1
|
Zandhuis ND, Guislain A, Popalzij A, Engels S, Popović B, Turner M, Wolkers MC. Regulation of IFN-γ production by ZFP36L2 in T cells is time-dependent. Eur J Immunol 2024; 54:e2451018. [PMID: 38980256 DOI: 10.1002/eji.202451018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/10/2024]
Abstract
CD8+ T cells kill target cells by releasing cytotoxic molecules and proinflammatory cytokines, such as TNF and IFN-γ. The magnitude and duration of cytokine production are defined by posttranscriptional regulation, and critical regulator herein are RNA-binding proteins (RBPs). Although the functional importance of RBPs in regulating cytokine production is established, the kinetics and mode of action through which RBPs control cytokine production are not well understood. Previously, we showed that the RBP ZFP36L2 blocks the translation of preformed cytokine encoding mRNA in quiescent memory T cells. Here, we uncover that ZFP36L2 regulates cytokine production in a time-dependent manner. T cell-specific deletion of ZFP36L2 (CD4-cre) had no effect on T-cell development or cytokine production during early time points (2-6 h) of T-cell activation. In contrast, ZFP36L2 specifically dampened the production of IFN-γ during prolonged T-cell activation (20-48 h). ZFP36L2 deficiency also resulted in increased production of IFN-γ production in tumor-infiltrating T cells that are chronically exposed to antigens. Mechanistically, ZFP36L2 regulates IFN-γ production at late time points of activation by destabilizing Ifng mRNA in an AU-rich element-dependent manner. Together, our results reveal that ZFP36L2 employs different regulatory nodules in effector and memory T cells to regulate cytokine production.
Collapse
Affiliation(s)
- Nordin D Zandhuis
- Sanquin Blood Supply Foundation, Department of Research, T cell differentiation Lab, Amsterdam, The Netherlands
- Amsterdam UMC, University of Amsterdam, Landsteiner Laboratory, Amsterdam, The Netherlands
- Amsterdam Institute for Infection & Immunity, Cancer center Amsterdam, Cancer Immunology, Amsterdam, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Aurélie Guislain
- Sanquin Blood Supply Foundation, Department of Research, T cell differentiation Lab, Amsterdam, The Netherlands
- Amsterdam UMC, University of Amsterdam, Landsteiner Laboratory, Amsterdam, The Netherlands
- Amsterdam Institute for Infection & Immunity, Cancer center Amsterdam, Cancer Immunology, Amsterdam, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Abeera Popalzij
- Sanquin Blood Supply Foundation, Department of Research, T cell differentiation Lab, Amsterdam, The Netherlands
- Amsterdam UMC, University of Amsterdam, Landsteiner Laboratory, Amsterdam, The Netherlands
- Amsterdam Institute for Infection & Immunity, Cancer center Amsterdam, Cancer Immunology, Amsterdam, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Sander Engels
- Sanquin Blood Supply Foundation, Department of Research, T cell differentiation Lab, Amsterdam, The Netherlands
- Amsterdam UMC, University of Amsterdam, Landsteiner Laboratory, Amsterdam, The Netherlands
- Amsterdam Institute for Infection & Immunity, Cancer center Amsterdam, Cancer Immunology, Amsterdam, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Branka Popović
- Sanquin Blood Supply Foundation, Department of Research, T cell differentiation Lab, Amsterdam, The Netherlands
- Amsterdam UMC, University of Amsterdam, Landsteiner Laboratory, Amsterdam, The Netherlands
- Amsterdam Institute for Infection & Immunity, Cancer center Amsterdam, Cancer Immunology, Amsterdam, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Martin Turner
- Immunology Programme, The Babraham Institute, Cambridge, UK
| | - Monika C Wolkers
- Sanquin Blood Supply Foundation, Department of Research, T cell differentiation Lab, Amsterdam, The Netherlands
- Amsterdam UMC, University of Amsterdam, Landsteiner Laboratory, Amsterdam, The Netherlands
- Amsterdam Institute for Infection & Immunity, Cancer center Amsterdam, Cancer Immunology, Amsterdam, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| |
Collapse
|
2
|
Iijima N. The emerging role of effector functions exerted by tissue-resident memory T cells. OXFORD OPEN IMMUNOLOGY 2024; 5:iqae006. [PMID: 39193473 PMCID: PMC11213632 DOI: 10.1093/oxfimm/iqae006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 04/14/2024] [Accepted: 06/04/2024] [Indexed: 08/29/2024] Open
Abstract
The magnitude of the effector functions of memory T cells determines the consequences of the protection against invading pathogens and tumor development or the pathogenesis of autoimmune and allergic diseases. Tissue-resident memory T cells (TRM cells) are unique T-cell populations that persist in tissues for long periods awaiting re-encounter with their cognate antigen. Although TRM cell reactivation primarily requires the presentation of cognate antigens, recent evidence has shown that, in addition to the conventional concept, TRM cells can be reactivated without the presentation of cognate antigens. Non-cognate TRM cell activation is triggered by cross-reactive antigens or by several combinations of cytokines, including interleukin (IL)-2, IL-7, IL-12, IL-15 and IL-18. The activation mode of TRM cells reinforces their cytotoxic activity and promotes the secretion of effector cytokines (such as interferon-gamma and tumor necrosis factor-alpha). This review highlights the key features of TRM cell maintenance and reactivation and discusses the importance of effector functions that TRM cells exert upon being presented with cognate and/or non-cognate antigens, as well as cytokines secreted by TRM and non-TRM cells within the tissue microenvironment.
Collapse
Affiliation(s)
- Norifumi Iijima
- Center for Drug Design Research, National Institutes of Biomedical Innovation, Health and Nutrition (NIBN), Ibaraki, Osaka, Japan
| |
Collapse
|
3
|
Porte R, Belloy M, Audibert A, Bassot E, Aïda A, Alis M, Miranda-Capet R, Jourdes A, van Gisbergen KPJM, Masson F, Blanchard N. Protective function and differentiation cues of brain-resident CD8+ T cells during surveillance of latent Toxoplasma gondii infection. Proc Natl Acad Sci U S A 2024; 121:e2403054121. [PMID: 38838017 PMCID: PMC11181119 DOI: 10.1073/pnas.2403054121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 05/01/2024] [Indexed: 06/07/2024] Open
Abstract
Chronic Toxoplasma gondii infection induces brain-resident CD8+ T cells (bTr), but the protective functions and differentiation cues of these cells remain undefined. Here, we used a mouse model of latent infection by T. gondii leading to effective CD8+ T cell-mediated parasite control. Thanks to antibody depletion approaches, we found that peripheral circulating CD8+ T cells are dispensable for brain parasite control during chronic stage, indicating that CD8+ bTr are able to prevent brain parasite reactivation. We observed that the retention markers CD69, CD49a, and CD103 are sequentially acquired by brain parasite-specific CD8+ T cells throughout infection and that a majority of CD69/CD49a/CD103 triple-positive (TP) CD8+ T cells also express Hobit, a transcription factor associated with tissue residency. This TP subset develops in a CD4+ T cell-dependent manner and is associated with effective parasite control during chronic stage. Conditional invalidation of Transporter associated with Antigen Processing (TAP)-mediated major histocompatibility complex (MHC) class I presentation showed that presentation of parasite antigens by glutamatergic neurons and microglia regulates the differentiation of CD8+ bTr into TP cells. Single-cell transcriptomic analyses revealed that resistance to encephalitis is associated with the expansion of stem-like subsets of CD8+ bTr. In summary, parasite-specific brain-resident CD8+ T cells are a functionally heterogeneous compartment which autonomously ensure parasite control during T. gondii latent infection and which differentiation is shaped by neuronal and microglial MHC I presentation. A more detailed understanding of local T cell-mediated immune surveillance of this common parasite is needed for harnessing brain-resident CD8+ T cells in order to enhance control of chronic brain infections.
Collapse
Affiliation(s)
- Rémi Porte
- Toulouse Institute for Infectious and Inflammatory Diseases, Infinity, Inserm, CNRS, University of Toulouse, Toulouse31300, France
| | - Marcy Belloy
- Toulouse Institute for Infectious and Inflammatory Diseases, Infinity, Inserm, CNRS, University of Toulouse, Toulouse31300, France
| | - Alexis Audibert
- Toulouse Institute for Infectious and Inflammatory Diseases, Infinity, Inserm, CNRS, University of Toulouse, Toulouse31300, France
| | - Emilie Bassot
- Toulouse Institute for Infectious and Inflammatory Diseases, Infinity, Inserm, CNRS, University of Toulouse, Toulouse31300, France
| | - Amel Aïda
- Toulouse Institute for Infectious and Inflammatory Diseases, Infinity, Inserm, CNRS, University of Toulouse, Toulouse31300, France
| | - Marine Alis
- Toulouse Institute for Infectious and Inflammatory Diseases, Infinity, Inserm, CNRS, University of Toulouse, Toulouse31300, France
| | - Romain Miranda-Capet
- Toulouse Institute for Infectious and Inflammatory Diseases, Infinity, Inserm, CNRS, University of Toulouse, Toulouse31300, France
| | - Aurélie Jourdes
- Toulouse Institute for Infectious and Inflammatory Diseases, Infinity, Inserm, CNRS, University of Toulouse, Toulouse31300, France
| | | | - Frédérick Masson
- Toulouse Institute for Infectious and Inflammatory Diseases, Infinity, Inserm, CNRS, University of Toulouse, Toulouse31300, France
| | - Nicolas Blanchard
- Toulouse Institute for Infectious and Inflammatory Diseases, Infinity, Inserm, CNRS, University of Toulouse, Toulouse31300, France
| |
Collapse
|
4
|
Yamada M, Macedo C, Louis K, Shi T, Landsittel D, Nguyen C, Shinjoh M, Michaels MG, Feingold B, Mazariegos GV, Green M, Metes D. Distinct association between chronic Epstein-Barr virus infection and T cell compartments from pediatric heart, kidney, and liver transplant recipients. Am J Transplant 2023; 23:1145-1158. [PMID: 37187296 DOI: 10.1016/j.ajt.2023.05.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 04/23/2023] [Accepted: 05/11/2023] [Indexed: 05/17/2023]
Abstract
Chronic Epstein-Barr virus (EBV) infection after pediatric organ transplantation (Tx) accounts for significant morbidity and mortality. The risk of complications, such as posttransplant lymphoproliferative disorders, in high viral load (HVL) carriers is the highest in heart Tx recipients. However, the immunologic signatures of such a risk have been insufficiently defined. Here, we assessed the phenotypic, functional, and transcriptomic profiles of peripheral blood CD8+/CD4+ T cells, including EBV-specific T cells, in 77 pediatric heart, kidney, and liver Tx recipients and established the relationship between memory differentiation and progression toward exhaustion. Unlike kidney and liver HVL carriers, heart HVL carriers displayed distinct CD8+ T cells with (1) up-regulation of interleukin-21R, (2) decreased naive phenotype and altered memory differentiation, (3) accumulation of terminally exhausted (TEX PD-1+T-bet-Eomes+) and decrease of functional precursors of exhausted (TPEX PD-1intT-bet+) effector subsets, and (4) transcriptomic signatures supporting the phenotypic changes. In addition, CD4+ T cells from heart HVL carriers displayed similar changes in naive and memory subsets, elevated Th1 follicular helper cells, and plasma interleukin-21, suggesting an alternative inflammatory mechanism that governs T cell responses in heart Tx recipients. These results may explain the different incidences of EBV complications and may help improve the risk stratification and clinical management of different types of Tx recipients.
