1
|
Wang Y, Lin M, Huang F, Jia R, Xu W, He Q, Xiong Q, Hu Q, Diao Q, Liu Z. Efficacy and safety of fire needle therapy in treating non-segmental stable vitiligo: A randomized self-controlled clinical trial. J Cosmet Dermatol 2024; 23:3335-3346. [PMID: 38894565 DOI: 10.1111/jocd.16428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/15/2024] [Accepted: 06/06/2024] [Indexed: 06/21/2024]
Abstract
BACKGROUND Vitiligo remains a challenging condition to treat. Fire needle therapy, a traditional Chinese medicine technique, has potential as an alternative therapeutic strategy. However, rigorous evidence on its efficacy is lacking. OBJECTIVE We aimed to evaluate the efficacy and safety of fire needle therapy, alone and combined with topical tacrolimus ointment, for non-segmental stable vitiligo. METHODS In this 6-month randomized self-controlled trial, 35 vitiligo patients were enrolled, providing three similar lesions each. Lesions were randomly allocated to receive fire needle monotherapy, 0.1% tacrolimus ointment monotherapy, or combined fire needle and tacrolimus ointment therapy. The main outcome was change in vitiligo surface area. RESULTS In total, 29 patients completed the 6-month follow-up. The combination therapy group showed significantly greater reductions in vitiligo surface area compared to monotherapy groups starting at months 4 and 5. By the end of the study, combination therapy resulted in remarkably higher repigmentation responses, with 89.7% of lesions showing at least mild (≥25%) repigmentation and 51.7% showing good (≥50%) repigmentation. This significantly exceeded the outcomes with topical tacrolimus ointment alone, which only achieved 6.9% mild response and 6.9% good response. Fire needle monotherapy also demonstrated steady repigmentation over time, with 69% of lesions attaining a mild response by month 6. Importantly, no major adverse events occurred. CONCLUSION This study provides promising preliminary evidence supporting the use of fire needle therapy, alone or in combination with topical tacrolimus ointment, for inducing repigmentation in non-segmental stable vitiligo. As a non-pharmacological approach, fire needle therapy warrants further study as an alternative vitiligo treatment.
Collapse
Affiliation(s)
- Yuyi Wang
- Centre for Evidence Based Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- Department of Dermatology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Mao Lin
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Fang Huang
- Chongqing Jiulongpo District Shiqiaopu Community Health Service Center, Chongqing, China
| | - Ruiling Jia
- Department of Dermatology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Wei Xu
- Department of Dermatology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Qi He
- Department of Dermatology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Qiong Xiong
- Department of Dermatology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Qin Hu
- Department of Dermatology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Qingchun Diao
- Department of Dermatology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Zhaolan Liu
- Centre for Evidence Based Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
2
|
Jangra S, Gulia H, Singh J, Dang AS, Giri SK, Singh G, Priya K, Kumar A. Chemical leukoderma: An insight of pathophysiology and contributing factors. Toxicol Ind Health 2024; 40:479-495. [PMID: 38814634 DOI: 10.1177/07482337241257273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Chemical leukoderma, or chemical-based vitiligo, is a dermal disease triggered by exposure to chemicals and characterized by the emergence of depigmentation or hypopigmentation of the skin. The etiology of this condition is associated with exposure to various chemical substances present in both occupational and non-occupational settings. The precise mechanism that underlies chemical leukoderma remains elusive and is believed to result from the demise of melanocytes, which are responsible for producing skin pigments. This condition has gained particular prominence in developing countries like India. An interesting connection between chemical leukoderma and vitiligo has been identified; studies suggest that exposure to many household chemicals, which are derivatives of phenols and catechol, may serve as a primary etiological factor for the condition. Similar to autoimmune diseases, its pathogenesis involves contributions from both genetic and environmental factors. Furthermore, over the last few decades, various studies have demonstrated that exposure to chemicals plays a crucial role in initiating and progressing chemical leukoderma, including cases stemming from occupational exposure.
Collapse
Affiliation(s)
- Soniya Jangra
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak, India
| | - Heena Gulia
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak, India
| | - Jagphool Singh
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak, India
| | - Amita S Dang
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak, India
| | - Shiv K Giri
- Department of Biotechnology, Maharaja Agrasen University, Solan, India
| | - Gulab Singh
- Department of Bioscience, School of Liberal Arts and Sciences, Mody University, Lakshmangarh, India
| | - Kanu Priya
- Department of Life Sciences, Sharda University, Greater Noida, India
| | - Anil Kumar
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak, India
| |
Collapse
|
3
|
Seong SH, Oh SH. Up-and-Coming Drugs for the Treatment of Vitiligo. Ann Dermatol 2024; 36:197-208. [PMID: 39082655 PMCID: PMC11291099 DOI: 10.5021/ad.24.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/07/2024] [Accepted: 06/02/2024] [Indexed: 08/03/2024] Open
Abstract
Vitiligo is a chronic autoimmune disease that causes depigmented patches on the skin. It affects 0.5%-2.0% of the global population. It goes beyond physical appearance, often leading to stigmatization, low self-esteem, and depression, burdening patients with psychosocial challenges. The pathogenesis of vitiligo involves the loss of melanocytes due to autoreactive CD8+ T cells, triggered by environmental stressors and exacerbated by cellular vulnerabilities and immune responses. The release of danger signals and pro-inflammatory factors initiates an immune cascade perpetuating melanocyte destruction, mainly driven by interferon-γ and the C-X-C motif chemokine ligand 9/10-chemokine receptor 3 axis. Long-lasting tissue-resident memory T cells (Trms) and cytokines contribute to lesion persistence. Current treatments focus on topical steroids and tacrolimus, systemic steroids, and phototherapies, but their efficacy remains suboptimal, necessitating the development of new therapeutic options. Building on recent advancements in understanding the immunological mechanisms in vitiligo pathogenesis, with the initiation of Food and Drug Administration approval of topical ruxolitinib, various potential treatment options such as JAK inhibitors, cytokine blockers, and Trm or regulatory T cell targeting agents are being clinically researched and anticipated for vitiligo based on both preclinical and clinical data. This review aims to categorize and summarize the diverse investigational drugs currently undergoing clinical trials for vitiligo. By examining clinical outcomes, it is anticipated that this review will bring hope to dermatologists and patients regarding vitiligo, a condition that has historically posed challenges and transform it into a realm of potential possibilities.
Collapse
Affiliation(s)
- Seol Hwa Seong
- Department of Dermatology, Kosin University College of Medicine, Busan, Korea
| | - Sang Ho Oh
- Department of Dermatology and Cutaneous Biology Research Institute, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
4
|
li W, Pang Y, He Q, Song Z, Xie X, Zeng J, Guo J. Exosome-derived microRNAs: emerging players in vitiligo. Front Immunol 2024; 15:1419660. [PMID: 39040109 PMCID: PMC11260631 DOI: 10.3389/fimmu.2024.1419660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/24/2024] [Indexed: 07/24/2024] Open
Abstract
Exosome-derived microRNAs (miRNAs) are biomacromolecules and nanoscale extracellular vesicles originating from intracellular compartments that are secreted by most cells into the extracellular space. This review examines the formation and function of exosomal miRNAs in biological information transfer, explores the pathogenesis of vitiligo, and highlights the relationship between exosomal miRNAs and vitiligo. The aim is to deepen the understanding of how exosomal miRNAs influence immune imbalance, oxidative stress damage, melanocyte-keratinocyte interactions, and melanogenesis disorders in the development of vitiligo. This enhanced understanding may contribute to the development of potential diagnostic and therapeutic options for vitiligo.
Collapse
Affiliation(s)
- Wenquan li
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Dermatological Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yaobin Pang
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Dermatological Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qingying He
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Dermatological Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zongzou Song
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Dermatological Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xin Xie
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Dermatological Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinhao Zeng
- Dermatological Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jing Guo
- Dermatological Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
5
|
Xie Y, Wu N, Tang S, Zhou Z, Chen J, Li J, Wu F, Xu M, Xu X, Liu Y, Ma X. Endoplasmic Reticulum Dysfunction: An Emerging Mechanism of Vitiligo Pathogenesis. Clin Cosmet Investig Dermatol 2024; 17:1133-1144. [PMID: 38774812 PMCID: PMC11107934 DOI: 10.2147/ccid.s459070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/25/2024] [Indexed: 05/24/2024]
Abstract
The endoplasmic reticulum (ER) is the main site of protein synthesis, transport, and modification. Its abnormal status has now emerged as an established cause of many pathological processes, such as tumors and autoimmune diseases. Recent studies also demonstrated that the defective functions of ER may lead to pigmentary diseases. Vitiligo is a depigmenting ailment skin disorder whose pathogenesis is now found to be associated with ER. However, the detailed mechanism is still unclear. In this review, we try to link the association between ER with its inter- and intra-organellar interactions in vitiligo pathogenesis and focus on the function, mechanism, and clinical potential of ER with vitiligo. Expand ER is found in melanocytes of vitiligo and ER stress (ERS) might be a bridge between oxidative stress and innate and adaptive immunity. Meanwhile, the tight association between ER and mitochondria or melanosomes in organelles levels, as well as genes and cytokines, is the new paradigm in the pathogenesis of vitiligo. This undoubtedly adds a new aspect to the understanding of vitiligo, facilitating the design of targeted therapies for vitiligo.
Collapse
Affiliation(s)
- Yongyi Xie
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Nanhui Wu
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Suwei Tang
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Zhiyu Zhou
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Jiashe Chen
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Jie Li
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Fei Wu
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Mingyuan Xu
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Xiaoxiang Xu
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Yeqiang Liu
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Xin Ma
- Shanghai Skin Disease Hospital, Institute of Dermatology, School of Medicine, Tongji University, Shanghai, People’s Republic of China
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| |
Collapse
|
6
|
Yu X, Wang Y, Wu Z, Jia M, Xu Y, Qu H, Zhao X, Wang S, Jing L, Lou Y, Fan G, Gui Y. Multi-technology integrated network pharmacology-based study on phytochemicals, active metabolites, and molecular mechanism of Psoraleae Fructus to promote melanogenesis. JOURNAL OF ETHNOPHARMACOLOGY 2024; 325:117755. [PMID: 38218502 DOI: 10.1016/j.jep.2024.117755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/08/2024] [Accepted: 01/11/2024] [Indexed: 01/15/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE According to the Compendium of Materia Medica (Shizhen Li, Ming dynasty) and Welfare Pharmacy (Song dynasty), Psoraleae Fructus (PF), a traditional Chinese medicine (TCM) has a bitter taste and warm nature, which has the effect of treating spleen and kidney deficiency and skin disease. Although PF has been widely used since ancient times and has shown satisfactory efficacy in treating vitiligo, the active substances and the mechanism of PF in promoting melanogenesis remain unclear. AIM OF THE STUDY To explore the active substances and action mechanisms of PF in promoting melanogenesis. MATERIALS AND METHODS Firstly, UPLC-UV-Q-TOF/MS was used to characterize the components in PF extract and identify the absorption components and metabolites of PF after oral administration at usual doses in rats. Secondly, the active substances and related targets and pathways were predicted by network pharmacology and molecular docking. Finally, pharmacodynamic and molecular biology experiments were used to verify the prediction results. RESULTS The experimental results showed that 15 compounds were identified in PF extract, and 44 compounds, consisting of 8 prototype components and 36 metabolites (including isomers) were identified in rats' plasma. Promising action targets (MAPK1, MAPK8, MAPK14) and signaling pathways (MAPK signaling pathway) were screened and refined to elucidate the mechanism of PF against vitiligo based on network pharmacology. Bergaptol and xanthotol (the main metabolites of PF), psoralen (prototype drug), and PF extract significantly increased melanin production in zebrafish embryos. Furthermore, bergaptol could promote the pigmentation of zebrafish embryos more than psoralen and PF extract. Bergaptol significantly increased the protein expression levels of p-P38 and decreased ERK phosphorylation in B16F10 cells, which was also supported by the corresponding inhibitor/activator combination study. Moreover, bergaptol increased the mRNA expression levels of the downstream microphthalmia-associated transcription factor (MITF) and tyrosinase in B16F10 cells. Our data elucidate that bergaptol may promote melanogenesis by regulating the p-P38 and p-ERK signaling pathway. CONCLUSIONS This study will lay a foundation for discovering potential new drugs for treating vitiligo and provide feasible ideas for exploring the mechanism of traditional Chinese medicine.
