1
|
Biswas M, Nurunnabi M, Khatun Z. Understanding Mucosal Physiology and Rationale of Formulation Design for Improved Mucosal Immunity. ACS APPLIED BIO MATERIALS 2024; 7:5037-5056. [PMID: 38787767 DOI: 10.1021/acsabm.4c00395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
The oral and nasal cavities serve as critical gateways for infectious pathogens, with microorganisms primarily gaining entry through these routes. Our first line of defense against these invaders is the mucosal membrane, a protective barrier that shields the body's internal systems from infection while also contributing to vital functions like air and nutrient intake. One of the key features of this mucosal barrier is its ability to protect the physiological system from pathogens. Additionally, mucosal tolerance plays a crucial role in maintaining homeostasis by regulating the pH and water balance within the body. Recognizing the importance of the mucosal barrier, researchers have developed various mucosal formulations to enhance the immune response. Mucosal vaccines, for example, deliver antigens directly to mucosal tissues, triggering local immune stimulation and ultimately inducing systemic immunity. Studies have shown that lipid-based formulations such as liposomes and virosomes can effectively elicit both local and systemic immune responses. Furthermore, mucoadhesive polymeric particles, with their prolonged delivery to target sites, have demonstrated an enhanced immune response. This Review delves into the critical role of material selection and delivery approaches in optimizing mucosal immunity.
Collapse
Affiliation(s)
- Mila Biswas
- Department of Electrical and Computer Engineering, University of Texas at El Paso, El Paso, Texas 79902, United States
| | - Md Nurunnabi
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, Texas 79902, United States
- Department of Biomedical Engineering, College of Engineering, University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Zehedina Khatun
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Texas at El Paso, El Paso, Texas 79902, United States
| |
Collapse
|
2
|
Ma B, Tao M, Li Z, Zheng Q, Wu H, Chen P. Mucosal vaccines for viral diseases: Status and prospects. Virology 2024; 593:110026. [PMID: 38373360 DOI: 10.1016/j.virol.2024.110026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 02/08/2024] [Accepted: 02/12/2024] [Indexed: 02/21/2024]
Abstract
Virus-associated infectious diseases are highly detrimental to human health and animal husbandry. Among all countermeasures against infectious diseases, prophylactic vaccines, which developed through traditional or novel approaches, offer potential benefits. More recently, mucosal vaccines attract attention for their extraordinary characteristics compared to conventional parenteral vaccines, particularly for mucosal-related pathogens. Representatively, coronavirus disease 2019 (COVID-19), a respiratory disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), further accelerated the research and development efforts for mucosal vaccines by thoroughly investigating existing strategies or involving novel techniques. While several vaccine candidates achieved positive progresses, thus far, part of the current COVID-19 mucosal vaccines have shown poor performance, which underline the need for next-generation mucosal vaccines and corresponding platforms. In this review, we summarized the typical mucosal vaccines approved for humans or animals and sought to elucidate the underlying mechanisms of these successful cases. In addition, mucosal vaccines against COVID-19 that are in human clinical trials were reviewed in detail since this public health event mobilized all advanced technologies for possible solutions. Finally, the gaps in developing mucosal vaccines, potential solutions and prospects were discussed. Overall, rational application of mucosal vaccines would facilitate the establishing of mucosal immunity and block the transmission of viral diseases.
Collapse
Affiliation(s)
- Bingjie Ma
- College of Animal Science and Technology, Xinyang Agriculture and Forestry University, Xinyang, China
| | - Mengxiao Tao
- College of Animal Science and Technology, Xinyang Agriculture and Forestry University, Xinyang, China
| | - Zhili Li
- College of Animal Science and Technology, Xinyang Agriculture and Forestry University, Xinyang, China
| | - Quanfang Zheng
- College of Animal Science and Technology, Xinyang Agriculture and Forestry University, Xinyang, China
| | - Haigang Wu
- College of Animal Science and Technology, Xinyang Agriculture and Forestry University, Xinyang, China
| | - Peirong Chen
- College of Animal Science and Technology, Xinyang Agriculture and Forestry University, Xinyang, China.
| |
Collapse
|
3
|
Fu W, Guo M, Zhou X, Wang Z, Sun J, An Y, Guan T, Hu M, Li J, Chen Z, Ye J, Gao X, Gao GF, Dai L, Wang Y, Chen C. Injectable Hydrogel Mucosal Vaccine Elicits Protective Immunity against Respiratory Viruses. ACS NANO 2024; 18:11200-11216. [PMID: 38620102 DOI: 10.1021/acsnano.4c00155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Intranasal vaccines, eliciting mucosal immune responses, can prevent early invasion, replication, and transmission of pathogens in the respiratory tract. However, the effective delivery of antigens through the nasal barrier and boosting of a robust systematic and mucosal immune remain challenges in intranasal vaccine development. Here, we describe an intranasally administered self-healing hydrogel vaccine with a reversible strain-dependent sol-gel transition by precisely modulating the self-assembly processes between the natural drug rhein and aluminum ions. The highly bioadhesive hydrogel vaccine enhances antigen stability and prolongs residence time in the nasal cavity and lungs by confining the antigen to the surface of the nasal mucosa, acting as a "mucosal mask". The hydrogel also stimulates superior immunoenhancing properties, including antigen internalization, cross-presentation, and dendritic cell maturation. Furthermore, the formulation recruits immunocytes to the nasal mucosa and nasal-associated lymphoid tissue (NALT) while enhancing antigen-specific humoral, cellular, and mucosal immune responses. Our findings present a promising strategy for preparing intranasal vaccines for infectious diseases or cancer.
Collapse
Affiliation(s)
- Wenjiao Fu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, New Cornerstone Science Laboratory, National Center for Nanoscience and Technology of China, Beijing 100190, People's Republic of China
- Sino-Danish College, Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Mengyu Guo
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, New Cornerstone Science Laboratory, National Center for Nanoscience and Technology of China, Beijing 100190, People's Republic of China
| | - Xuemei Zhou
- School of Life Sciences, Hebei University, Baoding 071002, People's Republic of China
| | - Zhenzhen Wang
- Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, People's Republic of China
| | - Jiufeng Sun
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430, People's Republic of China
| | - Yaling An
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Tong Guan
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, New Cornerstone Science Laboratory, National Center for Nanoscience and Technology of China, Beijing 100190, People's Republic of China
| | - Mingdi Hu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, New Cornerstone Science Laboratory, National Center for Nanoscience and Technology of China, Beijing 100190, People's Republic of China
- Sino-Danish College, Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Jiayang Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, New Cornerstone Science Laboratory, National Center for Nanoscience and Technology of China, Beijing 100190, People's Republic of China
| | - Ziwei Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, New Cornerstone Science Laboratory, National Center for Nanoscience and Technology of China, Beijing 100190, People's Republic of China
| | - Jinmin Ye
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, New Cornerstone Science Laboratory, National Center for Nanoscience and Technology of China, Beijing 100190, People's Republic of China
| | - Xingfa Gao
- Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, People's Republic of China
| | - George Fu Gao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Lianpan Dai
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Yaling Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, New Cornerstone Science Laboratory, National Center for Nanoscience and Technology of China, Beijing 100190, People's Republic of China
- Research Unit of Nanoscience and Technology, Chinese Academy of Medical Sciences, Beijing 100021, People's Republic of China
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, New Cornerstone Science Laboratory, National Center for Nanoscience and Technology of China, Beijing 100190, People's Republic of China
- Sino-Danish College, Sino-Danish Center for Education and Research, University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
- Research Unit of Nanoscience and Technology, Chinese Academy of Medical Sciences, Beijing 100021, People's Republic of China
| |
Collapse
|
4
|
Song Y, Mehl F, Zeichner SL. Vaccine Strategies to Elicit Mucosal Immunity. Vaccines (Basel) 2024; 12:191. [PMID: 38400174 PMCID: PMC10892965 DOI: 10.3390/vaccines12020191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/29/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
Vaccines are essential tools to prevent infection and control transmission of infectious diseases that threaten public health. Most infectious agents enter their hosts across mucosal surfaces, which make up key first lines of host defense against pathogens. Mucosal immune responses play critical roles in host immune defense to provide durable and better recall responses. Substantial attention has been focused on developing effective mucosal vaccines to elicit robust localized and systemic immune responses by administration via mucosal routes. Mucosal vaccines that elicit effective immune responses yield protection superior to parenterally delivered vaccines. Beyond their valuable immunogenicity, mucosal vaccines can be less expensive and easier to administer without a need for injection materials and more highly trained personnel. However, developing effective mucosal vaccines faces many challenges, and much effort has been directed at their development. In this article, we review the history of mucosal vaccine development and present an overview of mucosal compartment biology and the roles that mucosal immunity plays in defending against infection, knowledge that has helped inform mucosal vaccine development. We explore new progress in mucosal vaccine design and optimization and novel approaches created to improve the efficacy and safety of mucosal vaccines.
Collapse
Affiliation(s)
- Yufeng Song
- Department of Pediatrics, University of Virginia, Charlottesville, VA 22908, USA; (Y.S.)
| | - Frances Mehl
- Department of Pediatrics, University of Virginia, Charlottesville, VA 22908, USA; (Y.S.)
| | - Steven L. Zeichner
- Department of Pediatrics, University of Virginia, Charlottesville, VA 22908, USA; (Y.S.)
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA 22908, USA
| |
Collapse
|
5
|
Harun-Or-Rashid M, Aktar MN, Hossain MS, Sarkar N, Islam MR, Arafat ME, Bhowmik S, Yusa SI. Recent Advances in Micro- and Nano-Drug Delivery Systems Based on Natural and Synthetic Biomaterials. Polymers (Basel) 2023; 15:4563. [PMID: 38231996 PMCID: PMC10708661 DOI: 10.3390/polym15234563] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/22/2023] [Accepted: 11/26/2023] [Indexed: 01/19/2024] Open
Abstract
Polymeric drug delivery technology, which allows for medicinal ingredients to enter a cell more easily, has advanced considerably in recent decades. Innovative medication delivery strategies use biodegradable and bio-reducible polymers, and progress in the field has been accelerated by future possible research applications. Natural polymers utilized in polymeric drug delivery systems include arginine, chitosan, dextrin, polysaccharides, poly(glycolic acid), poly(lactic acid), and hyaluronic acid. Additionally, poly(2-hydroxyethyl methacrylate), poly(N-isopropyl acrylamide), poly(ethylenimine), dendritic polymers, biodegradable polymers, and bioabsorbable polymers as well as biomimetic and bio-related polymeric systems and drug-free macromolecular therapies have been employed in polymeric drug delivery. Different synthetic and natural biomaterials are in the clinical phase to mitigate different diseases. Drug delivery methods using natural and synthetic polymers are becoming increasingly common in the pharmaceutical industry, with biocompatible and bio-related copolymers and dendrimers having helped cure cancer as drug delivery systems. This review discusses all the above components and how, by combining synthetic and biological approaches, micro- and nano-drug delivery systems can result in revolutionary polymeric drug and gene delivery devices.
