1
|
Fei Q, Zhang J, Chen L, Shi M, Wang Q, Xu F, Shi J, Qin Y. Modulating ferroptosis and mycobactericidal activity in lung epithelial cells via YY1/iNOS pathway. Life Sci 2024; 358:123131. [PMID: 39424267 DOI: 10.1016/j.lfs.2024.123131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 09/30/2024] [Accepted: 10/08/2024] [Indexed: 10/21/2024]
Abstract
BACKGROUND Mycobacterium tuberculosis infection triggers various forms of host cell death, including ferroptosis in lung epithelial cells; YY1, a critical transcription factor, plays a pivotal role in regulating ferroptosis, however, the underlying mechanisms are not fully understood. METHODS To investigate Mycobacterium marinum (M.marinum) infection in lung epithelial cells A549 and H1299, we utilized flow cytometry to evaluate cell death and measure reactive oxygen species (ROS). Colony-forming unit (CFU) assays determined the intracellular bacterial load. Ferroptosis was analyzed using a specific detection kit to measure malondialdehyde (MDA) and glutathione (GSH) levels. The interaction between the transcription factor YY1 and the iNOS promoter was assessed through a dual-luciferase reporter assay. RESULTS M.marinum induced ferroptosis in lung epithelial cells through invasion. This effect is most pronounced at 8 h of infection and decreases over time but increased with a higher multiplicity of infection (MOI). YY1 knockdown decreases the expression of SLC7A11 and GPX4, attenuates cellular ferroptosis, while YY1 overexpression has the opposite phenomenon, enhancing the expression of bactericidal molecules such as iNOS and MPEG1, thereby markedly reducing the intracellular bacterial load. We identified substantial binding of YY1 to the iNOS promoter region (-655 to -1018 bp), enhancing mycobactericidal activity in YY1-overexpressing cells. CONCLUSIONS Our study demonstrates that YY1 inhibits ferroptosis induced by Mycobacterium marinum infection and reduces intracellular bacterial proliferation in lung epithelial cells. These findings provide a crucial basis for developing anti-tuberculosis therapies that target YY1 modulation, potentially offering new clinical avenues for the treatment of tuberculosis.
Collapse
Affiliation(s)
- Qiuwen Fei
- Department of Pathogen Biology, Medical College, Nantong University, No. 19 Qixiu Road, Nantong, China
| | - Jian Zhang
- Affiliated Haian Hospital of Nantong University, Haian, China
| | - Liangqiong Chen
- Affiliated Haian Hospital of Nantong University, Haian, China
| | - Manqi Shi
- Department of Pathogen Biology, Medical College, Nantong University, No. 19 Qixiu Road, Nantong, China
| | - Qinglan Wang
- Department of Respiratory and Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Feifan Xu
- Department of Clinical Laboratory, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), Nantong, China
| | - Jiahai Shi
- Nantong Key Laboratory of Translational Medicine in Cardiothoracic Diseases, Nantong Clinical Medical Research Center of Cardiothoracic Disease, Institution of Translational Medicine in Cardiothoracic Diseases, Affiliated Hospital of Nantong University, Nantong, China
| | - Yongwei Qin
- Department of Pathogen Biology, Medical College, Nantong University, No. 19 Qixiu Road, Nantong, China.
| |
Collapse
|
2
|
Thomas SS, Abhinand K, Menon AM, Nair BG, Kumar GB, Arun KB, Edison LK, Madhavan A. Epigenetic Mechanisms Induced by Mycobacterium tuberculosis to Promote Its Survival in the Host. Int J Mol Sci 2024; 25:11801. [PMID: 39519352 PMCID: PMC11546203 DOI: 10.3390/ijms252111801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 11/16/2024] Open
Abstract
Tuberculosis caused by the obligate intracellular pathogen, Mycobacterium tuberculosis, is one among the prime causes of death worldwide. An urgent remedy against tuberculosis is of paramount importance in the current scenario. However, the complex nature of this appalling disease contributes to the limitations of existing medications. The quest for better treatment approaches is driving the research in the field of host epigenomics forward in context with tuberculosis. The interplay between various host epigenetic factors and the pathogen is under investigation. A comprehensive understanding of how Mycobacterium tuberculosis orchestrates such epigenetic factors and favors its survival within the host is in increasing demand. The modifications beneficial to the pathogen are reversible and possess the potential to be better targets for various therapeutic approaches. The mechanisms, including histone modifications, DNA methylation, and miRNA modification, are being explored for their impact on pathogenesis. In this article, we are deciphering the role of mycobacterial epigenetic regulators on various strategies like cytokine expression, macrophage polarization, autophagy, and apoptosis, along with a glimpse of the potential of host-directed therapies.
Collapse
Affiliation(s)
- Shwetha Susan Thomas
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam 690525, Kerala, India
| | - Kuniyil Abhinand
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam 690525, Kerala, India
| | - Arjun M. Menon
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam 690525, Kerala, India
| | - Bipin G. Nair
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam 690525, Kerala, India
| | - Geetha B. Kumar
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam 690525, Kerala, India
| | - K. B. Arun
- Department of Life Sciences, CHRIST (Deemed to be University), Bangalore 560029, Karnataka, India
| | - Lekshmi K. Edison
- Department of Comparative, Diagnostic, and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Aravind Madhavan
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam 690525, Kerala, India
| |
Collapse
|
3
|
Porras MÁG, Assié A, Tietjen M, Violette M, Kleiner M, Gruber-Vodicka H, Dubilier N, Leisch N. An intranuclear bacterial parasite of deep-sea mussels expresses apoptosis inhibitors acquired from its host. Nat Microbiol 2024; 9:2877-2891. [PMID: 39242818 PMCID: PMC11521996 DOI: 10.1038/s41564-024-01808-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 08/13/2024] [Indexed: 09/09/2024]
Abstract
A limited number of bacteria are able to colonize the nuclei of eukaryotes. 'Candidatus Endonucleobacter' infects the nuclei of deep-sea mussels, where it replicates to ≥80,000 bacteria per nucleus and causes nuclei to swell to 50 times their original size. How these parasites are able to replicate and avoid apoptosis is not known. Dual RNA-sequencing transcriptomes of infected nuclei isolated using laser-capture microdissection revealed that 'Candidatus Endonucleobacter' does not obtain most of its nutrition from nuclear DNA or RNA. Instead, 'Candidatus Endonucleobacter' upregulates genes for importing and digesting sugars, lipids, amino acids and possibly mucin from its host. It likely prevents apoptosis of host cells by upregulating 7-13 inhibitors of apoptosis, proteins not previously seen in bacteria. Comparative phylogenetic analyses revealed that 'Ca. Endonucleobacter' acquired inhibitors of apoptosis through horizontal gene transfer from their hosts. Horizontal gene transfer from eukaryotes to bacteria is assumed to be rare, but may be more common than currently recognized.
Collapse
Affiliation(s)
| | - Adrien Assié
- Max Planck Institute for Marine Microbiology, Bremen, Germany
- Alkek Center for Metagenomics and Microbiome Research, Baylor College of Medicine, Houston, TX, USA
| | - Målin Tietjen
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Marlene Violette
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, USA
| | - Manuel Kleiner
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, USA
| | - Harald Gruber-Vodicka
- Max Planck Institute for Marine Microbiology, Bremen, Germany
- Zoological Institute, Christian-Albrechts-University, Kiel, Germany
| | - Nicole Dubilier
- Max Planck Institute for Marine Microbiology, Bremen, Germany.
| | - Nikolaus Leisch
- Max Planck Institute for Marine Microbiology, Bremen, Germany.
- European Molecular Biology Laboratory, Heidelberg, Germany.
| |
Collapse
|
4
|
Wang C, Jiang Y, Yang Z, Xu H, Khalid AK, Iftakhar T, Peng Y, Lu L, Zhang L, Bermudez L, Guo A, Chen Y. Host factor RBMX2 promotes epithelial cell apoptosis by downregulating APAF-1's Retention Intron after Mycobacterium bovis infection. Front Immunol 2024; 15:1431207. [PMID: 39308873 PMCID: PMC11412827 DOI: 10.3389/fimmu.2024.1431207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 08/15/2024] [Indexed: 09/25/2024] Open
Abstract
The Mycobacterium tuberculosis variant bovis (M. bovis) is a highly pathogenic environmental microorganism that causes bovine tuberculosis (bTB), a significant zoonotic disease. Currently, "test and culling" is the primary measure for controlling bTB, but it has been proven to be inadequate in animals due to their high susceptibility to the pathogen. Selective breeding for increased host resistance to bTB to reduce its prevalence is feasible. In this study, we found a vital host-dependent factor, RBMX2, that can potentially promote M. bovis infection. By knocking RBMX2 out, we investigated its function during M. bovis infection. Through transcriptome sequencing and alternative splicing transcriptome sequencing, we concluded that after M. bovis infection, embryo bovine lung (EBL) cells were significantly enriched in RNA splicing associated with apoptosis compared with wild-type EBL cells. Through protein/molecular docking, molecular dynamics simulations, and real-time quantitative PCR, we demonstrated that RBMX2 promotes the apoptosis of epithelial cells by upregulating and binding to apoptotic peptidase activating factor 1 (APAF-1), resulting in the alternative splicing of APAF-1 as a retention intron. To our knowledge, this is the first report of M. bovis affecting host epithelial cell apoptosis by hijacking RBMX2 to promote the intron splicing of downstream APAF-1. These findings may represent a significant contribution to the development of novel TB prevention and control strategies.
Collapse
Affiliation(s)
- Chao Wang
- The National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- National Animal Tuberculosis Para-Reference Laboratory (Wuhan) of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
| | - Yanzhu Jiang
- The National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- National Animal Tuberculosis Para-Reference Laboratory (Wuhan) of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
| | - Zhiming Yang
- The National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Haojun Xu
- The National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Abdul Karim Khalid
- The National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Tahira Iftakhar
- The National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yongchong Peng
- The National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- National Animal Tuberculosis Para-Reference Laboratory (Wuhan) of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
| | - Lu Lu
- The National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- National Animal Tuberculosis Para-Reference Laboratory (Wuhan) of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
| | - Lei Zhang
- The National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- National Animal Tuberculosis Para-Reference Laboratory (Wuhan) of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
| | - Luiz Bermudez
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR, United States
| | - Aizhen Guo
- The National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- National Animal Tuberculosis Para-Reference Laboratory (Wuhan) of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Yingyu Chen
- The National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- National Animal Tuberculosis Para-Reference Laboratory (Wuhan) of Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
5
|
Zhan X, Yuan W, Ma R, Zhou Y, Xu G, Ge Z. Mmu-let-7a-5p inhibits macrophage apoptosis by targeting CASP3 to increase bacterial load and facilities mycobacterium survival. PLoS One 2024; 19:e0308095. [PMID: 39226319 PMCID: PMC11371246 DOI: 10.1371/journal.pone.0308095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 07/17/2024] [Indexed: 09/05/2024] Open
Abstract
We have been trying to find a miRNA that can specifically regulate the function of mycobacterial host cells to achieve the purpose of eliminating Mycobacterium tuberculosis. The purpose of this study is to investigate the regulation of mmu-let-7a-5p on macrophages apoptosis and its effect on intracellular BCG clearance. After a series of in vitro experiments, we found that mmu-let-7a-5p could negatively regulate the apoptosis of macrophages by targeting Caspase-3. The extrinsic apoptosis signal axis TNFR1/FADD/Caspase-8/Caspase-3 was inhibited after BCG infection. Up-regulated the expression level of mmu-let-7a-5p increase the cell proliferation viability and inhibit apoptosis rate of macrophages, but down-regulated its level could apparently reduce the bacterial load of intracellular Mycobacteria and accelerate the clearance of residual Mycobacteria effectively. Mmu-let-7a-5p has great potential to be utilized as an optimal candidate exosomal loaded miRNA for anti-tuberculosis immunotherapy in our subsequent research.