Collapse
Affiliation(s)
- Xuemei Yu
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, PR China.
| | - Yuanyuan Wang
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, PR China; Department of Neurology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, PR China.
| | - Zhenghua Wu
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, PR China; School of Pharmacy, Shanghai Jiao Tong University, Building 6-312, Shanghai, 200240, PR China.
| | - Mengqi Jia
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, PR China.
| | - Ying Xu
- Department of Neurology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, PR China.
| | - Han Qu
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, PR China; School of Pharmacy, Shanghai Jiao Tong University, Building 6-312, Shanghai, 200240, PR China.
| | - Xin Zhao
- Department of Pharmacy, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, 200434, PR China.
| | - Shuowen Wang
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, PR China.
| | - Lili Jing
- School of Pharmacy, Shanghai Jiao Tong University, Building 6-312, Shanghai, 200240, PR China.
| | - Yuefen Lou
- Department of Pharmacy, Shanghai Fourth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, 200434, PR China.
| | - Guorong Fan
- Department of Clinical Pharmacy, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, PR China; School of Pharmacy, Shanghai Jiao Tong University, Building 6-312, Shanghai, 200240, PR China.
| | - Yaxing Gui
- Department of Neurology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, PR China.
| |
Collapse
|
7
|
Pranić S, Pulumati A, Vuković D. Protocol for a systematic review and meta-analysis on Janus kinase inhibitors in the management of vitiligo. Syst Rev 2024; 13:110. [PMID: 38641831 PMCID: PMC11027385 DOI: 10.1186/s13643-024-02522-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/02/2024] [Indexed: 04/21/2024] Open
Abstract
BACKGROUND Vitiligo is a disease that affects people of all skin shades and can impact their quality of life. Reliable evidence on the effectiveness and adverse events associated with the recent use of Janus kinase (JAK) inhibitors to treat vitiligo is needed. This protocol for a systematic review and meta-analysis seeks to collect evidence from both randomized controlled trials (RCTs) and observational studies to determine the effectiveness and patient-centered outcomes concerning treatment with JAK inhibitors. METHODS We will conduct a systematic review of the literature for RCTs and observational studies that used upadacitinib, ritlecitinib, brepocitinib, ifidancitinib, cerdulatinib, deglocitinib, baricitinib, tofacitinib, and ruxolitinib JAK inhibitors as treatments for vitiligo compared to placebo, no treatment, or combination therapies. We will systematically search from inception in Epistemonikos, MEDLINE, Scopus, Cochrane Central Register of Controlled Trials, EMBASE, ClinicalTrials.gov, PsycINFO, Allied and Complementary Medicine Database, Latin American and Caribbean Health Sciences Literature, Web of Science Core Collection, relevant preprint servers, and the gray literature. Ethics approval was not sought as the protocol and systematic review will not involve human participants, but rather summarized and anonymous data from studies. Primary outcomes include quality of life, percentage repigmentation, decreased vitiligo within 1 year or more, lasting repigmentation after a 2-year follow-up, cosmetic acceptability of repigmentation and tolerability or burden of treatment, and adverse events. Secondary outcomes are patient and study characteristics. We will include full-text articles, preprints, and clinical trial data in any language and all geographic regions. For data sources unavailable in English, we will obtain translations from global collaborators via the Cochrane Engage network. We will exclude articles for which sufficient information cannot be obtained from the authors of articles and systematic reviews. At least two investigators will independently assess articles for inclusion and extract data; reliability will be assessed before subsequent selection and data extraction of remaining studies. The risk of bias and certainty of evidence with Grading of Recommendations Assessment, Development, and Evaluation guidelines will be assessed independently by at least two investigators. We will estimate treatment effects by random-effects meta-analyses and assess heterogeneity using I2. Data that cannot be included in the meta-analysis will be reported narratively using themes. DISCUSSION The proposed systematic review and meta-analysis describe the methods for summarizing and synthesizing the evidence on the effectiveness and patient-centered outcomes concerning the treatment of vitiligo with JAK inhibitors that were recently approved for this indication. To disseminate further the results of our systematic review, we plan to present them at international conferences and meetings. Our findings will provide robust evidence to facilitate decision-making at the policy or practitioner level. SYSTEMATIC REVIEW REGISTRATION PROSPERO CRD42023383920.
Collapse
Affiliation(s)
- Shelly Pranić
- School of Medicine, University of Split, Šoltanska 2, 21000, Split, Croatia
- Cochrane Croatia, Šoltanska 2, 21000, Split, Croatia
| | - Anika Pulumati
- University of Missouri-Kansas City School of Medicine, 2411 Holmes, Kansas City, MO, 64108, USA
| | - Dubravka Vuković
- University Hospital of Split, Spinčićeva 1, 21000, Split, Croatia.
| |
Collapse
|
8
|
Yamaguchi HL, Yamaguchi Y, Peeva E. Pathogenesis of Alopecia Areata and Vitiligo: Commonalities and Differences. Int J Mol Sci 2024; 25:4409. [PMID: 38673994 PMCID: PMC11049978 DOI: 10.3390/ijms25084409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/13/2024] [Accepted: 04/13/2024] [Indexed: 04/28/2024] Open
Abstract
Both alopecia areata (AA) and vitiligo are distinct, heterogenous, and complex disease entities, characterized by nonscarring scalp terminal hair loss and skin pigment loss, respectively. In AA, inflammatory cell infiltrates are in the deep reticular dermis close to the hair bulb (swarm of bees), whereas in vitiligo the inflammatory infiltrates are in the epidermis and papillary dermis. Immune privilege collapse has been extensively investigated in AA pathogenesis, including the suppression of immunomodulatory factors (e.g., transforming growth factor-β (TGF-β), programmed death-ligand 1 (PDL1), interleukin-10 (IL-10), α-melanocyte-stimulating hormone (α-MSH), and macrophage migration inhibitory factor (MIF)) and enhanced expression of the major histocompatibility complex (MHC) throughout hair follicles. However, immune privilege collapse in vitiligo remains less explored. Both AA and vitiligo are autoimmune diseases that share commonalities in pathogenesis, including the involvement of plasmacytoid dendritic cells (and interferon-α (IFN- α) signaling pathways) and cytotoxic CD8+ T lymphocytes (and activated IFN-γ signaling pathways). Blood chemokine C-X-C motif ligand 9 (CXCL9) and CXCL10 are elevated in both diseases. Common factors that contribute to AA and vitiligo include oxidative stress, autophagy, type 2 cytokines, and the Wnt/β-catenin pathway (e.g., dickkopf 1 (DKK1)). Here, we summarize the commonalities and differences between AA and vitiligo, focusing on their pathogenesis.
Collapse
Affiliation(s)
| | - Yuji Yamaguchi
- Inflammation & Immunology Research Unit, Pfizer, Collegeville, PA 19426, USA
| | - Elena Peeva
- Inflammation & Immunology Research Unit, Pfizer, Cambridge, MA 02139, USA;
| |
Collapse
|
9
|
Shahroudi MJ, Rezaei M, Mirzaeipour M, Saravani M, Shahraki-Ghadimi H, Arab S. Association between miR-202, miR-211, and miR-1238 gene polymorphisms and risk of vitiligo. Arch Dermatol Res 2024; 316:118. [PMID: 38597990 DOI: 10.1007/s00403-024-02847-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/04/2024] [Accepted: 02/09/2024] [Indexed: 04/11/2024]
Abstract
Vitiligo, as a common pigment defect in the skin, hair, and mucous membranes, results from the destruction of melanocytes. Recent investigations have shown that miRNA dysregulation contributes in the pathogenesis of vitiligo. Therefore, in this research, our aim is to explore the relationship between miR-202 rs12355840, miR-211 rs8039189, and miR-1238 rs12973308 polymorphisms and susceptibility to vitiligo. A total number of 136 vitiligo patients and 129 healthy individuals as a control group were included in this research. The salting out approach was implemented to extraction genomic DNA. The genetic polymorphisms of miR-202 rs12355840, miR-211 rs8039189, and miR-1238 rs12973308 were determined using PCR-RFLP approach. The findings revealed that miR-202 rs12355840 polymorphism under codominant (CT and TT genotypes), dominant, recessive, overdominant, and also allelic models is correlated with increased risk of vitiligo. In addition, codominant, dominant, overdominant, as well as allelic models of miR-211 rs8039189 polymorphism decrease risk of vitiligo. No significant relationship was observed between the miR-1238 rs12973308 polymorphism and susceptibility to vitiligo. The miR-211 rs8039189 polymorphism may serve a protective effect on vitiligo development and miR-202 rs12355840 polymorphism may act as a risk factor for vitiligo susceptibility.
Collapse
Affiliation(s)
- Mahdieh Jafari Shahroudi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran.
- Department of Occupational Health Engineering, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Mahnaz Rezaei
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | | | - Mohsen Saravani
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Hossein Shahraki-Ghadimi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran
- Bioinformatics and Computational Omics Lab (BioCOOL), Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Sara Arab
- Khatam Al Anbia Hospital, Zahedan University of Medical Sciences, Zahedan, Iran
| |
Collapse
|
10
|
Jin R, Xu H, Zhou M, Lin F, Xu W, Xu A. EGR1 Mediated Reduction of Fibroblast Secreted-TGF-β1 Exacerbated CD8 + T Cell Inflammation and Migration in Vitiligo. Inflammation 2024; 47:503-512. [PMID: 37880426 DOI: 10.1007/s10753-023-01922-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/14/2023] [Accepted: 10/17/2023] [Indexed: 10/27/2023]
Abstract
Vitiligo is a T cell-mediated depigment skin disease caused by the complex interplay between melanocyte dysfunction, environmental stimulation, and dysregulated immune signals. Transforming growth factor-β1 (TGF-β1), which typically derives from regulatory T cells, has long been identified at low levels in the peripheral system of vitiligo patients. Here, through RNA-sequencing and transcription factor enrichment, we revealed that in response to CD8+ T cell-secreted interferon-gamma (IFN-γ), stromal fibroblast downregulates early growth response 1 (EGR1) activity, leading to TGF-β1 deficiency. The defective immune regulation loop further exacerbated local CD8+ T cell inflammation and promoted inflammatory cell migration in vitiligo. Thus, fibroblast-derived TGF-β1 plays an important stromal signal in vitiligo pathogenesis.
Collapse
Affiliation(s)
- Rong Jin
- Department of Dermatology, Hangzhou Third People's Hospital, 38 Xihu Ave, Hangzhou, Zhejiang Province 310009, People's Republic of China
| | - Hao Xu
- Department of Dermatology, Hangzhou Third People's Hospital, 38 Xihu Ave, Hangzhou, Zhejiang Province 310009, People's Republic of China
| | - Miaoni Zhou
- Department of Dermatology, Hangzhou Third People's Hospital, 38 Xihu Ave, Hangzhou, Zhejiang Province 310009, People's Republic of China
| | - Fuquan Lin
- Department of Dermatology, Hangzhou Third People's Hospital, 38 Xihu Ave, Hangzhou, Zhejiang Province 310009, People's Republic of China
| | - Wen Xu
- Department of Dermatology, Hangzhou Third People's Hospital, 38 Xihu Ave, Hangzhou, Zhejiang Province 310009, People's Republic of China
| | - Aie Xu
- Department of Dermatology, Hangzhou Third People's Hospital, 38 Xihu Ave, Hangzhou, Zhejiang Province 310009, People's Republic of China.
| |
Collapse
|
11
|
Giri P, Desai D, Dwivedi M. Animal models unraveling the complexity of vitiligo pathogenesis. Autoimmun Rev 2024; 23:103515. [PMID: 38185189 DOI: 10.1016/j.autrev.2024.103515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 01/02/2024] [Indexed: 01/09/2024]
Abstract
Vitiligo is a chronic skin condition marked by the gradual loss of pigmentation, leading to the emergence of white or depigmented patches on the skin. The exact cause of vitiligo remains not entirely understood, although it is thought to involve a blend of genetic, autoimmune, and environmental factors. While there is currently no definitive cure for vitiligo, diverse treatments exist that may assist in managing the condition and fostering repigmentation in specific instances. Animal models play a pivotal role in comprehending the intricate mechanisms that underlie vitiligo, providing valuable insights into the progression and onset of the disease, as well as potential therapeutic interventions. Although induced experimental models lack the nuanced characteristics observed in natural experimental models, relying solely on a single animal model might not fully capture the intricate pathogenesis of vitiligo. Different animal models simulate specific aspects of human vitiligo pathogenesis to varying degrees. This review extensively explores the array of animal models utilized in vitiligo research, shedding light on their respective advantages, disadvantages, and applications.