Collapse
Affiliation(s)
- Md. Harun-Or-Rashid
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji 671-2280, Hyogo, Japan; (M.H.-O.-R.); (M.N.A.); (S.B.)
| | - Most. Nazmin Aktar
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji 671-2280, Hyogo, Japan; (M.H.-O.-R.); (M.N.A.); (S.B.)
| | - Md. Sabbir Hossain
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.S.H.); (N.S.); (M.R.I.); (M.E.A.)
| | - Nadia Sarkar
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.S.H.); (N.S.); (M.R.I.); (M.E.A.)
| | - Md. Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.S.H.); (N.S.); (M.R.I.); (M.E.A.)
| | - Md. Easin Arafat
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.S.H.); (N.S.); (M.R.I.); (M.E.A.)
| | - Shukanta Bhowmik
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji 671-2280, Hyogo, Japan; (M.H.-O.-R.); (M.N.A.); (S.B.)
| | - Shin-ichi Yusa
- Department of Applied Chemistry, Graduate School of Engineering, University of Hyogo, 2167 Shosha, Himeji 671-2280, Hyogo, Japan; (M.H.-O.-R.); (M.N.A.); (S.B.)
| |
Collapse
|
6
|
Ebensen T, Arntz A, Schulze K, Hanefeld A, Guzmán CA, Scherließ R. Pulmonary Application of Novel Antigen-Loaded Chitosan Nano-Particles Co-Administered with the Mucosal Adjuvant C-Di-AMP Resulted in Enhanced Immune Stimulation and Dose Sparing Capacity. Pharmaceutics 2023; 15:pharmaceutics15041238. [PMID: 37111723 PMCID: PMC10145907 DOI: 10.3390/pharmaceutics15041238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/31/2023] [Accepted: 04/03/2023] [Indexed: 04/29/2023] Open
Abstract
The most successful medical intervention for preventing infectious diseases is still vaccination. This effective strategy has resulted in decreased mortality and extended life expectancy. However, there is still a critical need for novel vaccination strategies and vaccines. Antigen cargo delivery by nanoparticle-based carriers could promote superior protection against constantly emerging viruses and subsequent diseases. This should be sustained by the induction of vigorous cellular and humoral immunity, capable of acting both at the systemic and mucosal levels. Induction of antigen-specific responses at the portal of entry of pathogens is considered an important scientific challenge. Chitosan, which is widely regarded as a biodegradable, biocompatible and non-toxic material for functionalized nanocarriers, as well as having adjuvant activity, enables antigen administration via less-invasive mucosal routes such as sublingual or pulmonic application route. In this proof of principle study, we evaluate the efficacy of chitosan nanocarriers loaded with the model antigen Ovalbumin (OVA) co-administrated with the STING agonist bis-(3',5')-cyclic dimeric adenosine monophosphate (c-di-AMP) given by pulmonary route. Here, BALB/c mice were immunized with four doses of the formulation that stimulates enhanced antigen-specific IgG titers in sera. In addition, this vaccine formulation also promotes a strong Th1/Th17 response characterized by high secretion of IFN-γ, IL-2 and IL-17, as well as induction of CD8+ T cells. Furthermore, the novel formulation exhibited strong dose-sparing capacity, enabling a 90% reduction of the antigen concentration. Altogether, our results suggest that chitosan nanocarriers, in combination with the mucosal adjuvant c-di-AMP, are a promising technology platform for the development of innovative mucosal vaccines against respiratory pathogens (e.g., Influenza or RSV) or for therapeutic vaccines.
Collapse
Affiliation(s)
- Thomas Ebensen
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research (HZI), Inhoffenstr. 7, 38124 Braunschweig, Germany
| | - Andrea Arntz
- Department of Pharmaceutics and Biopharmaceutics, Kiel University, Grasweg 9a, 24118 Kiel, Germany
| | - Kai Schulze
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research (HZI), Inhoffenstr. 7, 38124 Braunschweig, Germany
| | - Andrea Hanefeld
- Merck KGaA, Frankfurter Straße 250, 64293 Darmstadt, Germany
| | - Carlos A Guzmán
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research (HZI), Inhoffenstr. 7, 38124 Braunschweig, Germany
| | - Regina Scherließ
- Department of Pharmaceutics and Biopharmaceutics, Kiel University, Grasweg 9a, 24118 Kiel, Germany
| |
Collapse
|
7
|
Ou B, Yang Y, Lv H, Lin X, Zhang M. Current Progress and Challenges in the Study of Adjuvants for Oral Vaccines. BioDrugs 2023; 37:143-180. [PMID: 36607488 PMCID: PMC9821375 DOI: 10.1007/s40259-022-00575-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2022] [Indexed: 01/07/2023]
Abstract
Over the past 20 years, a variety of potential adjuvants have been studied to enhance the effect of oral vaccines in the intestinal mucosal immune system; however, no licensed adjuvant for clinical application in oral vaccines is available. In this review, we systematically updated the research progress of oral vaccine adjuvants over the past 2 decades, including biogenic adjuvants, non-biogenic adjuvants, and their multi-type composite adjuvant materials, and introduced their immune mechanisms of adjuvanticity, aiming at providing theoretical basis for developing feasible and effective adjuvants for oral vaccines. Based on these insights, we briefly discussed the challenges in the development of oral vaccine adjuvants and prospects for their future development.
Collapse
Affiliation(s)
- Bingming Ou
- School of Life Sciences, Zhaoqing University, Zhaoqing, China
| | - Ying Yang
- College of Animal Science, Guizhou University, Guiyang, China
| | - Haihui Lv
- School of Life Sciences, Zhaoqing University, Zhaoqing, China
| | - Xin Lin
- School of Life Sciences, Zhaoqing University, Zhaoqing, China
| | - Minyu Zhang
- School of Life Sciences, Zhaoqing University, Zhaoqing, China. .,School of Physical Education and Sports Science, South China Normal University, Guangzhou, China.
| |
Collapse
|
8
|
Verma SK, Mahajan P, Singh NK, Gupta A, Aggarwal R, Rappuoli R, Johri AK. New-age vaccine adjuvants, their development, and future perspective. Front Immunol 2023; 14:1043109. [PMID: 36911719 PMCID: PMC9998920 DOI: 10.3389/fimmu.2023.1043109] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 01/26/2023] [Indexed: 02/26/2023] Open
Abstract
In the present scenario, immunization is of utmost importance as it keeps us safe and protects us from infectious agents. Despite the great success in the field of vaccinology, there is a need to not only develop safe and ideal vaccines to fight deadly infections but also improve the quality of existing vaccines in terms of partial or inconsistent protection. Generally, subunit vaccines are known to be safe in nature, but they are mostly found to be incapable of generating the optimum immune response. Hence, there is a great possibility of improving the potential of a vaccine in formulation with novel adjuvants, which can effectively impart superior immunity. The vaccine(s) in formulation with novel adjuvants may also be helpful in fighting pathogens of high antigenic diversity. However, due to the limitations of safety and toxicity, very few human-compatible adjuvants have been approved. In this review, we mainly focus on the need for new and improved vaccines; the definition of and the need for adjuvants; the characteristics and mechanisms of human-compatible adjuvants; the current status of vaccine adjuvants, mucosal vaccine adjuvants, and adjuvants in clinical development; and future directions.
Collapse
Affiliation(s)
| | - Pooja Mahajan
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Nikhlesh K. Singh
- Integrative Biosciences Center, Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University, School of Medicine, Detroit, MI, United States
| | - Ankit Gupta
- Microbiology Division, Defence Research and Development Establishment, Gwalior, India
| | - Rupesh Aggarwal
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | | | - Atul Kumar Johri
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
9
|
Dieye Y, Nguer CM, Thiam F, Diouara AAM, Fall C. Recombinant Helicobacter pylori Vaccine Delivery Vehicle: A Promising Tool to Treat Infections and Combat Antimicrobial Resistance. Antibiotics (Basel) 2022; 11:antibiotics11121701. [PMID: 36551358 PMCID: PMC9774608 DOI: 10.3390/antibiotics11121701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/17/2022] [Accepted: 11/21/2022] [Indexed: 11/29/2022] Open
Abstract
Antimicrobial resistance (AMR) has become a global public health threat. Experts agree that unless proper actions are taken, the number of deaths due to AMR will increase. Many strategies are being pursued to tackle AMR, one of the most important being the development of efficient vaccines. Similar to other bacterial pathogens, AMR in Helicobacter pylori (Hp) is rising worldwide. Hp infects half of the human population and its prevalence ranges from <10% in developed countries to up to 90% in low-income countries. Currently, there is no vaccine available for Hp. This review provides a brief summary of the use of antibiotic-based treatment for Hp infection and its related AMR problems together with a brief description of the status of vaccine development for Hp. It is mainly dedicated to genetic tools and strategies that can be used to develop an oral recombinant Hp vaccine delivery platform that is (i) completely attenuated, (ii) can survive, synthesize in situ and deliver antigens, DNA vaccines, and adjuvants to antigen-presenting cells at the gastric mucosa, and (iii) possibly activate desired compartments of the gut-associated mucosal immune system. Recombinant Hp vaccine delivery vehicles can be used for therapeutic or prophylactic vaccination for Hp and other microbial pathogens.
Collapse
Affiliation(s)
- Yakhya Dieye
- Groupe de Recherche Biotechnologies Appliquées & Bioprocédés Environnementaux (GRBA-BE), École Supérieure Polytechnique, Université Cheikh Anta Diop, Dakar BP 5085, Senegal
- Pôle de Microbiologie, Institut Pasteur de Dakar, 36 Avenue Pasteur, Dakar BP 220, Senegal
- Correspondence: or ; Tel.: +221-784-578-766
| | - Cheikh Momar Nguer
- Groupe de Recherche Biotechnologies Appliquées & Bioprocédés Environnementaux (GRBA-BE), École Supérieure Polytechnique, Université Cheikh Anta Diop, Dakar BP 5085, Senegal
| | - Fatou Thiam
- Groupe de Recherche Biotechnologies Appliquées & Bioprocédés Environnementaux (GRBA-BE), École Supérieure Polytechnique, Université Cheikh Anta Diop, Dakar BP 5085, Senegal
| | - Abou Abdallah Malick Diouara
- Groupe de Recherche Biotechnologies Appliquées & Bioprocédés Environnementaux (GRBA-BE), École Supérieure Polytechnique, Université Cheikh Anta Diop, Dakar BP 5085, Senegal
| | - Cheikh Fall
- Pôle de Microbiologie, Institut Pasteur de Dakar, 36 Avenue Pasteur, Dakar BP 220, Senegal
| |
Collapse
|
10
|
Carreño-Campos C, Arevalo-Villalobos JI, Villarreal ML, Ortiz-Caltempa A, Rosales-Mendoza S. Establishment of the Carrot-Made LTB-Syn Antigen Cell Line in Shake Flask and Airlift Bioreactor Cultures. PLANTA MEDICA 2022; 88:1060-1068. [PMID: 34918307 DOI: 10.1055/a-1677-4135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Carrot (Daucus carota) cells have been used to effectively manufacture recombinant biopharmaceuticals such as cytokines, vaccines, and antibodies. We generated the carrot cell line Z4, genetically modified to produce the LTB-Syn antigen, which is a fusion protein proposed for immunotherapy against synucleinopathies. In this work, the Z4 cell suspension line was cultivated to produce the LTB-Syn protein in a 250 mL shake flask and 2 L airlift bioreactor cultures grown for 45 and 30 days, respectively. Maximum biomass was obtained on day 15 in both the airlift bioreactor (35.00 ± 0.04 g/L DW) and shake flasks (17.00 ± 0.04 g/L DW). In the bioreactor, the highest LTB-Syn protein yield (1.52 ± 0.03 µg/g FW) was obtained on day 15; while the same occurred on day 18 for shake flasks (0.92 ± 0.02 µg/g FW). LTB-Syn protein levels were analyzed by GM1-ELISA and western blot. PCR analysis confirmed the presence of the transgene in the Z4 line. The obtained data demonstrate that the carrot Z4 cell suspension line grown in airlift bioreactors shows promise for a scale-up cultivation producing an oral LTB-Syn antigen.