Collapse
Affiliation(s)
- Masaki Yamada
- Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania, USA; Thomas E. Starzl Transplant Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan
| | - Camila Macedo
- Thomas E. Starzl Transplant Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Kevin Louis
- Thomas E. Starzl Transplant Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA; Kidney Transplant Department, Saint Louis Hospital, Assistance Publique-Hôpitaux de Paris, Université de Paris, Paris, France
| | - Tiange Shi
- Department of Biomedical Informatics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Douglas Landsittel
- Department of Epidemiology and Biostatistics, School of Public Health, Indiana University, Indiana, Pennsylvania, USA
| | - Christina Nguyen
- Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania, USA
| | - Masayoshi Shinjoh
- Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan
| | - Marian G Michaels
- Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania, USA; Thomas E. Starzl Transplant Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Brian Feingold
- Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania, USA; Clinical and Translational Science, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - George V Mazariegos
- Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania, USA; Thomas E. Starzl Transplant Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Michael Green
- Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania, USA; Thomas E. Starzl Transplant Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Diana Metes
- Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania, USA; Thomas E. Starzl Transplant Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
5
|
Di Zazzo E, Rienzo M, Casamassimi A, De Rosa C, Medici N, Gazzerro P, Bifulco M, Abbondanza C. Exploring the putative role of PRDM1 and PRDM2 transcripts as mediators of T lymphocyte activation. J Transl Med 2023; 21:217. [PMID: 36964555 PMCID: PMC10039509 DOI: 10.1186/s12967-023-04066-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 03/17/2023] [Indexed: 03/26/2023] Open
Abstract
BACKGROUND T cell activation and programming from their naïve/resting state, characterized by widespread modifications in chromatin accessibility triggering extensive changes in transcriptional programs, is orchestrated by several cytokines and transcription regulators. PRDM1 and PRDM2 encode for proteins with PR/SET and zinc finger domains that control several biological processes, including cell differentiation, through epigenetic regulation of gene expression. Different transcripts leading to main protein isoforms with (PR +) or without (PR-) the PR/SET domain have been described. Although many studies have established the critical PRDM1 role in hematopoietic cell differentiation, maintenance and/or function, the single transcript contribution has not been investigated before. Otherwise, very few evidence is currently available on PRDM2. Here, we aimed to analyze the role of PRDM1 and PRDM2 different transcripts as mediators of T lymphocyte activation. METHODS We analyzed the transcription signature of the main variants from PRDM1 (BLIMP1a and BLIMP1b) and PRDM2 (RIZ1 and RIZ2) genes, in human T lymphocytes and Jurkat cells overexpressing PRDM2 cDNAs following activation through different signals. RESULTS T lymphocyte activation induced an early increase of RIZ2 and RIZ1 followed by BLIMP1b increase and finally by BLIMP1a increase. The "first" and the "second" signals shifted the balance towards the PR- forms for both genes. Interestingly, the PI3K signaling pathway modulated the RIZ1/RIZ2 ratio in favor of RIZ1 while the balance versus RIZ2 was promoted by MAPK pathway. Cytokines mediating different Jak/Stat signaling pathways (third signal) early modulated the expression of PRDM1 and PRDM2 and the relationship of their different transcripts confirming the early increase of the PR- transcripts. Different responses of T cell subpopulations were also observed. Jurkat cells showed that the acute transient RIZ2 increase promoted the balancing of PRDM1 forms towards BLIMP1b. The stable forced expression of RIZ1 or RIZ2 induced a significant variation in the expression of key transcription factors involved in T lymphocyte differentiation. The BLIMP1a/b balance shifted in favor of BLIMP1a in RIZ1-overexpressing cells and of BLIMP1b in RIZ2-overexpressing cells. CONCLUSIONS This study provides the first characterization of PRDM2 in T-lymphocyte activation/differentiation and novel insights on PRDM1 and PRDM2 transcription regulation during initial activation phases.
Collapse
Affiliation(s)
- Erika Di Zazzo
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, 86100, Campobasso, Italy
| | - Monica Rienzo
- Department of Environmental, Biological, and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", 81100, Caserta, Italy
| | - Amelia Casamassimi
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138, Naples, Italy
| | - Caterina De Rosa
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138, Naples, Italy
| | - Nicola Medici
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138, Naples, Italy
| | - Patrizia Gazzerro
- Department of Pharmacy, University of Salerno, 84084, Salerno, Fisciano (SA), Italy
| | - Maurizio Bifulco
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples "Federico II", 80131, Naples, Italy
| | - Ciro Abbondanza
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138, Naples, Italy.
| |
Collapse
|
6
|
Sakaguchi A, Horimoto Y, Onagi H, Ikarashi D, Nakayama T, Nakatsura T, Shimizu H, Kojima K, Yao T, Matsumoto T, Ogura K, Kitano S. Plasma cell infiltration and treatment effect in breast cancer patients treated with neoadjuvant chemotherapy. Breast Cancer Res 2021; 23:99. [PMID: 34715905 PMCID: PMC8555250 DOI: 10.1186/s13058-021-01477-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 10/15/2021] [Indexed: 12/12/2022] Open
Abstract
Background Tumour-infiltrating lymphocyte (TIL)-high breast tumours have a high rate of pathological complete response (pCR) with neoadjuvant chemotherapy. In our routine pathological diagnoses of biopsy specimens from pCR cases, we have observed a high infiltration of plasma cells (PCs). A positive correlation of PCs with favourable patient outcome has recently been reported, but little is known about how PCs contribute to local tumour immunity. Methods We retrospectively examined biopsy specimens from 146 patients with invasive breast cancer who received neoadjuvant chemotherapy. CD138+ PC infiltration was assessed by immunohistochemistry. Multiplexed fluorescent immunohistochemistry (mfIHC) with T and B cell markers was also conducted to elucidate the profile of immune cells. Results Greater PC infiltration was observed in the pCR group (p = 0.028) and this trend was confirmed in another patient cohort. With mfIHC, we observed significantly more CD8+, T-bet+CD4+, and CD8+FOXP3+ T cells, total B cells and PCs in pCR cases. Such cases were also characterised by high expression of both PD-1 and PD-L1 on B cells and PCs. In patients with hormone receptor-negative tumours, high PC infiltration was correlated with significantly longer disease-free survival (p = 0.034). Conclusions We found that higher PC infiltration in biopsy specimens before neoadjuvant chemotherapy was associated with pCR. With mfIHC, we also revealed that the local cytotoxic immune response was clearly enhanced in pCR cases, as was the infiltration of B cells including PCs. Moreover, higher PC levels were correlated with favourable outcomes in hormone receptor-negative breast cancer patients. Supplementary Information The online version contains supplementary material available at 10.1186/s13058-021-01477-w.
Collapse
Affiliation(s)
- Asumi Sakaguchi
- Department of Diagnostic Pathology, Juntendo University Nerima Hospital, 3-1-10 Takanodai, Nerima-ku, Tokyo, 177-8521, Japan.,Department of Human Pathology, Juntendo University School of Medicine, Tokyo, Japan
| | - Yoshiya Horimoto
- Department of Human Pathology, Juntendo University School of Medicine, Tokyo, Japan. .,Department of Breast Oncology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| | - Hiroko Onagi
- Department of Human Pathology, Juntendo University School of Medicine, Tokyo, Japan
| | - Daiki Ikarashi
- Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center Hospital, 6-5-1 Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan
| | - Takayuki Nakayama
- Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center Hospital, 6-5-1 Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan
| | - Tetsuya Nakatsura
- Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center Hospital, 6-5-1 Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan
| | - Hideo Shimizu
- Department of General Surgery, Juntendo University Nerima Hospital, 3-1-10 Takanodai, Nerima-ku, Tokyo, 177-8521, Japan
| | - Kuniaki Kojima
- Department of General Surgery, Juntendo University Nerima Hospital, 3-1-10 Takanodai, Nerima-ku, Tokyo, 177-8521, Japan
| | - Takashi Yao
- Department of Human Pathology, Juntendo University School of Medicine, Tokyo, Japan
| | - Toshiharu Matsumoto
- Department of Diagnostic Pathology, Juntendo University Nerima Hospital, 3-1-10 Takanodai, Nerima-ku, Tokyo, 177-8521, Japan
| | - Kanako Ogura
- Department of Diagnostic Pathology, Juntendo University Nerima Hospital, 3-1-10 Takanodai, Nerima-ku, Tokyo, 177-8521, Japan
| | - Shigehisa Kitano
- Division of Cancer Immunotherapy Development, Advanced Medical Development Center, The Cancer Institute Hospital of Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo, 135-8550, Japan
| |
Collapse
|
7
|
Wang S, Xie K, Liu T. Cancer Immunotherapies: From Efficacy to Resistance Mechanisms - Not Only Checkpoint Matters. Front Immunol 2021; 12:690112. [PMID: 34367148 PMCID: PMC8335396 DOI: 10.3389/fimmu.2021.690112] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 07/05/2021] [Indexed: 01/05/2023] Open
Abstract
The immunotherapeutic treatment of various cancers with an increasing number of immune checkpoint inhibitors (ICIs) has profoundly improved the clinical management of advanced diseases. However, just a fraction of patients clinically responds to and benefits from the mentioned therapies; a large proportion of patients do not respond or quickly become resistant, and hyper- and pseudoprogression occur in certain patient populations. Furthermore, no effective predictive factors have been clearly screened or defined. In this review, we discuss factors underlying the elucidation of potential immunotherapeutic resistance mechanisms and the identification of predictive factors for immunotherapeutic responses. Considering the heterogeneity of tumours and the complex immune microenvironment (composition of various immune cell subtypes, disease processes, and lines of treatment), checkpoint expression levels may not be the only factors underlying immunotherapy difficulty and resistance. Researchers should consider the tumour microenvironment (TME) landscape in greater depth from the aspect of not only immune cells but also the tumour histology, molecular subtype, clonal heterogeneity and evolution as well as micro-changes in the fine structural features of the tumour area, such as myeloid cell polarization, fibroblast clusters and tertiary lymphoid structure formation. A comprehensive analysis of the immune and molecular profiles of tumour lesions is needed to determine the potential predictive value of the immune landscape on immunotherapeutic responses, and precision medicine has become more important.