Collapse
Affiliation(s)
- Prashant Giri
- C. G. Bhakta Institute of Biotechnology, Faculty of Science, Uka Tarsadia University, Bardoli, Surat 394 350, Gujarat, India
| | - Dharm Desai
- C. G. Bhakta Institute of Biotechnology, Faculty of Science, Uka Tarsadia University, Bardoli, Surat 394 350, Gujarat, India
| | - Mitesh Dwivedi
- C. G. Bhakta Institute of Biotechnology, Faculty of Science, Uka Tarsadia University, Bardoli, Surat 394 350, Gujarat, India.
| |
Collapse
|
12
|
Winkie MJ, Sakunchotpanit G, Salazar CE, Gunasekera NS, Buzney EA, Nambudiri VE. A focused review of visible light therapies for vitiligo. PHOTODERMATOLOGY, PHOTOIMMUNOLOGY & PHOTOMEDICINE 2024; 40:e12939. [PMID: 38084061 DOI: 10.1111/phpp.12939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/16/2023] [Accepted: 11/28/2023] [Indexed: 01/31/2024]
Abstract
BACKGROUND Vitiligo can be challenging to treat and exhibit an unpredictable clinical course. Phototherapy in the form of visible light can achieve both repigmentation and depigmentation outcomes in vitiligo, with minimal associated adverse events. This review focuses on the mechanistic understandings and clinical outcomes of visible light-based treatments for vitiligo. METHODS Articles were retrieved from PubMed starting from May 1965 until August 2023, yielding 496 unique articles. We conducted title, abstract, and full-text screening to identify articles describing the use of visible light (380-750 nm), either as part of combination therapy or as monotherapy, for repigmentation or depigmentation treatment in vitiligo. RESULTS Twenty-seven articles met inclusion criteria, offering preclinical and clinical data regarding the utilization of helium-neon laser (red light) and blue light-emitting diodes (LEDs) as methods of repigmentation therapy in vitiligo. Preclinical and clinical data on the utilization of Q-switched ruby laser (694 nm) and frequency-doubled (FD) Nd:YAG laser (532 nm) for vitiligo depigmentation therapy were also identified. CONCLUSION While limited by small studies and a lack of standardized administration of phototherapy, the evidence for visible light's effectiveness in managing vitiligo is encouraging. Red light therapy using He-Ne lasers and blue light therapy via LEDs can stimulate repigmentation in patients with vitiligo with minimal adverse events. Q-switched ruby and FD Nd:YAG lasers provide viable, visible light depigmentation options, either alone or with topical agents. With limited clinical data, larger studies are needed to validate the efficacy of visible light therapy in treating vitiligo and to better understand its long-term outcomes.
Collapse
Affiliation(s)
- Mitchell J Winkie
- Department of Dermatology, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Goranit Sakunchotpanit
- Department of Dermatology, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Carlos E Salazar
- Department of Dermatology, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Nicole S Gunasekera
- Department of Dermatology, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Elizabeth A Buzney
- Department of Dermatology, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Vinod E Nambudiri
- Department of Dermatology, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
13
|
Gençoğlu Ş. Circulating Podocalyxin, Tumstatin/Col-IVα3 and Chitinase 1: New Culprits in Vitiligo Occurrence. Dermatol Pract Concept 2024; 14:dpc.1401a95. [PMID: 38236996 PMCID: PMC10868821 DOI: 10.5826/dpc.1401a95] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/26/2023] [Indexed: 02/16/2024] Open
Abstract
INTRODUCTION The roles of anti-adhesive podocalyxin (PODXL), anti-angiogenetic tumstatin/ Col-IVα3 and neuro-inflammation and innate immunity modulator Chitinase 1 (CHIT-1) in the etiology of vitiligo have not been studied yet. OBJECTIVES This study was planned to detect changes in serum PODXL, tumstatin/Col-IVα3 and CHIT1 levels in vitiligo patients. METHODS This case-controlled study was performed on a total of 50 patients, 25 with vitiligo and 25 healthy controls. Participants in the vitiligo and control groups were matched in pairs for age and sex. At least 8-10 hours of overnight fasting, venous blood samples were taken from the participants in both groups and serum levels of podocalyxin, tumstatin/Col-IVα3 and CHIT 1 levels were measured by sandwich enzyme immunoassay. RESULTS In the classification made according to the vitiligo European Task Force evaluation criteria, 18 of 25 vitiligo patients were in the slowly progressive phase and 7 patients were in the active progressive phase. Serum podocalyxin levels increased significantly in the vitiligo group compared to the controls (7.03±2.09 ng/ml vs. 4.99±1.20 ng/ml, p<0.02). However, serum tumstatin levels in vitiligo patients showed a significantly lower course compared to controls (4.88±1.76 ng/ml vs. 6.05±2.19 ng/nl, p<0.03). Serum CHIT-1 levels of vitiligo patients (42.4±7.22 ng/ml) were found to be significantly higher than the serum levels of the control group (34.5±5.33 ng/ml) (p<0.01). CONCLUSION High podocalyxin and CHIT1versus low tumstatin levels are new biomarkers that support the role of anti-adhesive, anti-angiogenic and neuroinflammatory pathways in the formation of vitiligo.
Collapse
Affiliation(s)
- Şule Gençoğlu
- Department of Dermatology, Gozde Academy Hospitals, Malatya, Turkey
| |
Collapse
|
14
|
Kuznetsov D, Kalyuzhin O, Mironov A, Neschisliaev V, Kuznetsova A. A case of vitiligo after COVID-19 vaccination: a possible role of thymic dysfunction. J Zhejiang Univ Sci B 2023; 24:1141-1150. [PMID: 38057270 PMCID: PMC10710914 DOI: 10.1631/jzus.b2300025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 06/06/2023] [Indexed: 12/08/2023]
Abstract
During the coronavirus disease 2019 (COVID-19) pandemic, vaccines help control the spread of infection. To date, 47 vaccines have been approved, with another 227 candidates in various stages of development. In the short period of time since the beginning of their use, evidence has begun to emerge of complications following vaccination in the form of the development or exacerbation of a number of pathological conditions (Block et al., 2022; Haseeb et al., 2022). For example, a population-based study in France identified 1612 cases of myocarditis and 1613 cases of pericarditis requiring hospital treatment within five months of vaccination (le Vu et al., 2022).
Collapse
Affiliation(s)
- Denis Kuznetsov
- G N. Gabrichevsky Scientific and Research Institute of Epidemiology and Microbiology, Moscow 125212, Russia.
| | - Oleg Kalyuzhin
- I M. Sechenov First Moscow State Medical University, Moscow 119991, Russia
| | - Andrey Mironov
- G N. Gabrichevsky Scientific and Research Institute of Epidemiology and Microbiology, Moscow 125212, Russia
| | | | | |
Collapse
|
15
|
Zhang R, Wei Y, Wang T, Nie X, Shi Z, Deng Y, Li D. Exosomal miRNAs in autoimmune skin diseases. Front Immunol 2023; 14:1307455. [PMID: 38106405 PMCID: PMC10722155 DOI: 10.3389/fimmu.2023.1307455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 11/16/2023] [Indexed: 12/19/2023] Open
Abstract
Exosomes, bilaterally phospholipid-coated small vesicles, are produced and released by nearly all cells, which comprise diverse biological macromolecules, including proteins, DNA, RNA, and others, that participate in the regulation of their biological functions. An increasing number of studies have revealed that the contents of exosomes, particularly microRNA(miRNA), play a significant role in the pathogenesis of various diseases, including autoimmune skin diseases. MiRNA is a class of single-stranded non-coding RNA molecules that possess approximately 22 nucleotides in length with the capability of binding to the untranslated as well as coding regions of target mRNA to regulate gene expression precisely at the post-transcriptional level. Various exosomal miRNAs have been found to be significantly expressed in some autoimmune skin diseases and involved in the pathogenesis of conditions via regulating the secretion of crucial pathogenic cytokines and the direction of immune cell differentiation. Thus, exosomal miRNAs might be promising biomarkers for monitoring disease progression, relapse and reflection to treatment based on their functions and changes. This review summarized the current studies on exosomal miRNAs in several common autoimmune skin diseases, aiming to dissect the underlying mechanism from a new perspective, seek novel biomarkers for disease monitoring and lay the foundation for developing innovative target therapy in the future.
Collapse
Affiliation(s)
- Ri Zhang
- Department of Dermatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yujia Wei
- Department of Dermatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tingmei Wang
- Department of Dermatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoqi Nie
- Department of Dermatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zeqi Shi
- Department of Dermatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yunhua Deng
- Department of Dermatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dong Li
- Department of Dermatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
16
|
Kaushik H, Kumar V, Parsad D. Mitochondria-Melanocyte cellular interactions: An emerging mechanism of vitiligo pathogenesis. J Eur Acad Dermatol Venereol 2023; 37:2196-2207. [PMID: 36897230 DOI: 10.1111/jdv.19019] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 02/07/2023] [Indexed: 03/11/2023]
Abstract
Mitochondria has emerged as a potential modulator of melanocyte function other than just meeting its cellular ATP demands. Mitochondrial DNA defects are now an established cause of maternal inheritance diseases. Recent cellular studies have highlighted the mitochondrial interaction with other cellular organelles that lead to disease conditions such as in Duchenne muscular dystrophy, where defective mitochondria was found in melanocytes of these patients. Vitiligo, a depigmentory ailment of the skin, is another such disorder whose pathogenesis is now found to be associated with mitochondria. The complete absence of melanocytes at the lesioned site in vitiligo is a fact; however, the precise mechanism of this destruction is still undefined. In this review we have tried to discuss and link the emerging facts of mitochondrial function or its inter- and intra-organellar communications in vitiligo pathogenesis. Mitochondrial close association with melanosomes, molecular involvement in melanocyte-keratinocyte communication and melanocyte survival are new paradigm of melanogenesis that could ultimately account for vitiligo. This definitely adds the new dimensions to our understanding of vitiligo, its management and designing of future mitochondrial targeted therapy for vitiligo.
Collapse
Affiliation(s)
- Hitaishi Kaushik
- Department of Dermatology, Venereology & Leprology, PGIMER, Chandigarh, 160012, India
| | - Vinod Kumar
- Department of Dermatology, Venereology & Leprology, PGIMER, Chandigarh, 160012, India
| | - Davinder Parsad
- Department of Dermatology, Venereology & Leprology, PGIMER, Chandigarh, 160012, India
| |
Collapse
|
17
|
Tekielak A, Pietrauszka K, Miziołek B, Bergler-Czop B. Vitiligo and insulin resistance as a component of metabolic syndrome: an analysis. Postepy Dermatol Alergol 2023; 40:529-533. [PMID: 37692261 PMCID: PMC10485765 DOI: 10.5114/ada.2023.126871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 02/11/2023] [Indexed: 09/12/2023] Open
Abstract
There have been many studies on the association between vitiligo and metabolic syndrome, while only few scientific papers on vitiligo and insulin resistance. In recent years, there have been significant developments in research to trace and understand the aetiology of both conditions. In this article we have analysed pathophysiological mechanisms and the association of insulin resistance (as a component of metabolic syndrome) and vitiligo.
Collapse
Affiliation(s)
- Anna Tekielak
- Students’ Scientific Association at the Department of Dermatology, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Kornelia Pietrauszka
- Department of Dermatology, Andrzej Mielêcki Independent Public Clinical Hospital of the Silesian Medical University, Katowice, Poland
| | - Bartosz Miziołek
- Department of Dermatology, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Beata Bergler-Czop
- Department of Dermatology, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| |
Collapse
|
18
|
Xiong H, Ji L, Yang J, Wan J, Song M, Liu G, Yang L, Dong X. Analysis of CD8 + TCRβ Chain repertoire in peripheral blood of vitiligo via high-throughput sequencing. Mol Immunol 2023; 160:112-120. [PMID: 37421821 DOI: 10.1016/j.molimm.2023.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 06/11/2023] [Accepted: 06/24/2023] [Indexed: 07/10/2023]
Abstract
Vitiligo is an autoimmune depigmentation dermatosis induced by melanocyte destruction, and CD8+ T cells play a pivotal role in melanocyte destruction. However, an accurate profile of the CD8+ T cell receptor (TCR) repertoire in vitiligo patients has not been reported, and the clonotype features of the involved CD8+ T cells remain largely unknown. This study aimed to assess the TCRβ chain repertoire diversity and composition of blood in nine nonsegmental vitiligo patients via high-throughput sequencing. Vitiligo patients manifested a low TCRβ repertoire diversity with highly expanded clones. Differential usage of TRBV, the TRBJ gene, and the TRBV/TRBJ combination were compared between patients with vitiligo and healthy controls. A set of TRBV/TRBJ combinations could differentiate patients with vitiligo from healthy controls (area under the curve = 0.9383, 95% CI: 0.8167-1.00). Our study revealed distinct TCRβ repertoires of CD8+ T cells in patients with vitiligo and will help explore novel immune biomarkers and potential therapeutic targets for vitiligo.