Collapse
Affiliation(s)
- Christian Carreño-Campos
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
| | | | - María Luisa Villarreal
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
| | - Anabel Ortiz-Caltempa
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
| | - Sergio Rosales-Mendoza
- Laboratorio de Biofarmacéuticos Recombinantes, Universidad Autónoma de San Luis Potosí, SLP, México
| |
Collapse
|
11
|
Baruah N, Halder P, Koley H, Katti DS. Stable Recombinant Invasion Plasmid Antigen C (IpaC)-Based Single Dose Nanovaccine for Shigellosis. Mol Pharm 2022; 19:3884-3893. [PMID: 36122190 DOI: 10.1021/acs.molpharmaceut.2c00378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Shigellosis, caused by the bacteria Shigella, is the leading cause of bacterial diarrhea and the second leading cause of diarrheal death among children under the age of five. Unfortunately, Shigella strains have acquired resistance to antibiotics, and a commercial vaccine is yet to be available. We have previously demonstrated that Shigella dysenteriae serotype 1 (Sd1)-based recombinant, stabilized, "invasion plasmid antigen C" (IpaC; 42 kDa) protein can induce robust immune responses in BALB/c mice against a challenge of a high dose of heterologous Shigella when immunized via three intranasal doses of IpaC without an adjuvant. In this work, in order to reduce the frequency of dosing and increase possible patient compliance, based on our previous screening, the minimum protective dose of stabilized IpaC (20 μg) was encapsulated in biodegradable polymeric poly(lactide-co-glycolide) nanoparticles (∼370 nm) and intranasally administered in BALB/c mice in a single dose. Interestingly, a single intranasal dose of the developed vaccine particles encapsulating only 20 μg of Sd1 IpaC led to a temporal increase in the antibody production with an improved cytokine response compared to free IpaC administered three times as described in our previous report. Upon intraperitoneal challenge with a high dose of heterologous Shigella flexneri 2a (common in circulation), the immunized animals were protected from diarrhea, lethargy, and weight loss with ∼67% survival, while all the control animals died by 36 h of the challenge. Overall, the developed nanovaccine could be explored as a potential noninvasive, cross-protective, single-dose, single-antigen Shigella vaccine amenable for scale-up and eventual mass immunization.
Collapse
Affiliation(s)
- Namrata Baruah
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India.,The Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Prolay Halder
- Division of Bacteriology, ICMR-National Institute of Cholera & Enteric Diseases, Kolkata, West Bengal 700010, India
| | - Hemanta Koley
- Division of Bacteriology, ICMR-National Institute of Cholera & Enteric Diseases, Kolkata, West Bengal 700010, India
| | - Dhirendra S Katti
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India.,The Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| |
Collapse
|
12
|
Surface Modification of Biodegradable Microparticles with the Novel Host-Derived Immunostimulant CPDI-02 Significantly Increases Short-Term and Long-Term Mucosal and Systemic Antibodies against Encapsulated Protein Antigen in Young Naïve Mice after Respiratory Immunization. Pharmaceutics 2022; 14:pharmaceutics14091843. [PMID: 36145590 PMCID: PMC9502690 DOI: 10.3390/pharmaceutics14091843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 11/17/2022] Open
Abstract
Generating long-lived mucosal and systemic antibodies through respiratory immunization with protective antigens encapsulated in nanoscale biodegradable particles could potentially decrease or eliminate the incidence of many infectious diseases, but requires the incorporation of a suitable mucosal immunostimulant. We previously found that respiratory immunization with a model protein antigen (LPS-free OVA) encapsulated in PLGA 50:50 nanoparticles (~380 nm diameter) surface-modified with complement peptide-derived immunostimulant 02 (CPDI-02; formerly EP67) through 2 kDa PEG linkers increases mucosal and systemic OVA-specific memory T-cells with long-lived surface phenotypes in young, naïve female C57BL/6 mice. Here, we determined if respiratory immunization with LPS-free OVA encapsulated in similar PLGA 50:50 microparticles (~1 μm diameter) surface-modified with CPDI-02 (CPDI-02-MP) increases long-term OVA-specific mucosal and systemic antibodies. We found that, compared to MP surface-modified with inactive, scrambled scCPDI-02 (scCPDI-02-MP), intranasal administration of CPDI-02-MP in 50 μL sterile PBS greatly increased titers of short-term (14 days post-immunization) and long-term (90 days post-immunization) antibodies against encapsulated LPS-free OVA in nasal lavage fluids, bronchoalveolar lavage fluids, and sera of young, naïve female C57BL/6 mice with minimal lung inflammation. Thus, surface modification of ~1 μm biodegradable microparticles with CPDI-02 is likely to increase long-term mucosal and systemic antibodies against encapsulated protein antigen after respiratory and possibly other routes of mucosal immunization.
Collapse
|
13
|
Correa VA, Portilho AI, De Gaspari E. Vaccines, Adjuvants and Key Factors for Mucosal Immune Response. Immunology 2022; 167:124-138. [PMID: 35751397 DOI: 10.1111/imm.13526] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 04/26/2022] [Indexed: 11/29/2022] Open
Abstract
Vaccines are the most effective tool to control infectious diseases, which provoke significant morbidity and mortality. Most vaccines are administered through the parenteral route and can elicit a robust systemic humoral response, but they induce a weak T-cell-mediated immunity and are poor inducers of mucosal protection. Considering that most pathogens enter the body through mucosal surfaces, a vaccine that elicits protection in the first site of contact between the host and the pathogen is promising. However, despite the advantages of mucosal vaccines as good options to confer protection on the mucosal surface, only a few mucosal vaccines are currently approved. In this review, we discuss the impact of vaccine administration in different mucosal surfaces; how appropriate adjuvants enhance the induction of protective mucosal immunity and other factors that can influence the mucosal immune response to vaccines. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Victor Araujo Correa
- Adolfo Lutz Institute, Immunology Center, Av Dr Arnaldo, 355, 11th floor, room 1116, Cerqueira César, São Paulo, SP, Brazil.,São Paulo University, Biomedical Sciences Institute, Graduate Program Interunits in Biotechnology, Av Prof Lineu Prestes, 2415, ICB III, São Paulo, SP, Brazil
| | - Amanda Izeli Portilho
- Adolfo Lutz Institute, Immunology Center, Av Dr Arnaldo, 355, 11th floor, room 1116, Cerqueira César, São Paulo, SP, Brazil.,São Paulo University, Biomedical Sciences Institute, Graduate Program Interunits in Biotechnology, Av Prof Lineu Prestes, 2415, ICB III, São Paulo, SP, Brazil
| | - Elizabeth De Gaspari
- Adolfo Lutz Institute, Immunology Center, Av Dr Arnaldo, 355, 11th floor, room 1116, Cerqueira César, São Paulo, SP, Brazil.,São Paulo University, Biomedical Sciences Institute, Graduate Program Interunits in Biotechnology, Av Prof Lineu Prestes, 2415, ICB III, São Paulo, SP, Brazil
| |
Collapse
|
14
|
Kasaija PD, Contreras M, Kabi F, Mugerwa S, Garrido JM, Gortazar C, de la Fuente J. Oral vaccine formulation combining tick Subolesin with heat inactivated mycobacteria provides control of cross-species cattle tick infestations. Vaccine 2022; 40:4564-4573. [PMID: 35728991 DOI: 10.1016/j.vaccine.2022.06.036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/08/2022] [Accepted: 06/11/2022] [Indexed: 11/16/2022]
Abstract
Tick vaccines are necessary as part of a One Health approach for the control of tick infestations and tick-borne diseases. Subolesin (SUB, also known as 4D8) is a tick protective antigen that has shown efficacy in vaccine formulations for the control of ectoparasite infestations and pathogen infection/transmission. A recent proof-of-concept study reported oral vaccination combining Rhipicephalus microplus SUB with heat inactivated Mycobacterium bovis (IV) as an immunostimulant for the control of cattle tick infestations. Based on the efficacy of Rhipicephalus decoloratus SUB for the control of multiple cattle tick species in Uganda, herein we design a controlled pen trial using an oral formulation combining R. decoloratus SUB with IV for the control of R. decoloratus and Rhipicephalus appendiculatus cattle tick infestations. Vaccine efficacy (E) of SUB + IV on tick life cycle was compared with IV and SUB alone and with PBS as control. The IgG antibody titers against SUB and M. bovis P22 and the serum levels of selected protein immune biomarkers (IL-1beta, TNF-alpha, C3) were determined and analyzed as possible correlates of protection. Oral immunization with IV and SUB alone and in SUB + IV combination were effective for the control of tick infestations (E = 71-96% for R. decoloratus and 87-99% for R. appendiculatus) with highest E (higher than 95%) for SUB + IV. The results demonstrated that oral immunization with the SUB + IV formulation resulted in effective control of cattle tick infestations through the activation of multiple immune mechanisms. These results support the application of oral vaccine formulations with SUB + IV for the control of cattle infestations with Rhipicephalus species towards improving animal health.
Collapse
Affiliation(s)
- Paul D Kasaija
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005 Ciudad Real, Spain; National Livestock Resources Research Institute (NaLIRRI/NARO), P.O. Box 5704, Wakiso District, Uganda
| | - Marinela Contreras
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005 Ciudad Real, Spain
| | - Fredrick Kabi
- National Livestock Resources Research Institute (NaLIRRI/NARO), P.O. Box 5704, Wakiso District, Uganda
| | - Swidiq Mugerwa
- National Livestock Resources Research Institute (NaLIRRI/NARO), P.O. Box 5704, Wakiso District, Uganda
| | - Joseba M Garrido
- NEIKER-Instituto Vasco de Investigación y Desarrollo Agrario, Animal Health Department, Bizkaia Science and Technology Park 812L, 48160 Derio (Bizkaia), Spain
| | - Christian Gortazar
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005 Ciudad Real, Spain
| | - José de la Fuente
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005 Ciudad Real, Spain; Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078, USA.
| |
Collapse
|
15
|
Gonzalez-Vazquez MC, Vela-Sanchez RA, Rojas-Ruiz NE, Carabarin-Lima A. Importance of Cry Proteins in Biotechnology: Initially a Bioinsecticide, Now a Vaccine Adjuvant. Life (Basel) 2021; 11:999. [PMID: 34685371 PMCID: PMC8541582 DOI: 10.3390/life11100999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/19/2021] [Accepted: 09/19/2021] [Indexed: 11/21/2022] Open
Abstract
A hallmark of Bacillus thuringiensis bacteria is the formation of one or more parasporal crystal (Cry) proteins during sporulation. The toxicity of these proteins is highly specific to insect larvae, exerting lethal effects in different insect species but not in humans or other mammals. The aim of this review is to summarize previous findings on Bacillus thuringiensis, including the characteristics of the bacterium, its subsequent contribution to biotechnology as a bioinsecticide due to the presence of Cry proteins, and its potential application as an adjuvant. In several studies, Cry proteins have been administered together with specific antigens to immunize experimental animal models. The results have shown that these proteins can enhance immunogenicity by generating an adequate immune response capable of protecting the model against an experimental infectious challenge, whereas protection is decreased when the specific antigen is administered without the Cry protein. Therefore, based on previous results and the structural homology between Cry proteins, these molecules have arisen as potential adjuvants in the development of vaccines for both animals and humans. Finally, a model of the interaction of Cry proteins with different components of the immune response is proposed.
Collapse
Affiliation(s)
- Maria Cristina Gonzalez-Vazquez
- Centro de Investigaciones en Ciencias Microbiologicas, Instituto de Ciencias, Benemerita Universidad Autonoma de Puebla, Puebla 72000, PU, Mexico; (M.C.G.-V.); (N.E.R.-R.)
| | - Ruth Abril Vela-Sanchez
- Licenciatura en Biotecnología, Benemerita Universidad Autonoma de Puebla, Puebla 72000, PU, Mexico;
| | - Norma Elena Rojas-Ruiz
- Centro de Investigaciones en Ciencias Microbiologicas, Instituto de Ciencias, Benemerita Universidad Autonoma de Puebla, Puebla 72000, PU, Mexico; (M.C.G.-V.); (N.E.R.-R.)