Collapse
Affiliation(s)
- Xuehua Zhan
- Department of Orthopedics, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Wenqi Yuan
- Department of Orthopedics, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Rong Ma
- Department of Orthopedics, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Yueyong Zhou
- Clinical Medicine School, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Guangxian Xu
- The First Dongguan Affiliated Hospital, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Zhaohui Ge
- Department of Orthopedics, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| |
Collapse
|
6
|
Wong Z, Ong EBB. Unravelling bacterial virulence factors in yeast: From identification to the elucidation of their mechanisms of action. Arch Microbiol 2024; 206:303. [PMID: 38878203 DOI: 10.1007/s00203-024-04023-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/21/2024] [Accepted: 05/29/2024] [Indexed: 06/23/2024]
Abstract
Pathogenic bacteria employ virulence factors (VF) to establish infection and cause disease in their host. Yeasts, Saccharomyces cerevisiae and Saccharomyces pombe, are useful model organisms to study the functions of bacterial VFs and their interaction with targeted cellular processes because yeast processes and organelle structures are highly conserved and similar to higher eukaryotes. In this review, we describe the principles and applications of the yeast model for the identification and functional characterisation of bacterial VFs to investigate bacterial pathogenesis. The growth inhibition phenotype caused by the heterologous expression of bacterial VFs in yeast is commonly used to identify candidate VFs. Then, subcellular localisation patterns of bacterial VFs can provide further clues about their target molecules and functions during infection. Yeast knockout and overexpression libraries are also used to investigate VF interactions with conserved eukaryotic cell structures (e.g., cytoskeleton and plasma membrane), and cellular processes (e.g., vesicle trafficking, signalling pathways, and programmed cell death). In addition, the yeast growth inhibition phenotype is also useful for screening new drug leads that target and inhibit bacterial VFs. This review provides an updated overview of new tools, principles and applications to study bacterial VFs in yeast.
Collapse
Affiliation(s)
- ZhenPei Wong
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Penang, 11800 USM, Malaysia
| | - Eugene Boon Beng Ong
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Penang, 11800 USM, Malaysia.
| |
Collapse
|
7
|
Singh K, Vashishtha S, Chakraborty A, Kumar A, Thakur S, Kundu B. The Salmonella typhi Cell Division Activator Protein StCAP Impacts Pathogenesis by Influencing Critical Molecular Events. ACS Infect Dis 2024; 10:1990-2001. [PMID: 38815059 DOI: 10.1021/acsinfecdis.4c00001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Conserved molecular signatures in multidrug-resistant Salmonella typhi can serve as novel therapeutic targets for mitigation of infection. In this regard, we present the S. typhi cell division activator protein (StCAP) as a conserved target across S. typhi variants. From in silico and fluorimetric assessments, we found that StCAP is a DNA-binding protein. Replacement of the identified DNA-interacting residue Arg34 of StCAP with Ala34 showed a dramatic (15-fold) increase in Kd value compared to the wild type (Kd 546 nm) as well as a decrease in thermal stability (10 °C shift). Out of the two screened molecules against the DNA-binding pocket of StCAP, eltrombopag, and nilotinib, the former displayed better binding. Eltrombopag inhibited the stand-alone S. typhi culture with an IC50 of 38 μM. The effect was much more pronounced on THP-1-derived macrophages (T1Mac) infected with S. typhi where colony formation was severely hindered with IC50 reduced further to 10 μM. Apoptotic protease activating factor1 (Apaf1), a key molecule for intrinsic apoptosis, was identified as an StCAP-interacting partner by pull-down assay against T1Mac. Further, StCAP-transfected T1Mac showed a significant increase in LC3 II (autophagy marker) expression and downregulation of caspase 3 protein. From these experiments, we conclude that StCAP provides a crucial survival advantage to S. typhi during infection, thereby making it a potent alternative therapeutic target.
Collapse
Affiliation(s)
- Kritika Singh
- Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi, New Delhi 110016, India
| | - Shubham Vashishtha
- Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi, New Delhi 110016, India
| | - Ankan Chakraborty
- Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi, New Delhi 110016, India
| | - Ashish Kumar
- Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi, New Delhi 110016, India
| | - Sheetal Thakur
- Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi, New Delhi 110016, India
| | - Bishwajit Kundu
- Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi, New Delhi 110016, India
| |
Collapse
|
8
|
Pan Q, Zhang Y, Liu T, Xu Q, Wu Q, Xin J. Mycoplasma glycine cleavage system key subunit GcvH is an apoptosis inhibitor targeting host endoplasmic reticulum. PLoS Pathog 2024; 20:e1012266. [PMID: 38787906 PMCID: PMC11156438 DOI: 10.1371/journal.ppat.1012266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 06/06/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024] Open
Abstract
Mycoplasmas are minimal but notorious bacteria that infect humans and animals. These genome-reduced organisms have evolved strategies to overcome host apoptotic defense and establish persistent infection. Here, using Mycoplasma bovis as a model, we demonstrate that mycoplasma glycine cleavage system (GCS) H protein (GcvH) targets the endoplasmic reticulum (ER) to hijack host apoptosis facilitating bacterial infection. Mechanically, GcvH interacts with the ER-resident kinase Brsk2 and stabilizes it by blocking its autophagic degradation. Brsk2 subsequently disturbs unfolded protein response (UPR) signaling, thereby inhibiting the key apoptotic molecule CHOP expression and ER-mediated intrinsic apoptotic pathway. CHOP mediates a cross-talk between ER- and mitochondria-mediated intrinsic apoptosis. The GcvH N-terminal amino acid 31-35 region is necessary for GcvH interaction with Brsk2, as well as for GcvH to exert anti-apoptotic and potentially pro-infective functions. Notably, targeting Brsk2 to dampen apoptosis may be a conserved strategy for GCS-containing mycoplasmas. Our study reveals a novel role for the conserved metabolic route protein GcvH in Mycoplasma species. It also sheds light on how genome-reduced bacteria exploit a limited number of genomic proteins to resist host cell apoptosis thereby facilitating pathogenesis.
Collapse
Affiliation(s)
- Qiao Pan
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yujuan Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Tong Liu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Qingyuan Xu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
- Institute of Western Agriculture, Chinese Academy of Agricultural Sciences, Xinjiang, China
| | - Qi Wu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Jiuqing Xin
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
9
|
Wang Y, Wu Z, Wang Z, Du H, Xiao S, Lu L, Wang Z. Analyses of the Antibiofilm Activity of o-Phenanthroline Monohydrate against Enterococcus faecalis and Staphylococcus aureus and the Mechanisms Underlying These Effects. ACS Infect Dis 2024; 10:638-649. [PMID: 38258383 DOI: 10.1021/acsinfecdis.3c00516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Enterococcus faecalis and Staphylococcus aureus exhibit robust biofilm formation capabilities, the formation of which is closely linked to pathogenicity and drug resistance, thereby resulting in host infection and treatment failure. o-Phenanthroline monohydrate (o-Phen) and its derivatives demonstrate a wide range of antibacterial and antifungal activities. In this study, we aimed to explore the antibiofilm activity of o-Phen to E. faecalis and S. aureus and provide insights into the molecular mechanisms for combating biofilm resistance. We demonstrated that o-Phen possesses significant antibacterial and antibiofilm properties against E. faecalis and S. aureus, inducing alterations in bacterial morphology, compromising cell membrane integrity, and exhibiting synergistic effects with β-lactam antibiotics at sub-MIC concentrations. The adhesion ability and automatic condensation capacity of, and synthesis of, extracellular polymers by E. faecalis cells were reduced by o-Phen, resulting in the inhibition of biofilm formation. Importantly, transcriptome analysis revealed 354 upregulated and 456 downregulated genes in o-Phen-treated E. faecalis. Differentially expressed genes were enriched in 11 metabolism-related pathways, including amino acid metabolism, pyrimidine metabolism, and glycolysis/gluconeogenesis. Moreover, the oppA, CeuA, and ZnuB genes involved in the ABC transport system, and the PBP1A penicillin-binding protein-coding genes sarA and mrcA were significantly downregulated. The multidrug efflux pump system and membrane permeability genes mdtG and hlyD, and bacterial adhesion-related genes, including adcA and fss2 were also downregulated, while mraZ and ASP23 were upregulated. Thus, o-Phen is anticipated to be an effective alternative drug for the treatment of E. faecalis and S. aureus biofilm-associated infections.
Collapse
Affiliation(s)
- Yu Wang
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Zhouhui Wu
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Zhiwen Wang
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Heng Du
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Shuang Xiao
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Lin Lu
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Zhen Wang
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| |
Collapse
|
10
|
Koirala R, Fongsaran C, Poston T, Rogge M, Rogers B, Thune R, Dubytska L. Edwardsiella ictaluri T3SS effector EseN is a phosphothreonine lyase that inactivates ERK1/2, p38, JNK, and PDK1 and modulates cell death in infected macrophages. Microbiol Spectr 2023; 11:e0300323. [PMID: 37796003 PMCID: PMC10714789 DOI: 10.1128/spectrum.03003-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 08/22/2023] [Indexed: 10/06/2023] Open
Abstract
IMPORTANCE This work has global significance in the catfish industry, which provides food for increasing global populations. E. ictaluri is a leading cause of disease loss, and EseN is an important player in E. ictaluri virulence. The E. ictaluri T3SS effector EseN plays an essential role in establishing infection, but the specific role EseN plays is not well characterized. EseN belongs to a family of phosphothreonine lyase effectors that specifically target host mitogen activated protein kinase (MAPK) pathways important in regulating host responses to infection. No phosphothreonine lyase equivalents are known in eukaryotes, making this family of effectors an attractive target for indirect narrow-spectrum antibiotics. Targeting of major vault protein and PDK1 kinase by EseN has not been reported in EseN homologs in other pathogens and may indicate unique functions of E. ictaluri EseN. EseN targeting of PDK1 is particularly interesting in that it is linked to an extraordinarily diverse group of cellular functions.
Collapse
Affiliation(s)
- Ranjan Koirala
- Department of Biological Sciences and Chemistry, Southern University and A & M College, Baton Rouge, Louisiana, USA
| | - Chanida Fongsaran
- Department of Biological Sciences and Chemistry, Southern University and A & M College, Baton Rouge, Louisiana, USA
| | - Tanisha Poston
- Department of Biological Sciences and Chemistry, Southern University and A & M College, Baton Rouge, Louisiana, USA
| | - Matthew Rogge
- Department of Biology, University of Wisconsin-Stevens Point, Stevens Point, Wisconsin, USA
| | - Bryan Rogers
- Department of Biological Sciences and Chemistry, Southern University and A & M College, Baton Rouge, Louisiana, USA
| | - Ronald Thune
- Department of Pathobiological Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, Louisiana, USA
| | - Lidiya Dubytska
- Department of Biological Sciences and Chemistry, Southern University and A & M College, Baton Rouge, Louisiana, USA
| |
Collapse
|
11
|
Rahlwes KC, Dias BR, Campos PC, Alvarez-Arguedas S, Shiloh MU. Pathogenicity and virulence of Mycobacterium tuberculosis. Virulence 2023; 14:2150449. [PMID: 36419223 PMCID: PMC9817126 DOI: 10.1080/21505594.2022.2150449] [Citation(s) in RCA: 39] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) is the causative agent of tuberculosis, an infectious disease with one of the highest morbidity and mortality rates worldwide. Leveraging its highly evolved repertoire of non-protein and protein virulence factors, Mtb invades through the airway, subverts host immunity, establishes its survival niche, and ultimately escapes in the setting of active disease to initiate another round of infection in a naive host. In this review, we will provide a concise synopsis of the infectious life cycle of Mtb and its clinical and epidemiologic significance. We will also take stock of its virulence factors and pathogenic mechanisms that modulate host immunity and facilitate its spread. Developing a greater understanding of the interface between Mtb virulence factors and host defences will enable progress toward improved vaccines and therapeutics to prevent and treat tuberculosis.