Collapse
Affiliation(s)
- Hao Xiong
- Department of Dermatology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Liyan Ji
- Beijing GenePlus Genomics Institute, China
| | - Jin Yang
- Department of Allergy and Immunology, Huashan Hospital, Fudan University, Shanghai, China; Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jianji Wan
- Department of Dermatology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | | | - Guangren Liu
- Department of Dermatology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Ling Yang
- Beijing GenePlus Genomics Institute, China
| | - Xiuqin Dong
- Department of Dermatology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China.
| |
Collapse
|
19
|
Ahlawat S, Kothiwala R, Meherda A. A Comparative Study to Evaluate the Efficacy of Fractional CO 2 Laser + PRP Vs. Fractional CO 2 Laser Alone in Patients with Vitiligo. J Cutan Aesthet Surg 2023; 16:186-191. [PMID: 38189059 PMCID: PMC10768947 DOI: 10.4103/jcas.jcas_103_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024] Open
Abstract
Introduction Vitiligo is a multifactorial acquired disorder clinically characterized by amelanotic lesions on the skin, due to destruction of melanocytes. The course of vitiligo is unpredictable. Vitiligo causes significant psychological impact and cosmetic disfigurement. Treatment of vitiligo is challenging and requires a multidisciplinary approach. Materials and Methods A prospective comparative interventional study was carried out from October 2018 to March 2020. The study enrolled 60 stable vitiligo patients divided into groups A and B. Group A (30 patients) was treated with both fractional CO2 laser and autologous platelet-rich plasma (PRP) injection. Group B (30 patients) was treated with fractional CO2 laser alone. A total of four sessions were conducted in each group at 1-month interval along with photographic assessment. Final assessment was done 1 month after the completion of four sessions. Results In group A, the median values of repigmentation and visual-analog score (VAS) were 3 and 7, and in group B, the median values of repigmentation and VAS were 1 and 2, respectively. Lesions over the trunk showed the best response followed by face and extremities lesions. Acral lesions showed the least response. Conclusion A combination of fractional CO2 laser and PRP is superior to fractional CO2 laser alone in the treatment of stable vitiligo.
Collapse
Affiliation(s)
- Shweta Ahlawat
- Department of Dermatology, JLN Medical College, Ajmer, Rajasthan, India
| | | | - Ashok Meherda
- Department of Dermatology, JLN Medical College, Ajmer, Rajasthan, India
| |
Collapse
|
20
|
Sardana K, Muddebihal A, Khurana A. JAK inhibitors in vitiligo: what they hit and what they miss - an immunopathogenesis based exposition of existing evidence. Expert Rev Clin Pharmacol 2023; 16:1221-1227. [PMID: 37982238 DOI: 10.1080/17512433.2023.2285011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 11/14/2023] [Indexed: 11/21/2023]
Abstract
INTRODUCTION Vitiligo is an autoimmune disorder which presents as depigmented macules due to selective loss of melanocytes. Heightened expression of Janus Kinase Signal transducers and activators of transcription (JAK STAT) pathway, which mediate cytokines action, suggest that targeting this signaling pathway may be an effective option. AREAS COVERED A PubMed search was carried out with the broad key words 'JAK,' 'vitiligo' from 2016 to 2023. We also analyzed papers where tissue-based JAK expression was studied, with or without concomitant treatment with JAK inhibitors. We address the role of JAK inhibitors in vitiligo and their effect on repigmentation of lesions. EXPERT OPINION While JAK inhibitors help in cessation of disease progression, they have no in vivo action on melanocyte proliferation and hence cannot result in re-pigmentation as a monotherapy. There is a need for tissue-based JAK and cytokine-based studies with post-treatment expression data to validate the role of this class of drugs in vitiligo. There is as yet no data to suggest that selective JAK inhibitors are superior to pan JAK inhibitors for vitiligo. JAK inhibitors are useful in active disease and effectively modulate the cytokine mediated autoimmune dammage and makes them singularly superior to oral glucocorticosteroids.
Collapse
Affiliation(s)
- Kabir Sardana
- Department of Dermatology, Venereology and Leprosy, Atal Bihari Vajpayee Institute of Medical Sciences and Dr. Ram Manohar Lohia Hospital, Delhi, India
| | - Aishwarya Muddebihal
- Department of Dermatology, Venereology and Leprosy, North Delhi Municipal Corporation Medical College and Hindu Rao Hospital, Delhi, India
| | - Ananta Khurana
- Department of Dermatology, Venereology and Leprosy, Atal Bihari Vajpayee Institute of Medical Sciences and Dr. Ram Manohar Lohia Hospital, Delhi, India
| |
Collapse
|
21
|
Meireles BC, Goldschmidt B, Lopes CA, Demarque KC, Leal GM, Magalhães MS, Souza MB, Cruz RS. Spontaneous Vitiligo in a Captive Rhesus Monkey ( Macaca Mulatta). Comp Med 2023; 73:242-247. [PMID: 37263754 PMCID: PMC10290481 DOI: 10.30802/aalas-cm-22-000091] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 01/31/2023] [Accepted: 02/06/2023] [Indexed: 06/03/2023]
Abstract
Vitiligo affects a significant portion of human and animal populations. The disease causes irregular and multifocal progressive loss of fur, skin, and mucous membrane pigmentation due to the loss or absence of melanocytes. While etiopathogenesis is not completely understood, autoimmunity, environmental, and genetic factors are implicated We present a case report on a 16-y-old female rhesus macaque (Macaca mulatta ) with depigmented areas that are progressively increasing on the skin and coat and are distributed on the head and back. Histopathology revealed alterations compatible with vitiligo characterized by the absence of melanocytes in the epidermis and dermis. The clinical history and complementary exams support this diagnosis.
Collapse
Affiliation(s)
- Bárbara Cs Meireles
- Department of Primatology, Institute of Science and Technology in Biomodels (ICTB), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil;,
| | - Beatriz Goldschmidt
- Department of Primatology, Institute of Science and Technology in Biomodels (ICTB), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Cláudia A Lopes
- Department of Primatology, Institute of Science and Technology in Biomodels (ICTB), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Kelly C Demarque
- Laboratory of Cellular Biology (LBC), Oswaldo Cruz Institute (IOC/FIOCRUZ), Rio de Janeiro, Brazil
| | - Gabriel M Leal
- Department of Primatology, Institute of Science and Technology in Biomodels (ICTB), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Mariana S Magalhães
- Department of Primatology, Institute of Science and Technology in Biomodels (ICTB), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Milena B Souza
- Department of Primatology, Institute of Science and Technology in Biomodels (ICTB), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Ricardo S Cruz
- Department of Primatology, Institute of Science and Technology in Biomodels (ICTB), Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| |
Collapse
|
22
|
Romano PS, Akematsu T, Besteiro S, Bindschedler A, Carruthers VB, Chahine Z, Coppens I, Descoteaux A, Alberto Duque TL, He CY, Heussler V, Le Roch KG, Li FJ, de Menezes JPB, Menna-Barreto RFS, Mottram JC, Schmuckli-Maurer J, Turk B, Tavares Veras PS, Salassa BN, Vanrell MC. Autophagy in protists and their hosts: When, how and why? AUTOPHAGY REPORTS 2023; 2:2149211. [PMID: 37064813 PMCID: PMC10104450 DOI: 10.1080/27694127.2022.2149211] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 11/15/2022] [Indexed: 03/12/2023]
Abstract
Pathogenic protists are a group of organisms responsible for causing a variety of human diseases including malaria, sleeping sickness, Chagas disease, leishmaniasis, and toxoplasmosis, among others. These diseases, which affect more than one billion people globally, mainly the poorest populations, are characterized by severe chronic stages and the lack of effective antiparasitic treatment. Parasitic protists display complex life-cycles and go through different cellular transformations in order to adapt to the different hosts they live in. Autophagy, a highly conserved cellular degradation process, has emerged as a key mechanism required for these differentiation processes, as well as other functions that are crucial to parasite fitness. In contrast to yeasts and mammals, protist autophagy is characterized by a modest number of conserved autophagy-related proteins (ATGs) that, even though, can drive the autophagosome formation and degradation. In addition, during their intracellular cycle, the interaction of these pathogens with the host autophagy system plays a crucial role resulting in a beneficial or harmful effect that is important for the outcome of the infection. In this review, we summarize the current state of knowledge on autophagy and other related mechanisms in pathogenic protists and their hosts. We sought to emphasize when, how, and why this process takes place, and the effects it may have on the parasitic cycle. A better understanding of the significance of autophagy for the protist life-cycle will potentially be helpful to design novel anti-parasitic strategies.
Collapse
Affiliation(s)
- Patricia Silvia Romano
- Laboratorio de Biología de Trypanosoma cruzi y de la célula hospedadora. Instituto de Histología y Embriología de Mendoza. Universidad Nacional de Cuyo. (IHEM-CONICET-UNCUYO). Facultad de Ciencias Médicas. Universidad Nacional de Cuyo. Av. Libertador 80 (5500), Mendoza, Argentina
| | - Takahiko Akematsu
- Department of Biosciences, College of Humanities and Sciences, Nihon University, Tokyo, Japan
| | | | | | - Vern B Carruthers
- Department of Microbiology and Immunology, University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Zeinab Chahine
- Department of Molecular, Cell and Systems Biology, University of California Riverside, CA, USA
| | - Isabelle Coppens
- Department of Molecular Microbiology and Immunology. Department of Molecular Microbiology and Immunology. Johns Hopkins Malaria Research Institute. Johns Hopkins University Bloomberg School of Public Health. Baltimore 21205, MD, USA
| | - Albert Descoteaux
- Centre Armand-Frappier Santé Biotechnologie, Institut national de la recherche scientifique, Laval, QC
| | - Thabata Lopes Alberto Duque
- Autophagy Inflammation and Metabolism Center, University of New Mexico Health Sciences Center, Albuquerque, NM, USA; Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Cynthia Y He
- Department of Biological Sciences, National University of Singapore, Singapore
| | - Volker Heussler
- Institute of Cell Biology.University of Bern. Baltzerstr. 4 3012 Bern
| | - Karine G Le Roch
- Department of Molecular, Cell and Systems Biology, University of California Riverside, CA, USA
| | - Feng-Jun Li
- Department of Biological Sciences, National University of Singapore, Singapore
| | | | | | - Jeremy C Mottram
- York Biomedical Research Institute, Department of Biology, University of York, York, UK
| | | | - Boris Turk
- Department of Biochemistry and Molecular and Structural Biology, Jožef Stefan Institute, SI-1000 Ljubljana, Slovenia
| | - Patricia Sampaio Tavares Veras
- Laboratory of Host-Parasite Interaction and Epidemiology, Gonçalo Moniz Institute, Fiocruz-Bahia
- National Institute of Science and Technology of Tropical Diseases - National Council for Scientific Research and Development (CNPq)
| | - Betiana Nebai Salassa
- Laboratorio de Biología de Trypanosoma cruzi y de la célula hospedadora. Instituto de Histología y Embriología de Mendoza. Universidad Nacional de Cuyo. (IHEM-CONICET-UNCUYO). Facultad de Ciencias Médicas. Universidad Nacional de Cuyo. Av. Libertador 80 (5500), Mendoza, Argentina
| | - María Cristina Vanrell
- Laboratorio de Biología de Trypanosoma cruzi y de la célula hospedadora. Instituto de Histología y Embriología de Mendoza. Universidad Nacional de Cuyo. (IHEM-CONICET-UNCUYO). Facultad de Ciencias Médicas. Universidad Nacional de Cuyo. Av. Libertador 80 (5500), Mendoza, Argentina
| |
Collapse
|
23
|
Vitiligo Treatments: Review of Current Therapeutic Modalities and JAK Inhibitors. Am J Clin Dermatol 2023; 24:165-186. [PMID: 36715849 DOI: 10.1007/s40257-022-00752-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2022] [Indexed: 01/31/2023]
Abstract
Vitiligo is a chronic autoimmune disease characterized by loss of pigment of the skin, affecting 0.5-2% of the population worldwide. It can have a significant impact on patients' quality of life. In recent years, there has been significant progress in our understanding of the pathogenesis of vitiligo. It is believed that vitiligo develops due to a complex combination of genetics, oxidative stress, inflammation, and environmental triggers. Conventional treatments include camouflage, topical corticosteroids, topical calcineurin inhibitors, oral corticosteroids, phototherapy, and surgical procedures, with the treatment regimen dependent on the patient's preferences and characteristics. With increased understanding of the importance of the Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathway in the pathogenesis of vitiligo, treatment has expanded to include the first US FDA-approved cream to repigment patients with vitiligo. This review summarizes our understanding of the major mechanisms involved in the pathogenesis of vitiligo and its most common available treatments.