- Licenciatura en Biotecnología, Benemerita Universidad Autonoma de Puebla, Puebla 72000, PU, Mexico;
| | - Alejandro Carabarin-Lima
- Centro de Investigaciones en Ciencias Microbiologicas, Instituto de Ciencias, Benemerita Universidad Autonoma de Puebla, Puebla 72000, PU, Mexico; (M.C.G.-V.); (N.E.R.-R.)
- Licenciatura en Biotecnología, Benemerita Universidad Autonoma de Puebla, Puebla 72000, PU, Mexico;
| |
Collapse
|
16
|
Fan Q, Miao C, Huang Y, Yue H, Wu A, Wu J, Wu J, Ma G. Hydroxypropyltrimethyl ammonium chloride chitosan-based hydrogel as the split H5N1 mucosal adjuvant: Structure-activity relationship. Carbohydr Polym 2021; 266:118139. [PMID: 34044953 DOI: 10.1016/j.carbpol.2021.118139] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/03/2021] [Accepted: 04/27/2021] [Indexed: 01/16/2023]
Abstract
In this study, 2-hydroxypropyltrimethyl ammonium chloride chitosan (HTCC)-based hydrogel was devised as a mucosal adjuvant for H5N1 vaccine. Aimed to investigate the structure activity relationship between HTCC hydrogel and immune response, we prepared a series of HTCC hydrogel with defined quaternization degrees (DQs, 0%, 21%, 41%, 60%, 80%). Results suggested that with DQ increasing, the positive charge and gelation time of HTCC hydrogel increased but the viscosity decreased. We applied in vivo imaging system and found that the moderate DQ 41% prolonged antigen residence time in nasal cavity, resulting in the most potent systemic responses (IgG, IgG1, IgG2a, HI). While, the lowest DQ 0% produced the best mucosal IgA antibody responses, most likely due to the closer contact with mucosa. Furthermore, the influence of animal gender was also discussed. These data add to the growing understanding of the relationship between physicochemical features of chitosan-based hydrogel and how they influence the immune responses.
Collapse
MESH Headings
- Adjuvants, Immunologic/administration & dosage
- Adjuvants, Immunologic/chemistry
- Adjuvants, Immunologic/pharmacology
- Administration, Intranasal
- Animals
- Antigens, Viral/immunology
- Antigens, Viral/metabolism
- Chitosan/administration & dosage
- Chitosan/analogs & derivatives
- Chitosan/chemistry
- Chitosan/pharmacology
- Female
- Hydrogels/administration & dosage
- Hydrogels/chemistry
- Hydrogels/pharmacology
- Immunity/drug effects
- Immunity, Mucosal/drug effects
- Influenza A Virus, H5N1 Subtype/drug effects
- Influenza A Virus, H5N1 Subtype/immunology
- Influenza Vaccines/administration & dosage
- Influenza Vaccines/immunology
- Male
- Mice, Inbred BALB C
- Nasal Mucosa/virology
- Quaternary Ammonium Compounds/administration & dosage
- Quaternary Ammonium Compounds/chemistry
- Quaternary Ammonium Compounds/pharmacology
- Rats, Sprague-Dawley
- Sex Factors
- Structure-Activity Relationship
- Mice
- Rats
Collapse
Affiliation(s)
- Qingze Fan
- Department of Pharmacy, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, PR China; State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Chunyu Miao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Yilan Huang
- Department of Pharmacy, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, PR China
| | - Hua Yue
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Anguo Wu
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, PR China
| | - Jianming Wu
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, PR China
| | - Jie Wu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China.
| | - Guanghui Ma
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China.
| |
Collapse
|
17
|
Knight FC, Wilson JT. Engineering Vaccines for Tissue-Resident Memory T Cells. ADVANCED THERAPEUTICS 2021; 4:2000230. [PMID: 33997268 PMCID: PMC8114897 DOI: 10.1002/adtp.202000230] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Indexed: 01/01/2023]
Abstract
In recent years, tissue-resident memory T cells (TRM) have attracted significant attention in the field of vaccine development. Distinct from central and effector memory T cells, TRM cells take up residence in home tissues such as the lung or urogenital tract and are ideally positioned to respond quickly to pathogen encounter. TRM have been found to play a role in the immune response against many globally important infectious diseases for which new or improved vaccines are needed, including influenza and tuberculosis. It is also increasingly clear that TRM play a pivotal role in cancer immunity. Thus, vaccines that can generate this memory T cell population are highly desirable. The field of immunoengineering-that is, the application of engineering principles to study the immune system and design new and improved therapies that harness or modulate immune responses-is ideally poised to provide solutions to this need for next-generation TRM vaccines. This review covers recent developments in vaccine technologies for generating TRM and protecting against infection and cancer, including viral vectors, virus-like particles, and synthetic and natural biomaterials. In addition, it offers critical insights on the future of engineering vaccines for tissue-resident memory T cells.
Collapse
Affiliation(s)
- Frances C. Knight
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - John T. Wilson
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee 37232, United States
| |
Collapse
|
18
|
Lozano JM, Rodríguez Parra Z, Hernández-Martínez S, Yasnot-Acosta MF, Rojas AP, Marín-Waldo LS, Rincón JE. The Search of a Malaria Vaccine: The Time for Modified Immuno-Potentiating Probes. Vaccines (Basel) 2021; 9:vaccines9020115. [PMID: 33540947 PMCID: PMC7913233 DOI: 10.3390/vaccines9020115] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/22/2021] [Accepted: 01/25/2021] [Indexed: 12/25/2022] Open
Abstract
Malaria is a deadly disease that takes the lives of more than 420,000 people a year and is responsible for more than 229 million clinical cases globally. In 2019, 95% of malaria morbidity occurred in African countries. The development of a highly protective vaccine is an urgent task that remains to be solved. Many vaccine candidates have been developed, from the use of the entire attenuated and irradiated pre-erythrocytic parasite forms (or recombinantly expressed antigens thereof) to synthetic candidates formulated in a variety of adjuvants and delivery systems, however these have unfortunately proven a limited efficacy. At present, some vaccine candidates are finishing safety and protective efficacy trials, such as the PfSPZ and the RTS,S/AS01 which are being introduced in Africa. We propose a strategy for introducing non-natural elements into target antigens representing key epitopes of Plasmodium spp. Accordingly, chemical strategies and knowledge of host immunity to Plasmodium spp. have served as the basis. Evidence is obtained after being tested in experimental rodent models for malaria infection and recognized for human sera from malaria-endemic regions. This encourages us to propose such an immune-potentiating strategy to be further considered in the search for new vaccine candidates.
Collapse
Affiliation(s)
- José Manuel Lozano
- Grupo de Investigación Mimetismo Molecular de los Agentes Infecciosos, Departamento de Farmacia, Universidad Nacional de Colombia—Sede Bogotá, 111321 Bogota, Colombia;
- Correspondence: ; Tel.: +57-3102-504-657
| | - Zully Rodríguez Parra
- Grupo de Investigación Mimetismo Molecular de los Agentes Infecciosos, Departamento de Farmacia, Universidad Nacional de Colombia—Sede Bogotá, 111321 Bogota, Colombia;
| | - Salvador Hernández-Martínez
- Dirección de Infección e Inmunidad, Centro de Investigaciones Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, 62508 Cuernavaca, Morelos, Mexico;
| | - Maria Fernanda Yasnot-Acosta
- Grupo de Investigaciones Microbiológicas y Biomédicas de Córdoba, Universidad de Córdoba, 230002 Monteria, Colombia;
| | - Angela Patricia Rojas
- Grupo de Investigación Biología Celular y Autoinmuniad, Departamento de Farmacia, Universidad Nacional de Colombia-Sede Bogotá, 111321 Bogota, Colombia;
| | | | - Juan Edilberto Rincón
- Departamento de Ingeniería y Mecatrónica, Universidad Nacional de Colombia-Sede Bogotá, 111321 Bogota, Colombia;
| |
Collapse
|
19
|
Bashiri S, Koirala P, Toth I, Skwarczynski M. Carbohydrate Immune Adjuvants in Subunit Vaccines. Pharmaceutics 2020; 12:E965. [PMID: 33066594 PMCID: PMC7602499 DOI: 10.3390/pharmaceutics12100965] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/08/2020] [Accepted: 10/12/2020] [Indexed: 12/17/2022] Open
Abstract
Modern subunit vaccines are composed of antigens and a delivery system and/or adjuvant (immune stimulator) that triggers the desired immune responses. Adjuvants mimic pathogen-associated molecular patterns (PAMPs) that are typically associated with infections. Carbohydrates displayed on the surface of pathogens are often recognized as PAMPs by receptors on antigen-presenting cells (APCs). Consequently, carbohydrates and their analogues have been used as adjuvants and delivery systems to promote antigen transport to APCs. Carbohydrates are biocompatible, usually nontoxic, biodegradable, and some are mucoadhesive. As such, carbohydrates and their derivatives have been intensively explored for the development of new adjuvants. This review assesses the immunological functions of carbohydrate ligands and their ability to enhance systemic and mucosal immune responses against co-administered antigens. The role of carbohydrate-based adjuvants/delivery systems in the development of subunit vaccines is discussed in detail.
Collapse
Affiliation(s)
- Sahra Bashiri
- School of Chemistry and Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia; (S.B.); (P.K.)
| | - Prashamsa Koirala
- School of Chemistry and Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia; (S.B.); (P.K.)
| | - Istvan Toth
- School of Chemistry and Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia; (S.B.); (P.K.)
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
- School of Pharmacy, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia
| | - Mariusz Skwarczynski
- School of Chemistry and Molecular Bioscience, The University of Queensland, St Lucia, Brisbane, Queensland 4072, Australia; (S.B.); (P.K.)
| |
Collapse
|
20
|
Silva JAF, Calmasini F, Siqueira-Berti A, Moraes-Vieira PMM, Quintar A, Carvalho HF. Prostate immunology: A challenging puzzle. J Reprod Immunol 2020; 142:103190. [PMID: 32853844 DOI: 10.1016/j.jri.2020.103190] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 07/30/2020] [Accepted: 08/11/2020] [Indexed: 12/15/2022]
Abstract
Mucosal immunity defines the relationship of surfaces in contact with the environment and integrates diverse tissues such as epidermis, gum, nose, gut, uterus and prostate with the immune system. Although considered part of a system, each mucosa presents specific immune features beyond the barrier and secretory functions. Information regarding the mucosal immunology of the male reproductive tract and the prostate gland in particular is scarce. In this review, we approach the prostate as an epithelial barrier and as part of the mucosal immune system. Finally, we also raise a series of questions that will improve the understanding of this gland, its role in reproduction and its sensitivity/resistance to disease.
