1
|
Luda KM, Longo J, Kitchen-Goosen SM, Duimstra LR, Ma EH, Watson MJ, Oswald BM, Fu Z, Madaj Z, Kupai A, Dickson BM, DeCamp LM, Dahabieh MS, Compton SE, Teis R, Kaymak I, Lau KH, Kelly DP, Puchalska P, Williams KS, Krawczyk CM, Lévesque D, Boisvert FM, Sheldon RD, Rothbart SB, Crawford PA, Jones RG. Ketolysis drives CD8 + T cell effector function through effects on histone acetylation. Immunity 2023; 56:2021-2035.e8. [PMID: 37516105 PMCID: PMC10528215 DOI: 10.1016/j.immuni.2023.07.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 04/07/2023] [Accepted: 07/04/2023] [Indexed: 07/31/2023]
Abstract
Environmental nutrient availability influences T cell metabolism, impacting T cell function and shaping immune outcomes. Here, we identified ketone bodies (KBs)-including β-hydroxybutyrate (βOHB) and acetoacetate (AcAc)-as essential fuels supporting CD8+ T cell metabolism and effector function. βOHB directly increased CD8+ T effector (Teff) cell cytokine production and cytolytic activity, and KB oxidation (ketolysis) was required for Teff cell responses to bacterial infection and tumor challenge. CD8+ Teff cells preferentially used KBs over glucose to fuel the tricarboxylic acid (TCA) cycle in vitro and in vivo. KBs directly boosted the respiratory capacity and TCA cycle-dependent metabolic pathways that fuel CD8+ T cell function. Mechanistically, βOHB was a major substrate for acetyl-CoA production in CD8+ T cells and regulated effector responses through effects on histone acetylation. Together, our results identify cell-intrinsic ketolysis as a metabolic and epigenetic driver of optimal CD8+ T cell effector responses.
Collapse
Affiliation(s)
- Katarzyna M Luda
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI 49503, USA; University of Copenhagen, Novo Nordisk Foundation Center for Basic Metabolic Research, Blegdamsvej 3B, 2200 København, Denmark
| | - Joseph Longo
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Susan M Kitchen-Goosen
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Lauren R Duimstra
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Eric H Ma
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - McLane J Watson
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Brandon M Oswald
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Zhen Fu
- Bioinformatics and Biostatistics Core, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Zachary Madaj
- Bioinformatics and Biostatistics Core, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Ariana Kupai
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Bradley M Dickson
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Lisa M DeCamp
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Michael S Dahabieh
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Shelby E Compton
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Robert Teis
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Irem Kaymak
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Kin H Lau
- Bioinformatics and Biostatistics Core, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Daniel P Kelly
- Cardiovascular Institute and Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Patrycja Puchalska
- Department of Medicine, Division of Molecular Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | - Kelsey S Williams
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Connie M Krawczyk
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Dominique Lévesque
- Department of Anatomy and Cell Biology, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
| | - François-Michel Boisvert
- Department of Anatomy and Cell Biology, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
| | - Ryan D Sheldon
- Mass Spectrometry Core, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Scott B Rothbart
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Peter A Crawford
- Department of Medicine, Division of Molecular Medicine, University of Minnesota, Minneapolis, MN 55455, USA; Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Russell G Jones
- Department of Metabolism and Nutritional Programming, Van Andel Institute, Grand Rapids, MI 49503, USA.
| |
Collapse
|
2
|
Kim Y, Greenleaf WJ, Bendall SC. Systems biology approaches to unravel lymphocyte subsets and function. Curr Opin Immunol 2023; 82:102323. [PMID: 37028221 PMCID: PMC10330158 DOI: 10.1016/j.coi.2023.102323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/11/2023] [Accepted: 03/13/2023] [Indexed: 04/09/2023]
Abstract
Single-cell technologies have revealed the extensive heterogeneity and complexity of the immune system. Systems biology approaches in immunology have taken advantage of the high-parameter, high-throughput data and analyzed immune cell types in a 'bottom-up' data-driven method. This approach has discovered previously unrecognized cell types and functions. Especially for human immunology, in which experimental manipulations are challenging, systems approach has become a successful means to investigate physiologically relevant contexts. This review focuses on the recent findings in lymphocyte biology, from their development, differentiation into subsets, and heterogeneity in their functions, enabled by these systems approaches. Furthermore, we review examples of the application of findings from systems approach studies and discuss how now to leave the rich dataset in the curse of high dimensionality.