Collapse
|
24
|
Alshaikh AA, Bharti RK. Spontaneous Reversal of Vitiligo, a Rare Phenomenon Reported in a Case in Saudi Arabia with an Insight into Metabolic Biochemical Derangements. Medicina (B Aires) 2023; 59:medicina59030427. [PMID: 36984427 PMCID: PMC10053937 DOI: 10.3390/medicina59030427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/18/2023] [Accepted: 02/20/2023] [Indexed: 02/24/2023] Open
Abstract
Background and Objectives: Vitiligo is a skin disorder characterized by hypopigmented macules occurring due to melanocyte destruction. An interplay of several biochemical mechanisms has been proposed to explain the etiopathogenesis of vitiligo, such as genetic, autoimmune responses, generation of inflammatory mediators, oxidative stress, and melanocyte detachment mechanisms. There is no cure for vitiligo; however, pharmacological treatment measures (cosmetic camouflage creams, steroids, psoralen and ultraviolet A (PUVA) therapy, narrowband UVB) are available, but they could have certain side effects. We reported an interesting case of vitiligo in Saudi Arabia that showed reversal of vitiligo, which is an extremely rare phenomenon, with the objective of probing the probable reasons for this reversal. To the best of our knowledge, there is no study on vitiligo that has reported spontaneous reversal of vitiligo in Saudi Arabia so far. Materials and Method: The patient presented to the Family Medicine clinic with a history of restoration of melanin pigment in his lesions after 3 years of the onset of vitiligo. Patients history was taken carefully along with clinical examination, carried out necessary biomedical lab investigations and compiled the data. The data at the time of pigment restoration were compared to the previous data when he developed the lesions. Result: The probable reasons for vitiligo reversal could be markedly decreased psychological stress, regular consumption of an antioxidant-rich herbal drink made of curcumin and honey, and dietary switchover to vegetarianism and an alcohol-free lifestyle. Conclusions: Curcumin-based herbal remedies could be an alternative option to treat vitiligo. These methods must be further explored through clinical trials as they are safer, easily available, and more affordable.
Collapse
|
25
|
Türkel A, Karaçin C, Öner İ, Şeyran E, Öksüzoğlu B. Vitiligo-like lesions associated with ribociclib in a woman with metastatic breast cancer. J Oncol Pharm Pract 2023:10781552231156521. [PMID: 36760158 DOI: 10.1177/10781552231156521] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
INTRODUCTION Cyclin-dependent kinase 4/6 inhibitors are new generation drugs that have recently been used in patients with hormone receptor-positive and human epidermal growth factor receptor 2-negativenegative metastatic breast cancer. Recent studies have shown that the use of cyclin-dependent kinase 4/6 inhibitors significantly improves the outcomes of these patients. The most common side effects of cyclin-dependent kinase 4/6 inhibitors are hematological toxicity, gastrointestinal side effects, and fatigue. We aimed to present a case of metastatic breast cancer who was treated with ribociclib and developed vitiligo-like lesions after treatment. CASE REPORT A 56-year-old female patient was diagnosed with locally advanced hormone receptor (+)/human epidermal growth factor receptor 2 (-) breast cancer in May 2000. She was followed up with hormonal therapy after adjuvant chemotherapy and radiotherapy. The patient progressed with lung metastases in 2012. Ribociclib, anastrozole, and leuprolide acetate were started in November 2021 after multiple-line chemotherapy. After six cycles of ribociclib, vitiligo-like lesions that developed in the last 1 month were detected on the upper extremities, both hands, neck, chest, and upper back. MANAGEMENT AND OUTCOME The patient was referred to dermatology. Topical immunosuppressive therapy and oral corticosteroids were recommended. At the first and third-month follow-up examinations, vitiligo-like lesions were observed to persist. DISCUSSION Vitiligo-like lesions are not a life-threatening side effect. However, it significantly affects the quality of life and disrupts the patient's compliance with treatment. Cyclin-dependent kinase 4/6 inhibitors can inhibit cell division or cause premature cell death by acting on the melanocyte cell cycle.
Collapse
Affiliation(s)
- Alper Türkel
- Division of Medical Oncology, 146995Dr. Abdurrahman Yurtaslan Ankara Oncology Research and Training Hospital, Ankara, Turkey
| | - Cengiz Karaçin
- Division of Medical Oncology, 146995Dr. Abdurrahman Yurtaslan Ankara Oncology Research and Training Hospital, Ankara, Turkey
| | - İrem Öner
- Division of Medical Oncology, 146995Dr. Abdurrahman Yurtaslan Ankara Oncology Research and Training Hospital, Ankara, Turkey
| | - Erdoğan Şeyran
- Division of Medical Oncology, 146995Dr. Abdurrahman Yurtaslan Ankara Oncology Research and Training Hospital, Ankara, Turkey
| | - Berna Öksüzoğlu
- Division of Medical Oncology, 146995Dr. Abdurrahman Yurtaslan Ankara Oncology Research and Training Hospital, Ankara, Turkey
| |
Collapse
|
26
|
D’Arcy C, Bass O, Junk P, Sevrin T, Oliviero G, Wynne K, Halasz M, Kiel C. Disease-Gene Networks of Skin Pigmentation Disorders and Reconstruction of Protein-Protein Interaction Networks. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 10:bioengineering10010013. [PMID: 36671585 PMCID: PMC9854651 DOI: 10.3390/bioengineering10010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/17/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022]
Abstract
Melanin, a light and free radical absorbing pigment, is produced in melanocyte cells that are found in skin, but also in hair follicles, eyes, the inner ear, heart, brain and other organs. Melanin synthesis is the result of a complex network of signaling and metabolic reactions. It therefore comes as no surprise that mutations in many of the genes involved are associated with various types of pigmentation diseases and phenotypes ('pigmentation genes'). Here, we used bioinformatics tools to first reconstruct gene-disease/phenotype associations for all pigmentation genes. Next, we reconstructed protein-protein interaction (PPI) networks centered around pigmentation gene products ('pigmentation proteins') and supplemented the PPI networks with protein expression information obtained by mass spectrometry in a panel of melanoma cell lines (both pigment producing and non-pigment producing cells). The analysis provides a systems network representation of all genes/ proteins centered around pigmentation and melanin biosynthesis pathways ('pigmentation network map'). Our work will enable the pigmentation research community to experimentally test new hypothesis arising from the pigmentation network map and to identify new targets for drug discovery.
Collapse
Affiliation(s)
- Cian D’Arcy
- Systems Biology Ireland and UCD Charles Institute of Dermatology, School of Medicine, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland
| | - Olivia Bass
- Systems Biology Ireland and UCD Charles Institute of Dermatology, School of Medicine, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland
| | - Philipp Junk
- Systems Biology Ireland and UCD Charles Institute of Dermatology, School of Medicine, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland
| | - Thomas Sevrin
- Systems Biology Ireland and UCD Charles Institute of Dermatology, School of Medicine, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland
| | - Giorgio Oliviero
- Systems Biology Ireland, School of Medicine, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland
| | - Kieran Wynne
- Systems Biology Ireland, School of Medicine, and Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland
| | - Melinda Halasz
- Systems Biology Ireland, School of Medicine, and Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland
| | - Christina Kiel
- Systems Biology Ireland and UCD Charles Institute of Dermatology, School of Medicine, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
- Correspondence:
| |
Collapse
|
27
|
Fazeli Z, Abdollahimajd F, Atazadeh F, Karimi M, Alikhani A, Aryan A, Asadi K. The association of Interleukin-10 and Interleukin-13 polymorphisms with susceptibility to vitiligo: A study in Iranian patients. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
28
|
Papaccio F, Bellei B, Ottaviani M, D’Arino A, Truglio M, Caputo S, Cigliana G, Sciuto L, Migliano E, Pacifico A, Iacovelli P, Picardo M. A Possible Modulator of Vitiligo Metabolic Impairment: Rethinking a PPARγ Agonist. Cells 2022; 11:cells11223583. [PMID: 36429011 PMCID: PMC9688513 DOI: 10.3390/cells11223583] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 11/16/2022] Open
Abstract
Vitiligo is a complex disease wherein derangements in multiple pathways determine the loss of functional melanocytes. Since its pathogenesis is not yet completely understood, vitiligo lacks a definitive safe and efficacious treatment. At present, different therapies are available; however, each modality has its baggage of disadvantages and side effects. Recently we have described several metabolic abnormalities in cells from pigmented skin of vitiligo patients, including alterations of glucose metabolism. Therefore, we conducted a study to evaluate the effect of Pioglitazone (PGZ), a Peroxisome proliferator-activated receptor-γ (PPARγ) agonist, on cells from pigmented vitiligo skin. We treated vitiligo melanocytes and fibroblasts with low doses of PGZ and evaluated the effects on mitochondrial alterations, previously reported by our and other groups. Treatment with PGZ significantly increased mRNA and protein levels of several anaerobic glycolytic enzymes, without increasing glucose consumption. The PGZ administration fully restored the metabolic network, replacing mitochondrial membrane potential and mitochondrial DNA (mtDNA) copy number. These effects, together with a significant increase in ATP content and a decrease in reactive oxygen species (ROS) production, provide strong evidence of an overall improvement of mitochondria bioenergetics in vitiligo cells. Moreover, the expression of HMGB1, Hsp70, defined as a part of DAMPs, and PD-L1 were significantly reduced. In addition, PGZ likely reverts premature senescence phenotype. In summary, the results outline a novel mode of action of Pioglitazone, which may turn out to be relevant to the development of effective new vitiligo therapeutic strategies.
Collapse
Affiliation(s)
- Federica Papaccio
- Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy
- Correspondence: (F.P.); (M.P.)
| | - Barbara Bellei
- Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy
| | - Monica Ottaviani
- Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy
| | - Andrea D’Arino
- Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy
| | - Mauro Truglio
- Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy
| | - Silvia Caputo
- Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy
| | - Giovanni Cigliana
- Clinical Pathology Unit, Department of Research, Advanced Diagnostics, and Technological Innovation, Translational Research Area, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Lorenzo Sciuto
- Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy
| | - Emilia Migliano
- Plastic and Regenerative Surgery, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy
| | - Alessia Pacifico
- Phototherapy Unit, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy
| | - Paolo Iacovelli
- Phototherapy Unit, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy
| | - Mauro Picardo
- Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, 00144 Rome, Italy
- Correspondence: (F.P.); (M.P.)
| |
Collapse
|
29
|
Lyu C, Sun Y. Immunometabolism in the pathogenesis of vitiligo. Front Immunol 2022; 13:1055958. [PMID: 36439174 PMCID: PMC9684661 DOI: 10.3389/fimmu.2022.1055958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 10/24/2022] [Indexed: 01/25/2023] Open
Abstract
Vitiligo is a common depigmenting skin disorder characterized by the selective loss of melanocytes. Autoimmunity, genetic, environmental, and biochemical etiology have been proposed in vitiligo pathogenesis. However, the exact molecular mechanisms of vitiligo development and progression are unclear, particularly for immunometabolism. Sporadic studies have suggested mitochondrial dysfunction, enhanced oxidative stress, and specific defects in other metabolic pathways can promote dysregulation of innate and adaptive immune responses in vitiligo. These abnormalities appear to be driven by genetic and epigenetic factors modulated by stochastic events. In addition, glucose and lipid abnormalities in metabolism have been associated with vitiligo. Specific skin cell populations are also involved in the critical role of dysregulation of metabolic pathways, including melanocytes, keratinocytes, and tissue-resident memory T cells in vitiligo pathogenesis. Novel therapeutic treatments are also raised based on the abnormalities of immunometabolism. This review summarizes the current knowledge on immunometabolism reprogramming in the pathogenesis of vitiligo and novel treatment options.
Collapse
|
30
|
Nimkar P, Wanjari A. Vitiligo and the Role of Newer Therapeutic Modalities. Cureus 2022; 14:e31022. [DOI: 10.7759/cureus.31022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/02/2022] [Indexed: 11/05/2022] Open
|
31
|
Regenerative Medicine-Based Treatment for Vitiligo: An Overview. Biomedicines 2022; 10:biomedicines10112744. [DOI: 10.3390/biomedicines10112744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/21/2022] [Accepted: 10/25/2022] [Indexed: 11/16/2022] Open
Abstract
Vitiligo is a complex disorder with an important effect on the self-esteem and social life of patients. It is the commonest acquired depigmentation disorder characterized by the development of white macules resulting from the selective loss of epidermal melanocytes. The pathophysiology is complex and involves genetic predisposition, environmental factors, oxidative stress, intrinsic metabolic dysfunctions, and abnormal inflammatory/immune responses. Although several therapeutic options have been proposed to stabilize the disease by stopping the depigmentation process and inducing durable repigmentation, no specific cure has yet been defined, and the long-term persistence of repigmentation is unpredictable. Recently, due to the progressive loss of functional melanocytes associated with failure to spontaneously recover pigmentation, several different cell-based and cell-free regenerative approaches have been suggested to treat vitiligo. This review gives an overview of clinical and preclinical evidence for innovative regenerative approaches for vitiligo patients.