Collapse
Affiliation(s)
- Shuyue Wang
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, China
| | - Kun Xie
- German Cancer Research Center (DKFZ), Heidelberg University, Heidelberg, Germany
| | - Tengfei Liu
- Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
8
|
Han X, Alu A, Xiao Y, Wei Y, Wei X. Hyperprogression: A novel response pattern under immunotherapy. Clin Transl Med 2020; 10:e167. [PMID: 32997401 PMCID: PMC7510779 DOI: 10.1002/ctm2.167] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/19/2020] [Accepted: 08/20/2020] [Indexed: 02/05/2023] Open
Abstract
Checkpoint blockade therapy has shown significant therapeutic benefits and resulted in durable responses in patients with various tumors. However, accumulating evidence has demonstrated that 4-29% of all patients with cancers with various histologies may suffer from tumor flare following such therapy. This novel tumor response pattern, termed hyperprogression, is a potentially deleterious side effect of checkpoint blockade therapy that accelerates disease progression in a subset of patients. In this review, we describe possible immune checkpoint blockade biomarkers and the epidemiology, different definitions, and predictors of hyperprogression based on the research findings and further present the available evidence supporting pathophysiological hypotheses that might explain hyperprogression during checkpoint blockade therapy. We also compare hyperprogression and pseudoprogression. Finally, we discuss areas requiring further study.
Collapse
Affiliation(s)
- Xue‐jiao Han
- Laboratory of Aging Research and Cancer Drug TargetState Key Laboratory of BiotherapyNational Clinical Research Center for GeriatricsWest China HospitalSichuan UniversityChengduChina
| | - Aqu Alu
- Laboratory of Aging Research and Cancer Drug TargetState Key Laboratory of BiotherapyNational Clinical Research Center for GeriatricsWest China HospitalSichuan UniversityChengduChina
| | - Yi‐nan Xiao
- West China School of MedicineWest China HospitalSichuan UniversityChengduChina
| | - Yu‐quan Wei
- Laboratory of Aging Research and Cancer Drug TargetState Key Laboratory of BiotherapyNational Clinical Research Center for GeriatricsWest China HospitalSichuan UniversityChengduChina
| | - Xia‐wei Wei
- Laboratory of Aging Research and Cancer Drug TargetState Key Laboratory of BiotherapyNational Clinical Research Center for GeriatricsWest China HospitalSichuan UniversityChengduChina
| |
Collapse
|
9
|
Transcutaneous immunization with a highly active form of XCL1 as a vaccine adjuvant using a hydrophilic gel patch elicits long-term CD8 + T cell responses. J Pharmacol Sci 2020; 143:182-187. [PMID: 32386904 DOI: 10.1016/j.jphs.2020.04.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 03/30/2020] [Accepted: 04/06/2020] [Indexed: 01/22/2023] Open
Abstract
Memory CD8+ cytotoxic T-lymphocytes (CTLs) play a key role in protective immunity against infection and cancer. However, the induction of memory CTLs with currently available vaccines remains difficult. The chemokine receptor XCR1 is predominantly expressed on CD103+ cross-presenting dendritic cells (DCs). Recently, we have demonstrated that a high activity form of murine lymphotactin/XCL1 (mXCL1-V21C/A59C), a ligand of XCR1, can induce antigen-specific memory CTLs by increasing the accumulation of CD103+ DCs in the vaccination site and the regional lymph nodes. Here, we combined a hydrophilic gel patch as a transcutaneous delivery device and mXCL1-V21C/A59C as an adjuvant to further enhance memory CTL responses. The transcutaneous delivery of ovalbumin (OVA) and mXCL1-V21C/A59C by the hydrophilic gel patch increased CD103+ DCs in the vaccination site and the regional lymph nodes for a prolonged period of time compared with the intradermal injection of OVA and mXCL1-V21C/A59C. Furthermore, the hydrophilic gel patch containing OVA and mXCL1-V21C/A59C strongly induced OVA-specific memory CTLs and efficiently inhibited the growth of OVA-expressing tumors more than the intradermal injection of OVA and mXCL1-V21C/A59C. Collectively, this type of hydrophilic gel patch and a high activity form of XCL1 may provide a useful tool for the induction of memory CTL responses.
Collapse
|
10
|
Genomic profiling of intestinal T-cell receptor repertoires in inflammatory bowel disease. Genes Immun 2020; 21:109-118. [PMID: 32029881 DOI: 10.1038/s41435-020-0092-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 01/11/2020] [Accepted: 01/21/2020] [Indexed: 12/11/2022]
Abstract
Growing evidence shows that inflammatory bowel disease (IBD) results from dysregulation of immune responses to gut microbes. T-cell receptors (TCRs) expressed on the T-cell surface play critical roles in discriminating pathogens from commensal intestinal microorganisms at the front line of the adaptive immune system. The breakdown of this interaction may trigger persistent inflammatory responses to gut bacteria, resulting in IBD. Taking advantage of high-throughput sequencing, we developed an integrated approach to dissect the intestinal TCR repertoires underlying IBD by collecting peripheral blood and inflamed intestine from the same set of 11 IBD cases. The intestinal TCR repertoires show lower clonotype diversity (p < 0.05) and stronger clonal expansion (p < 0.02) than those in the blood. This pattern becomes more profound in TCRs unique to the inflamed tissue compared with shared TCRs. Our approach further identified the increased usage of TRAV12-3 (false discovery rate, FDR < 5%), which biases its choices of J genes towards the reduction of TRAJ37 and TRAJ43 usage (FDR < 20%) in the inflamed intestine. Our genomic profiling suggests that this selective bias of V and J gene usage may lead to a loss of diversity in the intestinal TCR repertoires and result in mucosal inflammation in IBD.
Collapse
|
11
|
Kim CG, Kim KH, Pyo KH, Xin CF, Hong MH, Ahn BC, Kim Y, Choi SJ, Yoon HI, Lee JG, Lee CY, Park SY, Park SH, Cho BC, Shim HS, Shin EC, Kim HR. Hyperprogressive disease during PD-1/PD-L1 blockade in patients with non-small-cell lung cancer. Ann Oncol 2019; 30:1104-1113. [PMID: 30977778 DOI: 10.1093/annonc/mdz123] [Citation(s) in RCA: 185] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Immune checkpoint blockade with Programmed cell death 1 (PD-1)/PD-L1 inhibitors has been effective in various malignancies and is considered as a standard treatment modality for patients with non-small-cell lung cancer (NSCLC). However, emerging evidence show that PD-1/PD-L1 blockade can lead to hyperprogressive disease (HPD), a flair-up of tumor growth linked to dismal prognosis. This study aimed to evaluate the incidence of HPD and identify the determinants associated with HPD in patients with NSCLC treated with PD-1/PD-L1 blockade. PATIENTS AND METHODS We enrolled patients with recurrent and/or metastatic NSCLC treated with PD-1/PD-L1 inhibitors between April 2014 and November 2018. Clinicopathologic variables, dynamics of tumor growth, and treatment outcomes were analyzed in patients with NSCLC who received PD-1/PD-L1 blockade. HPD was defined according to tumor growth kinetics (TGK), tumor growth rate (TGR), and time to treatment failure (TTF). Immunophenotyping of peripheral blood CD8+ T lymphocytes was conducted to explore the potential predictive biomarkers of HPD. RESULTS A total of 263 patients were analyzed. HPD was observed in 55 (20.9%), 54 (20.5%), and 98 (37.3%) patients according to the TGK, TGR, and TTF. HPD meeting both TGK and TGR criteria was associated with worse progression-free survival [hazard ratio (HR) 4.619; 95% confidence interval (CI) 2.868-7.440] and overall survival (HR, 5.079; 95% CI, 3.136-8.226) than progressive disease without HPD. There were no clinicopathologic variables specific for HPD. In the exploratory biomarker analysis with peripheral blood CD8+ T lymphocytes, a lower frequency of effector/memory subsets (CCR7-CD45RA- T cells among the total CD8+ T cells) and a higher frequency of severely exhausted populations (TIGIT+ T cells among PD-1+CD8+ T cells) were associated with HPD and inferior survival rate. CONCLUSION HPD is common in NSCLC patients treated with PD-1/PD-L1 inhibitors. Biomarkers derived from rationally designed analysis may successfully predict HPD and worse outcomes, meriting further investigation of HPD.
Collapse
Affiliation(s)
- C G Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon; Division of Medical Oncology, Department of Internal Medicine
| | - K H Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon; Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul
| | - K-H Pyo
- Division of Medical Oncology, Department of Internal Medicine; JE-UK Institute for Cancer Research, JEUK Co. Ltd, Gumi
| | - C-F Xin
- JE-UK Institute for Cancer Research, JEUK Co. Ltd, Gumi
| | - M H Hong
- Division of Medical Oncology, Department of Internal Medicine
| | - B-C Ahn
- Division of Medical Oncology, Department of Internal Medicine
| | - Y Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon
| | - S J Choi
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon
| | - H I Yoon
- Department of Radiation Oncology, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul
| | - J G Lee
- Department of Thoracic and Cardiovascular Surgery
| | - C Y Lee
- Department of Thoracic and Cardiovascular Surgery
| | - S Y Park
- Department of Thoracic and Cardiovascular Surgery
| | - S-H Park
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon
| | - B C Cho
- Division of Medical Oncology, Department of Internal Medicine
| | - H S Shim
- Department of Pathology, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea.
| | - E-C Shin
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon.
| | - H R Kim
- Division of Medical Oncology, Department of Internal Medicine.
| |
Collapse
|
12
|
Interleukin-21 Induces Short-Lived Effector CD8 + T Cells but Does Not Inhibit Their Exhaustion after Mycobacterium bovis BCG Infection in Mice. Infect Immun 2018; 86:IAI.00147-18. [PMID: 29844233 DOI: 10.1128/iai.00147-18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 05/18/2018] [Indexed: 12/28/2022] Open
Abstract
Interleukin 21 (IL-21) is a pleiotropic common cytokine receptor γ chain cytokine that promotes the effector functions of NK cells and CD8+ T cells and inhibits CD8+ T cell exhaustion during chronic infection. We found that the absolute number of short-lived effector CD8+ T cells (SLECs) (KLRG1high CD127low) decreased significantly in IL-21 receptor-deficient (IL-21R-/-) mice during Mycobacterium bovis bacillus Calmette-Guérin (BCG) infection. Early effector CD8+ T cells (EECs) (KLRG1low CD127low) were normally generated in IL-21R-/- mice after infection. Exhausted CD8+ T cells (PD-1high KLRG1low) were also normally generated in IL-21R-/- mice after infection. Mixed bone marrow (BM) chimera and transfer experiments showed that IL-21R on CD8+ T cells was essential for the proliferation of EECs, allowing them to differentiate into SLECs after BCG infection. On the other hand, the number of SLECs increased significantly after infection with recombinant BCG (rBCG) that secreted an antigen 85B (Ag85B)-IL-21 fusion protein (rBCG-Ag85B-IL-21), but the number of exhausted CD8+ T cells did not change after rBCG-Ag85B-IL-21 infection. These results suggest that IL-21 signaling drives the differentiation of SLECs from EECs but does not inhibit the exhaustion of CD8+ T cells following BCG infection in mice.