Collapse
Affiliation(s)
- YeEun Kim
- Immunology Graduate Program, Stanford University, Stanford, CA, USA; Department of Pathology, Stanford University, Stanford, CA, USA
| | | | - Sean C Bendall
- Department of Pathology, Stanford University, Stanford, CA, USA.
| |
Collapse
|
3
|
Rangel Rivera GO, Dwyer CJ, Knochelmann HM, Smith AS, Aksoy A, Cole AC, Wyatt MM, Thaxton JE, Lesinski GB, Paulos CM. The degree of T cell stemness differentially impacts the potency of adoptive cancer immunotherapy in a Lef-1 and Tcf-1 dependent manner. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.08.531589. [PMID: 36945574 PMCID: PMC10028919 DOI: 10.1101/2023.03.08.531589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Generating stem memory T cells (T SCM ) is a key goal for improving cancer immunotherapy. Yet, the optimal way to modulate signaling pathways that enrich T SCM properties remains elusive. Here, we discovered that the degree to which the PI3Kδ pathway is blocked pharmaceutically can generate T cells with differential levels of stemness properties. This observation was based on the progressive enrichment of transcriptional factors of stemness (Tcf-1 and Lef-1). Additional investigation revealed that T cells with high stemness features had enhanced metabolic plasticity, marked by heightened mitochondrial function and glucose uptake. Conversely, T cells with low or medium features of stemness expressed more inhibitory checkpoint receptors (Tim-3, CD39) and were vulnerable to antigen-induced cell death. Only TCR-antigen specific T cells with high stemness persisted following adoptive transfer in vivo and mounted protective immunity to melanoma tumors. Likewise, the strongest level of PI3Kδ blockade in vitro generated human tumor infiltrating lymphocytes (TILs) and CAR T cells with heightened stemness properties, in turn bolstering their capacity to regress human mesothelioma tumors. We find that the level of stemness T cells possess in vitro differentially impacts their potency upon transfer in three tumor models. Mechanistically, both Lef-1 and Tcf-1 sustain anti-tumor protection by high T SCM , as deletion of either one compromised cellular therapy. Collectively, these findings highlight the therapeutic potential of carefully modulating PI3Kδ signaling in T cells to confer high stemness and mediate protective responses to solid tumors.
Collapse
|
4
|
Yenyuwadee S, Aliazis K, Wang Q, Christofides A, Shah R, Patsoukis N, Boussiotis VA. Immune cellular components and signaling pathways in the tumor microenvironment. Semin Cancer Biol 2022; 86:187-201. [PMID: 35985559 PMCID: PMC10735089 DOI: 10.1016/j.semcancer.2022.08.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/12/2022] [Indexed: 11/24/2022]
Abstract
During the past decade there has been a revolution in cancer therapeutics by the emergence of antibody-based and cell-based immunotherapies that modulate immune responses against tumors. These new therapies have extended and improved the therapeutic efficacy of chemo-radiotherapy and have offered treatment options to patients who are no longer responding to these classic anti-cancer treatments. Unfortunately, tumor eradication and long-lasting responses are observed in a small fraction of patients, whereas the majority of patients respond only transiently. These outcomes indicate that the maximum potential of immunotherapy has not been reached due to incomplete knowledge of the cellular and molecular mechanisms that guide the development of successful anti-tumor immunity and its failure. In this review, we discuss recent discoveries about the immune cellular composition of the tumor microenvironment (TME) and the role of key signaling mechanisms that compromise the function of immune cells leading to cancer immune escape.
