H-1064, Budapest, Hungary.,MTA-ELTE NAP B Brain, Memory and Language Research Group, Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2., H-1117, Budapest, Hungary
| | - Ádám Takács
- Institute of Psychology, Eötvös Loránd University, Izabella utca 46., H-1064, Budapest, Hungary
| | - Dezso Nemeth
- Institute of Psychology, Eötvös Loránd University, Izabella utca 46., H-1064, Budapest, Hungary. .,MTA-ELTE NAP B Brain, Memory and Language Research Group, Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2., H-1117, Budapest, Hungary.
| |
Collapse
|
28
|
Immink MA. Post-training Meditation Promotes Motor Memory Consolidation. Front Psychol 2016; 7:1698. [PMID: 27847492 PMCID: PMC5088212 DOI: 10.3389/fpsyg.2016.01698] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 10/14/2016] [Indexed: 11/13/2022] Open
Abstract
Following training, motor memory consolidation is thought to involve either memory stabilization or off-line learning processes. The extent to which memory stabilization or off-line learning relies on post-training wakeful periods or sleep is not clear and thus, novel research approaches are needed to further explore the conditions that promote motor memory consolidation. The present experiment represents the first empirical test of meditation as potential facilitator of motor memory consolidation. Twelve adult residents of a yoga center with a mean of 9 years meditation experience were trained on a sequence key pressing task. Three hours after training, the meditation group completed a 30 min session of yoga nidra meditation while a control group completed 30 min of light work duties. A wakeful period of 4.5 h followed meditation after which participants completed a test involving both trained and untrained sequences. Training performance did not significantly differ between groups. Comparison of group performance at test, revealed a performance benefit of post-training meditation but this was limited to trained sequences only. That the post-training meditation performance benefit was specific to trained sequences is consistent with the notion of meditation promoting motor memory consolidation as opposed to general motor task performance benefits from meditation. Further, post-training meditation appears to have promoted motor memory stabilization as opposed to off-line learning. These findings represent the first demonstration of meditation related motor memory consolidation and are consistent with a growing body of literature demonstrating the benefits of meditation for cognitive function, including memory.
Collapse
Affiliation(s)
- Maarten A Immink
- School of Health Sciences, Centre for Sleep Research and Cognitive Neuroscience Laboratory, University of South Australia, Adelaide SA, Australia
| |
Collapse
|
29
|
Abstract
Following its encoding, a memory undergoes consolidation. It may be possible to deepen our understanding of the mechanisms supporting consolidation by considering the complex architecture of a memory. Any behavior can be split into multiple components. For example, when learning a new skill we simultaneously learn the movement and the goal of that movement. Each of these components has a distinct representation within a memory. The “off-line” processing of each component may follow different rules, providing an explanation for the variety of performance changes supported by consolidation. By viewing a memory as a representation with multiple components, it is possible to bridge the gap between the behavioral changes, which define consolidation, and the biological mechanisms that support those changes. This is partly because different memory components can be mapped onto different neural circuits. With an increased understanding of consolidation, it may become possible to modulate these off-line processes to improve psychiatric and neurological rehabilitation.
Collapse
Affiliation(s)
- Edwin M Robertson
- Center for Non-Invasive Brain Stimulation, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA.
| | | |
Collapse
|
30
|
Kim T, Rhee J, Wright DL. Allowing time to consolidate knowledge gained through random practice facilitates later novel motor sequence acquisition. Acta Psychol (Amst) 2016; 163:153-66. [PMID: 26686835 DOI: 10.1016/j.actpsy.2015.11.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 11/17/2015] [Accepted: 11/28/2015] [Indexed: 11/30/2022] Open
Abstract
Two experiments were conducted to examine the efficacy of random (RP) and blocked practice (BP) for enhancing later motor learning. Each experiment involved practicing three unique seven key serial reaction time (SRT) tasks in either a blocked or random format followed by practice of a novel SRT task either 2-min (Experiment 1) or 24-h (Experiment 2) later. While the expected benefit of RP for retention was present in both experiments, in Experiment 1 there was no advantage from prior RP for new learning. Experiment 2 explored the possibility that increasing the interval, from 2-min to 24-h, between BP or RP and practice of the novel motor task might allow consolidation of sequence knowledge acquired during BP or RP which in turn might facilitate new learning. As a result of the additional time between training bouts RP facilitated the rate at which the novel motor task was acquired. Interestingly, when this additional time was provided, both BP and RP supported (a) a performance saving for the first trial with the novel task, and (b) an offline improvement in performance across a 24-h interval not present when only the novel motor task was practiced. The latter benefits for new learning may have resulted from exposure to prior physical practice per se. or practice variability. These data are discussed with respect to (a) future learning benefits from prior experience training with greater CI, and (b) the importance of memory consolidation for motor learning.