Collapse
|
32
|
Chaudhary A, Patel M, Singh S. Current Debates on Etiopathogenesis and Treatment Strategies for Vitiligo. Curr Drug Targets 2022; 23:1219-1238. [PMID: 35388753 DOI: 10.2174/1389450123666220406125645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 12/12/2021] [Accepted: 12/31/2021] [Indexed: 01/25/2023]
Abstract
Vitiligo is an acquired, chronic, and progressive depigmentation or hypopigmentation characterized by the destruction of melanocytes and the occurrence of white patches or macules in the skin, mucosal surface of eyes, and ears. Melanocytes are the melanin pigment-producing cells of the skin which are destroyed in pathological conditions called vitiligo. Approximately 0.5 - 2.0% of the population is suffering from vitiligo, and a higher prevalence rate of up to 8.8% has been reported in India. It is caused by various pathogenic factors like genetic predisposition, hyperimmune activation, increased oxidative stress, and alteration in neuropeptides level. Genetic research has revealed a multi- genetic inheritance that exhibits an overlap with other autoimmune disorders. However, melanocytes specific genes are also affected (such as DDR1, XBP1, NLRP1, PTPN22, COMT, FOXP3, ACE, APE, GSTP1, TLR, SOD, and CTLA-4). A number of therapeutic options are employed for the treatment of vitiligo. The topical corticosteroids and immunomodulators are currently in practice for the management of vitiligo. Phototherapies alone and in combinations with other approaches are used in those patients who do not respond to the topical treatment. The main focus of this review is on the etiopathological factors, pharmacological management (phototherapy, topical, systemic, and surgical therapy), and herbal drugs used to treat vitiligo.
Collapse
Affiliation(s)
- Ankit Chaudhary
- Department of Pharmacology, Neuropharmacology Division, ISF College of Pharmacy, Moga, Punjab 142001, India
| | - Mayank Patel
- Department of Pharmacology, Neuropharmacology Division, ISF College of Pharmacy, Moga, Punjab 142001, India
| | - Shamsher Singh
- Department of Pharmacology, Neuropharmacology Division, ISF College of Pharmacy, Moga, Punjab 142001, India
| |
Collapse
|
33
|
Speeckaert R, Belpaire A, Speeckaert M, van Geel N. The delicate relation between melanocytes and skin immunity: A game of hide and seek. Pigment Cell Melanoma Res 2022; 35:392-407. [PMID: 35298085 DOI: 10.1111/pcmr.13037] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 02/13/2022] [Accepted: 03/09/2022] [Indexed: 01/19/2023]
Abstract
Melanocytes exhibit a complex and intriguing relationship with the skin immune response, leading to several clinical conditions. In some disorders, inappropriate melanocyte destruction (e.g., vitiligo, halo naevi) is problematic, while in others, immune tolerance should be broken (melanoma). Important parts of the dysregulated pathways have been unraveled in pigment disorders, ranging from upregulated interferon (IFN)-γ signaling to memory T cells, regulatory T cells, and immune checkpoints. Although a network of many factors is involved, targeting key players such as IFN-γ or checkpoint inhibitors (e.g., programmed death-ligand 1 (PD-L1)] can shift the balance and lead to impressive outcomes. In this review, we focus on the immunological mechanisms of the most common inflammatory disorders where the interaction of the immune system with melanocytes plays a crucial role. This can provide new insights into the current state of melanocyte research.
Collapse
Affiliation(s)
| | - Arno Belpaire
- Department of Dermatology, Ghent University Hospital, Ghent, Belgium
| | | | - Nanja van Geel
- Department of Dermatology, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
34
|
Jun SL, Sun J, Huo X, Feng Q, Li Y, Xie X, Geng S. Lipopolysaccharide reduces melanin synthesis in vitiligo melanocytes by regulating autophagy. Exp Dermatol 2022; 31:1579-1585. [PMID: 35733278 DOI: 10.1111/exd.14629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 06/07/2022] [Accepted: 06/18/2022] [Indexed: 11/30/2022]
Abstract
Vitiligo is an autoimmune-related disease with a complex aetiology that involves innate immunity. Toll-like receptors (TLRs) are important parts of innate immunity and are related to a variety of autoimmune diseases, including vitiligo, through an unknown mechanism. In this study, we found that the TLR4 gene expression was increased in blood samples of patients with advanced stage vitiligo, and then we evaluated the effect of TLR4 ligand lipopolysaccharide (LPS) on melanin synthesis in a vitiligo melanocyte cell line PIG3V and along with its mechanism. LPS suppressed melanin synthesis, downregulated the expression of melanin synthesis-related proteins, and activated autophagy in vitiligo melanocytes. Inhibiting autophagy with 3-methyladenine or chloroquine blocked these effects. This suggests that LPS inhibits skin pigmentation by modulating autophagy, thus providing novel insights into the pathogenesis of vitiligo.
Collapse
Affiliation(s)
- Sun Li Jun
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.,Central Laboratory of Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| | - Jingying Sun
- Central Laboratory of Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| | - Xueping Huo
- Central Laboratory of Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| | - Qing Feng
- Central Laboratory of Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| | - Yan Li
- Central Laboratory of Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| | - Xin Xie
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xi'an, Shaanxi, China
| | - Songmei Geng
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
35
|
Li CL, Ma SH, Wu CY, Chang PH, Chang YT, Wu CY. Association Between Sensorineural Hearing Loss and Vitiligo: A Nationwide Population-Based Cohort Study. J Eur Acad Dermatol Venereol 2022; 36:1097-1103. [PMID: 35274365 DOI: 10.1111/jdv.18047] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 02/17/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND Vitiligo is an acquired depigmentation disease of the skin due to melanocyte destruction. A shared pathogenesis affecting melanocytes in the cochlea has been postulated. However, the association between vitiligo and sensorineural hearing loss (SNHL) is unclear. OBJECTIVE To identify the association between vitiligo and SNHL. METHODS This retrospective, nationwide cohort study included patients with vitiligo and age-, sex-, and comorbidities-matched controls (propensity score matching; 1:4 ratio) from the National Health Insurance Research Database in Taiwan from January 1, 2000 to December 31, 2013. RESULTS In total, 13048 patients with vitiligo and 52192 controls were included. SNHL developed in 0.61% patients with vitiligo and 0.29% controls. After adjusting for sex, age, and comorbidities, a significant association between vitiligo and SNHL was found (adjusted hazard ratio, 2.18; 95% CI, 1.66-2.86). The other risk factors for developing SNHL included increased age, male sex, hyperlipidemia, coronary artery disease, and diffuse connective tissue diseases. In subgroup analysis, the association between vitiligo and SNHL remained significant in almost all the subgroups. CONCLUSION A 2.2-fold increased risk of developing SNHL was found in patients with vitiligo. Proper referral to otologists for early screening and closer follow-up of SNHL should be considered for patients with vitiligo, especially for patients with older age.
Collapse
Affiliation(s)
- Chia-Lun Li
- Department of Dermatology, Taipei Veterans General Hospital, Taipei, Taiwan.,Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Sheng-Hsiang Ma
- Department of Dermatology, Taipei Veterans General Hospital, Taipei, Taiwan.,Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chun-Ying Wu
- Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Institute of Clinical Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Institute of Public Health and Department of Public Health, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Division of Translational Research and Center of Excellence for Cancer Research, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Public Health, China Medical University, Taichung, Taiwan
| | - Pei-Hsuan Chang
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yun-Ting Chang
- Department of Dermatology, Taipei Veterans General Hospital, Taipei, Taiwan.,Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Department of Dermatology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chen-Yi Wu
- Department of Dermatology, Taipei Veterans General Hospital, Taipei, Taiwan.,Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Institute of Public Health and Department of Public Health, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Department of Dermatology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
36
|
Faraj S, Kemp EH, Gawkrodger DJ. Patho-immunological mechanisms of vitiligo: the role of the innate and adaptive immunities and environmental stress factors. Clin Exp Immunol 2022; 207:27-43. [PMID: 35020865 PMCID: PMC8802175 DOI: 10.1093/cei/uxab002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 10/04/2021] [Accepted: 10/15/2021] [Indexed: 12/17/2022] Open
Abstract
Epidermal melanocyte loss in vitiligo, triggered by stresses ranging from trauma to emotional stress, chemical exposure or metabolite imbalance, to the unknown, can stimulate oxidative stress in pigment cells, which secrete damage-associated molecular patterns that then initiate innate immune responses. Antigen presentation to melanocytes leads to stimulation of autoreactive T-cell responses, with further targeting of pigment cells. Studies show a pathogenic basis for cellular stress, innate immune responses and adaptive immunity in vitiligo. Improved understanding of the aetiological mechanisms in vitiligo has already resulted in successful use of the Jak inhibitors in vitiligo. In this review, we outline the current understanding of the pathological mechanisms in vitiligo and locate loci to which therapeutic attack might be directed.
Collapse
Affiliation(s)
- Safa Faraj
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
| | | | - David John Gawkrodger
- Department of Infection, Immunology and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| |
Collapse
|
37
|
Chang WL, Lee WR, Kuo YC, Huang YH. Vitiligo: An Autoimmune Skin Disease and its Immunomodulatory Therapeutic Intervention. Front Cell Dev Biol 2022; 9:797026. [PMID: 34970551 PMCID: PMC8712646 DOI: 10.3389/fcell.2021.797026] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/22/2021] [Indexed: 11/13/2022] Open
Abstract
Vitiligo is a chronic autoimmune depigmenting skin disorder characterized by patches of the skin losing functional melanocytes. Multiple combinatorial factors are involved in disease development, among which immune T cells play a prominent role. The immune cells implicated in melanocyte destruction through adaptive immunity include CD8+ cytotoxic T cells and regulatory T cells, and aberrantly activated skin-resident memory T cells also play a role in melanocyte destruction. Over the past several years, major progress in understanding vitiligo pathogenesis has led to the development of targeted therapies. Janus kinase (JAK) inhibitors, which share the similar mechanism that autoactivates CD8+ T cells in chronic inflammatory diseases, have been reported to have therapeutic significance in vitiligo. Recently, immunomodulatory therapeutic interventions in vitiligo have been emerging. Mesenchymal stem cells (MSCs) regulate cytokine secretion and the balance of T-cell subsets, which makes them a promising cell-based treatment option for autoimmune diseases. The induction of MSC-mediated immunomodulation is complicated and occurs by contact-dependent mechanisms and soluble extracellular vesicle (EV) mediators. EVs released from MSCs contain various growth factors and cytokines with anti-inflammatory effects in the skin immune response. Here, we summarize and discuss the progress to date in targeted therapies that immunomodulate the niche environment of vitiligo, from the clinical trial of JAK inhibitors to the potential of MSCs and MSC-EVs. The available information was collected to highlight the need for further research into the treatment of vitiligo.
Collapse
Affiliation(s)
- Wei-Ling Chang
- TMU Research Center of Cell Therapy and Regeneration Medicine, Taipei Medical University, Taipei, Taiwan.,International Ph.D. Program for Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Woan-Ruoh Lee
- Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, Taiwan.,Department of Dermatology, Taipei Medical University Shuang Ho Hospital, New Taipei City, Taiwan
| | - Yung-Che Kuo
- TMU Research Center of Cell Therapy and Regeneration Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yen-Hua Huang
- TMU Research Center of Cell Therapy and Regeneration Medicine, Taipei Medical University, Taipei, Taiwan.,International Ph.D. Program for Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.,Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan.,TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan.,Center for Reproductive Medicine, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan.,Comprehensive Cancer Center of Taipei Medical University, Taipei, Taiwan.,PhD Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
38
|
Ainiwaer P, Nueraihemaiti M, Li Z, Zang D, Jiang L, Li Y, Aisa HA. Chemical constituents of Ruta graveolens L. and their melanogenic effects and action mechanism. Fitoterapia 2021; 156:105094. [PMID: 34861325 DOI: 10.1016/j.fitote.2021.105094] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/26/2021] [Accepted: 11/26/2021] [Indexed: 11/25/2022]
Abstract
Ruta graveolens L. has been widely used to treat various skin ailments, especially vitiligo. In this study, we isolated a new furanocoumarin named Rutagrarin (1) along with 14 known compounds (2-15) from the aerial parts of R. graveolens and elucidated their chemical structures via various spectroscopy. We found that compound 5 promoted melanogenesis and tyrosinase activity in B16 cells. Further investigation on underlying mechanisms revealed that compound 5 activated the transcription of microtia-related transcription factors and promoted the production of melanin in B16 cells via the Akt/GSK-3β/β-catenin pathway. Therefore, we confirmed the traditional efficacy of R. graveolens and speculated that compound 5 could be used as a natural drug to treat vitiligo.