Collapse
Affiliation(s)
- Kathryn C. Rahlwes
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Beatriz R.S. Dias
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Priscila C. Campos
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Samuel Alvarez-Arguedas
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Michael U. Shiloh
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA,Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, USA,CONTACT Michael U. Shiloh
| |
Collapse
|
12
|
Mohammad-Rafiei F, Moadab F, Mahmoudi A, Navashenaq JG, Gheibihayat SM. Efferocytosis: a double-edged sword in microbial immunity. Arch Microbiol 2023; 205:370. [PMID: 37925389 DOI: 10.1007/s00203-023-03704-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 09/30/2023] [Accepted: 10/10/2023] [Indexed: 11/06/2023]
Abstract
Efferocytosis is characterized as the rapid and efficient process by which dying or dead cells are removed. This type of clearance is initiated via "find-me" signals, and then, carries on by "eat-me" and "don't-eat-me" ones. Efferocytosis has a critical role to play in tissue homeostasis and innate immunity. However, some evidence suggests it as a double-edged sword in microbial immunity. In other words, some pathogens have degraded efferocytosis by employing efferocytic mechanisms to bypass innate immune detection and promote infection, despite the function of this process for the control and clearance of pathogens. In this review, the efferocytosis mechanisms from the recognition of dying cells to phagocytic engulfment are initially presented, and then, its diverse roles in inflammation and immunity are highlighted. In this case, much focus is also laid on some bacterial, viral, and parasitic infections caused by Mycobacterium tuberculosis (M. tb), Mycobacterium marinum (M. marinum), Listeria monocytogenes (L. monocytogenes), Chlamydia pneumoniae (CP), Klebsiella pneumoniae (KP), Influenza A virus (IAV), human immunodeficiency virus (HIV), and Leishmania, respectively.
Collapse
Affiliation(s)
- Fatemeh Mohammad-Rafiei
- Department of Medical Biotechnology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Fatemeh Moadab
- Division of Rheumatology, Department of Medicine, University of Washington, Seattle, USA
| | - Ali Mahmoudi
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Science, Mashhad, Iran
| | | | - Seyed Mohammad Gheibihayat
- Department of Medical Biotechnology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| |
Collapse
|
13
|
Makabenta JMV, Nabawy A, Chattopadhyay AN, Park J, Li CH, Goswami R, Luther DC, Huang R, Hassan MA, Rotello VM. Antimicrobial-loaded biodegradable nanoemulsions for efficient clearance of intracellular pathogens in bacterial peritonitis. Biomaterials 2023; 302:122344. [PMID: 37857021 PMCID: PMC10872928 DOI: 10.1016/j.biomaterials.2023.122344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 10/02/2023] [Accepted: 10/03/2023] [Indexed: 10/21/2023]
Abstract
Intracellular pathogenic bacteria use immune cells as hosts for bacterial replication and reinfection, leading to challenging systemic infections including peritonitis. The spread of multidrug-resistant (MDR) bacteria and the added barrier presented by host cell internalization limit the efficacy of standard antibiotic therapies for treating intracellular infections. We present a non-antibiotic strategy to treat intracellular infections. Antimicrobial phytochemicals were stabilized and delivered by polymer-stabilized biodegradable nanoemulsions (BNEs). BNEs were fabricated using different phytochemicals, with eugenol-loaded BNEs (E-BNEs) affording the best combination of antimicrobial efficacy, macrophage accumulation, and biocompatibility. The positively-charged polymer groups of the E-BNEs bind to the cell surface of macrophages, facilitating the entry of eugenol that then kills the intracellular bacteria without harming the host cells. Confocal imaging and flow cytometry confirmed that this entry occurred mainly via cholesterol-dependent membrane fusion. As eugenol co-localized and interacted with intracellular bacteria, antibacterial efficacy was maintained. E-BNEs reversed the immunosuppressive effects of MRSA on macrophages. Notably, E-BNEs did not elicit resistance selection after multiple exposures of MRSA to sub-therapeutic doses. The E-BNEs were highly effective against a murine model of MRSA-induced peritonitis with better bacterial clearance (99 % bacteria reduction) compared to clinically-employed treatment with vancomycin. Overall, these findings demonstrate the potential of E-BNEs in treating peritonitis and other refractory intracellular infections.
Collapse
Affiliation(s)
- Jessa Marie V Makabenta
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA, 01003, United States
| | - Ahmed Nabawy
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA, 01003, United States
| | - Aritra Nath Chattopadhyay
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA, 01003, United States
| | - Jungmi Park
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA, 01003, United States
| | - Cheng-Hsuan Li
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA, 01003, United States
| | - Ritabrita Goswami
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA, 01003, United States
| | - David C Luther
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA, 01003, United States
| | - Rui Huang
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA, 01003, United States
| | - Muhammad Aamir Hassan
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA, 01003, United States
| | - Vincent M Rotello
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA, 01003, United States.
| |
Collapse
|
14
|
Guanghui H, Zhimeng L, Yina S, Chenghua L. Nitric oxide synthase regulates coelomocytes apoptosis through the NF-κB signaling pathway in the sea cucumber Apostichopus japonicus. FISH & SHELLFISH IMMUNOLOGY 2023; 141:109027. [PMID: 37633344 DOI: 10.1016/j.fsi.2023.109027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/28/2023] [Accepted: 08/23/2023] [Indexed: 08/28/2023]
Abstract
Nitric oxide synthase (NOS) was initially discovered to participate in the generation of nitric oxide as a defense mechanism against pathogenic infections. In recent years, it has been found that NOS plays a pivotal role in regulating apoptosis and inflammation in mammals. However, the mechanisms underlying NOS-mediated apoptosis in invertebrates remain largely unclear. In this study, we found that the Apostichopus japonicus NOS (AjNOS) expression levels were upregulated by 2.20-fold and 3.46-fold after being challenged with Vibrio splendidus at concentrations of 107 CFU mL-1 and 108 CFU mL-1 for 12 h compared to the control group, respectively. Under these conditions, the rates of coelomocytes apoptosis were increased from 14.7% to 32.7% and 45.4%, respectively. Treatment with NOS inhibitor (l-NAME) resulted in a reduction of coelomocytes apoptosis rates from 32.6% to 26.5% in V. splendidus (107 CFU mL-1) groups and from 42.3% to 33.3% in V. splendidus (108 CFU mL-1) groups, respectively. NOS has been reported to regulate apoptosis through IκBα phosphorylation. Simultaneously, exposure to V. splendidus in conjunction with l-NAME resulted in down-regulation of AjIκBα phosphorylation levels compared to the group infected solely with V. splendidus. Furthermore, immunofluorescence analysis revealed that treatment with l-NAME or interference of AjNOS using siRNA inhibited translocation of AjNF-κB/p65 (RelA) into the nucleus. Previous studies have shown that NF-κB can down-regulate expression levels of Bcl-2 family members, which is an important pathway for regulating apoptosis. In the present study, treatment with l-NAME was found to promote anti-apoptotic AjBcl-2 mRNA increase to 1.41-fold and protein expression increase to 1.86-fold at 12 h post V. splendidus challenge. However, these effects were suppressed by PMA (an NF-κB activator). Overall, our findings demonstrate that AjNOS regulates coelomocytes apoptosis induced by V. splendidus through activation of the AjNF-κB signaling pathway and down-regulation of AjBcl-2 in A. japonicus.
Collapse
Affiliation(s)
- Han Guanghui
- State-Province Joint Laboratory of Marine Biotechnology and Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Lv Zhimeng
- State-Province Joint Laboratory of Marine Biotechnology and Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Shao Yina
- State-Province Joint Laboratory of Marine Biotechnology and Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China
| | - Li Chenghua
- State-Province Joint Laboratory of Marine Biotechnology and Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China.
| |
Collapse
|
15
|
Byerly CD, Patterson LL, Pittner NA, Solomon RN, Patel JG, Rogan MR, McBride JW. Ehrlichia Wnt SLiM ligand mimic deactivates the Hippo pathway to engage the anti-apoptotic Yap-GLUT1-BCL-xL axis. Infect Immun 2023; 91:e0008523. [PMID: 37530530 PMCID: PMC10501218 DOI: 10.1128/iai.00085-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 06/03/2023] [Indexed: 08/03/2023] Open
Abstract
Ehrlichia chaffeensis TRP120 effector has evolved short linear motif (SLiM) ligand mimicry to repurpose multiple evolutionarily conserved cellular signaling pathways, including Wnt, Notch, and Hedgehog. In this investigation, we demonstrate that E. chaffeensis and recombinant TRP120 deactivate Hippo signaling, resulting in the activation of Hippo transcription coactivator Yes-associated protein (Yap). Moreover, a homologous 6 amino acid (QDVASH) SLiM shared by TRP120 and Wnt3a/5a ligands phenocopied Yap and β-catenin activation induced by E. chaffeensis, rTRP120, and Wnt5a. Similar Hippo gene expression profiles were also stimulated by E. chaffeensis, rTRP120, SLiM, and Wnt5a. Single siRNA knockdown of Hippo transcription co-activator/factors, Yap, and transcriptional enhanced associate domain (TEAD) significantly decreased E. chaffeensis infection. Yap activation was abolished in THP-1 Wnt Frizzled-5 (Fzd5) receptor knockout cells (KO), demonstrating Fzd5 receptor dependence. In addition, the TRP120-Wnt-SLiM antibody blocked Hippo deactivation (Yap activation). Expression of anti-apoptotic Hippo target gene SLC2A1 (encodes glucose transporter 1; GLUT1) was upregulated by E. chaffeensis and corresponded to increased levels of GLUT1. Conversely, siRNA knockdown of SLC2A1 significantly inhibited infection. Higher GLUT1 levels correlated with increased B cell lymphoma-extra large (BCL-xL) and decreased BCL2-associated X, apoptosis regulator (Bax) levels. Moreover, blocking Yap activation with the inhibitor Verteporfin induced apoptosis that corresponded to significant reductions in GLUT1 and BCL-xL levels and activation of Bax and Caspase-3 and -9. This study identifies a novel shared Wnt/Hippo SLiM ligand mimic and demonstrates that E. chaffeensis deactivates the Hippo pathway to engage the anti-apoptotic Yap-GLUT1-BCL-xL axis.