Collapse
Affiliation(s)
- Taewon Kim
- Human Performance Laboratory, Department of Health and Kinesiology, Texas A&M University, College Station, TX 77843-4243, United States
| | - Joohyun Rhee
- Human Performance Laboratory, Department of Health and Kinesiology, Texas A&M University, College Station, TX 77843-4243, United States
| | - David L Wright
- Human Performance Laboratory, Department of Health and Kinesiology, Texas A&M University, College Station, TX 77843-4243, United States.
| |
Collapse
|
31
|
Adini Y, Bonneh YS, Komm S, Deutsch L, Israeli D. The time course and characteristics of procedural learning in schizophrenia patients and healthy individuals. Front Hum Neurosci 2015; 9:475. [PMID: 26379536 PMCID: PMC4555022 DOI: 10.3389/fnhum.2015.00475] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Accepted: 08/14/2015] [Indexed: 11/13/2022] Open
Abstract
Patients with schizophrenia have deficits in some types of procedural learning. Several mechanisms contribute to this learning in healthy individuals, including statistical and sequence-learning. To find preserved and impaired learning mechanisms in schizophrenia, we studied the time course and characteristics of implicitly introduced sequence-learning (SRT task) in 15 schizophrenia patients (seven mild and eight severe) and nine healthy controls, in short sessions over multiple days (5-22). The data show speed gains of similar magnitude for all groups, but the groups differed in overall speed and in the characteristics of the learning. By analyzing the data according to its spatial-position and temporal-order components, we provide evidence for two types of learning that could differentiate the groups: while the learning of the slower, severe group was dominated by statistical learning, the control group moved from a fast learning phase of statistical-related performance to subsequence learning (chunking). Our findings oppose the naïve assumption that a similar gain of speed reflects a similar learning process; they indicate that the slower performance reflects the activation of a different motor plan than does the faster performance; and demonstrate that statistical learning and subsequence learning are two successive stages in implicit sequence learning, with chunks inferred from prior statistical computations. Our results indicate that statistical learning is intact in patients with schizophrenia, but is slower to develop in the severe patients. We suggest that this slow learning rate and the associated slow performance contribute to their deficit in developing sequence-specific learning by setting a temporal constraint on developing higher order associations.
Collapse
Affiliation(s)
- Yael Adini
- The Institute for Vision ResearchKiron, Israel
| | - Yoram S. Bonneh
- Department of Human Biology, University of HaifaHaifa, Israel
- Department of Optometry, Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan UniversityRamat-Gan, Israel
| | - Seva Komm
- Day Care Unit and the Laboratory of Imaging and Brain Stimulation, Kfar Shaul hospital, Jerusalem Center for Mental HealthJerusalem, Israel
| | - Lisa Deutsch
- Biostats Statistical Consulting LtdModiin, Israel
| | - David Israeli
- Jerusalem Center for Mental Health, Hebrew UniversityJerusalem, Israel
| |
Collapse
|
32
|
An acute bout of aerobic exercise can protect immediate offline motor sequence gains. PSYCHOLOGICAL RESEARCH 2015; 80:518-31. [PMID: 26115758 DOI: 10.1007/s00426-015-0682-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 06/16/2015] [Indexed: 10/23/2022]
Abstract
The present study examined the efficacy of a short bout of moderately intensive exercise to protect knowledge of a newly acquired motor sequence. Previous work revealed that sleep-dependent offline gains in motor sequence performance are reduced by practicing an alternative motor sequence in close temporal proximity to the original practice with the target motor sequence. In the present work, a brief bout of exercise was inserted at two different temporal locations between practice of a to-be-learned motor sequence and the interfering practice that occurred 2 h later. At issue was whether exposure to exercise could reduce the impact of practice with the interfering task which was expected to be manifest as reemergence of offline gain observed in the case in which the learner is not exposed to the interfering practice. Acute exercise did influence the interfering quality of practice with an alternative motor sequence resulting in the return of broad offline gain. However, this benefit was immediate, emerging on the initial test trial, only when exercise was experienced some time after the original period of motor sequence practice and just prior to practice with the interfering motor sequence. Thus, while exercise can contribute to post-practice consolidation, there appears to be a fragile interplay between spontaneous memory consolidation occurring after task practice and the consolidation processes induced via exercise.