Collapse
Affiliation(s)
- Pazilaiti Ainiwaer
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing South Road 40-1, Urumqi 830011, Xinjiang, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Mayire Nueraihemaiti
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing South Road 40-1, Urumqi 830011, Xinjiang, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Zuopeng Li
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing South Road 40-1, Urumqi 830011, Xinjiang, China
| | - Deng Zang
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing South Road 40-1, Urumqi 830011, Xinjiang, China
| | - Lan Jiang
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing South Road 40-1, Urumqi 830011, Xinjiang, China
| | - Ying Li
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Haji Akber Aisa
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing South Road 40-1, Urumqi 830011, Xinjiang, China.
| |
Collapse
|
39
|
Han D, Tai Y, Hua G, Yang X, Chen J, Li J, Deng X. Melanocytes in black-boned chicken have immune contribution under infectious bursal disease virus infection. Poult Sci 2021; 100:101498. [PMID: 34695633 PMCID: PMC8554273 DOI: 10.1016/j.psj.2021.101498] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 08/03/2021] [Accepted: 09/16/2021] [Indexed: 12/20/2022] Open
Abstract
In black-boned chicken, melanocytes are widely distributed in their inner organs. However, the roles of these cells are not fully elucidated. In this study, we used 3-wk-old female Silky Fowl to investigate the functions of melanocytes under infection with infectious bursal disease virus (IBDV). We found the melanocytes in the bursa of Fabricius involved in IBDV infection shown as abundant melanin were transported into the nodule and lamina propria where obvious apoptotic cells and higher expression of BAX were detected. Genes related to the toll-like receptor (TLR) signaling pathway were highly detected by quantitative PCR, including TLR1, TLR3, TLR4, TLR15, myeloid differential protein-88, interferon-α, and interferon-β. We then isolated and infected primary melanocytes with IBDV in vitro and found that higher expressions of immune genes were detected at 24 and 48 h after infection; the upregulated innate and adaptive immune genes were involved in the pathogenesis of IBDV infection, including TLR3, TLR7, interleukin 15 (IL15), IL18, IL1rap, CD7, BG2, ERAP1, and SLA2. These changes in gene expression were highly associated with microtubule-based movement, antigen processing and presentation, defense against viruses, and innate immune responses. Our results indicated that the widely distributed melanocytes in Silky Fowl could migrate to play important innate immune roles during virus infection.
Collapse
Affiliation(s)
- Deping Han
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yurong Tai
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture & Beijing Key Laboratory of Animal Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Guoying Hua
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture & Beijing Key Laboratory of Animal Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Xue Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture & Beijing Key Laboratory of Animal Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Jianfei Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture & Beijing Key Laboratory of Animal Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Junying Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture & Beijing Key Laboratory of Animal Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Xuemei Deng
- Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture & Beijing Key Laboratory of Animal Genetic Improvement, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
40
|
Martins C, Migayron L, Drullion C, Jacquemin C, Lucchese F, Rambert J, Merhi R, Michon P, Taieb A, Rezvani HR, de Rinaldis E, Seneschal J, Boniface K. Vitiligo skin T cells are prone to produce type 1- and type 2-cytokines to induce melanocyte dysfunction and epidermal inflammatory response through JAK signaling. J Invest Dermatol 2021; 142:1194-1205.e7. [PMID: 34655610 DOI: 10.1016/j.jid.2021.09.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 08/27/2021] [Accepted: 09/06/2021] [Indexed: 10/20/2022]
Abstract
Vitiligo is a T cell-mediated inflammatory skin disorder characterized by the loss of epidermal melanocytes. However, the contribution of melanocytes to the physiopathology of the disease in response to the T cell microenvironment remains unclear. Here, using NanoString technology and multiplex ELISA, we show that active vitiligo perilesional skin is characterized by prominent type 1 and 2 associated immune responses. The vitiligo skin T cell secretome downregulated melanocyte function and adhesion, while increasing melanocyte mitochondrial metabolism and expression of inflammatory cytokines and chemokines by epidermal cells. The JAK1/2 inhibitor ruxolitinib strongly inhibited such effects on epidermal cells. Our data highlight that vitiligo is more complex than previously thought with prominent combined activities of both Th1- and Th2-related cytokines inducing inflammatory responses of epidermal cells. Melanocytes do not appear only to be a target of T cells in vitiligo but could actively contribute to perpetuate inflammation. JAK inhibitors could prevent the impact of T cells on epidermal cells and pigmentation, highlighting their potential clinical benefit in vitiligo.
Collapse
Affiliation(s)
| | - Laure Migayron
- Univ. Bordeaux, INSERM, BMGIC, U1035, F-33000 Bordeaux, France; R&D Department, SILAB, Brive-la-Gaillarde, France
| | - Claire Drullion
- Univ. Bordeaux, INSERM, BMGIC, U1035, F-33000 Bordeaux, France
| | | | | | | | - Ribal Merhi
- Univ. Bordeaux, INSERM, BMGIC, U1035, F-33000 Bordeaux, France
| | - Pauline Michon
- Univ. Bordeaux, INSERM, BMGIC, U1035, F-33000 Bordeaux, France
| | - Alain Taieb
- Univ. Bordeaux, INSERM, BMGIC, U1035, F-33000 Bordeaux, France; Department of Dermatology and Pediatric Dermatology; National Reference Center for Rare Skin Disorders, Hôpital Saint-André, Bordeaux, France
| | - Hamid-Reza Rezvani
- Univ. Bordeaux, INSERM, BMGIC, U1035, F-33000 Bordeaux, France; AQUIDERM, University of Bordeaux
| | - Emanuele de Rinaldis
- Sanofi Immunology and Inflammation Research Therapeutic Area, Precision Immunology Cluster, Cambridge, MA, 02139, USA
| | - Julien Seneschal
- Univ. Bordeaux, INSERM, BMGIC, U1035, F-33000 Bordeaux, France; Department of Dermatology and Pediatric Dermatology; National Reference Center for Rare Skin Disorders, Hôpital Saint-André, Bordeaux, France
| | - Katia Boniface
- Univ. Bordeaux, INSERM, BMGIC, U1035, F-33000 Bordeaux, France.
| |
Collapse
|
41
|
Nasser MAEM, Raggi El Tahlawi SM, Abdelfatah ZA, Soltan MR. Stress, anxiety, and depression in patients with vitiligo. MIDDLE EAST CURRENT PSYCHIATRY 2021. [DOI: 10.1186/s43045-021-00120-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Abstract
Background
Vitiligo has a significant effect on patients’ quality of life; they feel stigmatized and disturbed by their condition. A lot of vitiligo patients, according to reports, suffer from psychological disturbances. The aim of the study is to find the relation between vitiligo and stress, anxiety, and depression and to measure how vitiligo affects the quality of life index. This study included 50 vitiligo patients and 50 matched healthy control groups. All patients were assessed by the Depression Anxiety Stress Scale (DASS) to determine the severity of anxiety, depression, and stress symptoms and the Dermatology Life Quality Index (DLQI) scale to evaluate their quality of life while the control group underwent only the Depression Anxiety Stress Scale.
Results
The prevalence of stress was 76% (n=38), anxiety was 78% (n=39), and depression was 80% (n=40); the difference was statistically significant between patient group and control group regarding stress, anxiety, and depression. Gender had a significant relationship with stress, anxiety, and depression (p < 0.05) (female affected more than male). Also, there was a statistically significant relation between the degree of vitiligo and anxiety (p < 0.05). Vitiligo has a moderate to very severe effect on the quality of life index. There was a statistically significant positive correlation between stress and feeling of embarrassment from vitiligo and clothes choice.
Conclusion
Vitiligo is a psychcutaneous disease that does not only affect the patient’s physical status, but also his mental and psychological status.
Collapse
|
42
|
Lu H, Xu J, Hu Y, Luo H, Chen Y, Xie B, Song X. Differences in the skin microbial community between patients with active and stable vitiligo based on 16S rRNA gene sequencing. Australas J Dermatol 2021; 62:e516-e523. [PMID: 34523726 DOI: 10.1111/ajd.13721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 08/13/2021] [Accepted: 08/30/2021] [Indexed: 01/04/2023]
Abstract
BACKGROUND/OBJECTIVE Recent studies have described an association between altered skin microbial community and epidemiology of skin diseases, such as vitiligo, atopic dermatitis and psoriasis. In this study, we conducted microbiological analysis on patients at different stages of vitiligo to determine whether the dysbiosis is associated with disease progression. METHODS To characterise the skin microbes in vitiligo patients, we profiled samples collected from 40 patients with active and stable vitiligo using the Novaseq sequencer. Alpha diversity was used to measure richness and uniformity, while Beta diversity (Non-Metric Multi-Dimensional Scaling) analysis was used to show the differences. Moreover, the species differences were evaluated by LEfSe analysis and the flora gene function was predicted using Statistical Analysis of Metagenomic Profiles (STAMP). RESULTS The alpha diversity results showed no significant differences between active vitiligo and stable vitiligo, while beta diversity and LEfSe analysis results showed the differences in community composition. Streptomyces and Streptococcus were enriched in active vitiligo compared to stable vitiligo. In addition, the flora gene function of mixed acid fermentation was more pronounced in active vitiligo, while the function of lipid IVA biosynthesis was more significant in stable vitiligo. CONCLUSION This study has shown the differences in epidermal microbes between active vitiligo and stable vitiligo. Our results suggest that maintaining the flora balance might be a potential therapeutic target for vitiligo.
Collapse
Affiliation(s)
- Haojie Lu
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Jinhui Xu
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Yebei Hu
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Haixin Luo
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Yi Chen
- Zhejiang Chinese Medical University, Hangzhou, China
| | - Bo Xie
- Department of Dermatology, Hangzhou Third People's Hospital, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiuzu Song
- Department of Dermatology, Hangzhou Third People's Hospital, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
43
|
Abdelsalam M, Allam SH, Zohdy M, Magdy H, Mostafa M. TLR4 gene polymorphisms in Egyptian vitiligo patients: insights into emerging association with clinical activity, family history, and response to therapy. J Genet Eng Biotechnol 2021; 19:132. [PMID: 34468896 PMCID: PMC8410933 DOI: 10.1186/s43141-021-00218-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 07/26/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Vitiligo is a common pigmentary disorder in which autoimmunity has been suggested to play an important role. Toll-like receptor (TLR) family are recognized different molecular structures expressed on immune cells and have been implicated in a number of autoimmune diseases (AIDs) such as vitiligo. The purpose of this study was to investigate the possible association between TLR4 gene polymorphisms: rs11536858, rs1927911, rs1927914 in Egyptian vitiligo patients and their clinical data, their response to therapy. Using PCR-RFLP for TLR4 gene polymorphisms (rs11536858, rs1927911, and rs1927914), both alleles and genotypes were determined after extraction of DNA in a case-control study of 100 vitiligo Egyptian patients and 100 matched age and sex controls. RESULTS The distribution of the protective CT genotype of rs1927914 was higher in the control group. After dividing both patients and controls into 2 age groups (below 18 and above 18 years), no significant associations between the genotypes of the selected TLR4 SNPs and the demographic and clinical data of the vitiligo patients in group 1 (below 18 years) were observed. For group 2 (above 18 years), also no significant associations were found except for the association between the CC genotype of rs1927914 and psychiatric trauma, from one side, and between the CT genotype of rs1927911 and alopecia, from the other side. The association between combined genotypes and the risk of vitiligo showed either higher frequency in patients (risky), or controls (protective), and some equal frequencies (non-significant). The association between haplotypes and risk of vitiligo in patients' group revealed the highest frequency for the risky ATT and the least frequency for ATC haplotypes. In control group, the protective GCT haplotype showed the highest frequency while the GTC and GCC showed the least frequency. No significant correlations of haplotypes with clinical and demographic data of selected patients' group were observed apart from that between ACC haplotype and family history of AIDs and between ATT haplotype and remission after phototherapy. CONCLUSIONS The significant relationship between TLR4 gene polymorphisms and vitiligo patients charcteristics clarify the role of innate immunity in pathogensis of vitiligo and its effect on the used therapies.
Collapse
Affiliation(s)
- Maha Abdelsalam
- Immunology Unit, Clinical Pathology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt.,Department of Immunology, Egypt Center for Research and Regenerative Medicine (ECRRM), Cairo, 11517, Egypt
| | - Sherihan H Allam
- Dermatology Department, Faculty of medicine, Mansoura University, Mansoura, Egypt
| | - Marwa Zohdy
- Dermatology Department, Faculty of medicine, Mansoura University, Mansoura, Egypt.
| | - Hend Magdy
- Public Health & Community Department, Faculty of medicine, Mansoura University, Mansoura, Egypt
| | - Maged Mostafa
- Immunology Unit, Clinical Pathology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
44
|
Short Overview of Some Assays for the Measurement of Antioxidant Activity of Natural Products and Their Relevance in Dermatology. Molecules 2021; 26:molecules26175301. [PMID: 34500732 PMCID: PMC8433703 DOI: 10.3390/molecules26175301] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/25/2021] [Accepted: 08/25/2021] [Indexed: 12/19/2022] Open
Abstract
Impaired systemic redox homeostasis is implicated in the onset and development of various diseases, including skin diseases. Therefore, continuous search for natural products with antioxidant bioactivities applicable in biomedicine is attractive topic of general interest. Research efforts aiming to validate antioxidant potentials of natural products has led to the development of several assays based on various test principles. Hence, understanding the advantages and limitations of various assays is important for selection of assays useful to study antioxidant and related bioactivities of natural products of biomedical interest. This review paper gives a short overview on some chemical and cellular bioassays used to estimate the antioxidant activity of chosen natural products together with a brief overview on the use of natural products with antioxidant activities as adjuvant medicinal remedies in dermatology.