Collapse
Affiliation(s)
- Juliete Aparecida F Silva
- Department of Structural and Functional Biology, State University of Campinas - UNICAMP, Campinas, SP, Brazil
| | - Fabiano Calmasini
- Department of Structural and Functional Biology, State University of Campinas - UNICAMP, Campinas, SP, Brazil
| | - Aline Siqueira-Berti
- Department of Structural and Functional Biology, State University of Campinas - UNICAMP, Campinas, SP, Brazil
| | - Pedro M M Moraes-Vieira
- Department of Genetics, Evolution, Microbiology and Immunology, State University of Campinas, UNICAMP, Campinas, SP, Brazil
| | - Amado Quintar
- Centro de Microscopía Electrónica, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Hernandes F Carvalho
- Department of Structural and Functional Biology, State University of Campinas - UNICAMP, Campinas, SP, Brazil; National Institute of Science and Technology of Photonics Applied to Cell Biology - INFABiC, Campinas, SP, Brazil.
| |
Collapse
|
21
|
Souci L, Jaunet H, Le Diguerher G, Guionnet JM, Béven V, Paboeuf F, Montier T, Dory D. Intranasal inoculations of naked or PLGA-PEI nanovectored DNA vaccine induce systemic and mucosal antibodies in pigs: A feasibility study. Res Vet Sci 2020; 132:194-201. [PMID: 32619800 DOI: 10.1016/j.rvsc.2020.06.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 05/20/2020] [Accepted: 06/17/2020] [Indexed: 12/21/2022]
Abstract
Mucosa are the routes of entry of most pathogens into animals' organisms. Reducing the important global burden of mucosal infectious diseases in livestock animals is required in the field of veterinary public health. For veterinary respiratory pathogens, one possible strategy is the development of intranasal (IN) DNA vaccination. The aim of this study was to assess the feasibility of IN DNA vaccination in pigs, an important species in livestock production industry, and a source of zoonotic diseases. To achieve this goal, we used a DNA vaccine against pseudorabies virus (PrV) encoding the immunogenic glycoprotein B (pcDNA3-gB plasmid). When pigs were inoculated with the naked DNA vaccine through the IN route, PrV-specific IgG and IgA type antibodies were detected in porcine sera. Interestingly, mucosal salivary IgA antibodies against PrV were also detected, at similar levels to those measured following intramuscular injection (positive controls). Furthermore, the IN delivery of pcDNA3-gB combined with PLGA-PEI nanoparticles resulted in similar levels of antibodies but was associated with an increase in the duration of detection of mucosal IgA for 2 out of 3 pigs. Our results suggest that there is room to improve the efficacy of IN DNA vaccination in pigs through optimization of IN inoculations, for example by using nanoparticles such as PLGA-PEI. Further studies will be dedicated to optimizing and testing the protective potential of IN DNA vaccination procedures against PrV.
Collapse
Affiliation(s)
- Laurent Souci
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Viral Genetics and Biosafety Unit, Ploufragan, France
| | | | - Gérald Le Diguerher
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Pig Production and Experimental Unit, Ploufragan, France
| | - Jean-Marie Guionnet
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Pig Production and Experimental Unit, Ploufragan, France
| | - Véronique Béven
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Viral Genetics and Biosafety Unit, Ploufragan, France
| | - Frédéric Paboeuf
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Pig Production and Experimental Unit, Ploufragan, France
| | - Tristan Montier
- SynNanoVect platform - UMR INSERM 1078, University of Brest, Brest, France
| | - Daniel Dory
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Viral Genetics and Biosafety Unit, Ploufragan, France.
| |
Collapse
|
22
|
Matías J, Pastor Y, Irache JM, Gamazo C. Protective Passive Immunity in Escherichia coli ETEC-Challenged Neonatal Mice Conferred by Orally Immunized Dams with Nanoparticles Containing Homologous Outer Membrane Vesicles. Vaccines (Basel) 2020; 8:vaccines8020286. [PMID: 32521603 PMCID: PMC7350024 DOI: 10.3390/vaccines8020286] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/01/2020] [Accepted: 06/02/2020] [Indexed: 11/17/2022] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) strains are a major cause of illness and death in mammals, including neonatal, recently weaned pigs and infant human beings. We have previously shown that outer membrane vesicles (OMV) obtained from ETEC serotypes encapsulated into zein nanoparticles, coated with a Gantrez-mannosamine polymer conjugate (OMV-NP), were immunogenic in mice and sows. In the present study, we show that pups from vaccinated mice were protected against ETEC F4 serotype challenge through maternal passive immunization. OMV from F4 cultures were collected and characterized. Two-week-pregnant BALB/c mice were orally immunized with a single dose of vesicles (0.2 mg) either free (OMV) or encapsulated into nanoparticles (OMV-NP). Evaluation of the antibodies in serum (IgG1, Ig2a or IgA) and feces (IgA) of dams immunized with OMV-NP revealed an enhancement of specific immunogenicity. The antibody response conferred by the nanoparticle adjuvant was also correlated with IL-6 and IL-10 splenic levels. Each mother was allowed to feed her progeny for one week. Suckling pups presented specific IgA in feces demonstrating their passive immunization through colostrum intake. Two weeks after the pups were born, they were infected orally with a single dose of F4 E. coli (1.2 × 108 CFU/pup). Results showed that 70% of the pups from dams immunized with OMV-NP were protected. In contrast, 80% of the pups from dams immunized with free OMV died as a result of the experimental challenge. These findings support the use of zein nanoparticles coated with a Gantrez-mannosamine shield as adjuvant delivery system for the oral immunization during pregnancy to confer immunity to the offspring through maternal immunization
Collapse
Affiliation(s)
- Jose Matías
- Department of Microbiology and Parasitology, Institute of Tropical Health, University of Navarra, 31008 Pamplona, Spain; (J.M.); (Y.P.)
| | - Yadira Pastor
- Department of Microbiology and Parasitology, Institute of Tropical Health, University of Navarra, 31008 Pamplona, Spain; (J.M.); (Y.P.)
| | - Juan M. Irache
- Department of Pharmaceutical Technology and Chemistry, University of Navarra, 31008 Pamplona, Spain;
| | - Carlos Gamazo
- Department of Microbiology and Parasitology, Institute of Tropical Health, University of Navarra, 31008 Pamplona, Spain; (J.M.); (Y.P.)
- Correspondence:
| |
Collapse
|
23
|
Fragoso-Saavedra M, Vega-López MA. Induction of mucosal immunity against pathogens by using recombinant baculoviral vectors: Mechanisms, advantages, and limitations. J Leukoc Biol 2020; 108:835-850. [PMID: 32392638 DOI: 10.1002/jlb.4mr0320-488r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/19/2020] [Accepted: 04/09/2020] [Indexed: 12/13/2022] Open
Abstract
Over 90% of pathogens of medical importance invade the organism through mucosal surfaces, which makes it urgent to develop safe and effective mucosal vaccines and mucosal immunization protocols. Besides, parenteral immunization does not provide adequate protective immunity in mucosal surfaces. Effective mucosal vaccination could protect local and systemic compartments and favor herd immunity. Although various mucosal adjuvants and Ag-delivery systems have been developed, none has filled the gap to control diseases caused by complex mucosal pathogens. Among the strategies to counteract them, recombinant virions from the baculovirus Autographa californica multiple nucleopolyhedrovirus (rAcMNPV) are useful vectors, given their safety and efficacy to produce mucosal and systemic immunity in animal infection models. Here, we review the immunogenic properties of rAcMNPV virions from the perspectives of mucosal immunology and vaccinology. Some features, which are analyzed and extrapolated from studies with different particulate antigens, include size, shape, surface molecule organization, and danger signals, all needed to break the tolerogenic responses of the mucosal immune tissues. Also, we present a condensed discussion on the immunity provided by rAcMNPV virions against influenza virus and human papillomavirus in animal models. Through the text, we highlight the advantages and limitations of this experimental immunization platform.
Collapse
Affiliation(s)
- Mario Fragoso-Saavedra
- Laboratorio de Inmunobiología de las Mucosas, Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Colonia Zacatenco, Ciudad de México, México
| | - Marco A Vega-López
- Laboratorio de Inmunobiología de las Mucosas, Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Colonia Zacatenco, Ciudad de México, México
| |
Collapse
|
24
|
Alshweiat A, Ambrus R, Csoka II. Intranasal Nanoparticulate Systems as Alternative Route of Drug Delivery. Curr Med Chem 2019; 26:6459-6492. [PMID: 31453778 DOI: 10.2174/0929867326666190827151741] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 06/25/2018] [Accepted: 12/11/2018] [Indexed: 12/18/2022]
Abstract
There is always a need for alternative and efficient methods of drug delivery. The nasal cavity can be considered as a non-invasive and efficient route of administration. It has been used for local, systemic, brain targeting, and vaccination delivery. Although many intranasal products are currently available on the market, the majority is used for local delivery with fewer products available for the other targets. As nanotechnology utilization in drug delivery has rapidly spread out, the nasal delivery has become attractive as a promising approach. Nanoparticulate systems facilitate drug transportation across the mucosal barrier, protect the drug from nasal enzyme degradation, enhance the delivery of vaccines to the lymphoid tissue of the nasal cavity with an adjuvant activity, and offer a way for peptide delivery into the brain and the systemic circulation, in addition to their potential for brain tumor treatment. This review article aims at discussing the potential benefit of the intranasal nanoparticulate systems, including nanosuspensions, lipid and surfactant, and polymer-based nanoparticles as regards productive intranasal delivery. The aim of this review is to focus on the topicalities of nanotechnology applications for intranasal delivery of local, systemic, brain, and vaccination purposes during the last decade, referring to the factors affecting delivery, regulatory aspects, and patient expectations. This review further identifies the benefits of applying the Quality by Design approaches (QbD) in product development. According to the reported studies on nanotechnology-based intranasal delivery, potential attention has been focused on brain targeting and vaccine delivery with promising outcomes. Despite the significant research effort in this field, nanoparticle-based products for intranasal delivery are not available. Thus, further efforts are required to promote the introduction of intranasal nanoparticulate products that can meet the requirements of regulatory affairs with high patient acceptance.
Collapse
Affiliation(s)
- Areen Alshweiat
- Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Szeged, Hungary.,Faculty of Pharmaceutical Science, The Hashemite University, Zarqa, Jordan
| | - Rita Ambrus
- Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Szeged, Hungary
| | - IIdikó Csoka
- Faculty of Pharmacy, Institute of Pharmaceutical Technology and Regulatory Affairs, University of Szeged, Szeged, Hungary
| |
Collapse
|
25
|
Kumar S, Sunagar R, Gosselin E. Bacterial Protein Toll-Like-Receptor Agonists: A Novel Perspective on Vaccine Adjuvants. Front Immunol 2019; 10:1144. [PMID: 31191528 PMCID: PMC6549121 DOI: 10.3389/fimmu.2019.01144] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 05/07/2019] [Indexed: 12/12/2022] Open
Abstract
Adjuvants have been used in vaccines for over a century, however, the search for safe and effective vaccine adjuvants continues. In recent decades toll-like-receptor (TLR) agonists have been investigated as potential vaccine adjuvants. In this regard, the majority of the currently investigated TLR agonists are non-protein microbial components such as lipopolysaccharides, oligonucleotides, and lipopeptides. On the other hand, a growing number of studies reveal that TLR signaling and immune responses can be activated by numerous bacterial proteins. However, their potential roles as adjuvants have been somewhat overlooked. Herein, we discuss several such bacterial proteins which exhibit adjuvant properties, including the activation of TLR signaling, antigen presenting cell maturation, pro-inflammatory cytokine production and adaptive immune response. The protein nature of these TLR agonists presents several unique features not shared by non-protein TLR agonists. These properties include the amenability for modifying the structure and function as necessary for optimal immunogenicity and minimal toxicity. Protein adjuvants can be genetically fused to protein antigens which ensure the co-delivery of adjuvant-antigen not only into the same cell but also in the same endocytic cargo, leading to more effective activation of innate and adaptive immune response.