Collapse
Affiliation(s)
- Sasitorn Yenyuwadee
- Division of Hematology-Oncology, Beth Israel Deaconess Medical Center; Department of Medicine Beth Israel Deaconess Medical Center, Harvard Medical School; Department of Dermatology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Konstantinos Aliazis
- Division of Hematology-Oncology, Beth Israel Deaconess Medical Center; Department of Medicine Beth Israel Deaconess Medical Center, Harvard Medical School
| | - Qi Wang
- Division of Hematology-Oncology, Beth Israel Deaconess Medical Center; Department of Medicine Beth Israel Deaconess Medical Center, Harvard Medical School
| | - Anthos Christofides
- Division of Hematology-Oncology, Beth Israel Deaconess Medical Center; Department of Medicine Beth Israel Deaconess Medical Center, Harvard Medical School
| | - Rushil Shah
- Division of Hematology-Oncology, Beth Israel Deaconess Medical Center; Department of Medicine Beth Israel Deaconess Medical Center, Harvard Medical School
| | - Nikolaos Patsoukis
- Division of Hematology-Oncology, Beth Israel Deaconess Medical Center; Department of Medicine Beth Israel Deaconess Medical Center, Harvard Medical School; Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School Boston, MA 02215, USA.
| | - Vassiliki A Boussiotis
- Division of Hematology-Oncology, Beth Israel Deaconess Medical Center; Department of Medicine Beth Israel Deaconess Medical Center, Harvard Medical School; Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School Boston, MA 02215, USA.
| |
Collapse
|
5
|
Aquilani R, Brugnatelli S, Maestri R, Boschi F, Filippi B, Perrone L, Barbieri A, Buonocore D, Dossena M, Verri M. Peripheral Blood Lymphocyte Percentage May Predict Chemotolerance and Survival in Patients with Advanced Pancreatic Cancer. Association between Adaptive Immunity and Nutritional State. Curr Oncol 2021; 28:3280-3296. [PMID: 34449579 PMCID: PMC8395458 DOI: 10.3390/curroncol28050285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/22/2021] [Accepted: 08/23/2021] [Indexed: 01/14/2023] Open
Abstract
Pancreatic Carcinoma (PC) cells have the ability to induce patient immunosuppression and to escape immunosurveillance. Low circulating lymphocytes are associated with an advanced stage of PC and reduced survival. Blood lymphocytes expressed as a percentage of Total White Blood Cells (L% TWBC) could predict chemotolerance (n° of tolerated cycles), survival time and Body Weight (BW) more effectively than lymphocytes expressed as an absolute value (LAB > 1500 n°/mm3) or lymphocytes >22%, which is the lowest limit of normal values in our laboratory. Forty-one patients with advanced PC, treated with chemotherapy, were selected for this observational retrospective study. Patients were evaluated at baseline (pre-chemotherapy), and at 6, 12 and 18 months, respectively, after diagnosis of PC. The study found L ≥ 29.7% to be a better predictor of survival (COX model, using age, sex, BW, serum creatinine, bilirubin and lymphocytes as covariates), chemotolerance (r = +0.50, p = 0.001) and BW (r = +0.35, p = 0.027) than LAB > 1500 or L > 22%. BW did not significantly correlate with chemotolerance or survival. The preliminary results of this study suggest that L ≥ 29.7% is more effective than LAB > 1500 or L > 22% at predicting chemotolerance, survival time and nutritional status. A possible impact of nutritional status on chemotherapy and survival seems to be lymphocyte-mediated given the association between BW and L%. This study may serve as the basis for future research to explore whether nutritional interventions can improve lymphopenia, and if so, how this may be possible.