Collapse
|
33
|
Aging reduces experience-induced sensorimotor plasticity. A magnetoencephalographic study. Neuroimage 2014; 104:59-68. [PMID: 25315784 DOI: 10.1016/j.neuroimage.2014.10.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 09/26/2014] [Accepted: 10/05/2014] [Indexed: 11/20/2022] Open
Abstract
Modulation of the mu-alpha and mu-beta spontaneous rhythms reflects plastic neural changes within the primary sensorimotor cortex (SM1). Using magnetoencephalography (MEG), we investigated how aging modifies experience-induced plasticity after learning a motor sequence, looking at post- vs. pre-learning changes in the modulation of mu rhythms during the execution of simple hand movements. Fifteen young (18-30 years) and fourteen older (65-75 years) right-handed healthy participants performed auditory-cued key presses using all four left fingers simultaneously (Simple Movement task - SMT) during two separate sessions. Following both SMT sessions, they repeatedly practiced a 5-elements sequential finger-tapping task (FTT). Mu power calculated during SMT was averaged across 18 gradiometers covering the right sensorimotor region and compared before vs. after sequence learning in the alpha (9/10/11Hz) and the beta (18/20/22Hz) bands separately. Source power maps in the mu-alpha and mu-beta bands were localized using Dynamic Statistical Parametric Mapping (dSPM). The FTT sequence was performed faster at retest than at the end of the learning session, indicating an offline boost in performance. Analyses conducted on SMT sessions revealed enhanced rebound after learning in the right SM1, 3000-3500ms after the initiation of movement, in young as compared to older participants. Source reconstruction indicated that mu-beta is located in the precentral gyrus (motor processes) and mu-alpha is located in the postcentral gyrus (somatosensory processes) in both groups. The enhanced post-movement rebound in young subjects potentially reflects post-training plastic changes in SM1. Age-related decreases in post-training modulatory effects suggest reduced experience-dependent plasticity in the aging brain.
Collapse
|
34
|
Hennies N, Lewis PA, Durrant SJ, Cousins JN, Ralph MAL. Time- but not sleep-dependent consolidation promotes the emergence of cross-modal conceptual representations. Neuropsychologia 2014; 63:116-23. [PMID: 25174663 PMCID: PMC4410790 DOI: 10.1016/j.neuropsychologia.2014.08.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 08/15/2014] [Accepted: 08/19/2014] [Indexed: 11/28/2022]
Abstract
Conceptual knowledge about objects comprises a diverse set of multi-modal and generalisable information, which allows us to bring meaning to the stimuli in our environment. The formation of conceptual representations requires two key computational challenges: integrating information from different sensory modalities and abstracting statistical regularities across exemplars. Although these processes are thought to be facilitated by offline memory consolidation, investigations into how cross-modal concepts evolve offline, over time, rather than with continuous category exposure are still missing. Here, we aimed to mimic the formation of new conceptual representations by reducing this process to its two key computational challenges and exploring its evolution over an offline retention period. Participants learned to distinguish between members of two abstract categories based on a simple one-dimensional visual rule. Underlying the task was a more complex hidden indicator of category structure, which required the integration of information across two sensory modalities. In two experiments we investigated the impact of time- and sleep-dependent consolidation on category learning. Our results show that offline memory consolidation facilitated cross-modal category learning. Surprisingly, consolidation across wake, but not across sleep showed this beneficial effect. By demonstrating the importance of offline consolidation the current study provided further insights into the processes that underlie the formation of conceptual representations.
Collapse
Affiliation(s)
- Nora Hennies
- Neuroscience and Aphasia Research Unit, School of Psychological Sciences, University of Manchester, Zochonis Building, Brunswick Street, Manchester M13 9PL, UK.