Collapse
|
45
|
Dermal Drug Delivery of Phytochemicals with Phenolic Structure via Lipid-Based Nanotechnologies. Pharmaceuticals (Basel) 2021; 14:ph14090837. [PMID: 34577536 PMCID: PMC8471500 DOI: 10.3390/ph14090837] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/17/2021] [Accepted: 08/20/2021] [Indexed: 12/11/2022] Open
Abstract
Phenolic compounds are a large, heterogeneous group of secondary metabolites found in various plants and herbal substances. From the perspective of dermatology, the most important benefits for human health are their pharmacological effects on oxidation processes, inflammation, vascular pathology, immune response, precancerous and oncological lesions or formations, and microbial growth. Because the nature of phenolic compounds is designed to fit the phytochemical needs of plants and not the biopharmaceutical requirements for a specific route of delivery (dermal or other), their utilization in cutaneous formulations sets challenges to drug development. These are encountered often due to insufficient water solubility, high molecular weight and low permeation and/or high reactivity (inherent for the set of representatives) and subsequent chemical/photochemical instability and ionizability. The inclusion of phenolic phytochemicals in lipid-based nanocarriers (such as nanoemulsions, liposomes and solid lipid nanoparticles) is so far recognized as a strategic physico-chemical approach to improve their in situ stability and introduction to the skin barriers, with a view to enhance bioavailability and therapeutic potency. This current review is focused on recent advances and achievements in this area.
Collapse
|
46
|
The Great Capacity on Promoting Melanogenesis of Three Compatible Components in Vernonia anthelmintica (L.) Willd.. Int J Mol Sci 2021; 22:ijms22084073. [PMID: 33920793 PMCID: PMC8071200 DOI: 10.3390/ijms22084073] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/05/2021] [Accepted: 04/07/2021] [Indexed: 01/08/2023] Open
Abstract
To investigate a possible methodology of exploiting herbal medicine and design polytherapy for the treatment of skin depigmentation disorder, we have made use of Vernonia anthelmintica (L.) Willd., a traditional Chinese herbal medicine that has been proven to be effective in treating vitiligo. Here, we report that the extract of Vernonia anthelmintica (L.) Willd. effectively enhances melanogenesis responses in B16F10. In its compound library, we found three ingredients (butin, caffeic acid and luteolin) also have the activity of promoting melanogenesis in vivo and in vitro. They can reduce the accumulation of ROS induced by hydrogen peroxide and inflammatory response induced by sublethal concentrations of copper sulfate in wild type and green fluorescent protein (GFP)-labeled leukocytes zebrafish larvae. The overall objective of the present study aims to identify which compatibility proportions of the medicines may be more effective in promoting pigmentation. We utilized the D-optimal response surface methodology to optimize the ratio among three molecules. Combining three indicators of promoting melanogenesis, anti-inflammatory and antioxidant capacities, we get the best effect of butin, caffeic acid and luteolin at the ratio (butin:caffeic acid:luteolin = 7.38:28.30:64.32) on zebrafish. Moreover, the effect of melanin content recovery in the best combination is stronger than that of the monomer, which suggests that the three compounds have a synergistic effect on inducing melanogenesis. After simply verifying the result, we performed in situ hybridization on whole-mount zebrafish embryos to further explore the effects of multi-drugs combination on the proliferation and differentiation of melanocytes and the expression of genes (tyr, mitfa, dct, kit) related to melanin synthesis. In conclusion, the above three compatible compounds can significantly enhance melanogenesis and improve depigmentation in vivo.
Collapse
|
47
|
Abstract
Vitiligo is a disease of the skin characterized by the appearance of white spots. Significant progress has been made in understanding vitiligo pathogenesis over the past 30 years, but only through perseverance, collaboration, and open-minded discussion. Early hypotheses considered roles for innervation, microvascular anomalies, oxidative stress, defects in melanocyte adhesion, autoimmunity, somatic mosaicism, and genetics. Because theories about pathogenesis drive experimental design, focus, and even therapeutic approach, it is important to consider their impact on our current understanding about vitiligo. Animal models allow researchers to perform mechanistic studies, and the development of improved patient sample collection methods provides a platform for translational studies in vitiligo that can also be applied to understand other autoimmune diseases that are more difficult to study in human samples. Here we discuss the history of vitiligo translational research, recent advances, and their implications for new treatment approaches.
Collapse
Affiliation(s)
| | - John E. Harris
- Department of Medicine, Division of Dermatology, University of Massachusetts Medical School, Worcester, MA, United States
| |
Collapse
|
48
|
Chen J, Li S, Li C. Mechanisms of melanocyte death in vitiligo. Med Res Rev 2021; 41:1138-1166. [PMID: 33200838 PMCID: PMC7983894 DOI: 10.1002/med.21754] [Citation(s) in RCA: 108] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 10/16/2020] [Accepted: 11/01/2020] [Indexed: 12/12/2022]
Abstract
Vitiligo is an autoimmune depigment disease results from extensive melanocytes destruction. The destruction of melanocyte is thought to be of multifactorial causation. Genome-wide associated studies have identified single-nucleotide polymorphisms in a panel of susceptible loci as risk factors in melanocyte death. But vitiligo onset can't be solely attributed to a susceptive genetic background. Oxidative stress triggered by elevated levels of reactive oxygen species accounts for melanocytic molecular and organelle dysfunction, a minority of melanocyte demise, and melanocyte-specific antigens exposure. Of note, the self-responsive immune function directly contributes to the bulk of melanocyte deaths in vitiligo. The aberrantly heightened innate immunity, type-1-skewed T helper, and incompetent regulatory T cells tip the balance toward autoreaction and CD8+ cytotoxic T lymphocytes finally execute the killing of melanocytes, possibly alarmed by resident memory T cells. In addition to the well-established apoptosis and necrosis, we discuss several death modalities like oxeiptosis, ferroptosis, and necroptosis that are probably employed in melanocyte destruction. This review focuses on the various mechanisms of melanocytic death in vitiligo pathogenesis to demonstrate a panorama of that. We hope to provide new insights into vitiligo pathogenesis and treatment strategies by the review.
Collapse
Affiliation(s)
- Jianru Chen
- Department of DermatologyXijing hospital, Fourth Military Medical UniversityXi'anShannxiChina
| | - Shuli Li
- Department of DermatologyXijing hospital, Fourth Military Medical UniversityXi'anShannxiChina
| | - Chunying Li
- Department of DermatologyXijing hospital, Fourth Military Medical UniversityXi'anShannxiChina
| |
Collapse
|
49
|
Zhang J, Yu S, Hu W, Wang M, Abudoureyimu D, Luo D, Li T, Long L, Zeng H, Cheng C, Lei Z, Teng J, Kang X. Comprehensive Analysis of Cell Population Dynamics and Related Core Genes During Vitiligo Development. Front Genet 2021; 12:627092. [PMID: 33679890 PMCID: PMC7933673 DOI: 10.3389/fgene.2021.627092] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 01/26/2021] [Indexed: 11/25/2022] Open
Abstract
Vitiligo is a common immune-related depigmentation condition, and its pathogenesis remains unclear. This study used a combination of bioinformatics methods and expression analysis techniques to explore the relationship between immune cell infiltration and gene expression in vitiligo. Previously reported gene expression microarray data from the skin (GSE53146 and GSE75819) and peripheral blood (GSE80009 and GSE90880) of vitiligo patients and healthy controls was used in the analysis. R software was used to filter the differentially expressed genes (DEGs) in each dataset, and the KOBAS 2.0 server was used to perform functional enrichment analysis. Compared with healthy controls, the upregulated genes in skin lesions and peripheral blood leukocytes of vitiligo patents were highly enriched in immune response pathways and inflammatory response signaling pathways. Immunedeconv software and the EPIC method were used to analyze the expression levels of marker genes to obtain the immune cell population in the samples. In the lesional skin of vitiligo patients, the proportions of macrophages, B cells and NK cells were increased compared with healthy controls. In the peripheral blood of vitiligo patients, CD8+ T cells and macrophages were significantly increased. A coexpression analysis of the cell populations and DEGs showed that differentially expressed immune and inflammation response genes had a strong positive correlation with macrophages. The TLR4 receptor pathway, interferon gamma-mediated signaling pathway and lipopolysaccharide-related pathway were positively correlated with CD4+ T cells. Regarding immune response-related genes, the overexpression of IFITM2, TNFSF10, GZMA, ADAMDEC1, NCF2, ADAR, SIGLEC16, and WIPF2 were related to macrophage abundance, while the overexpression of ICOS, GPR183, RGS1, ILF2 and CD28 were related to CD4+ T cell abundance. GZMA and CXCL10 expression were associated with CD8+ T cell abundance. Regarding inflammatory response-related genes, the overexpression of CEBPB, ADAM8, CXCR3, and TNIP3 promoted macrophage infiltration. Only ADORA1 expression was associated with CD4+ T cell infiltration. ADAM8 and CXCL10 expression were associated with CD8+ T cell abundance. The overexpression of CCL18, CXCL10, FOS, NLRC4, LY96, HCK, MYD88, and KLRG1, which are related to inflammation and immune responses, were associated with macrophage abundance. We also found that immune cells infiltration in vitiligo was associated with antigen presentation-related genes expression. The genes and pathways identified in this study may point to new directions for vitiligo treatment.
Collapse
Affiliation(s)
- Jingzhan Zhang
- Department of Dermatology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China.,Xinjiang Key Laboratory of Dermatology Research, Urumqi, China
| | - Shirong Yu
- Department of Dermatology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China.,Xinjiang Key Laboratory of Dermatology Research, Urumqi, China
| | - Wen Hu
- Department of Dermatology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China.,Xinjiang Key Laboratory of Dermatology Research, Urumqi, China
| | - Man Wang
- Department of Gastroenterology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Dilinuer Abudoureyimu
- Department of Dermatology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China.,Xinjiang Key Laboratory of Dermatology Research, Urumqi, China
| | - Dong Luo
- Department of Dermatology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China.,Xinjiang Key Laboratory of Dermatology Research, Urumqi, China
| | - Tingting Li
- Department of Dermatology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China.,Xinjiang Key Laboratory of Dermatology Research, Urumqi, China
| | - Linglong Long
- Department of Dermatology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China.,Xinjiang Key Laboratory of Dermatology Research, Urumqi, China
| | - Hui Zeng
- Center for Genome Analysis, ABLife Inc., Wuhan, China
| | - Chao Cheng
- Center for Genome Analysis, ABLife Inc., Wuhan, China
| | - Zixian Lei
- Department of Dermatology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China.,Xinjiang Key Laboratory of Dermatology Research, Urumqi, China
| | - Jianan Teng
- Department of Dermatology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China.,Medical School, Shihezi University, Shihezi, China
| | - Xiaojing Kang
- Department of Dermatology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China.,Xinjiang Key Laboratory of Dermatology Research, Urumqi, China
| |
Collapse
|
50
|
Le Poole IC. Myron Gordon Award paper: Microbes, T-cell diversity and pigmentation. Pigment Cell Melanoma Res 2021; 34:244-255. [PMID: 33438345 DOI: 10.1111/pcmr.12957] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/12/2020] [Accepted: 12/25/2020] [Indexed: 12/15/2022]
Abstract
Melanocytes are static, minimally proliferative cells. This leaves them vulnerable in vitiligo. Yet upon malignant transformation, they form vicious tumors. This profound switch in physiology is accompanied by genetic change and is driven by environmental factors. If UV exposure in younger years supports malignant transformation and melanoma formation, it can likewise impart mutations on melanocytes that reduce their viability, to initiate vitiligo. A wide variety of microbes can influence these diametrically opposed outcomes before either disease takes hold. These microbes are vehicles of change that we are only beginning to study. Once a genetic modification occurs, there is a wide variety of immune cells ready to respond. Though it does not act alone, the T cell is among the most decisive responders in this process. The same biochemical process that offered the skin protection by producing melanin can become an Achilles heel for the cell when the T cells target melanosomal enzymes or, on occasion, neoantigens. T cells are precise, determined, and consequential when they strike. Here, we probe the relationship between the microbiome and its metabolites, epithelial integrity, and the activation of T cells that target benign and malignant melanocytes in vitiligo and melanoma.
Collapse
Affiliation(s)
- I Caroline Le Poole
- Department of Dermatology, Microbiology and Immunology, Robert H. Lurie Comprehensive Cancer Center, Northwestern University at Chicago, Chicago, IL, USA
| |
Collapse
|