Collapse
Affiliation(s)
- Roberto Aquilani
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, 27100 Pavia, Italy; (R.A.); (D.B.); (M.D.); (M.V.)
| | - Silvia Brugnatelli
- Medical Oncology Division, Fondazione IRCCS, Policlinico San Matteo, 27100 Pavia, Italy; (S.B.); (B.F.); (L.P.)
| | - Roberto Maestri
- Department of Biomedical Engineering of the Montescano Institute, Istituti Clinici Scientifici Maugeri IRCCS, 27040 Montescano, Italy;
| | - Federica Boschi
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy;
| | - Beatrice Filippi
- Medical Oncology Division, Fondazione IRCCS, Policlinico San Matteo, 27100 Pavia, Italy; (S.B.); (B.F.); (L.P.)
| | - Lorenzo Perrone
- Medical Oncology Division, Fondazione IRCCS, Policlinico San Matteo, 27100 Pavia, Italy; (S.B.); (B.F.); (L.P.)
| | - Annalisa Barbieri
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy;
| | - Daniela Buonocore
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, 27100 Pavia, Italy; (R.A.); (D.B.); (M.D.); (M.V.)
| | - Maurizia Dossena
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, 27100 Pavia, Italy; (R.A.); (D.B.); (M.D.); (M.V.)
| | - Manuela Verri
- Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, 27100 Pavia, Italy; (R.A.); (D.B.); (M.D.); (M.V.)
| |
Collapse
|
6
|
Aquilani R, Zuccarelli GC, Maestri R, Boselli M, Dossena M, Baldissarro E, Boschi F, Buonocore D, Verri M. Essential amino acid supplementation is associated with reduced serum C-reactive protein levels and improved circulating lymphocytes in post-acute inflamed elderly patients. Int J Immunopathol Pharmacol 2021; 35:20587384211036823. [PMID: 34387512 PMCID: PMC8366127 DOI: 10.1177/20587384211036823] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background Persistent systemic inflammation leads to multidistrectual body dysfunctions. Attenuation of inflammation may improve patients’ functional and life prognoses. We hypothesized that essential amino acids (EAAs) given to elderly patients in rehabilitation after acute diseases may be associated with a reduced inflammatory state. Therefore, this retrospective study investigated whether the supplementation of EAAs – modulators of immune competence – was associated with a reduced inflammation rate in elderly patients. Methods The medical records of 282 patients admitted to the rehabilitation (rehab) institute after acute index events (surgery or medical diseases) (age: 81.18 ± 8.58 years; females: 67.9%) were analyzed. Results 46 patients (16.3% of the entire population) had received EAA supplements (S), whereas the remaining 236 patients had not (N-S). Systemic inflammation (I) (serum C-reactive protein (CRP) > 0.5 mg/dL) was present in 67.4% of the I-S group and 57.2% of the I-N-S group. During rehab, the I-S group (but not the I-N-S group) showed a reduction in CRP levels (p = 0.03) and an increase in circulating lymphocytes (p = 0.035), immune cells of the adaptive immune system. C-reactive protein levels remained virtually unchanged in non-inflamed patients who received supplements but increased in non-inflamed patients who did not receive supplements (p = 0.05). Stratified for developed infections, CRP levels reduced in S patients (p = 0.008) but did not in N-S patients. Conclusion EAA supplementation was associated with reduced inflammation in both inflamed and infected patients. In addition, EAA supplementation was associated with increased circulating lymphocytes in inflamed patients.