| | - Penelope A Lewis
- Neuroscience and Aphasia Research Unit, School of Psychological Sciences, University of Manchester, Zochonis Building, Brunswick Street, Manchester M13 9PL, UK
| | - Simon J Durrant
- Neuroscience and Aphasia Research Unit, School of Psychological Sciences, University of Manchester, Zochonis Building, Brunswick Street, Manchester M13 9PL, UK; School of Psychology, University of Lincoln, Lincoln LN6 0BG, UK
| | - James N Cousins
- Neuroscience and Aphasia Research Unit, School of Psychological Sciences, University of Manchester, Zochonis Building, Brunswick Street, Manchester M13 9PL, UK
| | - Matthew A Lambon Ralph
- Neuroscience and Aphasia Research Unit, School of Psychological Sciences, University of Manchester, Zochonis Building, Brunswick Street, Manchester M13 9PL, UK
| |
Collapse
|
35
|
Does consolidation of visuospatial sequence knowledge depend on eye movements? PLoS One 2014; 9:e103421. [PMID: 25089701 PMCID: PMC4121143 DOI: 10.1371/journal.pone.0103421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 07/02/2014] [Indexed: 11/19/2022] Open
Abstract
In the current study, we assessed whether visuospatial sequence knowledge is retained over 24 hours and whether this retention is dependent on the occurrence of eye movements. Participants performed two sessions of a serial reaction time (SRT) task in which they had to manually react to the identity of a target letter pair presented in one of four locations around a fixation cross. When the letter pair 'XO' was presented, a left response had to be given, when the letter pair 'OX' was presented, a right response was required. In the Eye Movements (EM) condition, eye movements were necessary to perform the task since the fixation cross and the target were separated by at least 9° visual angle. In the No Eye Movements (NEM) condition, on the other hand, eye movements were minimized by keeping the distance from the fixation cross to the target below 1° visual angle and by limiting the stimulus presentation to 100 ms. Since the target identity changed randomly in both conditions, no manual response sequence was present in the task. However, target location was structured according to a deterministic sequence in both the EM and NEM condition. Learning of the target location sequence was determined at the end of the first session and 24 hours after initial learning. Results indicated that the sequence learning effect in the SRT task diminished, yet remained significant, over the 24 hour interval in both conditions. Importantly, the difference in eye movements had no impact on the transfer of sequence knowledge. These results suggest that the retention of visuospatial sequence knowledge occurs alike, irrespective of whether this knowledge is supported by eye movements or not.
Collapse
|
36
|
Offline consolidation in implicit sequence learning. Cortex 2014; 57:156-66. [DOI: 10.1016/j.cortex.2014.03.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 11/29/2013] [Accepted: 03/25/2014] [Indexed: 02/07/2023]
|
37
|
Abstract
Different memories follow different processing pathways. For example, some motor skill memories are enhanced over wakefulness, whereas others are instead enhanced over sleep. The processing pathway that a motor skill memory follows may be determined by functional changes within motor circuits. We tested this idea using transcranial magnetic stimulation to measure corticospinal excitability at 6, 21, 36, 96, and 126 min after participants learnt tasks that either were or were not enhanced over wakefulness. There was no change in corticospinal excitability after learning a motor skill that was subsequently enhanced; whereas, there was a substantial transient decrease in corticospinal excitability after learning a motor skill that was not enhanced. In subsequent experiments, we abolished the decrease in corticospinal excitability by applying theta burst stimulation to either the dorsolateral prefrontal or primary motor cortex, and induced motor skill improvements during consolidation. The motor skill improvements in each experiment were correlated with the corticospinal excitability after learning. Together, these experiments suggest that corticospinal excitability changes act as a physiological signal, which prevents improvements from developing over wakefulness, and so when this signal is abolished improvements are induced. Our observations show that the human brain can actively prevent the processing of memories, and provides insights into the mechanisms that control the fate of memories.
Collapse
|
38
|
Changes of motor-cortical oscillations associated with motor learning. Neuroscience 2014; 275:47-53. [PMID: 24931763 DOI: 10.1016/j.neuroscience.2014.06.008] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 06/05/2014] [Accepted: 06/05/2014] [Indexed: 11/24/2022]
Abstract
Motor learning results from practice but also between practice sessions. After skill acquisition early consolidation results in less interference with other motor tasks and even improved performance of the newly learned skill. A specific significance of the primary motor cortex (M1) for early consolidation has been suggested. Since synchronized oscillatory activity is assumed to facilitate neuronal plasticity, we here investigate alterations of motor-cortical oscillations by means of event-related desynchronization (ERD) at alpha (8-12 Hz) and beta (13-30 Hz) frequencies in healthy humans. Neuromagnetic activity was recorded using a 306-channel whole-head magnetoencephalography (MEG) system. ERD was investigated in 15 subjects during training on a serial reaction time task and 10 min after initial training. The data were compared with performance during a randomly varying sequence serving as control condition. The data reveal a stepwise decline of alpha-band ERD associated with faster reaction times replicating previous findings. The amount of beta-band suppression was significantly correlated with reduction of reaction times. While changes of alpha power have been related to lower cognitive control after initial skill acquisition, the present data suggest that the amount of beta suppression represents a neurophysiological marker of early cortical reorganization associated with motor learning.