Collapse
|
13
|
Leboeuf C, Wilk S, Achermann R, Binet I, Golshayan D, Hadaya K, Hirzel C, Hoffmann M, Huynh-Do U, Koller MT, Manuel O, Mueller NJ, Mueller TF, Schaub S, van Delden C, Weissbach FH, Hirsch HH. BK Polyomavirus-Specific 9mer CD8 T Cell Responses Correlate With Clearance of BK Viremia in Kidney Transplant Recipients: First Report From the Swiss Transplant Cohort Study. Am J Transplant 2017; 17:2591-2600. [PMID: 28326672 DOI: 10.1111/ajt.14282] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 02/22/2017] [Accepted: 03/12/2017] [Indexed: 01/25/2023]
Abstract
BK polyomavirus (BKPyV) causes premature kidney transplant (KT) failure in 1-15% of patients. Because antivirals are lacking, most programs screen for BKPyV-viremia and, if positive, reduce immunosuppression. To evaluate the relationship of viremia and BKPyV-specific immunity, we examined prospectively cryopreserved plasma and peripheral blood mononuclear cells at the time of transplantation (T0) and at 6 mo (T6) and 12 mo (T12) after transplant from 28 viremic KT patients and 68 nonviremic controls matched for the transplantation period. BKPyV IgG seroprevalence was comparable between cases (89.3%) and controls (91.2%; p = 0.8635), but cases had lower antibody levels (p = 0.022) at T0. Antibody levels increased at T6 and T12 but were not correlated with viremia clearance. BKPyV-specific T cell responses to pools of overlapping 15mers (15mer peptide pool [15mP]) or immunodominant CD8 9mers (9mer peptide pool [9mP]) from the early viral gene region were not different between cases and controls at T0; however, clearance of viremia was associated with stronger 9mP responses at T6 (p = 0.042) and T12 (p = 0.048), whereas 15mP responses were not informative (T6 p = 0.359; T12 p = 0.856). BKPyV-specific T cells could be expanded in vitro from all patients after transplant, permitting identification of 78 immunodominant 9mer epitopes including 50 new ones across different HLA class I. Thus, 9mP-responses may be a novel marker of reconstituting CD8 T cell function that warrants further study as a complement of plasma BKPyV loads for guiding immunosuppression reduction.
Collapse
Affiliation(s)
- C Leboeuf
- Transplantation & Clinical Virology, Department Biomedicine, University of Basel, Basel, Switzerland
| | - S Wilk
- Transplantation & Clinical Virology, Department Biomedicine, University of Basel, Basel, Switzerland
| | - R Achermann
- Swiss Transplant Cohort Study, University Hospital Basel, Basel, Switzerland
| | - I Binet
- Nephrology & Transplantation Medicine, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - D Golshayan
- Transplantation Center, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - K Hadaya
- Service of Nephrology, University Hospitals Geneva, Geneva, Switzerland
| | - C Hirzel
- Department of Infectious Diseases, Bern University Hospital, University of Bern, Bern, Switzerland
| | - M Hoffmann
- Division of Infectious Diseases and Hospital Epidemiology, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - U Huynh-Do
- Division of Nephrology, Hypertension and Clinical Pharmacology, Inselspital Bern, Bern, Switzerland
| | - M T Koller
- Basel Institute for Clinical Epidemiology and Biostatistics, Basel, Switzerland
| | - O Manuel
- Infectious Diseases Service & Transplantation Center, University Hospital of Lausanne (CHUV), Lausanne, Switzerland
| | - N J Mueller
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - T F Mueller
- Division of Nephrology, University Hospital Zurich, Zurich, Switzerland
| | - S Schaub
- Division of Transplant Immunology and Nephrology, University Hospital Basel, Basel, Switzerland
| | - C van Delden
- Transplant Infectious Diseases Unit, University Hospitals Geneva, Geneva, Switzerland
| | - F H Weissbach
- Transplantation & Clinical Virology, Department Biomedicine, University of Basel, Basel, Switzerland
| | - H H Hirsch
- Transplantation & Clinical Virology, Department Biomedicine, University of Basel, Basel, Switzerland.,Infectious Diseases & Hospital Epidemiology, University Hospital Basel, Basel, Switzerland
| | | |
Collapse
|
14
|
Igarashi K, Kurosaki T, Roychoudhuri R. BACH transcription factors in innate and adaptive immunity. Nat Rev Immunol 2017; 17:437-450. [PMID: 28461702 DOI: 10.1038/nri.2017.26] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BTB and CNC homology (BACH) proteins are transcriptional repressors of the basic region leucine zipper (bZIP) transcription factor family. Recent studies indicate widespread roles of BACH proteins in controlling the development and function of the innate and adaptive immune systems, including the differentiation of effector and memory cells of the B and T cell lineages, CD4+ regulatory T cells and macrophages. Here, we emphasize similarities at a molecular level in the cell-type-specific activities of BACH factors, proposing that competitive interactions of BACH proteins with transcriptional activators of the bZIP family form a common mechanistic theme underlying their diverse actions. The findings contribute to a general understanding of how transcriptional repressors shape lineage commitment and cell-type-specific functions through repression of alternative lineage programmes.
Collapse
Affiliation(s)
- Kazuhiko Igarashi
- Department of Biochemistry, Center for Regulatory Epigenome and Diseases, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Tomohiro Kurosaki
- Laboratory for Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Suita 565-0871, Japan
- Laboratory for Lymphocyte Differentiation, RIKEN Center for Integrative Medical Sciences (IMS), Tsurumi-ku, Yokohama 230-0045, Japan
| | - Rahul Roychoudhuri
- Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Cambridge CB22 3AT, UK
| |
Collapse
|
15
|
Huang Y, Matsumura Y, Hatano S, Noguchi N, Murakami T, Iwakura Y, Sun X, Ohara N, Yoshikai Y. IL-21 inhibits IL-17A-producing γδ T-cell response after infection with Bacillus Calmette-Guérin via induction of apoptosis. Innate Immun 2016; 22:588-597. [PMID: 27554052 DOI: 10.1177/1753425916664125] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Innate γδ T cells expressing Vγ6 produce IL-17A at an early stage following infection with Mycobacterium bovis Bacillus Calmette-Guérin (BCG). In this study, we used IL-21 receptor knockout (IL-21R KO) mice and IL-21-producing recombinant BCG mice (rBCG-Ag85B-IL-21) to examine the role of IL-21 in the regulation of IL-17A-producing innate γδ T-cell response following BCG infection. IL-17A-producing Vγ6+ γδ T cells increased in the peritoneal cavity of IL-21R KO mice more than in wild type mice after BCG infection. In contrast, the number of IL-17A-producing Vγ6+ γδ T cells was significantly lower after inoculation with rBCG-Ag85B-IL-21 compared with control rBCG-Ag85B. Notably, exogenous IL-21 selectively induced apoptosis of IL-17A-producing Vγ6+ γδ T cells via Bim. Thus, these results suggest that IL-21 acts as a potent inhibitor of a IL-17A-producing γδ T-cell subset during BCG infection.
Collapse
Affiliation(s)
- Yinxia Huang
- 1 Division of Host Defense, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan.,2 Beijing Key Laboratory of Drug Resistance Tuberculosis, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Yumiko Matsumura
- 1 Division of Host Defense, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Shinya Hatano
- 1 Division of Host Defense, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Naoto Noguchi
- 1 Division of Host Defense, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Tesshin Murakami
- 1 Division of Host Defense, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Yoichiro Iwakura
- 3 Center for Animal Disease Models, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Chiba, Japan
| | - Xun Sun
- 4 Department of Immunology, China Medical University, Shenyang, China
| | - Naoya Ohara
- 5 Department of Oral Microbiology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Yasunobu Yoshikai
- 1 Division of Host Defense, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| |
Collapse
|
16
|
Roychoudhuri R, Clever D, Li P, Wakabayashi Y, Quinn KM, Klebanoff CA, Ji Y, Sukumar M, Eil RL, Yu Z, Spolski R, Palmer DC, Pan JH, Patel SJ, Macallan DC, Fabozzi G, Shih HY, Kanno Y, Muto A, Zhu J, Gattinoni L, O'Shea JJ, Okkenhaug K, Igarashi K, Leonard WJ, Restifo NP. BACH2 regulates CD8(+) T cell differentiation by controlling access of AP-1 factors to enhancers. Nat Immunol 2016; 17:851-860. [PMID: 27158840 PMCID: PMC4918801 DOI: 10.1038/ni.3441] [Citation(s) in RCA: 196] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 03/16/2016] [Indexed: 12/14/2022]
Abstract
T cell antigen receptor (TCR) signaling drives distinct responses depending on the differentiation state and context of CD8(+) T cells. We hypothesized that access of signal-dependent transcription factors (TFs) to enhancers is dynamically regulated to shape transcriptional responses to TCR signaling. We found that the TF BACH2 restrains terminal differentiation to enable generation of long-lived memory cells and protective immunity after viral infection. BACH2 was recruited to enhancers, where it limited expression of TCR-driven genes by attenuating the availability of activator protein-1 (AP-1) sites to Jun family signal-dependent TFs. In naive cells, this prevented TCR-driven induction of genes associated with terminal differentiation. Upon effector differentiation, reduced expression of BACH2 and its phosphorylation enabled unrestrained induction of TCR-driven effector programs.