Collapse
Affiliation(s)
- Sudeep Kumar
- Department of Immunology and Microbial Diseases, Albany Medical College, Albany, NY, United States
| | - Raju Sunagar
- Ella Foundation, Genome Valley, Hyderabad, India
| | - Edmund Gosselin
- Department of Immunology and Microbial Diseases, Albany Medical College, Albany, NY, United States
| |
Collapse
|
26
|
Tallapaka SB, Karuturi BVK, Yeapuri P, Curran SM, Sonawane YA, Phillips JA, David Smith D, Sanderson SD, Vetro JA. Surface conjugation of EP67 to biodegradable nanoparticles increases the generation of long-lived mucosal and systemic memory T-cells by encapsulated protein vaccine after respiratory immunization and subsequent T-cell-mediated protection against respiratory infection. Int J Pharm 2019; 565:242-257. [PMID: 31077762 DOI: 10.1016/j.ijpharm.2019.05.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/01/2019] [Accepted: 05/06/2019] [Indexed: 12/13/2022]
Abstract
Encapsulation of protein vaccines in biodegradable nanoparticles (NP) increases T-cell expansion after mucosal immunization but requires incorporating a suitable immunostimulant to increase long-lived memory T-cells. EP67 is a clinically viable, host-derived peptide agonist of the C5a receptor that selectively activates antigen presenting cells over neutrophils. We previously found that encapsulating EP67-conjugated CTL peptide vaccines in NP increases long-lived memory subsets of CTL after respiratory immunization. Thus, we hypothesized that alternatively conjugating EP67 to the NP surface can increase long-lived mucosal and systemic memory T-cells generated by encapsulated protein vaccines. We found that respiratory immunization of naïve female C57BL/6 mice with LPS-free ovalbumin (OVA) encapsulated in PLGA 50:50 NP (∼380 nm diameter) surface-conjugated with ∼0.1 wt% EP67 through 2 kDa PEG linkers (i) increased T-cell expansion and long-lived memory subsets of OVA323-339-specific CD4+ and OVA257-264-specific CD8a+ T-cells in the lungs (CD44HI/CD127/KLRG1) and spleen (CD44HI/CD127/KLRG1/CD62L) and (ii) decreased peak CFU of OVA-expressing L. monocytogenes (LM-OVA) in the lungs, liver, and spleen after respiratory challenge vs. encapsulation in unmodified NP. Thus, conjugating EP67 to the NP surface is one approach to increase the generation of long-lived mucosal and systemic memory T-cells by encapsulated protein vaccines after respiratory immunization.
Collapse
Affiliation(s)
- Shailendra B Tallapaka
- DILIsym Services Inc., Six Davis Drive, PO Box 12317, Research Triangle Park, NC 27709, USA(1)
| | - Bala V K Karuturi
- Mylan Pharmaceuticals Inc., 781 Chestnut Ridge Road, Morgantown, WV 26505, USA(1)
| | - Pravin Yeapuri
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, 986025 Nebraska Medical Center, Omaha, NE 68198-6025, USA
| | - Stephen M Curran
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, 986025 Nebraska Medical Center, Omaha, NE 68198-6025, USA
| | - Yogesh A Sonawane
- Eppley Institute for Research in Cancer and Allied Diseases, Omaha, NE 68022, USA
| | - Joy A Phillips
- Donald P. Shiley BioScience Center, San Diego State University, San Diego, CA 92115, USA
| | - D David Smith
- Department of Biomedical Sciences, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA
| | - Sam D Sanderson
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, 986025 Nebraska Medical Center, Omaha, NE 68198-6025, USA
| | - Joseph A Vetro
- Center for Drug Delivery and Nanomedicine, College of Pharmacy, University of Nebraska Medical Center, 986025 Nebraska Medical Center, Omaha, NE 68198-6025, USA; Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, 986025 Nebraska Medical Center, Omaha, NE 68198-6025, USA.
| |
Collapse
|
27
|
Contreras M, Kasaija PD, Merino O, de la Cruz-Hernandez NI, Gortazar C, de la Fuente J. Oral Vaccination With a Formulation Combining Rhipicephalus microplus Subolesin With Heat Inactivated Mycobacterium bovis Reduces Tick Infestations in Cattle. Front Cell Infect Microbiol 2019; 9:45. [PMID: 30881925 PMCID: PMC6407321 DOI: 10.3389/fcimb.2019.00045] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 02/13/2019] [Indexed: 02/02/2023] Open
Abstract
Vaccines are an environmentally friendly alternative to acaracides for the control of tick infestations, to reduce the risk for tick-borne diseases affecting human and animal health worldwide, and to improve animal welfare and production. Subolesin (SUB, also known as 4D8) is the functional homolog of Akirin2 involved in the regulation of development and innate immune response, and a proven protective antigen for the control of ectoparasite infestations and pathogen infection. Oral vaccination combining protein antigens with immunostimulants has proven efficacy with increased host welfare and safety, but has not been used for the control of tick infestations. Here we describe the efficacy of oral vaccination with a formulation combining Rhipicephalus microplus SUB and heat inactivated Mycobacterium bovis (IV) on cattle tick infestations and fertility. The levels of IgG antibody titers against SUB and M. bovis P22, and the expression of selected immune response genes were determined and analyzed as possible correlates of protection. We demonstrated that oral immunization with the SUB+IV formulation resulted in 51% reduction in the number of female ticks and 30% reduction in fertility with an overall efficacy of 65% in the control of R. microplus infestations by considering the cumulative effect on reducing tick survival and fertility in cattle. The akr2, IL-1β, and C3 mRNA levels together with antibody levels against SUB correlated with vaccine efficacy. The effect of the oral immunization with SUB+IV in cattle on tick survival and fertility is essential to reduce tick infestations, and extended previous results on the effect of R. microplus SUB for the control of cattle tick infestations. These results support the development of oral vaccines formulations for the control of tick infestations and the incidence of tick-borne diseases.
Collapse
Affiliation(s)
- Marinela Contreras
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ciudad Real, Spain
| | - Paul D Kasaija
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ciudad Real, Spain.,National Livestock Resources Research Institute (NaLIRRI/NARO), Tororo, Uganda
| | - Octavio Merino
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Tamaulipas, Ciudad Victoria, Mexico
| | - Ned I de la Cruz-Hernandez
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Tamaulipas, Ciudad Victoria, Mexico
| | - Christian Gortazar
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ciudad Real, Spain
| | - José de la Fuente
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ciudad Real, Spain.,Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, United States
| |
Collapse
|
28
|
Kozlowski PA, Aldovini A. Mucosal Vaccine Approaches for Prevention of HIV and SIV Transmission. CURRENT IMMUNOLOGY REVIEWS 2019; 15:102-122. [PMID: 31452652 PMCID: PMC6709706 DOI: 10.2174/1573395514666180605092054] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 04/19/2018] [Accepted: 05/30/2018] [Indexed: 02/06/2023]
Abstract
Optimal protective immunity to HIV will likely require that plasma cells, memory B cells and memory T cells be stationed in mucosal tissues at portals of viral entry. Mucosal vaccine administration is more effective than parenteral vaccine delivery for this purpose. The challenge has been to achieve efficient vaccine uptake at mucosal surfaces, and to identify safe and effective adjuvants, especially for mucosally administered HIV envelope protein immunogens. Here, we discuss strategies used to deliver potential HIV vaccine candidates in the intestine, respiratory tract, and male and female genital tract of humans and nonhuman primates. We also review mucosal adjuvants, including Toll-like receptor agonists, which may adjuvant both mucosal humoral and cellular immune responses to HIV protein immunogens.
Collapse
Affiliation(s)
- Pamela A. Kozlowski
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Anna Aldovini
- Department of Medicine, and Harvard Medical School, Boston Children’s Hospital, Department of Pediatrics, Boston MA, 02115, USA
| |
Collapse
|
29
|
Thakkar SG, Warnken ZN, Alzhrani RF, Valdes SA, Aldayel AM, Xu H, Williams RO, Cui Z. Intranasal immunization with aluminum salt-adjuvanted dry powder vaccine. J Control Release 2018; 292:111-118. [PMID: 30339906 PMCID: PMC6328263 DOI: 10.1016/j.jconrel.2018.10.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 08/09/2018] [Accepted: 10/15/2018] [Indexed: 02/08/2023]
Abstract
Intranasal vaccination using dry powder vaccine formulation represents an attractive, non-invasive vaccination modality with better storage stability and added protection at the mucosal surfaces. Herein we report that it is feasible to induce specific mucosal and systemic antibody responses by intranasal immunization with a dry powder vaccine adjuvanted with an insoluble aluminum salt. The dry powder vaccine was prepared by thin-film freeze-drying of a model antigen, ovalbumin, adsorbed on aluminum (oxy)hydroxide as an adjuvant. Special emphasis was placed on the characterization of the dry powder vaccine formulation that can be realistically used in humans by a nasal dry powder delivery device. The vaccine powder was found to have "passable" to "good" flow properties, and the vaccine was uniformly distributed in the dry powder. An in vitro nasal deposition study using nasal casts of adult humans showed that around 90% of the powder was deposited in the nasal cavity. Intranasal immunization of rats with the dry powder vaccine elicited a specific serum antibody response as well as specific IgA responses in the nose and lung secretions of the rats. This study demonstrates the generation of systemic and mucosal immune responses by intranasal immunization using a dry powder vaccine adjuvanted with an aluminum salt.
Collapse
Affiliation(s)
- Sachin G Thakkar
- The University of Texas at Austin, College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, Austin, TX, United States
| | - Zachary N Warnken
- The University of Texas at Austin, College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, Austin, TX, United States
| | - Riyad F Alzhrani
- The University of Texas at Austin, College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, Austin, TX, United States
| | - Solange A Valdes
- The University of Texas at Austin, College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, Austin, TX, United States
| | - Abdulaziz M Aldayel
- The University of Texas at Austin, College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, Austin, TX, United States; Medical Research Core Facility and Platforms, King Abdullah International Medical Research Center/King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), King Abdulaziz Medical City (KAMC), NGHA, Riyadh, 11426, Saudi Arabia
| | - Haiyue Xu
- The University of Texas at Austin, College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, Austin, TX, United States
| | - Robert O Williams
- The University of Texas at Austin, College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, Austin, TX, United States
| | - Zhengrong Cui
- The University of Texas at Austin, College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, Austin, TX, United States.
| |
Collapse
|
30
|
Pniewski T, Milczarek M, Wojas-Turek J, Pajtasz-Piasecka E, Wietrzyk J, Czyż M. Plant lyophilisate carrying S-HBsAg as an oral booster vaccine against HBV. Vaccine 2018; 36:6070-6076. [DOI: 10.1016/j.vaccine.2018.09.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 07/12/2018] [Accepted: 09/01/2018] [Indexed: 12/25/2022]
|
31
|
Abstract
Perhaps the best-studied mucosal adjuvants are the bacterially derived ADP-ribosylating enterotoxins. This adjuvant family includes heat-labile enterotoxin of Escherichia coli (LT), cholera toxin (CT), and mutants or subunits of LT and CT. These proteins promote a multifaceted antigen-specific response, including inflammatory Th1, Th2, Th17, cytotoxic T lymphocytes (CTLs), and antibodies. However, more uniquely among adjuvant classes, they induce antigen-specific IgA antibodies and long-lasting memory to coadministered antigens when delivered mucosally or even parenterally. The purpose of this minireview is to describe the general properties, history and creation, preclinical studies, clinical studies, mechanisms of action, and considerations for use of the most promising enterotoxin-based adjuvant to date, LT(R192G/L211A) or dmLT. This review is timely due to completed, ongoing, and planned clinical investigations of dmLT in multiple vaccine formulations by government, nonprofit, and industry groups in the United States and abroad.
Collapse
Affiliation(s)
- John D Clements
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Elizabeth B Norton
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| |
Collapse
|
32
|
Márquez-Escobar VA, Bañuelos-Hernández B, Rosales-Mendoza S. Expression of a Zika virus antigen in microalgae: Towards mucosal vaccine development. J Biotechnol 2018; 282:86-91. [PMID: 30031093 DOI: 10.1016/j.jbiotec.2018.07.025] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/17/2018] [Accepted: 07/18/2018] [Indexed: 02/08/2023]
Abstract
Zika virus (ZIKV) infection has extended rapidly all over the world in the last decades affecting humans of all ages, inducing severe illness such as the autoimmune Guillain-Barré syndrome as well as fetal neurodevelopmental defects. Despite the epidemiological importance of ZIKV, today there are no commercially available drugs or vaccines to combat or prevent this infection. Microalgae are attractive hosts to produce and deliver vaccines, with some candidates under preclinical evaluation. Herein, algae-based expression was assessed for the production of a new vaccine candidate against ZIKV called ZK. The Algevir technology was applied to express an antigenic protein called ZK comprising the B subunit of the heat labile Escherichia coli enterotoxin along with 3 epitopes from the ZIKV envelope glycoprotein. Efficient expression of the ZK antigen was achieved in Schizochytrium sp. with yields of up to 365 μg g-1 microalgae fresh weight. Upon oral administration in mice, the microalgae-made ZK protein elicited significant humoral responses at a higher magnitude to those induced upon subcutaneous immunization. The algae-made ZK vaccine represents a promising candidate to formulate attractive vaccines against ZIKV.