Collapse
|
39
|
Roig M, Ritterband-Rosenbaum A, Lundbye-Jensen J, Nielsen JB. Aging increases the susceptibility to motor memory interference and reduces off-line gains in motor skill learning. Neurobiol Aging 2014; 35:1892-900. [PMID: 24680325 DOI: 10.1016/j.neurobiolaging.2014.02.022] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 02/01/2014] [Accepted: 02/26/2014] [Indexed: 10/25/2022]
Abstract
Declines in the ability to learn motor skills in older adults are commonly attributed to deficits in the encoding of sensorimotor information during motor practice. We investigated whether aging also impairs motor memory consolidation by assessing the susceptibility to memory interference and off-line gains in motor skill learning after practice in children, young, and older adults. Subjects performed a ballistic task (A) followed by an accuracy-tracking task (B) designed to disrupt the consolidation of A. Retention tests of A were performed immediately and 24 hours after B. Older adults showed greater susceptibility to memory interference and no off-line gains in motor skill learning. Performing B produced memory interference and reduced off-line gains only in the older group. However, older adults also showed deficits in memory consolidation independent of the interfering effects of B. Age-related declines in motor skill learning are not produced exclusively by deficits in the encoding of sensorimotor information during practice. Aging also increases the susceptibility to memory interference and reduces off-line gains in motor skill learning after practice.
Collapse
Affiliation(s)
- Marc Roig
- School of Physical and Occupational Therapy, McGill University, Montreal, Quebec, Canada; Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen N, Denmark; Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen N, Denmark.
| | - Anina Ritterband-Rosenbaum
- Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen N, Denmark; Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen N, Denmark
| | - Jesper Lundbye-Jensen
- Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen N, Denmark; Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen N, Denmark
| | - Jens Bo Nielsen
- Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen N, Denmark; Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen N, Denmark
| |
Collapse
|
40
|
Schönauer M, Geisler T, Gais S. Strengthening Procedural Memories by Reactivation in Sleep. J Cogn Neurosci 2014; 26:143-53. [DOI: 10.1162/jocn_a_00471] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Abstract
There is robust evidence that sleep facilitates procedural memory consolidation. The exact mechanisms underlying this process are still unclear. We tested whether an active replay of prior experience can underlie sleep effects on procedural memory. Participants learned a finger-tapping task in which key presses were associated with tones during practice. Later, during a consolidation interval spent either sleeping or awake, we presented auditory cues to reactivate part of the learned sequence. We show that reactivation strengthens procedural memory formation during sleep, but not during wakefulness. The improvement was restricted to those finger transitions that were cued. Thus, reactivation is a very specific process underpinning procedural memory consolidation. When comparing periods of sleep with and without reactivation, we find that it is not the time spent in a specific stage of sleep per se, but rather the occurrence of reactivation that mediates the effect of sleep on memory consolidation. Our data show that longer sleep time as well as additional reactivation by cueing during sleep can enhance later memory performance.