Collapse
Affiliation(s)
- Rahul Roychoudhuri
- National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD., USA
- Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Cambridge, UK
| | - David Clever
- National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD., USA
- Medical Scientist Training Program, Ohio State University College of Medicine, Columbus, OH., USA
| | - Peng Li
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung and Blood Institute (NHLBI), NIH, Bethesda, MD., USA
| | | | - Kylie M Quinn
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD., USA
| | | | - Yun Ji
- National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD., USA
| | | | - Robert L Eil
- National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD., USA
| | - Zhiya Yu
- National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD., USA
| | - Rosanne Spolski
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung and Blood Institute (NHLBI), NIH, Bethesda, MD., USA
| | - Douglas C Palmer
- National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD., USA
| | - Jenny H Pan
- National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD., USA
| | - Shashank J Patel
- National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD., USA
| | - Derek C Macallan
- Institute for Infection & Immunity, St. George's University of London, London, UK
| | - Giulia Fabozzi
- National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD., USA
| | - Han-Yu Shih
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, MD., USA
| | - Yuka Kanno
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, MD., USA
| | - Akihiko Muto
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
- AMED-CREST, Japan Agency for Medical Research and Development, Tokyo, Japan
| | - Jun Zhu
- Systems Biology Center, NHLBI, NIH, Bethesda, MD., USA
| | - Luca Gattinoni
- National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD., USA
| | - John J O'Shea
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, MD., USA
| | - Klaus Okkenhaug
- Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Cambridge, UK
| | - Kazuhiko Igarashi
- Department of Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
- AMED-CREST, Japan Agency for Medical Research and Development, Tokyo, Japan
| | - Warren J Leonard
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung and Blood Institute (NHLBI), NIH, Bethesda, MD., USA
| | - Nicholas P Restifo
- National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD., USA
| |
Collapse
|
17
|
A molecular threshold for effector CD8(+) T cell differentiation controlled by transcription factors Blimp-1 and T-bet. Nat Immunol 2016; 17:422-32. [PMID: 26950239 DOI: 10.1038/ni.3410] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 02/01/2016] [Indexed: 12/11/2022]
Abstract
T cell responses are guided by cytokines that induce transcriptional regulators, which ultimately control differentiation of effector and memory T cells. However, it is unknown how the activities of these molecular regulators are coordinated and integrated during the differentiation process. Using genetic approaches and transcriptional profiling of antigen-specific CD8(+) T cells, we reveal a common program of effector differentiation that is regulated by IL-2 and IL-12 signaling and the combined activities of the transcriptional regulators Blimp-1 and T-bet. The loss of both T-bet and Blimp-1 leads to abrogated cytotoxic function and ectopic IL-17 production in CD8(+) T cells. Overall, our data reveal two major overlapping pathways of effector differentiation governed by the availability of Blimp-1 and T-bet and suggest a model for cytokine-induced transcriptional changes that combine, quantitatively and qualitatively, to promote robust effector CD8(+) T cell differentiation.
Collapse
|
18
|
Liu M, Gao W, van Velkinburgh JC, Wu Y, Ni B, Tian Y. Role of Ets Proteins in Development, Differentiation, and Function of T-Cell Subsets. Med Res Rev 2015; 36:193-220. [PMID: 26301869 DOI: 10.1002/med.21361] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 07/12/2015] [Accepted: 07/23/2015] [Indexed: 12/18/2022]
Abstract
Through positive selection, double-positive cells in the thymus differentiate into CD4(+) or CD8(+) T single-positive cells that subsequently develop into different types of effective T cells, such as T-helper and cytotoxic T lymphocyte cells, that play distinctive roles in the immune system. Development, differentiation, and function of thymocytes and CD4(+) and CD8(+) T cells are controlled by a multitude of secreted and intracellular factors, ranging from cytokine signaling modules to transcription factors and epigenetic modifiers. Members of the E26 transformation specific (Ets) family of transcription factors, in particular, are potent regulators of these CD4(+) or CD8(+) T-cell processes. In this review, we summarize and discuss the functions and underlying mechanisms of the Ets family members that have been characterized as involved in these processes. Ongoing research of these factors is expected to identify practical applications for the Ets family members as novel therapeutic targets for inflammation-related diseases.
Collapse
Affiliation(s)
- Mian Liu
- Institute of Immunology, PLA, Third Military Medical University, Chongqing, 400038, P.R. China.,Battalion 10 of Cadet Brigade, Third Military Medical University, Chongqing, 400038, P.R. China
| | - Weiwu Gao
- Institute of Immunology, PLA, Third Military Medical University, Chongqing, 400038, P.R. China
| | | | - Yuzhang Wu
- Institute of Immunology, PLA, Third Military Medical University, Chongqing, 400038, P.R. China
| | - Bing Ni
- Institute of Immunology, PLA, Third Military Medical University, Chongqing, 400038, P.R. China
| | - Yi Tian
- Institute of Immunology, PLA, Third Military Medical University, Chongqing, 400038, P.R. China
| |
Collapse
|
19
|
Flacher V, Tripp CH, Mairhofer DG, Steinman RM, Stoitzner P, Idoyaga J, Romani N. Murine Langerin+ dermal dendritic cells prime CD8+ T cells while Langerhans cells induce cross-tolerance. EMBO Mol Med 2015; 6:1191-204. [PMID: 25085878 PMCID: PMC4197865 DOI: 10.15252/emmm.201303283] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Skin dendritic cells (DCs) control the immunogenicity of cutaneously administered vaccines. Antigens targeted to DCs via the C-type lectin Langerin/CD207 are cross-presented to CD8+ T cells in vivo. We investigated the relative roles of Langerhans cells (LCs) and Langerin+ dermal DCs (dDCs) in different vaccination settings. Poly(I:C) and anti-CD40 agonist antibody promoted cytotoxic responses upon intradermal immunization with ovalbumin (OVA)-coupled anti-Langerin antibodies (Langerin/OVA). This correlated with CD70 upregulation in Langerin+ dDCs, but not LCs. In chimeric mice where Langerin targeting was restricted to dDCs, CD8+ T-cell memory was enhanced. Conversely, providing Langerin/OVA exclusively to LCs failed to prime cytotoxicity, despite initial antigen cross-presentation to CD8+ T cells. Langerin/OVA combined with imiquimod could not prime CD8+ T cells and resulted in poor cytotoxicity in subsequent responses. This tolerance induction required targeting and maturation of LCs. Altogether, Langerin+ dDCs prime long-lasting cytotoxic responses, while cross-presentation by LCs negatively influences CD8+ T-cell priming. Moreover, this highlights that DCs exposed to TLR agonists can still induce tolerance and supports the existence of qualitatively different DC maturation programs.
Collapse
Affiliation(s)
- Vincent Flacher
- Department of Dermatology and Venereology, Innsbruck Medical University, Innsbruck, Austria Oncotyrol Center for Personalized Cancer Medicine, Innsbruck, Austria
| | - Christoph H Tripp
- Department of Dermatology and Venereology, Innsbruck Medical University, Innsbruck, Austria Oncotyrol Center for Personalized Cancer Medicine, Innsbruck, Austria
| | - David G Mairhofer
- Department of Dermatology and Venereology, Innsbruck Medical University, Innsbruck, Austria
| | - Ralph M Steinman
- Laboratory of Cellular Physiology and Immunology and Chris Browne Center for Immunology and Immune Diseases, The Rockefeller University, New York, NY, USA
| | - Patrizia Stoitzner
- Department of Dermatology and Venereology, Innsbruck Medical University, Innsbruck, Austria
| | - Juliana Idoyaga
- Laboratory of Cellular Physiology and Immunology and Chris Browne Center for Immunology and Immune Diseases, The Rockefeller University, New York, NY, USA
| | - Nikolaus Romani
- Department of Dermatology and Venereology, Innsbruck Medical University, Innsbruck, Austria Oncotyrol Center for Personalized Cancer Medicine, Innsbruck, Austria
| |
Collapse
|
20
|
Evaluation of non-reciprocal heterologous immunity between unrelated viruses. Virology 2015; 482:89-97. [PMID: 25838115 DOI: 10.1016/j.virol.2015.03.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 12/17/2014] [Accepted: 03/03/2015] [Indexed: 11/22/2022]
Abstract
Heterologous immunity refers to the phenomenon whereby a history of an immune response against one pathogen can provide a level of immunity to a second unrelated pathogen. Previous investigations have shown that heterologous immunity is not necessarily reciprocal, such as in the case of vaccinia virus (VACV). Replication of VACV is reduced in mice immune to a variety of pathogens, while VACV fails to induce immunity to several of the same pathogens, including lymphocytic choriomeningitis virus (LCMV). Here we examine the lack of reciprocity of heterologous immunity between VACV and LCMV and find that they induce qualitatively different memory CD8 T cells. However, depending on the repertoire of an individual host, VACV can provide protection against LCMV simply by experimentally amplifying the quantity of T cells cross-reactive with the two viruses. Thus, one cause for lack of reciprocity is differences in the frequencies of cross-reactive T cells in immune hosts.
Collapse
|
21
|
Decreases in activated CD8+ T cells in patients with severe hepatitis B are related to outcomes. Dig Dis Sci 2015; 60:136-45. [PMID: 25081223 DOI: 10.1007/s10620-014-3297-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 07/14/2014] [Indexed: 12/20/2022]
Abstract
BACKGROUND Many studies on T helper (Th)1, Th2, T regulatory and Th17 cells have been carried out in acute-on-chronic liver failure (ACLF). However, CD8(+) T cell, as a main participant in immune-mediated injuries and defense against microorganisms, has seldom been studied in ACLF. AIMS The purpose of this study was to investigate the CD8(+) T cell function, and the outcomes of patients with severe hepatitis [SH; serum bilirubin (SB) ≥ 10 mg/dl and prothrombin activity (PTA) < 60 %]. METHODS Thirty-six patients with chronic HBV-associated SH were included. Twenty normal chronic hepatitis B (CHB) patients (2 < SB < 10 (mg/dl) and PTA ≥ 60 %) and 28 healthy volunteers were enrolled as control groups. RESULTS Twenty-six patients with SH were diagnosed with ACLF (SB ≥ 10 mg/dl and PTA ≤ 40 %). The non-recovered ACLFs (NR-ACLF) had higher HBV DNA loads than recovered ACLFs (R-ACLF) (6.03 ± 1.79 vs. 4.36 ± 1.61 (log10, IU/L)). The NR-ACLFs had the highest neutrophil:lymphocyte ratios (5.10 ± 2.37) (all P < 0.001; a = 0.05). The CHBs had higher perforin(+) and TCM (CD45RA(-)CD62L(hi)CCR7(+)) proportions [31.28 ± 19.51, 5.32 ± 3.57 (%)] compared to R-ACLFs (11.75 ± 15.35, 0.78 ± 0.76 (%); P = 0.004, 0.001, respectively), or NR-ACLFs (11.61 ± 5.79, 1.14 ± 0.67 (%); P = 0.006, 0.003). The non-ACLF SHs had higher CD38(+) proportions than R-ACLFs or NR-ACLFs (25.46 ± 8.02 vs. 16.24 ± 7.77 or 16.81 ± 6.30 (%), P = 0.039, 0.023). CONCLUSIONS High neutrophil:lymphocyte ratios and a decrease in activated CD8(+) T cells may be related to poor outcomes in patients with SH.