Collapse
Affiliation(s)
- Caitlan D. Byerly
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - LaNisha L. Patterson
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Nicholas A. Pittner
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Regina N. Solomon
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Jignesh G. Patel
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Madison R. Rogan
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Jere W. McBride
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, Texas, USA
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, Texas, USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
16
|
Wang Y, Dai G, Lin Z, Cheng C, Zhou X, Song M, Chen P, Ma S, Hu Y, Liu G, Yu B. TWIST1 rescue calcium overload and apoptosis induced by inflammatory microenvironment in S. aureus-induced osteomyelitis. Int Immunopharmacol 2023; 119:110153. [PMID: 37071966 DOI: 10.1016/j.intimp.2023.110153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/13/2023] [Accepted: 04/01/2023] [Indexed: 04/20/2023]
Abstract
Currently, there is no effective therapy for Staphylococcus aureus-induced osteomyelitis. It is widely recognized that the inflammatory microenvironment around abscess plays an essential role in protracting the course of S. aureus-induced osteomyelitis. In this study, we found TWIST1 was highly expressed in macrophages around abscesses but less related to local S. aureus in the later stages of Staphylococcus aureus-infected osteomyelitis. Mouse bone marrow macrophages show apoptosis and elevated TWIST1 expression when treated with the inflammatory medium. Knockdown of TWIST1 induced macrophage apoptosis, impaired the bacteria phagocytosis/killing abilities, and promoted cell apoptosis markers expression in inflammatory microenvironment stimulation. Furthermore, inflammatory microenvironments were responsible for inducing calcium overload in macrophage mitochondrial while calcium overload inhibition significantly rescued macrophage apoptosis, bacteria phagocytosis/killing abilities and improved the mice's antimicrobial ability. Our findings indicated that TWIST1 is a crucial molecule that protects macrophages from calcium overload induced by inflammatory microenvironments.
Collapse
Affiliation(s)
- Yutian Wang
- Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Guandong Dai
- Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zexin Lin
- Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Caiyu Cheng
- Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xuyou Zhou
- Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Mingrui Song
- Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Peng Chen
- Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Orthopedics, Hainan General Hospital (Hainan Affiliated Hospital of Hainan, Medical University), Haikou, China
| | - Sushuang Ma
- Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China; Department of Orthopaedics, Central People's Hospital of Zhanjiang, Zhanjiang, China
| | - Yanjun Hu
- Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Guanqiao Liu
- Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Bin Yu
- Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
17
|
Byerly CD, Patterson LL, Pittner NA, Solomon RN, Patel JG, Rogan MR, McBride JW. Ehrlichia Wnt short linear motif ligand mimetic deactivates the Hippo pathway to engage the anti-apoptotic Yap-GLUT1-BCL-xL axis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.06.531456. [PMID: 36945589 PMCID: PMC10028901 DOI: 10.1101/2023.03.06.531456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Ehrlichia chaffeensis TRP120 effector has evolved short linear motif (SLiM) ligand mimicry to repurpose multiple evolutionarily conserved cellular signaling pathways including Wnt, Notch and Hedgehog. In this investigation, we demonstrate that E. chaffeensis and recombinant TRP120 deactivate Hippo signaling resulting in activation of Hippo transcription coactivator Yap and target gene expression. Moreover, a homologous 6 amino acid (QDVASH) SLiM shared by TRP120 and Wnt3a/5a ligands phenocopied Yap and β-catenin activation induced by E. chaffeensis, rTRP120 and Wnt5a. Similar Hippo gene expression profiles were also stimulated by E. chaffeensis, rTRP120, SLiM and Wnt5a. Single siRNA knockdown of Hippo transcription co-activator/factors (Yap and TEAD) significantly decreased E. chaffeensis infection. Yap activation was abolished in THP-1 Wnt Frizzled-5 (Fzd5) receptor knockout cells (KO), demonstrating Fzd5 receptor dependence. In addition, TRP120 Wnt-SLiM antibody blocked Hippo deactivation (Yap activation). Expression of anti-apoptotic Hippo target gene SLC2A1 (encodes glucose transporter 1; GLUT1) was upregulated by E. chaffeensis and corresponded to increased levels of GLUT1. Conversely, siRNA knockdown of SLC2A1 significantly inhibited infection. Higher GLUT1 levels correlated with increased BCL-xL and decreased Bax levels. Moreover, blocking Yap activation with the inhibitor Verteporfin induced apoptosis that corresponded to significant reductions in levels of GLUT1 and BCL-xL, and activation of Bax and Caspase-3 and -9. This study identifies a novel shared Wnt/Hippo SLiM ligand mimetic and demonstrates that E. chaffeensis deactivates the Hippo pathway to engage the anti-apoptotic Yap-GLUT1-BCL-xL axis.
Collapse
Affiliation(s)
- Caitlan D. Byerly
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - LaNisha L. Patterson
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Nicholas A. Pittner
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Regina N. Solomon
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Jignesh G. Patel
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Madison R. Rogan
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Jere W. McBride
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
- Department Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, Texas, USA
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, Texas, USA
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
18
|
The miR-100-5p Targets SMARCA5 to Regulate the Apoptosis and Intracellular Survival of BCG in Infected THP-1 Cells. Cells 2023; 12:cells12030476. [PMID: 36766816 PMCID: PMC9914254 DOI: 10.3390/cells12030476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/17/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
Mycobacterium tuberculosis (M. tb) is the causative agent of tuberculosis (TB) that leads to millions of deaths each year. Extensive evidence has explored the involvement of microRNAs (miRNAs) in M. tb infection. Limitedly, the concrete function of microRNA-100-5p (miR-100-5p) in M. tb remains unexplored and largely elusive. In this study, using Bacillus Calmette-Guérin (BCG) as the model strain, we validated that miR-100-5p was significantly decreased in BCG-infected THP-1 cells. miR-100-5p inhibition effectively facilitated the apoptosis of infected THP-1 cells and reduced BCG survival by regulating the phosphatidylinositol 3-kinase/AKT pathway. Further, SMARCA5 was the target of miR-100-5p and reduced after miR-100-5p overexpression. Since BCG infection down-regulated miR-100-5p in THP-1 cells, the SMARCA5 expression was up-regulated, which in turn increased apoptosis through caspase-3 and Bcl-2 and, thereby, reducing BCG intracellular survival. Collectively, the study uncovered a new molecular mechanism of macrophage to suppress mycobacterial infection through miR-100-5p and SMARCA5 pathway.
Collapse
|
19
|
Yang LH, Dong RJ, Lu YW, Wang HM, Kuang YQ, Wang RR, Li YY. Integration of metabolomics and transcriptomics analyses reveals sphingosine-1-phosphate-mediated S1PR2/PI3K/Akt pathway involved in Talaromyces marneffei infection of macrophages. Microb Pathog 2023; 175:105985. [PMID: 36638850 DOI: 10.1016/j.micpath.2023.105985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/12/2022] [Accepted: 01/09/2023] [Indexed: 01/12/2023]
Abstract
Talaromycosis is a fatal mycosis caused by the thermally dimorphic fungus Talaromyces marneffei (T. marneffei). The pathogenic mechanisms of talaromycosis are still poorly understood. This work combined metabolomics, transcriptomics, and verification experiments in vivo and in vitro to detect metabolic profiles and differentially expressed genes (DEGs) in T. marneffei infected and uninfected macrophages to explore possible pathogenesis and underlying mechanisms. A total of 256 differential metabolites (117 up-regulated and 148 down-regulated) and 1320 DEGs (1286 up-regulated and 34 down-regulated) were identified between the two groups. Integrative metabolomics and transcriptomics analysis showed sphingolipid signaling pathway is the most influential. Verification experiments showed that compared with the control group, the production of sphingosine-1-phosphate (S1P) and the expression of the S1PR1, S1PR2, phosphor-PI3K, and phosphor-Akt genes involved in the sphingolipid signaling pathway have significantly increased in the T. marneffei infection group (p < 0.05). T. marneffei activates the S1PR2/PI3K/Akt pathways in J774A.1 macrophage, regulation of the S1P singling might serve as a promising therapeutic strategy for talaromycosis.
Collapse
Affiliation(s)
- Lu-Hui Yang
- Department of Dermatology and Venereology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Rong-Jing Dong
- Department of Dermatology and Venereology, First Affiliated Hospital of Kunming Medical University, Kunming, China; Hubei Provincial Key Laboratory of Occurrence and Intervention of Kidney Diseases, Medical College, Hubei Polytechnic University, Huangshi, China
| | - You-Wang Lu
- Department of Dermatology and Venereology, First Affiliated Hospital of Kunming Medical University, Kunming, China; Hubei Provincial Key Laboratory of Occurrence and Intervention of Kidney Diseases, Medical College, Hubei Polytechnic University, Huangshi, China
| | - Hong-Mei Wang
- Department of Dermatology and Venereology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yi-Qun Kuang
- NHC Key Laboratory of Drug Addiction Medicine, First Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, China; Scientific Research Laboratory Center, First Affiliated Hospital of Kunming Medical University, Kunming, China.
| | - Rui-Rui Wang
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, China.
| | - Yu-Ye Li
- Department of Dermatology and Venereology, First Affiliated Hospital of Kunming Medical University, Kunming, China.
| |
Collapse
|
20
|
Garbo S, Di Giacomo S, Łażewska D, Honkisz-Orzechowska E, Di Sotto A, Fioravanti R, Zwergel C, Battistelli C. Selenium-Containing Agents Acting on Cancer-A New Hope? Pharmaceutics 2022; 15:pharmaceutics15010104. [PMID: 36678733 PMCID: PMC9860877 DOI: 10.3390/pharmaceutics15010104] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/18/2022] [Accepted: 12/24/2022] [Indexed: 12/29/2022] Open
Abstract
Selenium-containing agents are more and more considered as an innovative potential treatment option for cancer. Light is shed not only on the considerable advancements made in understanding the complex biology and chemistry related to selenium-containing small molecules but also on Se-nanoparticles. Numerous Se-containing agents have been widely investigated in recent years in cancer therapy in relation to tumour development and dissemination, drug delivery, multidrug resistance (MDR) and immune system-related (anti)cancer effects. Despite numerous efforts, Se-agents apart from selenocysteine and selenomethionine have not yet reached clinical trials for cancer therapy. The purpose of this review is to provide a concise critical overview of the current state of the art in the development of highly potent target-specific Se-containing agents.
Collapse
Affiliation(s)
- Sabrina Garbo
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
| | - Silvia Di Giacomo
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Dorota Łażewska
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College in Kraków, Medyczna 9, 30-688 Kraków, Poland
| | - Ewelina Honkisz-Orzechowska
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College in Kraków, Medyczna 9, 30-688 Kraków, Poland
| | - Antonella Di Sotto
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Rossella Fioravanti
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Clemens Zwergel
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
- Correspondence: (C.Z.); (C.B.)
| | - Cecilia Battistelli
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy
- Correspondence: (C.Z.); (C.B.)
| |
Collapse
|
21
|
Yan B, Fung K, Ye S, Lai PM, Wei YX, Sze KH, Yang D, Gao P, Kao RYT. Linoleic acid metabolism activation in macrophages promotes the clearing of intracellular Staphylococcus aureus. Chem Sci 2022; 13:12445-12460. [PMID: 36382278 PMCID: PMC9629105 DOI: 10.1039/d2sc04307f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/05/2022] [Indexed: 09/02/2023] Open
Abstract
Multidrug-resistant bacterial pathogens pose an increasing threat to human health. Certain bacteria, such as Staphylococcus aureus, are able to survive within professional phagocytes to escape the bactericidal effects of antibiotics and evade killing by immune cells, potentially leading to chronic or persistent infections. By investigating the macrophage response to S. aureus infection, we may devise a strategy to prime the innate immune system to eliminate the infected bacteria. Here we applied untargeted tandem mass spectrometry to characterize the lipidome alteration in S. aureus infected J774A.1 macrophage cells at multiple time points. Linoleic acid (LA) metabolism and sphingolipid metabolism pathways were found to be two major perturbed pathways upon S. aureus infection. The subsequent validation has shown that sphingolipid metabolism suppression impaired macrophage phagocytosis and enhanced intracellular bacteria survival. Meanwhile LA metabolism activation significantly reduced intracellular S. aureus survival without affecting the phagocytic capacity of the macrophage. Furthermore, exogenous LA treatment also exhibited significant bacterial load reduction in multiple organs in a mouse bacteremia model. Two mechanisms are proposed to be involved in this progress: exogenous LA supplement increases downstream metabolites that partially contribute to LA's capacity of intracellular bacteria-killing and LA induces intracellular reactive oxygen species (ROS) generation through an electron transport chain pathway in multiple immune cell lines, which further increases the capacity of killing intracellular bacteria. Collectively, our findings not only have characterized specific lipid pathways associated with the function of macrophages but also demonstrated that exogenous LA addition may activate lipid modulator-mediated innate immunity as a potential therapy for bacterial infections.