Collapse
Affiliation(s)
- Verónica Araceli Márquez-Escobar
- Laboratorio de Biofarmacéuticos recombinantes, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico; Sección de Biotecnología, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - Bernardo Bañuelos-Hernández
- Laboratorio de Biofarmacéuticos recombinantes, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico; Sección de Biotecnología, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - Sergio Rosales-Mendoza
- Laboratorio de Biofarmacéuticos recombinantes, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico; Sección de Biotecnología, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico.
| |
Collapse
|
33
|
Development of Safe and Non-Self-Immunogenic Mucosal Adjuvant by Recombinant Fusion of Cholera Toxin A1 Subunit with Protein Transduction Domain. J Immunol Res 2018; 2018:9830701. [PMID: 29707588 PMCID: PMC5863330 DOI: 10.1155/2018/9830701] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 12/03/2017] [Accepted: 12/10/2017] [Indexed: 11/17/2022] Open
Abstract
Potential use of cholera toxin (CT) as a mucosal vaccine adjuvant has been documented in a variety of animal models. However, native CT is highly toxic to be used as a mucosal adjuvant in humans. Here, we demonstrate a new approach to generate a mucosal adjuvant by replacing the B subunit of CT with HIV-1 Tat protein transduction domain (PTD), which efficiently delivers fusion proteins into the cell cytoplasm by unspecific binding to cell surface. We compared the adjuvanticity and toxicity of Tat PTD-CTA1-Tat PTD (TCTA1T) with those of CT. Our results indicate that intranasal (i.n.) delivery of ovalbumin (OVA) with TCTA1T significantly augments the OVA-specific systemic and mucosal antibody responses to levels comparable to those seen with CT adjuvant. Moreover, in vivo cytotoxic T lymphocyte activity elicited by TCTA1T was significantly higher than that elicited by a mutant TCTA1T (TmCTA1T) lacking ADP-ribosyltransferase function. In addition, coadministration of influenza M2 protein with TCTA1T conferred near complete protection against lethal influenza virus challenge. Importantly, TCTA1T, in contrast to CT, did not induce serum IgG antibody responses to itself and was shown to be nontoxic. These results suggest that TCTA1T may be a safe and effective adjuvant when given by mucosal routes.
Collapse
|
34
|
Microneedles as the technique of drug delivery enhancement in diverse organs and tissues. J Control Release 2018; 270:184-202. [DOI: 10.1016/j.jconrel.2017.11.048] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 11/22/2017] [Accepted: 11/29/2017] [Indexed: 11/24/2022]
|
35
|
Abstract
The prostate secretes immunoglobulin (Ig) A (IgA) and IgG; however, how immunoglobulins reach the secretion, where the plasma cells are located, whether immunoglobulins are antigen-specific and where activation of the adaptive response occurs are still unknown. Immune cells, including CD45RA+ cells, were scattered in the stroma and not organized mucosae-associated lymphoid-tissue. IgA (but not IgG) immunostaining identified stromal plasma cells and epithelial cells in non-immunized rats. Injected tetramethylrhodamine-IgA transcytosed the epithelium along with polymeric immunoglobulin receptor. Oral immunization with ovalbumin/mesopourous SBA-15 silica adjuvant resulted in more stromal CD45RA+/IgA+ cells, increased content of ovalbumin-specific IgA and IgG, and the appearance of intraepithelial CD45RA+/IgG+ cells. An increased number of dendritic cells that cooperate in other sites with transient immunocompetent lymphocytes, and the higher levels of interleukin-1β, interferon-γ and transforming growth factor-β, explain the levels of specific antibodies. Nasal immunization produced similar results except for the increase in dendritic cells. This immunomodulatory strategy seems useful to boost immunity against genitourinary infections and, perhaps, cancer.
Collapse
|
36
|
Nakahashi-Ouchida R, Yuki Y, Kiyono H. Development of a nanogel-based nasal vaccine as a novel antigen delivery system. Expert Rev Vaccines 2017; 16:1231-1240. [PMID: 29053938 DOI: 10.1080/14760584.2017.1395702] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
INTRODUCTION Nasal vaccination is one of the most effective immunization methods because it can induce effective antigen-specific immune responses not only at the mucosal site of administration but also at distant mucosal surfaces, as well as in the systemic compartment. Based on this advantage, many nasal vaccines are being developed and some have been licensed and marketed for clinical use. However, some have been withdrawn because of unacceptable adverse events such as inactivated influenza vaccine administrated with a heat-labile enterotoxin of Escherichia coli as an adjuvant. Thus, it is important to consider both the efficacy and safety of nasal vaccines. Areas covered: This review describes the benefits of cholesteryl group-bearing pullulan (CHP) nanogels for nasal vaccine delivery and vaccine development identified on Pubmed database with the term 'Nanogel-based nasal vaccine'. Expert commentary: CHP nanogels have been developed as novel drug delivery system, and a cationic CHP nanogels have been demonstrated to induce effective immunity as a nasal vaccine antigen carrier. Since vaccine antigens incorporated into CHP nanogels have exhibited no brain deposition after nasal administration in mice and nonhuman primates, the vaccine seems safe, and could be a promising new delivery system.
Collapse
Affiliation(s)
- Rika Nakahashi-Ouchida
- a Division of Mucosal Immunology, Department of Microbiology and Immunology, Institute of Medical Science , University of Tokyo , Tokyo , Japan
| | - Yoshikazu Yuki
- a Division of Mucosal Immunology, Department of Microbiology and Immunology, Institute of Medical Science , University of Tokyo , Tokyo , Japan
| | - Hiroshi Kiyono
- a Division of Mucosal Immunology, Department of Microbiology and Immunology, Institute of Medical Science , University of Tokyo , Tokyo , Japan.,b International Research and Development Center for Mucosal Vaccine, The Institute of Medical Science , The University of Tokyo , Tokyo , Japan.,c Department of Immunology, Graduate School of Medicine , Chiba University , Chiba , Japan
| |
Collapse
|
37
|
Guo Z, Li S, Lv M, Liu Z, Xue W. Redox-Responsive Biodegradable Polycation Poly(amido amine) Used As Intranasal Vaccine Delivery Systems. ACS Biomater Sci Eng 2017; 3:2420-2430. [DOI: 10.1021/acsbiomaterials.7b00538] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Zhong Guo
- Key
Laboratory of Biomaterials of Guangdong Higher Education Institutes,
Department of Biomedical Engineering, and §Institute of Life and Health Engineering,
Key Laboratory of Functional Protein Research of Guangdong Higher
Education Institutes, Jinan University, Guangzhou, 510632, China
| | - Sha Li
- Key
Laboratory of Biomaterials of Guangdong Higher Education Institutes,
Department of Biomedical Engineering, and §Institute of Life and Health Engineering,
Key Laboratory of Functional Protein Research of Guangdong Higher
Education Institutes, Jinan University, Guangzhou, 510632, China
| | - Meng Lv
- Key
Laboratory of Biomaterials of Guangdong Higher Education Institutes,
Department of Biomedical Engineering, and §Institute of Life and Health Engineering,
Key Laboratory of Functional Protein Research of Guangdong Higher
Education Institutes, Jinan University, Guangzhou, 510632, China
| | - Zonghua Liu
- Key
Laboratory of Biomaterials of Guangdong Higher Education Institutes,
Department of Biomedical Engineering, and §Institute of Life and Health Engineering,
Key Laboratory of Functional Protein Research of Guangdong Higher
Education Institutes, Jinan University, Guangzhou, 510632, China
| | - Wei Xue
- Key
Laboratory of Biomaterials of Guangdong Higher Education Institutes,
Department of Biomedical Engineering, and §Institute of Life and Health Engineering,
Key Laboratory of Functional Protein Research of Guangdong Higher
Education Institutes, Jinan University, Guangzhou, 510632, China
| |
Collapse
|
38
|
Arevalo-Villalobos JI, Govea-Alonso DO, Monreal-Escalante E, Zarazúa S, Rosales-Mendoza S. LTB-Syn: a recombinant immunogen for the development of plant-made vaccines against synucleinopathies. PLANTA 2017; 245:1231-1239. [PMID: 28315001 DOI: 10.1007/s00425-017-2675-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 03/08/2017] [Indexed: 06/06/2023]
Abstract
A recombinant antigen targeting α-synuclein was produced in the plant cell rendering an immunogenic protein capable to induce humoral responses in mice upon oral administration. Synucleinopathies are neurodegenerative diseases characterized by the abnormal accumulation of α-synuclein (α-Syn, a 140 amino acid protein that normally plays various neurophysiologic roles) aggregates. Parkinson's disease (PD) is the synucleinopathy with the highest epidemiologic impact and although its etiology remains unknown, α-Syn aggregation during disease progression pointed out α-Syn as target in the development of immunotherapies. Herein a chimeric protein, comprising the B subunit of the enterotoxin from enterotoxigenic Escherichia coli and α-Syn epitopes, was expressed in the plant cell having the potential to induce humoral responses following oral immunization. This approach will serve as the basis for the development of oral plant-based vaccines against PD with several potential advantages such as low cost, easy scale-up during production, and easy administration.
Collapse
Affiliation(s)
- Jaime I Arevalo-Villalobos
- Laboratorio de Biofarmacéuticos Recombinantes, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, San Luis Potosí, SLP, 78210, Mexico
| | - Dania O Govea-Alonso
- Laboratorio de Biofarmacéuticos Recombinantes, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, San Luis Potosí, SLP, 78210, Mexico
| | - Elizabeth Monreal-Escalante
- Laboratorio de Biofarmacéuticos Recombinantes, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, San Luis Potosí, SLP, 78210, Mexico
| | - Sergio Zarazúa
- Laboratorio de Neurotoxicología, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, San Luis Potosí, SLP, 78210, Mexico
| | - Sergio Rosales-Mendoza
- Laboratorio de Biofarmacéuticos Recombinantes, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, San Luis Potosí, SLP, 78210, Mexico.
| |
Collapse
|
39
|
Shafique M, Rasool MH, Khurshid M. Respiratory syncytial virus: an overview of infection biology and vaccination strategies. Future Virol 2017. [DOI: 10.2217/fvl-2017-0120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Respiratory syncytial virus (RSV) is the foremost cause of lower respiratory tract infections, especially in infants and young children. To date, there is no licensed vaccine available for RSV. Only option to restrain RSV is a prophylactic treatment in the form of monoclonal antibody (palivizumab). However, it is quite expensive and used in few patients with co-morbidities. In ongoing research, virologists contemplate about various vaccine candidates to control RSV infection. This review will help in understating the RSV pathobiology and encompass the advancement on various vaccine candidates that would lead to reduce the incidence, mortality and morbidity. Furthermore, it will lighten up the different avenues which might be useful for the development of novel vaccination approaches.