Collapse
|
22
|
Yuzefpolskiy Y, Baumann FM, Kalia V, Sarkar S. Early CD8 T-cell memory precursors and terminal effectors exhibit equipotent in vivo degranulation. Cell Mol Immunol 2014; 12:400-8. [PMID: 25066419 PMCID: PMC4496536 DOI: 10.1038/cmi.2014.48] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 05/12/2014] [Accepted: 05/28/2014] [Indexed: 01/23/2023] Open
Abstract
Early after priming, effector CD8 T cells are distinguished into memory precursor and short-lived effector cell subsets (MPECs and SLECs). Here, we delineated a distinct in vivo heterogeneity in killer cell lectin-like receptor G1 (KLRG-1) expression, which was strongly associated with diverse MPEC and SLEC fates. These in vivo MPECs and SLECs expressed equivalent levels of cytotoxic molecules and effector cytokines. Using a unique in vivo degranulation assay, we found that the MPECs and SLECs similarly encountered infected target cells and elaborated equivalent levels of cytotoxicity in vivo. These data provide direct in vivo evidence that memory-fated cells pass through a robust effector phase. Additionally, the preferential localization of the MPECs in the lymph nodes, where a lesser degree of cytotoxicity was elaborated, suggests that the MPECs may be protected from excessive stimulation and terminal differentiation by virtue of their differential tissue localization. These data provide novel mechanistic insights into the linear decreasing potential model of memory differentiation.
Collapse
|
23
|
Kurachi M, Barnitz RA, Yosef N, Odorizzi PM, Dilorio MA, Lemieux ME, Yates K, Godec J, Klatt MG, Regev A, Wherry EJ, Haining WN. The transcription factor BATF operates as an essential differentiation checkpoint in early effector CD8+ T cells. Nat Immunol 2014; 15:373-83. [PMID: 24584090 PMCID: PMC4000237 DOI: 10.1038/ni.2834] [Citation(s) in RCA: 268] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 01/28/2014] [Indexed: 12/14/2022]
Abstract
The transcription factor BATF is required for the differentiation of interleukin 17 (IL-17)-producing helper T cells (TH17 cells) and follicular helper T cells (TFH cells). Here we identified a fundamental role for BATF in regulating the differentiation of effector of CD8(+) T cells. BATF-deficient CD8(+) T cells showed profound defects in effector population expansion and underwent proliferative and metabolic catastrophe early after encountering antigen. BATF, together with the transcription factors IRF4 and Jun proteins, bound to and promoted early expression of genes encoding lineage-specific transcription-factors (T-bet and Blimp-1) and cytokine receptors while paradoxically repressing genes encoding effector molecules (IFN-γ and granzyme B). Thus, BATF amplifies T cell antigen receptor (TCR)-dependent expression of transcription factors and augments the propagation of inflammatory signals but restrains the expression of genes encoding effector molecules. This checkpoint prevents irreversible commitment to an effector fate until a critical threshold of downstream transcriptional activity has been achieved.
Collapse
Affiliation(s)
- Makoto Kurachi
- Department of Microbiology University of Pennsylvania Perelman School Medicine, Philadelphia, PA, USA
- Institute for Immunology, University of Pennsylvania Perelman School Medicine, Philadelphia, PA, USA
| | - R. Anthony Barnitz
- Department of Pediatric Oncology, Dana-Farber Cancer Institute Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Nir Yosef
- Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, MA, USA
| | - Pamela M. Odorizzi
- Department of Microbiology University of Pennsylvania Perelman School Medicine, Philadelphia, PA, USA
- Institute for Immunology, University of Pennsylvania Perelman School Medicine, Philadelphia, PA, USA
| | - Michael A. Dilorio
- Department of Pediatric Oncology, Dana-Farber Cancer Institute Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Kathleen Yates
- Department of Pediatric Oncology, Dana-Farber Cancer Institute Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Jernej Godec
- Department of Pediatric Oncology, Dana-Farber Cancer Institute Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Martin G. Klatt
- Department of Pediatric Oncology, Dana-Farber Cancer Institute Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Aviv Regev
- Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, MA, USA
- Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - E. John Wherry
- Department of Microbiology University of Pennsylvania Perelman School Medicine, Philadelphia, PA, USA
- Institute for Immunology, University of Pennsylvania Perelman School Medicine, Philadelphia, PA, USA
| | - W. Nicholas Haining
- Department of Pediatric Oncology, Dana-Farber Cancer Institute Children’s Hospital, Harvard Medical School, Boston, MA, USA
- Division of Hematology/Oncology, Children’s Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, MA, USA
| |
Collapse
|
24
|
Ho LP, Yit PS, Ng LH, Linn YC, Zhao Y, Sun L, Ling KL, Chai Koh MB, Monica Shih MC, Li S, Wang XY, Tien SL, Goh YT. The Road to Memory: An Early Rest for the Long Journey. THE JOURNAL OF IMMUNOLOGY 2013; 191:5603-14. [DOI: 10.4049/jimmunol.1301175] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
25
|
Cho JH, Kim HO, Kim KS, Yang DH, Surh CD, Sprent J. Unique Features of Naive CD8+ T Cell Activation by IL-2. THE JOURNAL OF IMMUNOLOGY 2013; 191:5559-73. [DOI: 10.4049/jimmunol.1302293] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
26
|
The transcription factor IRF4 is essential for TCR affinity-mediated metabolic programming and clonal expansion of T cells. Nat Immunol 2013; 14:1155-65. [PMID: 24056747 DOI: 10.1038/ni.2710] [Citation(s) in RCA: 306] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 08/13/2013] [Indexed: 12/12/2022]
Abstract
During immune responses, T cells are subject to clonal competition, which leads to the predominant expansion of high-affinity clones; however, there is little understanding of how this process is controlled. We found here that the transcription factor IRF4 was induced in a manner dependent on affinity for the T cell antigen receptor (TCR) and acted as a dose-dependent regulator of the metabolic function of activated T cells. IRF4 regulated the expression of key molecules required for the aerobic glycolysis of effector T cells and was essential for the clonal expansion and maintenance of effector function of antigen-specific CD8(+) T cells. Thus, IRF4 is an indispensable molecular 'rheostat' that 'translates' TCR affinity into the appropriate transcriptional programs that link metabolic function with the clonal selection and effector differentiation of T cells.
Collapse
|
27
|
Grange M, Verdeil G, Arnoux F, Griffon A, Spicuglia S, Maurizio J, Buferne M, Schmitt-Verhulst AM, Auphan-Anezin N. Active STAT5 regulates T-bet and eomesodermin expression in CD8 T cells and imprints a T-bet-dependent Tc1 program with repressed IL-6/TGF-β1 signaling. THE JOURNAL OF IMMUNOLOGY 2013; 191:3712-24. [PMID: 24006458 DOI: 10.4049/jimmunol.1300319] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In adoptive therapy, CD8 T cells expressing active STAT5 (STAT5CA) transcription factors were found to be superior to unmanipulated counterparts in long-term persistence, capacity to infiltrate autochthonous mouse melanomas, thrive in their microenvironment, and induce their regression. However, the molecular mechanisms sustaining these properties were undefined. In this study, we report that STAT5CA induced sustained expression of genes controlling tissue homing, cytolytic granule composition, type 1 CD8 cytotoxic T cell-associated effector molecules granzyme B(+), IFN-γ(+), TNF-α(+), and CCL3(+), but not IL-2, and transcription factors T-bet and eomesodermin (Eomes). Chromatin immunoprecipitation sequencing analyses identified the genes possessing regulatory regions to which STAT5 bound in long-term in vivo maintained STAT5CA-expressing CD8 T cells. This analysis identified 34% of the genes differentially expressed between STAT5CA-expressing and nonexpressing effector T cells as direct STAT5CA target genes, including those encoding T-bet, Eomes, and granzyme B. Additionally, genes encoding the IL-6R and TGFbRII subunits were stably repressed, resulting in dampened IL-17-producing CD8 T cell polarization in response to IL-6 and TGF-β1. The absence of T-bet did not affect STAT5CA-driven accumulation of the T cells in tissue or their granzyme B expression but restored IL-2 secretion and IL-6R and TGFbRII expression and signaling, as illustrated by IL-17 induction. Therefore, concerted STAT5/T-bet/Eomes regulation controls homing, long-term maintenance, recall responses, and resistance to polarization towards IL-17-producing CD8 T cells while maintaining expression of an efficient type 1 CD8 cytotoxic T cell program (granzyme B(+), IFN-γ(+)).
Collapse
Affiliation(s)
- Magali Grange
- Centre d'Immunologie de Marseille-Luminy, Aix-Marseille Université, Marseille 13288, France
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Thaventhiran JED, Fearon DT, Gattinoni L. Transcriptional regulation of effector and memory CD8+ T cell fates. Curr Opin Immunol 2013; 25:321-8. [PMID: 23747000 PMCID: PMC3766771 DOI: 10.1016/j.coi.2013.05.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 05/10/2013] [Accepted: 05/15/2013] [Indexed: 12/12/2022]
Abstract
Immunity to intracellular pathogens and cancer relies on the generation of robust CD8(+) T cell effector responses as well as the establishment of immunological memory. During a primary immune response CD8(+) T cells experience diverse extracellular environmental cues and cell-cell interactions that trigger downstream transcriptional programs ultimately guiding a CD8(+) T cell to undertake either an effector or a memory cell fate. Here, we discuss our current understanding of the signaling pathways and transcriptional networks that regulate effector and memory commitment in CD8(+) T lymphocytes.
Collapse
Affiliation(s)
- James E D Thaventhiran
- Centre for Lung Infection, Papworth Hospital NHS Foundation Trust, Papworth Everard, Cambridge, United Kingdom.
| | | | | |
Collapse
|
29
|
MicroRNA-17~92 regulates effector and memory CD8 T-cell fates by modulating proliferation in response to infections. Blood 2013; 121:4473-83. [PMID: 23596046 DOI: 10.1182/blood-2012-06-435412] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The precise microRNAs and their target cellular processes involved in generation of durable T-cell immunity remain undefined. Here we show a dynamic regulation of microRNAs as CD8 T cells differentiate from naïve to effector and memory states, with short-lived effectors transiently expressing higher levels of oncogenic miR-17-92 compared with the relatively less proliferating memory-fated effectors. Conditional CD8 T-cell-intrinsic gain or loss of expression of miR-17-92 in mature cells after activation resulted in striking reciprocal effects compared with wild-type counterparts in the same infection milieu-miR-17-92 deletion resulted in lesser proliferation of antigen-specific cells during primary expansion while favoring enhanced IL-7Rα and Bcl-2 expression and multicytokine polyfunctionality; in contrast, constitutive expression of miR-17-92 promoted terminal effector differentiation, with decreased formation of polyfunctional lymphoid memory cells. Increased proliferation upon miR-17-92 overexpression correlated with decreased expression of tumor suppressor PTEN and increased PI3K-AKT-mTOR signaling. Thus, these studies identify miR17-92 as a critical regulator of CD8 T-cell expansion and effector and memory lineages in the physiological context of acute infection, and present miR-17-92 as a potential target for modulating immunologic outcome after vaccination or immunotherapeutic treatments of cancer, chronic infections, or autoimmune disorders.