Collapse
|
41
|
Hallgató E, Győri-Dani D, Pekár J, Janacsek K, Nemeth D. The differential consolidation of perceptual and motor learning in skill acquisition. Cortex 2013; 49:1073-81. [DOI: 10.1016/j.cortex.2012.01.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2010] [Revised: 01/11/2011] [Accepted: 01/05/2012] [Indexed: 12/01/2022]
|
42
|
Albouy G, Sterpenich V, Vandewalle G, Darsaud A, Gais S, Rauchs G, Desseilles M, Boly M, Dang-Vu T, Balteau E, Degueldre C, Phillips C, Luxen A, Maquet P. Interaction between hippocampal and striatal systems predicts subsequent consolidation of motor sequence memory. PLoS One 2013; 8:e59490. [PMID: 23533626 PMCID: PMC3606142 DOI: 10.1371/journal.pone.0059490] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2012] [Accepted: 02/14/2013] [Indexed: 11/24/2022] Open
Abstract
The development of fast and reproducible motor behavior is a crucial human capacity. The aim of the present study was to address the relationship between the implementation of consistent behavior during initial training on a sequential motor task (the Finger Tapping Task) and subsequent sleep-dependent motor sequence memory consolidation, using functional magnetic resonance imaging (fMRI) and total sleep deprivation protocol. Our behavioral results indicated significant offline gains in performance speed after sleep whereas performance was only stabilized, but not enhanced, after sleep deprivation. At the cerebral level, we previously showed that responses in the caudate nucleus increase, in parallel to a decrease in its functional connectivity with frontal areas, as performance became more consistent. Here, the strength of the competitive interaction, assessed through functional connectivity analyses, between the caudate nucleus and hippocampo-frontal areas during initial training, predicted delayed gains in performance at retest in sleepers but not in sleep-deprived subjects. Moreover, during retest, responses increased in the hippocampus and medial prefrontal cortex in sleepers whereas in sleep-deprived subjects, responses increased in the putamen and cingulate cortex. Our results suggest that the strength of the competitive interplay between the striatum and the hippocampus, participating in the implementation of consistent motor behavior during initial training, conditions subsequent motor sequence memory consolidation. The latter process appears to be supported by a reorganisation of cerebral activity in hippocampo-neocortical networks after sleep.
Collapse
Affiliation(s)
- Geneviève Albouy
- Cyclotron Research Centre, University of Liège, Liège, Belgium
- University of Lyon, Lyon, France
| | | | | | | | - Steffen Gais
- Cyclotron Research Centre, University of Liège, Liège, Belgium
| | | | | | - Mélanie Boly
- Cyclotron Research Centre, University of Liège, Liège, Belgium
| | - Thanh Dang-Vu
- Cyclotron Research Centre, University of Liège, Liège, Belgium
| | - Evelyne Balteau
- Cyclotron Research Centre, University of Liège, Liège, Belgium
| | | | | | - André Luxen
- Cyclotron Research Centre, University of Liège, Liège, Belgium
| | - Pierre Maquet
- Cyclotron Research Centre, University of Liège, Liège, Belgium
- * E-mail:
| |
Collapse
|
43
|
Albouy G, Fogel S, Pottiez H, Nguyen VA, Ray L, Lungu O, Carrier J, Robertson E, Doyon J. Daytime sleep enhances consolidation of the spatial but not motoric representation of motor sequence memory. PLoS One 2013; 8:e52805. [PMID: 23300993 PMCID: PMC3534707 DOI: 10.1371/journal.pone.0052805] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 11/21/2012] [Indexed: 11/20/2022] Open
Abstract
Motor sequence learning is known to rely on more than a single process. As the skill develops with practice, two different representations of the sequence are formed: a goal representation built under spatial allocentric coordinates and a movement representation mediated through egocentric motor coordinates. This study aimed to explore the influence of daytime sleep (nap) on consolidation of these two representations. Through the manipulation of an explicit finger sequence learning task and a transfer protocol, we show that both allocentric (spatial) and egocentric (motor) representations of the sequence can be isolated after initial training. Our results also demonstrate that nap favors the emergence of offline gains in performance for the allocentric, but not the egocentric representation, even after accounting for fatigue effects. Furthermore, sleep-dependent gains in performance observed for the allocentric representation are correlated with spindle density during non-rapid eye movement (NREM) sleep of the post-training nap. In contrast, performance on the egocentric representation is only maintained, but not improved, regardless of the sleep/wake condition. These results suggest that motor sequence memory acquisition and consolidation involve distinct mechanisms that rely on sleep (and specifically, spindle) or simple passage of time, depending respectively on whether the sequence is performed under allocentric or egocentric coordinates.