Collapse
Affiliation(s)
- Roberto Aquilani
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| | - Ginetto C Zuccarelli
- Geriatric Institute P. Redaelli - Reparti di Riabilitazione Geriatrica e di Mantenimento, Vimodrone (Milano), Italy
| | - Roberto Maestri
- Department of Biomedical Engineering of the Montescano Institute, Istituti Clinici Scientifici Maugeri IRCCS, Montescano (PV), Italy
| | - Mirella Boselli
- Neurorehabilitation Unit of the Montescano Institute, Istituti Clinici Scientifici Maugeri IRCCS, Montescano (PV), Italy
| | - Maurizia Dossena
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| | - Eleonora Baldissarro
- Complex Structure of Recovery and Functional Re-education - ASL 3, Genova, Italy
| | - Federica Boschi
- Department of Drug Sciences, University of Pavia, Pavia, Italy
| | - Daniela Buonocore
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| | - Manuela Verri
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| |
Collapse
|
7
|
Zhang Z, Kruglikov I, Zhao S, Zi Z, Gliniak CM, Li N, Wang M, Zhu Q, Kusminski CM, Scherer PE. Dermal adipocytes contribute to the metabolic regulation of dermal fibroblasts. Exp Dermatol 2020; 30:102-111. [DOI: 10.1111/exd.14181] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 08/19/2020] [Accepted: 08/24/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Zhuzhen Zhang
- Touchstone Diabetes Center University of Texas Southwestern Medical Center Dallas TX USA
| | | | - Shangang Zhao
- Touchstone Diabetes Center University of Texas Southwestern Medical Center Dallas TX USA
| | - Zhenzhen Zi
- Department of Biochemistry University of Texas Southwestern Medical Center Dallas TX USA
| | - Christy M. Gliniak
- Touchstone Diabetes Center University of Texas Southwestern Medical Center Dallas TX USA
| | - Na Li
- Touchstone Diabetes Center University of Texas Southwestern Medical Center Dallas TX USA
| | - May‐yun Wang
- Touchstone Diabetes Center University of Texas Southwestern Medical Center Dallas TX USA
| | - Qingzhang Zhu
- Touchstone Diabetes Center University of Texas Southwestern Medical Center Dallas TX USA
| | - Christine M. Kusminski
- Touchstone Diabetes Center University of Texas Southwestern Medical Center Dallas TX USA
| | - Philipp E. Scherer
- Touchstone Diabetes Center University of Texas Southwestern Medical Center Dallas TX USA
| |
Collapse
|
8
|
Freemerman AJ, Zhao L, Pingili AK, Teng B, Cozzo AJ, Fuller AM, Johnson AR, Milner JJ, Lim MF, Galanko JA, Beck MA, Bear JE, Rotty JD, Bezavada L, Smallwood HS, Puchowicz MA, Liu J, Locasale JW, Lee DP, Bennett BJ, Abel ED, Rathmell JC, Makowski L. Myeloid Slc2a1-Deficient Murine Model Revealed Macrophage Activation and Metabolic Phenotype Are Fueled by GLUT1. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2019; 202:1265-1286. [PMID: 30659108 PMCID: PMC6360258 DOI: 10.4049/jimmunol.1800002] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 12/03/2018] [Indexed: 12/15/2022]
Abstract
Macrophages (MΦs) are heterogeneous and metabolically flexible, with metabolism strongly affecting immune activation. A classic response to proinflammatory activation is increased flux through glycolysis with a downregulation of oxidative metabolism, whereas alternative activation is primarily oxidative, which begs the question of whether targeting glucose metabolism is a viable approach to control MΦ activation. We created a murine model of myeloid-specific glucose transporter GLUT1 (Slc2a1) deletion. Bone marrow-derived MΦs (BMDM) from Slc2a1M-/- mice failed to uptake glucose and demonstrated reduced glycolysis and pentose phosphate pathway activity. Activated BMDMs displayed elevated metabolism of oleate and glutamine, yet maximal respiratory capacity was blunted in MΦ lacking GLUT1, demonstrating an incomplete metabolic reprogramming. Slc2a1M-/- BMDMs displayed a mixed inflammatory phenotype with reductions of the classically activated pro- and anti-inflammatory markers, yet less oxidative stress. Slc2a1M-/- BMDMs had reduced proinflammatory metabolites, whereas metabolites indicative of alternative activation-such as ornithine and polyamines-were greatly elevated in the absence of GLUT1. Adipose tissue MΦs of lean Slc2a1M-/- mice had increased alternative M2-like activation marker mannose receptor CD206, yet lack of GLUT1 was not a critical mediator in the development of obesity-associated metabolic dysregulation. However, Ldlr-/- mice lacking myeloid GLUT1 developed unstable atherosclerotic lesions. Defective phagocytic capacity in Slc2a1M-/- BMDMs may have contributed to unstable atheroma formation. Together, our findings suggest that although lack of GLUT1 blunted glycolysis and the pentose phosphate pathway, MΦ were metabolically flexible enough that inflammatory cytokine release was not dramatically regulated, yet phagocytic defects hindered MΦ function in chronic diseases.