Collapse
|
30
|
Goding SR, Wilson KA, Xie Y, Harris KM, Baxi A, Akpinarli A, Fulton A, Tamada K, Strome SE, Antony PA. Restoring immune function of tumor-specific CD4+ T cells during recurrence of melanoma. THE JOURNAL OF IMMUNOLOGY 2013; 190:4899-909. [PMID: 23536636 DOI: 10.4049/jimmunol.1300271] [Citation(s) in RCA: 157] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Recurrent solid malignancies are often refractory to standard therapies. Although adoptive T cell transfer may benefit select individuals, the majority of patients succumb to their disease. To address this important clinical dilemma, we developed a mouse melanoma model in which initial regression of advanced disease was followed by tumor recurrence. During recurrence, Foxp3(+) tumor-specific CD4(+) T cells became PD-1(+) and represented >60% of the tumor-specific CD4(+) T cells in the host. Concomitantly, tumor-specific CD4(+) T effector cells showed traits of chronic exhaustion, as evidenced by their high expression of the PD-1, TIM-3, 2B4, TIGIT, and LAG-3 inhibitory molecules. Although blockade of the PD-1/PD-L1 pathway with anti-PD-L1 Abs or depletion of tumor-specific regulatory T cells (Tregs) alone failed to reverse tumor recurrence, the combination of PD-L1 blockade with tumor-specific Treg depletion effectively mediated disease regression. Furthermore, blockade with a combination of anti-PD-L1 and anti-LAG-3 Abs overcame the requirement to deplete tumor-specific Tregs. In contrast, successful treatment of primary melanoma with adoptive cell therapy required only Treg depletion or Ab therapy, underscoring the differences in the characteristics of treatment between primary and relapsing cancer. These data highlight the need for preclinical development of combined immunotherapy approaches specifically targeting recurrent disease.
Collapse
Affiliation(s)
- Stephen R Goding
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Jia Y, Takeda K, Han J, Joetham A, Marcus RA, Lucas JJ, O'Connor BP, Gelfand EW. Stepwise epigenetic and phenotypic alterations poise CD8+ T cells to mediate airway hyperresponsiveness and inflammation. THE JOURNAL OF IMMUNOLOGY 2013; 190:4056-65. [PMID: 23509358 DOI: 10.4049/jimmunol.1202640] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The functional plasticity of CD8(+) T cells in an atopic environment, encompassing a spectrum from IFN-γ- to IL-13-producing cells, is pivotal in the development of allergic airway hyperresponsiveness and inflammation, and yet remains mechanistically undefined. We demonstrate that CD8(+) T cell IL-13 induction proceeded through a series of distinct IL-4/GATA3-regulated stages characterized by gene expression and epigenetic changes. In vivo, CD8(+) T cells exposed to an environment rich in IL-4 displayed epigenetic changes at the GATA3 and IL-13 promoter indicative of transcriptional activation and IL-13 production. In vitro, IL-4 triggered the stepwise molecular conversion of CD8(+) T cells from IFN-γ to IL-13 production. During the initial stage, IL-4 suppressed T-bet and induced GATA3 expression, characterized by enhanced activating histone modifications and RNA polymerase II (Pol II) recruitment to the GATA3 locus. Notably, recruitment of GATA3 and RNA Pol II to the IL-13 promoter was also detected at this initial stage. However, enhanced IL-13 transcription only occurred at a later stage after TCR stimulation, indicating that IL-4-induced GATA3 recruitment poises the IL-13 locus for TCR-mediated transcription. Thus, both in vivo and in vitro, an atopic (IL-4) environment poises CD8(+) T cells via stepwise epigenetic and phenotypic mechanisms for pathogenic conversion to IL-13 production, which is ultimately triggered via an allergen-mediated TCR stimulus.
Collapse
Affiliation(s)
- Yi Jia
- Division of Cell Biology, Department of Pediatrics, National Jewish Health, Denver, CO 80206, USA
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Choi YS, Yang JA, Yusuf I, Johnston RJ, Greenbaum J, Peters B, Crotty S. Bcl6 expressing follicular helper CD4 T cells are fate committed early and have the capacity to form memory. THE JOURNAL OF IMMUNOLOGY 2013; 190:4014-26. [PMID: 23487426 DOI: 10.4049/jimmunol.1202963] [Citation(s) in RCA: 184] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Follicular helper CD4 T (Tfh) cells are a distinct type of differentiated CD4 T cells uniquely specialized for B cell help. In this study, we examined Tfh cell fate commitment, including distinguishing features of Tfh versus Th1 proliferation and survival. Using cell transfer approaches at early time points after an acute viral infection, we demonstrate that early Tfh cells and Th1 cells are already strongly cell fate committed by day 3. Nevertheless, Tfh cell proliferation was tightly regulated in a TCR-dependent manner. The Tfh cells still depend on extrinsic cell fate cues from B cells in their physiological in vivo environment. Unexpectedly, we found that Tfh cells share a number of phenotypic parallels with memory precursor CD8 T cells, including selective upregulation of IL-7Rα and a collection of coregulated genes. As a consequence, the early Tfh cells can progress to robustly form memory cells. These data support the hypothesis that CD4 and CD8 T cells share core aspects of a memory cell precursor gene expression program involving Bcl6, and a strong relationship exists between Tfh cells and memory CD4 T cell development.
Collapse
Affiliation(s)
- Youn Soo Choi
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Hirschhorn-Cymerman D, Budhu S, Kitano S, Liu C, Zhao F, Zhong H, Lesokhin AM, Avogadri-Connors F, Yuan J, Li Y, Houghton AN, Merghoub T, Wolchok JD. Induction of tumoricidal function in CD4+ T cells is associated with concomitant memory and terminally differentiated phenotype. ACTA ACUST UNITED AC 2012; 209:2113-26. [PMID: 23008334 PMCID: PMC3478933 DOI: 10.1084/jem.20120532] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OX40 engagement induces a cytotoxic CD4+ T cell subpopulation to eradicate advance melanomas Harnessing the adaptive immune response to treat malignancy is now a clinical reality. Several strategies are used to treat melanoma; however, very few result in a complete response. CD4+ T cells are important and potent mediators of anti-tumor immunity and adoptive transfer of specific CD4+ T cells can promote tumor regression in mice and patients. OX40, a costimulatory molecule expressed primarily on activated CD4+ T cells, promotes and enhances anti-tumor immunity with limited success on large tumors in mice. We show that OX40 engagement, in the context of chemotherapy-induced lymphopenia, induces a novel CD4+ T cell population characterized by the expression of the master regulator eomesodermin that leads to both terminal differentiation and central memory phenotype, with concomitant secretion of Th1 and Th2 cytokines. This subpopulation of CD4+ T cells eradicates very advanced melanomas in mice, and an analogous population of human tumor-specific CD4+ T cells can kill melanoma in an in vitro system. The potency of the therapy extends to support a bystander killing effect of antigen loss variants. Our results show that these uniquely programmed effector CD4+ T cells have a distinctive phenotype with increased tumoricidal capability and support the use of immune modulation in reprogramming the phenotype of CD4+ T cells.
Collapse
Affiliation(s)
- Daniel Hirschhorn-Cymerman
- Swim Across America Laboratory, Immunology Program, Sloan-Kettering Institute for Cancer Research, New York, NY 10065, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Hohenauer T, Moore AW. The Prdm family: expanding roles in stem cells and development. Development 2012; 139:2267-82. [PMID: 22669819 DOI: 10.1242/dev.070110] [Citation(s) in RCA: 184] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Members of the Prdm family are characterized by an N-terminal PR domain that is related to the SET methyltransferase domain, and multiple zinc fingers that mediate sequence-specific DNA binding and protein-protein interactions. Prdm factors either act as direct histone methyltransferases or recruit a suite of histone-modifying enzymes to target promoters. In this way, they function in many developmental contexts to drive and maintain cell state transitions and to modify the activity of developmental signalling pathways. Here, we provide an overview of the structure and function of Prdm family members and discuss the roles played by these proteins in stem cells and throughout development.
Collapse
Affiliation(s)
- Tobias Hohenauer
- Disease Mechanism Research Core, RIKEN Brain Science Institute, Wako, Saitama, 351-0198, Japan
| | | |
Collapse
|
35
|
Wilson JJ, Pack CD, Lin E, Frost EL, Albrecht JA, Hadley A, Hofstetter AR, Tevethia SS, Schell TD, Lukacher AE. CD8 T cells recruited early in mouse polyomavirus infection undergo exhaustion. THE JOURNAL OF IMMUNOLOGY 2012; 188:4340-8. [PMID: 22447978 DOI: 10.4049/jimmunol.1103727] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Repetitive Ag encounter, coupled with dynamic changes in Ag density and inflammation, imparts phenotypic and functional heterogeneity to memory virus-specific CD8 T cells in persistently infected hosts. For herpesvirus infections, which cycle between latency and reactivation, recent studies demonstrate that virus-specific T cell memory is predominantly derived from naive precursors recruited during acute infection. Whether functional memory T cells to viruses that persist in a nonlatent, low-level infectious state (smoldering infection) originate from acute infection-recruited naive T cells is not known. Using mouse polyomavirus (MPyV) infection, we previously showed that virus-specific CD8 T cells in persistently infected mice are stably maintained and functionally competent; however, a sizeable fraction of these memory T cells are short-lived. Further, we found that naive anti-MPyV CD8 T cells are primed de novo during persistent infection and contribute to maintenance of the virus-specific CD8 T cell population and its phenotypic heterogeneity. Using a new MPyV-specific TCR-transgenic system, we now demonstrate that virus-specific CD8 T cells recruited during persistent infection possess multicytokine effector function, have strong replication potential, express a phenotype profile indicative of authentic memory capability, and are stably maintained. In contrast, CD8 T cells recruited early in MPyV infection express phenotypic and functional attributes of clonal exhaustion, including attrition from the memory pool. These findings indicate that naive virus-specific CD8 T cells recruited during persistent infection contribute to preservation of functional memory against a smoldering viral infection.
Collapse
Affiliation(s)
- Jarad J Wilson
- Department of Pathology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Jin B, Sun T, Yu XH, Yang YX, Yeo AET. The effects of TLR activation on T-cell development and differentiation. Clin Dev Immunol 2012; 2012:836485. [PMID: 22737174 PMCID: PMC3376488 DOI: 10.1155/2012/836485] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Accepted: 01/26/2012] [Indexed: 02/07/2023]
Abstract
Invading pathogens have unique molecular signatures that are recognized by Toll-like receptors (TLRs) resulting in either activation of antigen-presenting cells (APCs) and/or costimulation of T cells inducing both innate and adaptive immunity. TLRs are also involved in T-cell development and can reprogram Treg cells to become helper cells. T cells consist of various subsets, that is, Th1, Th2, Th17, T follicular helper (Tfh), cytotoxic T lymphocytes (CTLs), regulatory T cells (Treg) and these originate from thymic progenitor thymocytes. T-cell receptor (TCR) activation in distinct T-cell subsets with different TLRs results in differing outcomes, for example, activation of TLR4 expressed in T cells promotes suppressive function of regulatory T cells (Treg), while activation of TLR6 expressed in T cells abrogates Treg function. The current state of knowledge of regarding TLR-mediated T-cell development and differentiation is reviewed.