Collapse
Affiliation(s)
- Geneviève Albouy
- Functional Neuroimaging Unit, C.R.I.U.G.M., Montreal, Canada
- Psychology Department, University of Montreal, Montreal, Canada
| | - Stuart Fogel
- Functional Neuroimaging Unit, C.R.I.U.G.M., Montreal, Canada
- Psychology Department, University of Montreal, Montreal, Canada
| | - Hugo Pottiez
- Functional Neuroimaging Unit, C.R.I.U.G.M., Montreal, Canada
| | - Vo An Nguyen
- Functional Neuroimaging Unit, C.R.I.U.G.M., Montreal, Canada
| | - Laura Ray
- Functional Neuroimaging Unit, C.R.I.U.G.M., Montreal, Canada
| | - Ovidiu Lungu
- Functional Neuroimaging Unit, C.R.I.U.G.M., Montreal, Canada
- Psychiatry Department, University of Montreal, Montreal, Canada
- Department of Research, Donald Berman Maimonides Geriatric Center, Montreal, Canada
| | - Julie Carrier
- Functional Neuroimaging Unit, C.R.I.U.G.M., Montreal, Canada
- Psychology Department, University of Montreal, Montreal, Canada
- Centre of Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montreal, Montreal, Canada
| | - Edwin Robertson
- Harvard Center for Noninvasive Brain Stimulation, Harvard Medical School and Beth Israel Deaconess Medical Center, Neurology Department, Boston, Massachusetts, United States of America
| | - Julien Doyon
- Functional Neuroimaging Unit, C.R.I.U.G.M., Montreal, Canada
- Psychology Department, University of Montreal, Montreal, Canada
| |
Collapse
|
44
|
Durrant SJ, Cairney SA, Lewis PA. Overnight consolidation aids the transfer of statistical knowledge from the medial temporal lobe to the striatum. ACTA ACUST UNITED AC 2012; 23:2467-78. [PMID: 22879350 DOI: 10.1093/cercor/bhs244] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Sleep is important for abstraction of the underlying principles (or gist) which bind together conceptually related stimuli, but little is known about the neural correlates of this process. Here, we investigate this issue using overnight sleep monitoring and functional magnetic resonance imaging (fMRI). Participants were exposed to a statistically structured sequence of auditory tones then tested immediately for recognition of short sequences which conformed to the learned statistical pattern. Subsequently, after consolidation over either 30 min or 24h, they performed a delayed test session in which brain activity was monitored with fMRI. Behaviorally, there was greater improvement across 24h than across 30 min, and this was predicted by the amount of slow wave sleep (SWS) obtained. Functionally, we observed weaker parahippocampal responses and stronger striatal responses after sleep. Like the behavioral result, these differences in functional response were predicted by the amount of SWS obtained. Furthermore, connectivity between striatum and parahippocampus was weaker after sleep, whereas connectivity between putamen and planum temporale was stronger. Taken together, these findings suggest that abstraction is associated with a gradual shift from the hippocampal to the striatal memory system and that this may be mediated by SWS.
Collapse
Affiliation(s)
- Simon J Durrant
- School of Psychology, Bridge House, University of Lincoln, Lincoln LN6 7TS, UK and
| | | | | |
Collapse
|
45
|
Kantak SS, Mummidisetty CK, Stinear JW. Primary motor and premotor cortex in implicit sequence learning - evidence for competition between implicit and explicit human motor memory systems. Eur J Neurosci 2012; 36:2710-5. [DOI: 10.1111/j.1460-9568.2012.08175.x] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
46
|
Wright DL, Rhee J, Blischke K, Erlacher D, Brueckner S. Offline improvement occurs for temporal stability but not accuracy following practice of integer and non-integer rhythms. Acta Psychol (Amst) 2012; 140:266-73. [PMID: 22705630 DOI: 10.1016/j.actpsy.2012.05.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Revised: 05/17/2012] [Accepted: 05/19/2012] [Indexed: 12/26/2022] Open
Abstract
Procedural learning benefits from memory processes occurring outside practice resulting in offline learning. Offline gains have been demonstrated almost exclusively for the ordinal structure of sequential motor tasks. Many skills also demand that the correct serial order of events be appropriately timed. Evidence indicates that the temporal aspect of a procedural skill can be encoded independent of serial order knowledge and governed by at least two distinct neural circuits. The present experiment determined if (a) offline gains emerge for temporal learning, and (b) if such gains occur for timing supervised by distinct timing systems. Participants experienced 216 practice trials of a 7-key press sequence that involved integer- or non-integer timing rhythms. Twenty-four hours after training 30 test trials were administered. Results revealed robust offline enhancement for timing performance of the non-integer based temporal sequences. This improvement was localized to stabilization of the required relative but not absolute time profiles. The neural circuitry central to supporting the performance of non-integer timing sequences is also a principal constituent of what is described as the "cognitive" timing system. Timing governed by this system appears most susceptible to offline gains via consolidation.