Collapse
Affiliation(s)
- Bingpeng Yan
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong 21 Sassoon Road Pokfulam Hong Kong China
| | - Kingchun Fung
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong 21 Sassoon Road Pokfulam Hong Kong China
| | - Sen Ye
- Morningside Laboratory for Chemical Biology and Department of Chemistry, The University of Hong Kong Pokfulam Road Hong Kong P. R. China
| | - Pok-Man Lai
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong 21 Sassoon Road Pokfulam Hong Kong China
| | - Yuan Xin Wei
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong 21 Sassoon Road Pokfulam Hong Kong China
| | - Kong-Hung Sze
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong 21 Sassoon Road Pokfulam Hong Kong China
| | - Dan Yang
- Morningside Laboratory for Chemical Biology and Department of Chemistry, The University of Hong Kong Pokfulam Road Hong Kong P. R. China
- Laboratory of Chemical Biology and Molecular Medicine, School of Life Sciences, Westlake University Hangzhou Zhejiang P. R. China
| | - Peng Gao
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong 21 Sassoon Road Pokfulam Hong Kong China
| | - Richard Yi-Tsun Kao
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong 21 Sassoon Road Pokfulam Hong Kong China
| |
Collapse
|
22
|
Madushani KP, Shanaka KASN, Wijerathna HMSM, Lim C, Jeong T, Jung S, Lee J. Molecular characterization and expression analysis of B-cell lymphoma-2 protein in Amphiprion clarkii and its role in virus infections. FISH & SHELLFISH IMMUNOLOGY 2022; 130:206-214. [PMID: 36100068 DOI: 10.1016/j.fsi.2022.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 08/14/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
Amphiprion clarkii is increasingly being used as a captive-bred ornamental fish in South Korea. However, its breeding has recently been greatly hindered by destructive diseases due to pathogens. B-cell lymphoma-2 (Bcl2), a mitochondrial apoptosis regulatory gene involved in immune responses, has not been investigated in anemonefish, including A. clarkii. Herein, we aimed to annotate Bcl2 in the A. clarkii transcriptome and examined its role against virus infections. Sequence analysis indicated that Bcl2 in A. clarkii (AcBcl2) contained all four Bcl-2 homology domains. The structure of AcBcl2 closely resembled those of previously analyzed anti-apoptotic Bcl2 proteins in mammals. Expression analysis showed that the highest level of AcBcl2 was expressed in blood. AcBcl2 expression in the blood was downregulated within 24 hpi when challenged with immune stimulants poly I:C and lipopolysaccharides. AcBcl2 reduced poly I:C-induced cell death. The propagation of viral hemorrhagic septicemia virus (VHSV) was higher in the presence of AcBcl2. Cell mortality was higher in AcBcl2 when transfected cells were infected with VHSV, and a higher viral transcript was observed compared to their respective controls. In conclusion, AcBcl2 is an anti-apoptotic protein, and its activity may facilitate the propagation of VHSV.
Collapse
Affiliation(s)
- K P Madushani
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province 63333, Republic of Korea
| | - K A S N Shanaka
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province 63333, Republic of Korea
| | - H M S M Wijerathna
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province 63333, Republic of Korea
| | - Chaehyeon Lim
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea
| | - Taehyug Jeong
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province 63333, Republic of Korea
| | - Sumi Jung
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province 63333, Republic of Korea
| | - Jehee Lee
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province 63333, Republic of Korea.
| |
Collapse
|
23
|
Li W, Deng W, Zhang N, Peng H, Xu Y. Mycobacterium tuberculosis Rv2387 Facilitates Mycobacterial Survival by Silencing TLR2/p38/JNK Signaling. Pathogens 2022; 11:pathogens11090981. [PMID: 36145413 PMCID: PMC9504853 DOI: 10.3390/pathogens11090981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/15/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) can evade antimicrobial immunity and persist within macrophages by interfering with multiple host cellular functions through its virulence factors, causing latent tuberculosis. The Rv2387 protein has been identified as a putative effector that potentially participates in Mtb pathogenicity. To explore the role of the Rv2387 protein in host–mycobacteria interactions, we established recombinant M. smegmatis strains and RAW264.7 cell lines that stably express the Rv2387 protein. We found that this protein suppresses mycobacteria infection-induced macrophage apoptosis by inactivating caspase-3/-8, thus facilitating the intracellular survival of mycobacteria. In addition, Rv2387 inhibits the production of inflammatory cytokines in macrophages by specifically suppressing TLR2-dependent stimulation of p38 and JNK MAPK pathways. Moreover, we further determined that the Rv2387 protein conferred a growth advantage over recombinant M. smegmatis and suppressed the inflammatory response in a mouse infection model. Overall, these data suggested that Rv2387 facilitates mycobacteria to escape host immunity and might be an essential virulence factor in Mtb.
Collapse
Affiliation(s)
- Wu Li
- The Joint Center for Infection and Immunity, Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, China
- Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
- Key Laboratory of Regional Characteristic Agricultural Resources, College of Life Sciences, Neijiang Normal University, Neijiang 641100, China
- Correspondence: (W.L.); (Y.X.)
| | - Wanyan Deng
- The Joint Center for Infection and Immunity, Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, China
- Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Nan Zhang
- Key Laboratory of Regional Characteristic Agricultural Resources, College of Life Sciences, Neijiang Normal University, Neijiang 641100, China
| | - Huijuan Peng
- Key Laboratory of Regional Characteristic Agricultural Resources, College of Life Sciences, Neijiang Normal University, Neijiang 641100, China
| | - Yi Xu
- The Joint Center for Infection and Immunity, Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, China
- Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
- Correspondence: (W.L.); (Y.X.)
| |
Collapse
|
24
|
Herrera MT, Guzmán-Beltrán S, Bobadilla K, Santos-Mendoza T, Flores-Valdez MA, Gutiérrez-González LH, González Y. Human Pulmonary Tuberculosis: Understanding the Immune Response in the Bronchoalveolar System. Biomolecules 2022; 12:biom12081148. [PMID: 36009042 PMCID: PMC9405639 DOI: 10.3390/biom12081148] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/10/2022] [Accepted: 08/17/2022] [Indexed: 11/23/2022] Open
Abstract
Mycobacterium tuberculosis, the causal agent of one of the most devastating infectious diseases worldwide, can evade or modulate the host immune response and remain dormant for many years. In this review, we focus on identifying the local immune response induced in vivo by M. tuberculosis in the lungs of patients with active tuberculosis by analyzing data from untouched cells from bronchoalveolar lavage fluid (BALF) or exhaled breath condensate (EBC) samples. The most abundant resident cells in patients with active tuberculosis are macrophages and lymphocytes, which facilitate the recruitment of neutrophils. The cellular response is characterized by an inflammatory state and oxidative stress produced mainly by macrophages and T lymphocytes. In the alveolar microenvironment, the levels of cytokines such as interleukins (IL), chemokines, and matrix metalloproteinases (MMP) are increased compared with healthy patients. The production of cytokines such as interferon (IFN)-γ and IL-17 and specific immunoglobulin (Ig) A and G against M. tuberculosis indicate that the adaptive immune response is induced despite the presence of a chronic infection. The role of epithelial cells, the processing and presentation of antigens by macrophages and dendritic cells, as well as the role of tissue-resident memory T cells (Trm) for in situ vaccination remains to be understood.
Collapse
Affiliation(s)
- María Teresa Herrera
- Department of Microbiology, National Institute for Respiratory Diseases Ismael Cosío Villegas, Mexico City 14080, Mexico
| | - Silvia Guzmán-Beltrán
- Department of Microbiology, National Institute for Respiratory Diseases Ismael Cosío Villegas, Mexico City 14080, Mexico
| | - Karen Bobadilla
- Laboratory of Transcriptomics and Molecular Immunology, National Institute for Respiratory Diseases Ismael Cosío Villegas, Mexico City 14080, Mexico
| | - Teresa Santos-Mendoza
- Laboratory of Transcriptomics and Molecular Immunology, National Institute for Respiratory Diseases Ismael Cosío Villegas, Mexico City 14080, Mexico
| | - Mario Alberto Flores-Valdez
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C., Guadalajara 44270, Mexico
| | - Luis Horacio Gutiérrez-González
- Laboratory of Transcriptomics and Molecular Immunology, National Institute for Respiratory Diseases Ismael Cosío Villegas, Mexico City 14080, Mexico
- Correspondence: (L.H.G.-G.); (Y.G.); Tel.: +52-55-5487-1700 (ext. 5117) (Y.G.)
| | - Yolanda González
- Department of Microbiology, National Institute for Respiratory Diseases Ismael Cosío Villegas, Mexico City 14080, Mexico
- Correspondence: (L.H.G.-G.); (Y.G.); Tel.: +52-55-5487-1700 (ext. 5117) (Y.G.)
| |
Collapse
|
25
|
Abstract
The daily removal of billions of apoptotic cells in the human body via the process of efferocytosis is essential for homeostasis. To allow for this continuous efferocytosis, rapid phenotypic changes occur in the phagocytes enabling them to engulf and digest the apoptotic cargo. In addition, efferocytosis is actively anti-inflammatory and promotes resolution. Owing to its ubiquitous nature and the sheer volume of cell turnover, efferocytosis is a point of vulnerability. Aberrations in efferocytosis are associated with numerous inflammatory pathologies, including atherosclerosis, cancer and infections. The recent exciting discoveries defining the molecular machinery involved in efferocytosis have opened many avenues for therapeutic intervention, with several agents now in clinical trials.
Collapse
Affiliation(s)
- Parul Mehrotra
- Unit for Cell Clearance in Health and Disease, VIB Center for Inflammation Research, Ghent, Belgium
| | - Kodi S Ravichandran
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.
- The Center for Cell Clearance, University of Virginia, Charlottesville, VA, USA.
- Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
26
|
Dai F, Guo M, Shao Y, Li C. Vibrio splendidus flagellin C binds tropomodulin to induce p38 MAPK-mediated p53-dependent coelomocyte apoptosis in Echinodermata. J Biol Chem 2022; 298:102091. [PMID: 35654141 PMCID: PMC9249833 DOI: 10.1016/j.jbc.2022.102091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/09/2022] [Accepted: 05/13/2022] [Indexed: 12/27/2022] Open
Abstract
As a typical pathogen-associated molecular pattern, bacterial flagellin can bind Toll-like receptor 5 and the intracellular NAIP5 receptor component of the NLRC4 inflammasome to induce immune responses in mammals. However, these flagellin receptors are generally poorly understood in lower animal species. In this study, we found that the isolated flagellum of Vibrio splendidus AJ01 destroyed the integrity of the tissue structure of coelomocytes and promoted apoptosis in the sea cucumber Apostichopus japonicus. To further investigate the molecular mechanism, the novel intracellular LRR domain-containing protein tropomodulin (AjTmod) was identified as a protein that interacts with flagellin C (FliC) with a dissociation constant (Kd) of 0.0086 ± 0.33 μM by microscale thermophoresis assay. We show that knockdown of AjTmod also depressed FliC-induced apoptosis of coelomocytes. Further functional analysis with different inhibitor treatments revealed that the interaction between AjTmod and FliC could specifically activate p38 MAPK, but not JNK or ERK MAP kinases. We demonstrate that the transcription factor p38 is then translocated into the nucleus, where it mediates the expression of p53 to induce coelomocyte apoptosis. Our findings provide the first evidence that intracellular AjTmod serves as a novel receptor of FliC and mediates p53-dependent coelomocyte apoptosis by activating the p38 MAPK signaling pathway in Echinodermata.
Collapse
Affiliation(s)
- Fa Dai
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, China; State-Province Joint Laboratory of Marine Biotechnology and Engineering, Ningbo University, Ningbo, China
| | - Ming Guo
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, China; State-Province Joint Laboratory of Marine Biotechnology and Engineering, Ningbo University, Ningbo, China
| | - Yina Shao
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, China; State-Province Joint Laboratory of Marine Biotechnology and Engineering, Ningbo University, Ningbo, China
| | - Chenghua Li
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, China; State-Province Joint Laboratory of Marine Biotechnology and Engineering, Ningbo University, Ningbo, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, PR China.
| |
Collapse
|
27
|
Byerly CD, Mitra S, Patterson LL, Pittner NA, Velayutham TS, Paessler S, Veljkovic V, McBride JW. Ehrlichia SLiM ligand mimetic activates Hedgehog signaling to engage a BCL-2 anti-apoptotic cellular program. PLoS Pathog 2022; 18:e1010345. [PMID: 35576232 PMCID: PMC9135340 DOI: 10.1371/journal.ppat.1010345] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 05/26/2022] [Accepted: 04/21/2022] [Indexed: 11/19/2022] Open
Abstract
Ehrlichia chaffeensis (E. chaffeensis) has evolved eukaryotic ligand mimicry to repurpose multiple cellular signaling pathways for immune evasion. In this investigation, we demonstrate that TRP120 has a novel repetitive short linear motif (SLiM) that activates the evolutionarily conserved Hedgehog (Hh) signaling pathway to inhibit apoptosis. In silico analysis revealed that TRP120 has sequence and functional similarity with Hh ligands and a candidate Hh ligand SLiM was identified. siRNA knockdown of Hh signaling and transcriptional components significantly reduced infection. Co-immunoprecipitation and surface plasmon resonance demonstrated that rTRP120-TR interacted directly with Hh receptor Patched-2 (PTCH2). E. chaffeensis infection resulted in early upregulation of Hh transcription factor GLI-1 and regulation of Hh target genes. Moreover, soluble recombinant TRP120 (rTRP120) activated Hh and induced gene expression consistent with the eukaryotic Hh ligand. The TRP120-Hh-SLiM (NPEVLIKD) induced nuclear translocation of GLI-1 in THP-1 cells and primary human monocytes and induced a rapid and expansive activation of Hh pathway target genes. Furthermore, Hh activation was blocked by an α-TRP120-Hh-SLiM antibody. TRP120-Hh-SLiM significantly increased levels of Hh target, anti-apoptotic protein B-cell lymphoma 2 (BCL-2), and siRNA knockdown of BCL-2 dramatically inhibited infection. Blocking Hh signaling with the inhibitor Vismodegib, induced a pro-apoptotic cellular program defined by decreased mitochondria membrane potential, significant reductions in BCL-2, activation of caspase 3 and 9, and increased apoptotic cells. This study reveals a novel E. chaffeensis SLiM ligand mimetic that activates Hh signaling to maintain E. chaffeensis infection by engaging a BCL-2 anti-apoptotic cellular program.
Collapse
Affiliation(s)
- Caitlan D. Byerly
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Shubhajit Mitra
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - LaNisha L. Patterson
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Nicholas A. Pittner
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Thangam S. Velayutham
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Slobodan Paessler
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Biomed Protection, LLC, Galveston, Texas, United States of America
| | - Veljko Veljkovic
- Biomed Protection, LLC, Galveston, Texas, United States of America
| | - Jere W. McBride
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, Texas, United States of America
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, Texas, United States of America
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, United States of America
| |
Collapse
|
28
|
Li Y, Zhu Y, Chu B, Liu N, Chen S, Wang J, Zou Y. Map of Enteropathogenic Escherichia coli Targets Mitochondria and Triggers DRP-1-Mediated Mitochondrial Fission and Cell Apoptosis in Bovine Mastitis. Int J Mol Sci 2022; 23:ijms23094907. [PMID: 35563295 PMCID: PMC9105652 DOI: 10.3390/ijms23094907] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 04/25/2022] [Accepted: 04/27/2022] [Indexed: 02/05/2023] Open
Abstract
Bovine mastitis seriously affects bovine health and dairy product quality. Escherichia coli is the most important pathogen in the environment and dairy products. Enteropathogenic Escherichia coli (EPEC) is a zoonotic pathogen, which seriously threatens the health of people and dairy cows. We recently reported that E. coli can induce endogenous apoptosis in bovine mammary epithelial cells. However, the mechanism of EPEC-damaged mitochondria and -induced bovine mastitis is unclear. In this study, we found that EPEC can induce DRP-1-dependent mitochondrial fission and apoptosis. This was verified by the application of Mdivi, a DRP-1 inhibitor. Meanwhile, in order to verify the role of the Map virulence factor in EPEC-induced bovine mastitis, we constructed a map mutant, complementary strain, and recombinant plasmid MapHis. In the present study, we find that Map induced DRP-1-mediated mitochondrial fission, resulting in mitochondrial dysfunction and apoptosis. These inferences were further verified in vivo by establishing a mouse mastitis model. After the map gene was knocked out, breast inflammation and apoptosis in mice were significantly alleviated. All results show that EPEC targets mitochondria by secreting the Map virulence factor to induce DRP-1-mediated mitochondrial fission, mitochondrial dysfunction, and endogenous apoptosis in bovine mastitis.
Collapse
Affiliation(s)
| | | | | | | | | | - Jiufeng Wang
- Correspondence: (J.W.); (Y.Z.); Tel.: +86-10-6273-1094 (J.W.)
| | - Yunjing Zou
- Correspondence: (J.W.); (Y.Z.); Tel.: +86-10-6273-1094 (J.W.)
| |
Collapse
|
29
|
Abstract
Blocking host cell death is an important virulence strategy employed by many bacterial pathogens. We recently reported that Shigella flexneri inhibits host pyroptosis by delivering a type III secretion system (T3SS) effector OspC3 that catalyzes a novel arginine ADP-riboxanation modification on caspase-4/11. Here, we investigated the OspC3 homologue CopC from Chromobacterium violaceum, an opportunistic but sometimes deadly bacterial pathogen. CopC bears the same arginine ADP-riboxanase activity as OspC3, but with a different substrate specificity. Through proteomic analysis, we first identified host calmodulin (CaM) as a binding partner of CopC. The analyses additionally revealed that CopC preferably modifies apoptotic caspases including caspase-7, -8 and -9. This results in suppression of both extrinsic and intrinsic apoptosis programs in C. violaceum-infected cells. Biochemical reconstitution showed that CopC requires binding to CaM, specifically in the calcium-free state, to achieve efficient ADP-riboxanation of the caspases. We determined crystal structure of the CaM-CopC-CASP7 ternary complex, which illustrates the caspase recognition mechanism and a unique CaM-binding mode in CopC. Structure-directed mutagenesis validated the functional significance of CaM binding for stimulating CopC modification of its caspase substrates. CopC adopts an ADP-ribosyltransferase-like fold with a unique His-Phe-Glu catalytic triad, featuring two acidic residues critical for site-specific arginine ADP-riboxanation. Our study expands and deepens our understanding of the OspC family of ADP-riboxanase effectors.
Collapse
|
30
|
Li Y, Zhu Y, Chu B, Liu N, Chen S, Wang J. Map, but not EspF, induces breast epithelial cell apoptosis through ERK/DRP-1 pathway. Vet Microbiol 2022; 266:109367. [DOI: 10.1016/j.vetmic.2022.109367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/05/2022] [Accepted: 02/06/2022] [Indexed: 11/15/2022]
|
31
|
Wang XR, Cull B. Apoptosis and Autophagy: Current Understanding in Tick–Pathogen Interactions. Front Cell Infect Microbiol 2022; 12:784430. [PMID: 35155277 PMCID: PMC8829008 DOI: 10.3389/fcimb.2022.784430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 01/11/2022] [Indexed: 11/13/2022] Open
Abstract
Tick-borne diseases are a significant threat to human and animal health throughout the world. How tick-borne pathogens successfully infect and disseminate in both their vertebrate and invertebrate hosts is only partially understood. Pathogens have evolved several mechanisms to combat host defense systems, and to avoid and modulate host immunity during infection, therefore benefitting their survival and replication. In the host, pathogens trigger responses from innate and adaptive immune systems that recognize and eliminate invaders. Two important innate defenses against pathogens are the programmed cell death pathways of apoptosis and autophagy. This Mini Review surveys the current knowledge of apoptosis and autophagy pathways in tick-pathogen interactions, as well as the strategies evolved by pathogens for their benefit. We then assess the limitations to studying both pathways and discuss their participation in the network of the tick immune system, before highlighting future perspectives in this field. The knowledge gained would significantly enhance our understanding of the defense responses in vector ticks that regulate pathogen infection and burden, and form the foundation for future research to identify novel approaches to the control of tick-borne diseases.