Collapse
Affiliation(s)
- Bo Jin
- 1Department of Gastroenterology, The 309th Hospital of The People's Liberation Army, Beijing 100091, China
- 2Department of Infectious Diseases, Naval General Hospital, Beijing 100048, China
- *Bo Jin: and
| | - Tao Sun
- 2Department of Infectious Diseases, Naval General Hospital, Beijing 100048, China
- *Tao Sun:
| | - Xiao-Hong Yu
- 2Department of Infectious Diseases, Naval General Hospital, Beijing 100048, China
| | - Ying-Xiang Yang
- 2Department of Infectious Diseases, Naval General Hospital, Beijing 100048, China
| | | |
Collapse
|
37
|
Ji Y, Pos Z, Rao M, Klebanoff CA, Yu Z, Sukumar M, Reger RN, Palmer DC, Borman ZA, Muranski P, Wang E, Schrump DS, Marincola FM, Restifo NP, Gattinoni L. Repression of the DNA-binding inhibitor Id3 by Blimp-1 limits the formation of memory CD8+ T cells. Nat Immunol 2011; 12:1230-7. [PMID: 22057288 PMCID: PMC3226770 DOI: 10.1038/ni.2153] [Citation(s) in RCA: 151] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Accepted: 09/29/2011] [Indexed: 12/13/2022]
Abstract
Blimp-1 is a transcriptional repressor that promotes the differentiation of CD8+ T cells into short-lived KLRG-1+ effector cells (SLEC), but how it operates remains poorly defined. Here we show that Blimp-1 binds and represses the Id3 promoter in SLEC. Repression of Id3 by Blimp-1 was dispensable for SLEC development but limited their capacity to persist as memory cells. Enforced expression of Id3 was sufficient to rescue SLEC survival and enhanced recall responses. Id3 function was mediated in part through inhibition of E2a transcriptional activity and induction of genes regulating genome stability. These findings identify a Blimp-1-Id3-E2a axis as a key molecular switch that determines whether effector CD8+ T cells are programmed to die or enter the memory pool.
Collapse
Affiliation(s)
- Yun Ji
- Center for Cancer Research, National Cancer Institute, US National Institutes of Health, Bethesda, Maryland, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Nanoparticle conjugation of antigen enhances cytotoxic T-cell responses in pulmonary vaccination. Proc Natl Acad Sci U S A 2011; 108:E989-97. [PMID: 21969597 DOI: 10.1073/pnas.1104264108] [Citation(s) in RCA: 149] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The ability of vaccines to induce memory cytotoxic T-cell responses in the lung is crucial in stemming and treating pulmonary diseases caused by viruses and bacteria. However, most approaches to subunit vaccines produce primarily humoral and only to a lesser extent cellular immune responses. We developed a nanoparticle (NP)-based carrier that, upon delivery to the lung, specifically targets pulmonary dendritic cells, thus enhancing antigen uptake and transport to the draining lymph node; antigen coupling via a disulfide link promotes highly efficient cross-presentation after uptake, inducing potent protective mucosal and systemic CD8(+) T-cell immunity. Pulmonary immunization with NP-conjugated ovalbumin (NP-ova) with CpG induced a threefold enhancement of splenic antigen-specific CD8(+) T cells displaying increased CD107a expression and IFN-γ production compared with immunization with soluble (i.e., unconjugated) ova with CpG. This enhanced response was accompanied by a potent Th17 cytokine profile in CD4(+) T cells. After 50 d, NP-ova and CpG also led to substantial enhancements in memory CD8(+) T-cell effector functions. Importantly, pulmonary vaccination with NP-ova and CpG induced as much as 10-fold increased frequencies of antigen-specific effector CD8(+) T cells to the lung and completely protected mice from morbidity following influenza-ova infection. Here, we highlight recruitment to the lung of a long-lasting pool of protective effector memory cytotoxic T-cells by our disulfide-linked antigen-conjugated NP formulation. These results suggest the reduction-reversible NP system is a highly promising platform for vaccines specifically targeting intracellular pathogens infecting the lung.
Collapse
|
39
|
Yoshikai Y. [Studies of T cells for better understanding of immunity and allergy]. NIHON JIBIINKOKA GAKKAI KAIHO 2011; 114:539-46. [PMID: 21815306 DOI: 10.3950/jibiinkoka.114.539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
40
|
Katz JD, Janssen EM. Breaking T cell tolerance to beta cell antigens by merocytic dendritic cells. Cell Mol Life Sci 2011; 68:2873-83. [PMID: 21626409 DOI: 10.1007/s00018-011-0730-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Revised: 04/12/2011] [Accepted: 05/09/2011] [Indexed: 11/28/2022]
Abstract
In type 1 diabetes (T1D), a break in central and peripheral tolerance results in antigen-specific T cells destroying insulin-producing, pancreatic beta cells. Herein, we discuss the critical sub-population of dendritic cells responsible for mediating both the cross-presentation of islet antigen to CD8(+) T cells and the direct presentation of beta cell antigen to CD4(+) T cells. These cells, termed merocytic dendritic cells (mcDC), are more numerous in non-obese diabetic (NOD), and antigen-loaded mcDC rescue CD8(+) T cells from peripheral anergy and deletion, and stimulate islet-reactive CD4(+) T cells. When purified from the pancreatic lymph nodes of overtly diabetic NOD mice, mcDC can break peripheral T cell tolerance to beta cell antigens in vivo and induce rapid onset T cell-mediated T1D in young NOD mouse. Thus, the mcDC subset appears to represent the long-sought critical antigen-presenting cell responsible for breaking peripheral tolerance to beta cell antigen in vivo.
Collapse
Affiliation(s)
- Jonathan D Katz
- Division of Endocrinology, Department of Pediatrics, Cincinnati Children's Research Foundation, University of Cincinnati College of Medicine, Cincinnati, OH 45229-3039, USA.
| | | |
Collapse
|
41
|
Diverse roles of inhibitor of differentiation 2 in adaptive immunity. Clin Dev Immunol 2011; 2011:281569. [PMID: 21437223 PMCID: PMC3061294 DOI: 10.1155/2011/281569] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2010] [Accepted: 01/15/2011] [Indexed: 11/17/2022]
Abstract
The helix-loop-helix (HLH) transcription factor inhibitor of DNA binding 2 (Id2) has been implicated as a regulator of hematopoiesis and embryonic development. While its role in early lymphopoiesis has been well characterized, new roles in adaptive immune responses have recently been uncovered opening exciting new directions for investigation. In the innate immune system, Id2 is required for the development of mature natural killer (NK) cells, lymphoid tissue-inducer (LTi) cells, and the recently identified interleukin (IL)-22 secreting nonconventional innate lymphocytes found in the gut. In addition, Id2 has been implicated in the development of specific dendritic cell (DC) subsets, decisions determining the formation of αβ and γδ T-cell development, NK T-cell behaviour, and in the maintenance of effector and memory CD8(+) T cells in peripheral tissues. Here, we review the current understanding of the role of Id2 in lymphopoiesis and in the development of the adaptive immune response required for maintaining immune homeostasis and immune protection.
Collapse
|
42
|
|
43
|
Heterologous plasmid DNA prime-recombinant human adenovirus 5 boost vaccination generates a stable pool of protective long-lived CD8(+) T effector memory cells specific for a human parasite, Trypanosoma cruzi. Infect Immun 2011; 79:2120-30. [PMID: 21357719 DOI: 10.1128/iai.01190-10] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Recently, we described a heterologous prime-boost strategy using plasmid DNA followed by replication-defective human recombinant adenovirus type 5 as a powerful strategy to elicit long-lived CD8(+) T-cell-mediated protective immunity against experimental systemic infection of mice with a human intracellular protozoan parasite, Trypanosoma cruzi. In the present study, we further characterized the protective long-lived CD8(+) T cells. We compared several functional and phenotypic aspects of specific CD8(+) T cells present 14 or 98 days after the last immunizing dose and found the following: (i) the numbers of specific cells were similar, as determined by multimer staining or by determining the number of gamma interferon (IFN-γ)-secreting cells by enzyme-linked immunospot (ELISPOT) assay; (ii) these cells were equally cytotoxic in vivo; (iii) following in vitro stimulation, a slight decline in the frequency of multifunctional cells (CD107a(+) IFN-γ(+) or CD107a(+) IFN-γ(+) tumor necrosis factor alpha positive [TNF-α(+)]) was paralleled by a significant increase of CD107a singly positive cells after 98 days; (iv) the expression of several surface markers was identical, except for the reexpression of CD127 after 98 days; (v) the use of genetically deficient mice revealed a role for interleukin-12 (IL-12)/IL-23, but not IFN-γ, in the maintenance of these memory cells; and (vi) subsequent immunizations with an unrelated virus or a plasmid vaccine or the depletion of CD4(+) T cells did not significantly erode the number or function of these CD8(+) T cells during the 15-week period. From these results, we concluded that heterologous plasmid DNA prime-adenovirus boost vaccination generated a stable pool of functional protective long-lived CD8(+) T cells with an effector memory phenotype.
Collapse
|
44
|
Kim C, Williams MA. Nature and nurture: T-cell receptor-dependent and T-cell receptor-independent differentiation cues in the selection of the memory T-cell pool. Immunology 2010; 131:310-7. [PMID: 20738422 DOI: 10.1111/j.1365-2567.2010.03338.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The initiation of a T-cell response begins with the interaction of an individual T-cell clone with its cognate antigen presented by MHC. Although the strength of the T-cell receptor (TCR) -antigen-MHC (TCR-pMHC) interaction plays an important and obvious role in the recruitment of T cells into the immune response, evidence in recent years has suggested that the strength of this initial interaction can influence various other aspects of the fate of an individual T-cell clone and its daughter cells. In this review, we will describe differences in the way CD4(+) and CD8(+) T cells incorporate antigen-driven differentiation and survival signals during the response to acute infection. Furthermore, we will discuss increasing evidence that the quality and/or quantity of the initial TCR-pMHC interaction can drive the differentiation and long-term survival of T helper type 1 memory populations.
Collapse
Affiliation(s)
- Chulwoo Kim
- Department of Pathology, University of Utah, Salt Lake City, UT 84112, USA
| | | |
Collapse
|