Collapse
|
47
|
Janacsek K, Nemeth D. Predicting the future: From implicit learning to consolidation. Int J Psychophysiol 2012; 83:213-21. [DOI: 10.1016/j.ijpsycho.2011.11.012] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Revised: 10/30/2011] [Accepted: 11/17/2011] [Indexed: 10/14/2022]
|
48
|
Bauerly KR, De Nil LF. Speech sequence skill learning in adults who stutter. JOURNAL OF FLUENCY DISORDERS 2011; 36:349-60. [PMID: 22133413 DOI: 10.1016/j.jfludis.2011.05.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Revised: 05/31/2011] [Accepted: 05/31/2011] [Indexed: 05/21/2023]
Abstract
UNLABELLED The present study compared the ability of 12 people who stutter (PWS) and 12 people who do not stutter (PNS) to consolidate a novel sequential speech task. Participants practiced 100 repetitions of a single, monosyllabic, nonsense word sequence during an initial practice session and returned 24-h later to perform an additional 50 repetitions. Results showed significantly slower sequence durations in the PWS compared to PNS following extensive practice and consolidation. However, the hypothesis that poor performance gains in PWS compared to PNS during practice would be maintained following a 24-h consolidation period was not supported. Further descriptive analysis revealed large within group differences in PWS which to some extent were attributed to a subgroup of PWS who failed to show any improvements in performance following practice or consolidation. The results and the possible presence of subgroups of PWS are discussed with regard to their limitations in motor learning abilities. EDUCATIONAL OBJECTIVES The reader will be able to (1) explain the difference between practice and learning, (2) define consolidation and explain the importance of measuring performance following a consolidation period, (3) understand past research on PWS' performance during both speech and nonspeech motor tasks, and (4) explain why individual differences in practice effects and learning may have important implications for client variability in treatment outcome.
Collapse
Affiliation(s)
- Kim R Bauerly
- Department of Speech and Language Pathology, University of Toronto, Toronto, ON, Canada.
| | | |
Collapse
|
49
|
Clerget E, Poncin W, Fadiga L, Olivier E. Role of Broca's area in implicit motor skill learning: evidence from continuous theta-burst magnetic stimulation. J Cogn Neurosci 2011; 24:80-92. [PMID: 21812572 DOI: 10.1162/jocn_a_00108] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Complex actions can be regarded as a concatenation of simple motor acts, arranged according to specific rules. Because the caudal part of the Broca's region (left Brodmann's area 44, BA 44) is involved in processing hierarchically organized behaviors, we aimed to test the hypothesis that this area may also play a role in learning structured motor sequences. To address this issue, we investigated the inhibitory effects of a continuous theta-burst TMS (cTBS) applied over left BA 44 in healthy subjects, just before they performed a serial RT task (SRTT). SRTT has been widely used to study motor skill learning and is also of interest because, for complex structured sequences, subjects spontaneously organize them into smaller subsequences, referred to as chunks. As a control, cTBS was applied over the vertex in another group, which underwent the same experiment. Control subjects showed both a general practice learning effect, evidenced by a progressive decrease in RT across blocks and a sequence-specific learning effect, demonstrated by a significant RT increase in a pseudorandom sequence. In contrast, when cTBS was applied over left BA 44, subjects lacked both the general practice and sequence-specific learning effects. However, surprisingly, their chunking pattern was preserved and remained indistinguishable from controls. The present study indicates that left BA 44 plays a role in motor sequence learning, but without being involved in elementary chunking. This dissociation between chunking and sequence learning could be explained if we postulate that left BA 44 intervenes in high hierarchical level processing, possibly to integrate elementary chunks together.
Collapse
Affiliation(s)
- Emeline Clerget
- Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| | | | | | | |
Collapse
|
50
|
Motor imagery effectiveness for mirror reversed movements. COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2011; 11:22-31. [PMID: 21264641 DOI: 10.3758/s13415-010-0008-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Physical practice is known to enhance motor adaptation skills, which refer to the individual ability to compensate for environmental changes. So far, it is still unknown whether a similar effect can be observed following motor imagery (MI). Thirty-nine participants were tested during a joystick tracking task under both normal and mirror conditions (i.e., the inductive direction of the joystick was reversed), before and after a physical practice or MI training phase. Eye movements and electromyographic activity were recorded during MI. Motor performance was also evaluated after a 6 h interval during daytime. As compared to the control group, the results revealed that both MI and physical practice improved motor performance in the mirror condition, during the post-training test. Furthermore, the time to complete the task was further reduced after 6 hours, both in the normal and mirror conditions. These results demonstrate the effectiveness of MI for learning mirror-reversed movements, and for the consolidation process that follows motor adaptation.
Collapse
|