Collapse
Affiliation(s)
- Xin-Ru Wang
- *Correspondence: Xin-Ru Wang, ; Benjamin Cull,
| | | |
Collapse
|
32
|
Martinvalet D, Walch M. Editorial: The Role of Reactive Oxygen Species in Protective Immunity. Front Immunol 2022; 12:832946. [PMID: 35145515 PMCID: PMC8821872 DOI: 10.3389/fimmu.2021.832946] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 12/21/2021] [Indexed: 01/17/2023] Open
Affiliation(s)
- Denis Martinvalet
- Department of Biomedical Sciences, University of Padua, Padova, Italy
- Veneto Institute of Molecular Medicine, Padova, Italy
- *Correspondence: Denis Martinvalet, ; Michael Walch,
| | - Michael Walch
- Faculty of Science and Medicine, Department of Oncology, Microbiology and Immunology, Anatomy Unit, University of Fribourg, Fribourg, Switzerland
- *Correspondence: Denis Martinvalet, ; Michael Walch,
| |
Collapse
|
33
|
Histone H3 deacetylation promotes host cell viability for efficient infection by Listeria monocytogenes. PLoS Pathog 2021; 17:e1010173. [PMID: 34929015 PMCID: PMC8722725 DOI: 10.1371/journal.ppat.1010173] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 01/03/2022] [Accepted: 12/02/2021] [Indexed: 12/03/2022] Open
Abstract
For many intracellular bacterial pathogens manipulating host cell survival is essential for maintaining their replicative niche, and is a common strategy used to promote infection. The bacterial pathogen Listeria monocytogenes is well known to hijack host machinery for its own benefit, such as targeting the host histone H3 for modification by SIRT2. However, by what means this modification benefits infection, as well as the molecular players involved, were unknown. Here we show that SIRT2 activity supports Listeria intracellular survival by maintaining genome integrity and host cell viability. This protective effect is dependent on H3K18 deacetylation, which safeguards the host genome by counteracting infection-induced DNA damage. Mechanistically, infection causes SIRT2 to interact with the nucleic acid binding protein TDP-43 and localise to genomic R-loops, where H3K18 deacetylation occurs. This work highlights novel functions of TDP-43 and R-loops during bacterial infection and identifies the mechanism through which L. monocytogenes co-opts SIRT2 to allow efficient infection. To cause systemic disease Listeria monocytogenes assumes an intracellular lifestyle which supports its growth and dissemination during infection. In order to maintain the intracellular niche L. monocytogenes manipulates various host cell processes thereby promoting its own survival and infection. One such example is the hijacking of a host deacetylase called SIRT2 which upon infection localises to chromatin, specifically modifies lysine 18 of histone H3 and promotes intracellular bacterial growth. Here we identify how SIRT2 promotes infection. We show that SIRT2-mediated H3K18 deacetylation counteracts infection-induced DNA damage and identify the molecular complex at play. Such SIRT2 activity has a crucial role in promoting host cell viability during infection, allowing for better survival upon heavy intracellular bacterial burden, and resulting in enhanced infection by L. monocytogenes.
Collapse
|
34
|
Tantengco OAG, Kechichian T, Vincent KL, Pyles RB, Medina PMB, Menon R. Inflammatory response elicited by Ureaplasma parvum colonization in human cervical epithelial, stromal, and immune cells. Reproduction 2021; 163:1-10. [PMID: 34780348 PMCID: PMC8669769 DOI: 10.1530/rep-21-0308] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 11/15/2021] [Indexed: 11/08/2022]
Abstract
Ureaplasma parvum is a commensal bacterium in the female reproductive tract but has been associated with pregnancy complications such as preterm prelabor rupture of membranes and preterm birth (PTB). However, the pathologic effects of U. parvum in the cervix, which prevents ascending infections during pregnancy, are still poorly understood. To determine the impact of U. parvum on the cervix, ectocervical (ecto) and endocervical (endo) epithelial and stromal cells were incubated with U. parvum. Macrophages were also tested as a proxy for cervical macrophages to determine the antigenicity of U. parvum. The effects of U. parvum, including influence on cell cycle and cell death, antimicrobial peptide (AMP) production, epithelial-to-mesenchymal transition (EMT), and inflammatory cytokine levels, were assessed. U. parvum colonized cervical epithelial and stromal cells 4 h post-infection. Like uninfected control, U. parvum neither inhibited cell cycle progression and nor caused cell death in cervical epithelial and stromal cells. U. parvum increased the production of the AMPs cathelicidin and human β-defensin 3 and exhibited weak signs of EMT evidenced by decreased cytokeratin 18 and increased vimentin expression in cervical epithelial cells. U. parvum induced a proinflammatory environment (cytokines) and increased MMP-9 in cervical epithelial cells but promoted pro- and anti-inflammatory response in cervical stromal cells and macrophages. U. parvum may colonize the cervical epithelial layer, but induction of AMPs and anti-inflammatory response may protect the cervix and may prevent ascending infections that can cause PTB. These findings suggest that U. parvum is a weak inducer of inflammation in the cervix.
Collapse
Affiliation(s)
- Ourlad Alzeus G. Tantengco
- Division of Basic and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas, USA
- Biological Models Laboratory, Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines Manila, Manila, Philippines
| | - Talar Kechichian
- Division of Basic and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Kathleen L. Vincent
- Division of Basic and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Richard B. Pyles
- Departments of Pediatrics, University of Texas Medical Branch, Galveston, TX, USA
| | - Paul Mark B. Medina
- Biological Models Laboratory, Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines Manila, Manila, Philippines
| | - Ramkumar Menon
- Division of Basic and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| |
Collapse
|
35
|
MA F, LF D, EI T, PA G. Herpes simplex virus interference with immunity: Focus on dendritic cells. Virulence 2021; 12:2583-2607. [PMID: 34895058 PMCID: PMC8677016 DOI: 10.1080/21505594.2021.1980990] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/20/2021] [Accepted: 09/10/2021] [Indexed: 12/12/2022] Open
Abstract
Herpes simplex virus type 1 (HSV-1) and type 2 (HSV-2) are highly prevalent in the human population. These viruses cause lifelong infections by establishing latency in neurons and undergo sporadic reactivations that promote recurrent disease and new infections. The success of HSVs in persisting in infected individuals is likely due to their multiple molecular determinants involved in escaping the host antiviral and immune responses. Importantly, HSVs infect and negatively modulate the function of dendritic cells (DCs), key immune cells that are involved in establishing effective and balanced immunity against viruses. Here, we review and discuss several molecular and cellular processes modulated by HSVs in DCs, such as autophagy, apoptosis, and the unfolded protein response. Given the central role of DCs in establishing optimal antiviral immunity, particular emphasis should be given to the outcome of the interactions occurring between HSVs and DCs.
Collapse
Affiliation(s)
- Farías MA
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Duarte LF
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Tognarelli EI
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - González PA
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
36
|
Lavergne M, Hernández-Castañeda MA, Mantel PY, Martinvalet D, Walch M. Oxidative and Non-Oxidative Antimicrobial Activities of the Granzymes. Front Immunol 2021; 12:750512. [PMID: 34707614 PMCID: PMC8542974 DOI: 10.3389/fimmu.2021.750512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/23/2021] [Indexed: 01/11/2023] Open
Abstract
Cell-mediated cytotoxicity is an essential immune defense mechanism to fight against viral, bacterial or parasitic infections. Upon recognition of an infected target cell, killer lymphocytes form an immunological synapse to release the content of their cytotoxic granules. Cytotoxic granules of humans contain two membrane-disrupting proteins, perforin and granulysin, as well as a homologous family of five death-inducing serine proteases, the granzymes. The granzymes, after delivery into infected host cells by the membrane disrupting proteins, may contribute to the clearance of microbial pathogens through different mechanisms. The granzymes can induce host cell apoptosis, which deprives intracellular pathogens of their protective niche, therefore limiting their replication. However, many obligate intracellular pathogens have evolved mechanisms to inhibit programed cells death. To overcome these limitations, the granzymes can exert non-cytolytic antimicrobial activities by directly degrading microbial substrates or hijacked host proteins crucial for the replication or survival of the pathogens. The granzymes may also attack factors that mediate microbial virulence, therefore directly affecting their pathogenicity. Many mechanisms applied by the granzymes to eliminate infected cells and microbial pathogens rely on the induction of reactive oxygen species. These reactive oxygen species may be directly cytotoxic or enhance death programs triggered by the granzymes. Here, in the light of the latest advances, we review the antimicrobial activities of the granzymes in regards to their cytolytic and non-cytolytic activities to inhibit pathogen replication and invasion. We also discuss how reactive oxygen species contribute to the various antimicrobial mechanisms exerted by the granzymes.
Collapse
Affiliation(s)
- Marilyne Lavergne
- Department of Oncology, Microbiology and Immunology, Anatomy Unit, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Maria Andrea Hernández-Castañeda
- Division Infectious Disease and International Medicine, Department of Medicine, Center for Immunology, Minneapolis, MN, United States
| | - Pierre-Yves Mantel
- Department of Oncology, Microbiology and Immunology, Anatomy Unit, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Denis Martinvalet
- Department of Biomedical Sciences, Venetian Institute of Molecular Medicine, Padova, Italy.,Department of Biomedical Sciences, University of Padua, Padova, Italy
| | - Michael Walch
- Department of Oncology, Microbiology and Immunology, Anatomy Unit, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
37
|
Yang G, Zhang J, Wang S, Wang J, Wang J, Zhu Y, Wang J. Gypenoside Inhibits Bovine Viral Diarrhea Virus Replication by Interfering with Viral Attachment and Internalization and Activating Apoptosis of Infected Cells. Viruses 2021; 13:v13091810. [PMID: 34578391 PMCID: PMC8473207 DOI: 10.3390/v13091810] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 12/18/2022] Open
Abstract
Bovine viral diarrhea virus (BVDV) causes a severe threat to the cattle industry due to ineffective control measures. Gypenoside is the primary component of Gynostemma pentaphyllum, which has potential medicinal value and has been widely applied as a food additive and herbal supplement. However, little is known about the antiviral effects of gypenoside. The present study aimed to explore the antiviral activities of gypenoside against BVDV infection. The inhibitory activity of gypenoside against BVDV was assessed by using virus titration and performing Western blotting, quantitative reverse transcription PCR (RT-qPCR), and immunofluorescence assays in MDBK cells. We found that gypenoside exhibited high anti-BVDV activity by interfering with the viral attachment to and internalization in cells. The study showed that BVDV infection inhibits apoptosis of infected cells from escaping the innate defense of host cells. Our data further demonstrated that gypenoside inhibited BVDV infection by electively activating the apoptosis of BVDV-infected cells for execution, as evidenced by the regulation of the expression of the apoptosis-related protein, promotion of caspase-3 activation, and display of positive TUNEL staining; no toxicity was observed in non-infected cells. Collectively, the data identified that gypenoside exerts an anti-BVDV-infection role by inhibiting viral attachment and internalization and selectively purging virally infected cells. Therefore, our study will contribute to the development of a novel prophylactic and therapeutic strategy against BVDV infection.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jiufeng Wang
- Correspondence: ; Tel.: +86-010-6273-1094; Fax: +86-010-6273-1274
| |
Collapse
|
38
|
Immune Response and Apoptosis-Related Pathways Induced by Aeromonas schubertii Infection of Hybrid Snakehead ( Channa maculata♀ × Channa argus♂). Pathogens 2021; 10:pathogens10080997. [PMID: 34451461 PMCID: PMC8401259 DOI: 10.3390/pathogens10080997] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/27/2021] [Accepted: 08/04/2021] [Indexed: 11/17/2022] Open
Abstract
Aeromonas schubertii is the etiological pathogen of internal organ nodules in snakehead fish. Infections with A. schubertii produce a significant economic loss in aquaculture. Therefore, it is important to examine the immune mechanisms by which snakeheads defend against A. schubertii infection. In this study, we established a hybrid snakehead infection model by intraperitoneal injection of A. schubertii that produced internal organ nodules. The splenic immune response of infected fish was examined at the transcriptome level by Illumina-seq analysis. Results showed 14,796 differentially expressed genes (DEGs) following A. schubertii infection, including 4441 up-regulated unigenes and 10,355 down-regulated unigenes. KEGG analysis showed 2084 DEGs to be involved in 192 pathways, 14 of which were immune-related. Twelve DEGs were used to validate quantitative real-time PCR results with RNA-seq data. Time-course expression analysis of six genes demonstrated modulation of the snakehead immune response by A. schubertii. Furthermore, transcriptome analysis identified a substantial number of DEGs that were involved in the apoptosis signaling pathway. TUNEL analysis of infected spleens confirmed the presence of apoptotic cells. This study provided new information for a further understanding of the pathogenesis of A. schubertii in snakeheads, which can be used to prevent and possibly treat A. schubertii infections.