Collapse
Affiliation(s)
- Muhammad Shafique
- Department of Microbiology, Government College University Faisalabad, Pakistan
| | | | - Mohsin Khurshid
- Department of Microbiology, Government College University Faisalabad, Pakistan
- College of Allied Health Professionals, Directorate of Medical Sciences, Government College University Faisalabad, Pakistan
| |
Collapse
|
40
|
Kammona O, Bourganis V, Karamanidou T, Kiparissides C. Recent developments in nanocarrier-aided mucosal vaccination. Nanomedicine (Lond) 2017; 12:1057-1074. [PMID: 28440707 DOI: 10.2217/nnm-2017-0015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
To date, most of the licensed vaccines for mucosal delivery are based on live-attenuated viruses which carry the risk of regaining their pathogenicity. Therefore, the development of efficient nonviral vectors allowing the induction of potent humoral and cell-mediated immunity is regarded as an imperative scientific challenge as well as a commercial breakthrough for the pharma industries. For a successful translation to the clinic, such nanocarriers should protect the antigens from mucosal enzymes, facilitate antigen uptake by microfold cells and allow the copresentation of robust, safe for human use, mucosal adjuvants to antigen-presenting cells. Finally, the developed formulations should exhibit accuracy regarding the administered dose, a major drawback of mucosal vaccines in comparison with parenteral ones.
Collapse
Affiliation(s)
- Olga Kammona
- Chemical Process & Energy Resources Institute, Centre for Research & Technology Hellas, PO Box 60361, 57001 Thessaloniki, Greece
| | - Vassilis Bourganis
- Department of Chemical Engineering, Aristotle University of Thessaloniki, PO Box 472, 54124 Thessaloniki, Greece
| | - Theodora Karamanidou
- Department of Chemical Engineering, Aristotle University of Thessaloniki, PO Box 472, 54124 Thessaloniki, Greece
| | - Costas Kiparissides
- Department of Chemical Engineering, Aristotle University of Thessaloniki, PO Box 472, 54124 Thessaloniki, Greece.,Chemical Process & Energy Resources Institute, Centre for Research & Technology Hellas, PO Box 60361, 57001 Thessaloniki, Greece
| |
Collapse
|
41
|
Mašek J, Lubasová D, Lukáč R, Turánek-Knotigová P, Kulich P, Plocková J, Mašková E, Procházka L, Koudelka Š, Sasithorn N, Gombos J, Bartheldyová E, Hubatka F, Raška M, Miller AD, Turánek J. Multi-layered nanofibrous mucoadhesive films for buccal and sublingual administration of drug-delivery and vaccination nanoparticles - important step towards effective mucosal vaccines. J Control Release 2017; 249:183-195. [DOI: 10.1016/j.jconrel.2016.07.036] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 07/22/2016] [Accepted: 07/23/2016] [Indexed: 12/12/2022]
|
42
|
Chowdhury MYE, Kim TH, Uddin MB, Kim JH, Hewawaduge CY, Ferdowshi Z, Sung MH, Kim CJ, Lee JS. Mucosal vaccination of conserved sM2, HA2 and cholera toxin subunit A1 (CTA1) fusion protein with poly gamma-glutamate/chitosan nanoparticles (PC NPs) induces protection against divergent influenza subtypes. Vet Microbiol 2017; 201:240-251. [PMID: 28284616 DOI: 10.1016/j.vetmic.2017.01.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 01/18/2017] [Accepted: 01/18/2017] [Indexed: 01/13/2023]
Abstract
To develop a safe and effective mucosal vaccine that broad cross protection against seasonal or emerging influenza A viruses, we generated a mucosal influenza vaccine system combining the highly conserved matrix protein-2 (sM2), fusion peptide of hemagglutinin (HA2), the well-known mucosal adjuvant cholera toxin subunit A1 (CTA1) and poly-γ-glutamic acid (γ-PGA)-chitosan nanoparticles (PC NPs), which are safe, natural materials that are able to target the mucosal membrane as a mucosal adjuvant. The mucosal administration of sM2HA2CTA1/PC NPs could induce a high degree of systemic immunity (IgG and IgA) at the site of inoculation as well as at remote locations and also significantly increase the levels of sM2- or HA2-specific cell-mediated immune response. In challenge tests in BALB/c mice with 10 MLD50 of A/EM/Korea/W149/06(H5N1), A/Puerto Rico/8/34(H1N1), A/Aquatic bird/Korea/W81/2005(H5N2), A/Aquatic bird/Korea/W44/2005 (H7N3) or A/Chicken/Korea/116/2004(H9N2) viruses, the recombinant sM2HA2CTA1/PC NPs provided cross protection against divergent lethal influenza subtypes and also the protection was maintained up to six months after vaccination. Thus, sM2HA2CTA1/PC NPs could be a promising strategy for a universal influenza vaccine.
Collapse
Affiliation(s)
- Mohammed Y E Chowdhury
- College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea; Faculty of Veterinary Medicine, Chittagong Veterinary and Animal Sciences University, Chittagong, Bangladesh
| | - Tae-Hwan Kim
- College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Md Bashir Uddin
- College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea; Faculty of Veterinary & Animal Science, Sylhet Agricultural University, Sylhet -3100, Bangladesh
| | - Jae-Hoon Kim
- College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - C Y Hewawaduge
- College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Zannatul Ferdowshi
- College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea; Department of Biochemistry and Biotechnology, University of Science and Technology Chittagong, Bangladesh
| | | | - Chul-Joong Kim
- College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea.
| | - Jong-Soo Lee
- College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea.
| |
Collapse
|
43
|
Sjökvist Ottsjö L, Jeverstam F, Yrlid L, Wenzel AU, Walduck AK, Raghavan S. Induction of mucosal immune responses against Helicobacter pylori infection after sublingual and intragastric route of immunization. Immunology 2016; 150:172-183. [PMID: 27676456 DOI: 10.1111/imm.12676] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Revised: 09/04/2016] [Accepted: 09/05/2016] [Indexed: 12/11/2022] Open
Abstract
There is a current lack of effective mucosal vaccines against major gastroenteric pathogens and particularly against Helicobacter pylori, which causes a chronic infection that can lead to peptic ulcers and gastric cancer in a subpopulation of infected individuals. Mucosal CD4+ T-cell responses have been shown to be essential for vaccine-induced protection against H. pylori infection. The current study addresses the influence of the adjuvant and site of mucosal immunization on early CD4+ T-cell priming to H. pylori antigens. The vaccine formulation consisted of H. pylori lysate antigens and mucosal adjuvants, cholera toxin (CT) or a detoxified double-mutant heat-labile enterotoxin from Escherichia coli (dmLT), which were administered by either the sublingual or intragastric route. We report that in vitro, adjuvants CT and dmLT induce up-regulation of pro-inflammatory gene expression in purified dendritic cells and enhance the H. pylori-specific CD4+ T-cell response including interleukin-17A (IL-17A), interferon-γ (IFN-γ) and tumour necrosis factor-α (TNF-α) secretion. In vivo, sublingual immunization led to an increased frequency of IL-17A+ , IFN-γ+ and TNF-α+ secreting CD4+ T cells in the cervical lymph nodes compared with in the mesenteric lymph nodes after intragastric immunization. Subsequently, IL-17A+ cells were visualized in the stomach of sublingually immunized and challenged mice. In summary, our results suggest that addition of an adjuvant to the vaccine clearly activated dendritic cells, which in turn, enhanced CD4+ T-cell cytokines IL-17A, IFN-γ and TNF-α responses, particularly in the cervical lymph nodes after sublingual vaccination.
Collapse
Affiliation(s)
- Louise Sjökvist Ottsjö
- Department of Microbiology & Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Frida Jeverstam
- Department of Microbiology & Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Linda Yrlid
- Department of Microbiology & Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Alexander U Wenzel
- Department of Microbiology & Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anna K Walduck
- School of Science, RMIT University, Bundoora, Vic., Australia
| | - Sukanya Raghavan
- Department of Microbiology & Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
44
|
Vaccine Delivery. Drug Deliv 2016. [DOI: 10.1201/9781315382579-18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
45
|
Saeed MI, Omar AR, Hussein MZ, Elkhidir IM, Sekawi Z. Development of enhanced antibody response toward dual delivery of nano-adjuvant adsorbed human Enterovirus-71 vaccine encapsulated carrier. Hum Vaccin Immunother 2016; 11:2414-24. [PMID: 26186664 DOI: 10.1080/21645515.2015.1052918] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
This study introduces a new approach for enhancing immunity toward mucosal vaccines. HEV71 killed vaccine that is formulated with nanosize calcium phosphate adjuvant and encapsulated onto chitosan and alginate delivery carriers was examined for eliciting antibody responses in serum and saliva collected at weeks 0, 1, 3, 5, 7 and 9 for viral-specific IgA & IgG levels and viral neutralizing antibody titers. The antibody responses induced in rabbits by the different formulations delivered by a single (buccal) route were compared to those of dual immunization (intradermal / mucosal) and un-immunized control. Chitosan-loaded vaccine adjuvant induced elevated IgA antibody, while Alginate-adjuvant irreversible bonding sequestered the vaccine and markedly reduced immunogenicity. The induced mucosal and parenteral antibody profiles appeared in an inverse manner of enhanced mucosal IgA antibody accompanied by lower systemic IgG following a single oral immunization route. The combined intradermal and oral dual-immunized group developed an elevated salivary IgA, systemic IgG, and virus neutralizing response. A reduced salivary neutralizing antibody titer was observed and attributed to the continual secretion exchanges in saliva. Designing a successful mucosal delivery formulation needs to take into account the vaccine delivery site, dosage, adjuvant and carrier particle size, charge, and the reversibility of component interactions. The dual immunization seems superior and is a important approach for modulating the antibody response and boosting mucosal protection against HEV71 and similar pathogens based on their transmission mode, tissue tropism and shedding sites. Finally, the study has highlighted the significant role of dual immunization for simultaneous inducing and modulating the systemic and mucosal immune responses to EV71.
Collapse
Affiliation(s)
- Mohamed I Saeed
- a Medical Faculty; Microbiology & Parasitology; University of Putra Malaysia ; Serdang , Malaysia
| | - Abdul Rahman Omar
- b Institute of Biosciences; University of Putra Malaysia ; Serdang , Malaysia
| | - Mohd Z Hussein
- c Institute of Advanced Technology; University of Putra Malaysia ; Serdang , Malaysia
| | - Isam M Elkhidir
- d Faculty of Medicine; Microbiology & Parasitology Department ; University of Khartoum ; Khartoum , Sudan
| | - Zamberi Sekawi
- a Medical Faculty; Microbiology & Parasitology; University of Putra Malaysia ; Serdang , Malaysia
| |
Collapse
|
46
|
Parenteral Vaccination Can Be an Effective Means of Inducing Protective Mucosal Responses. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2016; 23:438-441. [PMID: 27122485 DOI: 10.1128/cvi.00214-16] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The current paradigm in vaccine development is that nonreplicating vaccines delivered parenterally fail to induce immune responses in mucosal tissues. However, both clinical and experimental data have challenged this concept, and numerous studies have shown that induction of mucosal immune responses after parenteral vaccination is not a rare occurrence and might, in fact, significantly contribute to the protection against mucosal infections afforded by parenteral vaccines. While the mechanisms underlying this phenomenon are not well understood, the realization that parenteral vaccination can be an effective means of inducing protective mucosal responses is paradigm-shifting and has potential to transform the way vaccines are designed and delivered.
Collapse
|
47
|
Mani S, Wierzba T, Walker RI. Status of vaccine research and development for Shigella. Vaccine 2016; 34:2887-2894. [DOI: 10.1016/j.vaccine.2016.02.075] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 02/10/2016] [Indexed: 12/21/2022]
|
48
|
Shukla A, Mishra V, Kesharwani P. Bilosomes in the context of oral immunization: development, challenges and opportunities. Drug Discov Today 2016; 21:888-99. [DOI: 10.1016/j.drudis.2016.03.013] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Revised: 02/06/2016] [Accepted: 03/23/2016] [Indexed: 11/12/2022]
|
49
|
|
50
|
Vaccines for Antibiotic-Resistant Bacteria: Possibility or Pipe Dream? Trends Pharmacol Sci 2016; 37:143-152. [DOI: 10.1016/j.tips.2015.10.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Revised: 10/13/2015] [Accepted: 10/16/2015] [Indexed: 11/19/2022]
|