Collapse
Affiliation(s)
- Alex J Freemerman
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC 25799
| | - Liyang Zhao
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC 25799
| | - Ajeeth K Pingili
- Department of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163
| | - Bin Teng
- Department of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163
| | - Alyssa J Cozzo
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC 25799
| | - Ashley M Fuller
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Amy R Johnson
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC 25799
| | - J Justin Milner
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC 25799
| | - Maili F Lim
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC 25799
| | - Joseph A Galanko
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Melinda A Beck
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC 25799
| | - James E Bear
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Jeremy D Rotty
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Lavanya Bezavada
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN 38163
| | - Heather S Smallwood
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN 38163
| | - Michelle A Puchowicz
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN 38163
| | - Juan Liu
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Duke University, Durham, NC 27710
| | - Jason W Locasale
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Duke University, Durham, NC 27710
| | | | - Brian J Bennett
- U.S. Department of Agriculture Western Human Nutrition Research Center, Davis, CA 95616
| | - E Dale Abel
- Division of Endocrinology and Metabolism, University of Iowa Carver College of Medicine, Iowa City, IA 52242
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242; and
| | - Jeff C Rathmell
- Department of Pathology, Microbiology, and Immunology, Vanderbilt Center for Immunobiology, Vanderbilt University, Nashville, TN 37232
| | - Liza Makowski
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC 25799;
- Department of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163
| |
Collapse
|
9
|
Martinez M, Moon EK. CAR T Cells for Solid Tumors: New Strategies for Finding, Infiltrating, and Surviving in the Tumor Microenvironment. Front Immunol 2019; 10:128. [PMID: 30804938 PMCID: PMC6370640 DOI: 10.3389/fimmu.2019.00128] [Citation(s) in RCA: 554] [Impact Index Per Article: 92.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 01/16/2019] [Indexed: 12/26/2022] Open
Abstract
Chimeric antigen receptor (CAR) T cells, T cells that have been genetically engineered to express a receptor that recognizes a specific antigen, have given rise to breakthroughs in treating hematological malignancies. However, their success in treating solid tumors has been limited. The unique challenges posed to CAR T cell therapy by solid tumors can be described in three steps: finding, entering, and surviving in the tumor. The use of dual CAR designs that recognize multiple antigens at once and local administration of CAR T cells are both strategies that have been used to overcome the hurdle of localization to the tumor. Additionally, the immunosuppressive tumor microenvironment has implications for T cell function in terms of differentiation and exhaustion, and combining CARs with checkpoint blockade or depletion of other suppressive factors in the microenvironment has shown very promising results to mitigate the phenomenon of T cell exhaustion. Finally, identifying and overcoming mechanisms associated with dysfunction in CAR T cells is of vital importance to generating CAR T cells that can proliferate and successfully eliminate tumor cells. The structure and costimulatory domains chosen for the CAR may play an important role in the overall function of CAR T cells in the TME, and “armored” CARs that secrete cytokines and third- and fourth-generation CARs with multiple costimulatory domains offer ways to enhance CAR T cell function.
Collapse
Affiliation(s)
- Marina Martinez
- Perelman School of Medicine, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, United States
| | - Edmund Kyung Moon
- Perelman School of Medicine, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
10
|
Laurie SJ, Liu D, Wagener ME, Stark PC, Terhorst C, Ford ML. 2B4 Mediates Inhibition of CD8 + T Cell Responses via Attenuation of Glycolysis and Cell Division. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2018; 201:1536-1548. [PMID: 30012849 PMCID: PMC6103805 DOI: 10.4049/jimmunol.1701240] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 06/11/2018] [Indexed: 12/17/2022]
Abstract
We recently showed that 2B4 expression on memory T cells in human renal transplant recipients was associated with reduced rates of rejection. To investigate whether 2B4 functionally underlies graft acceptance during transplantation, we established an experimental model in which 2B4 was retrogenically expressed on donor-reactive murine CD8+ T cells (2B4rg), which were then transferred into naive recipients prior to skin transplantation. We found that constitutive 2B4 expression resulted in significantly reduced accumulation of donor-reactive CD8+ T cells following transplantation and significantly prolonged graft survival following transplantation. This marked reduction in alloreactivity was due to reduced proliferation of CD8+ Thy1.1+ 2B4rg cells as compared with control cells, underpinned by extracellular flux analyses demonstrating that 2B4-deficient (2B4KO) CD8+ cells activated in vitro exhibited increased glycolytic capacity and upregulation of gene expression profiles consistent with enhanced glycolytic machinery as compared with wild type controls. Furthermore, 2B4KO CD8+ T cells primed in vivo exhibited significantly enhanced ex vivo uptake of a fluorescent glucose analogue. Finally, the proliferative advantage associated with 2B4 deficiency was only observed in the setting of glucose sufficiency; in glucose-poor conditions, 2B4KO CD8+ T cells lost their proliferative advantage. Together, these data indicate that 2B4 signals function to alter T cell glucose metabolism, thereby limiting the proliferation and accumulation of CD8+ T cells. Targeting 2B4 may therefore represent a novel therapeutic strategy to attenuate unwanted CD8+ T cell responses.
Collapse
Affiliation(s)
| | - Danya Liu
- Emory Transplant Center, Atlanta, GA 30322; and
| | | | | | - Cox Terhorst
- Beth Israel Deaconess Medical Center, Boston, MA 02215
| | | |
Collapse
|
11
|
Sirtuin1 Targeting Reverses Innate and Adaptive Immune Tolerance in Septic Mice. J Immunol Res 2018; 2018:2402593. [PMID: 30069485 PMCID: PMC6057336 DOI: 10.1155/2018/2402593] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 05/29/2018] [Indexed: 01/08/2023] Open
Abstract
Resistance and tolerance to infection are two universal fitness and survival strategies used by inflammation and immunity in organisms and cells to guard homeostasis. During sepsis, however, both strategies fail, and animal and human victims often die from combined innate and adaptive immune suppression with persistent bacterial and viral infections. NAD+-sensing nuclear sirtuin1 (SIRT1) epigenetically guards immune and metabolic homeostasis during sepsis. Pharmacologically inhibiting SIRT1 deacetylase activity in septic mice reverses monocyte immune tolerance, clears infection, rebalances glycolysis and glucose oxidation, resolves organ dysfunction, and prevents most septic deaths. Whether SIRT1 inhibition during sepsis treatment concomitantly reverses innate and T cell antigen-specific immune tolerance is unknown. Here, we show that treating septic mice with a SIRT1 selective inhibitor concordantly reverses immune tolerance splenic dendritic and antigen-specific tolerance of splenic CD4+ and CD8+ T cells. SIRT1 inhibition also increases the ratio of IL12 p40+ and TNFα proinflammatory/immune to IL10 and TGFβ anti-inflammatory/immune cytokines and decreases the ratio of CD4+ TReg repressor to CD4+ activator T cells. These findings support the unifying concept that nuclear NAD+ sensor SIRT1 broadly coordinates innate and adaptive immune reprogramming during sepsis and is a druggable immunometabolic enhancement target.
Collapse
|