Collapse
|
39
|
Lin W, Zhang J, Xu JF, Pi J. The Advancing of Selenium Nanoparticles Against Infectious Diseases. Front Pharmacol 2021; 12:682284. [PMID: 34393776 PMCID: PMC8361478 DOI: 10.3389/fphar.2021.682284] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 07/19/2021] [Indexed: 12/17/2022] Open
Abstract
Infectious diseases, caused by the direct exposure of cellular or acellular pathogens, are found to be closely associated with multiple inflammation and immune responses, keeping one of the top threats to human health. As an indispensable trace element, Selenium (Se) plays important roles in antioxidant defence and redox state regulation along with a variety of specific metabolic pathways. In recent decades, with the development of novel nanotechnology, Selenium nanoparticles (Se NPs) emerged as a promising agent for biomedical uses due to their low toxicity, degradability and high bioavailability. Taking the advantages of the strong ability to trigger apoptosis or autophagy by regulating reactive oxygen species (ROS), Se NPs have been widely used for direct anticancer treatments and pathogen killing/clearance in host cells. With excellent stability and drug encapsulation capacity, Se NPs are now serving as a kind of powerful nano-carriers for anti-cancer, anti-inflammation and anti-infection treatments. Notably, Se NPs are also found to play critical roles in immunity regulations, such as macrophage and T effector cell activation, which thus provides new possibilities to achieve novel nano-immune synergetic strategy for anti-cancer and anti-infection therapies. In this review, we summarized the progress of preparation methods for Se NPs, followed by the advances of their biological functions and mechanisms for biomedical uses, especially in the field of anti-infection treatments. Moreover, we further provide some prospects of Se NPs in anti-infectious diseases, which would be helpful for facilitating their future research progress for anti-infection therapy.
Collapse
Affiliation(s)
- Wensen Lin
- Department of Clinical Immunology, Institute of Laboratory Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Junai Zhang
- Department of Clinical Immunology, Institute of Laboratory Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Jun-Fa Xu
- Department of Clinical Immunology, Institute of Laboratory Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Jiang Pi
- Department of Clinical Immunology, Institute of Laboratory Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, Guangdong Medical University, Dongguan, China
| |
Collapse
|
40
|
Murray SM, McKay PF. Chlamydia trachomatis: Cell biology, immunology and vaccination. Vaccine 2021; 39:2965-2975. [PMID: 33771390 DOI: 10.1016/j.vaccine.2021.03.043] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 02/06/2023]
Abstract
Chlamydia trachomatis is the causative agent of a highly prevalent sexually transmitted bacterial disease and is associated with a number of severe disease complications. Current therapy options are successful at treating disease, but patients are left without protective immunity and do not benefit the majority asymptomatic patients who do not seek treatment. As such, there is a clear need for a broad acting, protective vaccine that can prevent transmission and protect against symptomatic disease presentation. There are three key elements that underlie successful vaccine development: 1) Chlamydia biology and immune-evasion adaptations, 2) the correlates of protection that prevent disease in natural and experimental infection, 3) reflection upon the evidence provided by previous vaccine attempts. In this review, we give an overview of the unique intra-cellular biology of C. trachomatis and give insight into the dynamic combination of adaptations that allow Chlamydia to subvert host immunity and survive within the cell. We explore the current understanding of chlamydial immunity in animal models and in humans and characterise the key immune correlates of protection against infection. We discuss in detail the specific immune interactions involved in protection, with relevance placed on the CD4+ T lymphocyte and B lymphocyte responses that are key to pathogen clearance. Finally, we provide a timeline of C. trachomatis vaccine research to date and evaluate the successes and failures in development so far. With insight from these three key elements of research, we suggest potential solutions for chlamydial vaccine development and promising avenues for further exploration.
Collapse
Affiliation(s)
- Sam M Murray
- Department of Infectious Diseases, Imperial College London, Norfolk Place, London W2 1PG, UK.
| | - Paul F McKay
- Department of Infectious Diseases, Imperial College London, Norfolk Place, London W2 1PG, UK.
| |
Collapse
|
41
|
Moraleda CP, Robledo D, Gutiérrez AP, Del-Pozo J, Yáñez JM, Houston RD. Investigating mechanisms underlying genetic resistance to Salmon Rickettsial Syndrome in Atlantic salmon using RNA sequencing. BMC Genomics 2021; 22:156. [PMID: 33676414 PMCID: PMC7936450 DOI: 10.1186/s12864-021-07443-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 02/11/2021] [Indexed: 12/29/2022] Open
Abstract
Background Salmon Rickettsial Syndrome (SRS), caused by Piscirickettsia salmonis, is one of the primary causes of morbidity and mortality in Atlantic salmon aquaculture, particularly in Chile. Host resistance is a heritable trait, and functional genomic studies have highlighted genes and pathways important in the response of salmon to the bacteria. However, the functional mechanisms underpinning genetic resistance are not yet well understood. In the current study, a large population of salmon pre-smolts were challenged with P. salmonis, with mortality levels recorded and samples taken for genotyping. In parallel, head kidney and liver samples were taken from animals of the same population with high and low genomic breeding values for resistance, and used for RNA-Sequencing to compare their transcriptome profile both pre and post infection. Results A significant and moderate heritability (h2 = 0.43) was shown for the trait of binary survival. Genome-wide association analyses using 38 K imputed SNP genotypes across 2265 animals highlighted that resistance is a polygenic trait. Several thousand genes were identified as differentially expressed between controls and infected samples, and enriched pathways related to the host immune response were highlighted. In addition, several networks with significant correlation with SRS resistance breeding values were identified, suggesting their involvement in mediating genetic resistance. These included apoptosis, cytoskeletal organisation, and the inflammasome. Conclusions While resistance to SRS is a polygenic trait, this study has highlighted several relevant networks and genes that are likely to play a role in mediating genetic resistance. These genes may be future targets for functional studies, including genome editing, to further elucidate their role underpinning genetic variation in host resistance. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07443-2.
Collapse
Affiliation(s)
- Carolina P Moraleda
- The Roslin Institute and Royal (Dick) School of Veterinary Sciences, The University of Edinburgh, Edinburgh, UK
| | - Diego Robledo
- The Roslin Institute and Royal (Dick) School of Veterinary Sciences, The University of Edinburgh, Edinburgh, UK
| | - Alejandro P Gutiérrez
- The Roslin Institute and Royal (Dick) School of Veterinary Sciences, The University of Edinburgh, Edinburgh, UK
| | - Jorge Del-Pozo
- The Roslin Institute and Royal (Dick) School of Veterinary Sciences, The University of Edinburgh, Edinburgh, UK
| | - José M Yáñez
- Faculty of Veterinary and Livestock Sciences, University of Chile, Santiago, Chile.
| | - Ross D Houston
- The Roslin Institute and Royal (Dick) School of Veterinary Sciences, The University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
42
|
Dalboni LC, Alvares Saraiva AM, Konno FTDC, Perez EC, Codeceira JF, Spadacci-Morena DD, Lallo MA. Encephalitozoon cuniculi takes advantage of efferocytosis to evade the immune response. PLoS One 2021; 16:e0247658. [PMID: 33667240 PMCID: PMC7935246 DOI: 10.1371/journal.pone.0247658] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 02/10/2021] [Indexed: 11/19/2022] Open
Abstract
Microsporidia are recognized as opportunistic pathogens in individuals with immunodeficiencies, especially related to T cells. Although the activity of CD8+ T lymphocytes is essential to eliminate these pathogens, earlier studies have shown significant participation of macrophages at the beginning of the infection. Macrophages and other innate immunity cells play a critical role in activating the acquired immunity. After programmed cell death, the cell fragments or apoptotic bodies are cleared by phagocytic cells, a phenomenon known as efferocytosis. This process has been recognized as a way of evading immunity by intracellular pathogens. The present study evaluated the impact of efferocytosis of apoptotic cells either infected or not on macrophages and subsequently challenged with Encephalitozoon cuniculi microsporidia. Macrophages were obtained from the bone marrow monocytes from C57BL mice, pre-incubated with apoptotic Jurkat cells (ACs), and were further challenged with E. cuniculi spores. The same procedures were performed using the previously infected Jurkat cells (IACs) and challenged with E. cuniculi spores before macrophage pre-incubation. The average number of spores internalized by macrophages in phagocytosis was counted. Macrophage expression of CD40, CD206, CD80, CD86, and MHCII, as well as the cytokines released in the culture supernatants, was measured by flow cytometry. The ultrastructural study was performed to analyze the multiplication types of pathogens. Macrophages pre-incubated with ACs and challenged with E. cuniculi showed a higher percentage of phagocytosis and an average number of internalized spores. Moreover, the presence of stages of multiplication of the pathogen inside the macrophages, particularly after efferocytosis of infected apoptotic bodies, was observed. In addition, pre-incubation with ACs or IACs and/or challenge with the pathogen decreased the viability of macrophages, reflected as high percentages of apoptosis. The marked expression of CD206 and the release of large amounts of IL-10 and IL-6 indicated the polarization of macrophages to an M2 profile, compatible with efferocytosis and favorable for pathogen development. We concluded that the pathogen favored efferocytosis and polarized the macrophages to an M2 profile, allowing the survival and multiplication of E. cuniculi inside the macrophages and explaining the possibility of macrophages acting as Trojan horses in microsporidiosis.
Collapse
Affiliation(s)
- Luciane Costa Dalboni
- Programa de Patologia Ambiental e Experimental da Universidade Paulista–Unip, São Paulo, Brazil
| | - Anuska Marcelino Alvares Saraiva
- Mestrado e Doutorado Interdisciplinar em Ciências da Saúde da Universidade Cruzeiro do Sul, São Paulo, Brazil
- Laboratório de Fisiopatologia, Instituto Butantan, São Paulo, Brazil
| | | | | | | | | | - Maria Anete Lallo
- Programa de Patologia Ambiental e Experimental da Universidade Paulista–Unip, São Paulo, Brazil
- * E-mail: ,
| |
Collapse
|
43
|
Missiakas D, Winstel V. Selective Host Cell Death by Staphylococcus aureus: A Strategy for Bacterial Persistence. Front Immunol 2021; 11:621733. [PMID: 33552085 PMCID: PMC7859115 DOI: 10.3389/fimmu.2020.621733] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 12/03/2020] [Indexed: 12/12/2022] Open
Abstract
Host cell death programs are fundamental processes that shape cellular homeostasis, embryonic development, and tissue regeneration. Death signaling and downstream host cell responses are not only critical to guide mammalian development, they often act as terminal responses to invading pathogens. Here, we briefly review and contrast how invading pathogens and specifically Staphylococcus aureus manipulate apoptotic, necroptotic, and pyroptotic cell death modes to establish infection. Rather than invading host cells, S. aureus subverts these cells to produce diffusible molecules that cause death of neighboring hematopoietic cells and thus shapes an immune environment conducive to persistence. The exploitation of cell death pathways by S. aureus is yet another virulence strategy that must be juxtaposed to mechanisms of immune evasion, autophagy escape, and tolerance to intracellular killing, and brings us closer to the true portrait of this pathogen for the design of effective therapeutics and intervention strategies.
Collapse
Affiliation(s)
- Dominique Missiakas
- Howard Taylor Ricketts Laboratory, Department of Microbiology, University of Chicago, Lemont, IL, United States
| | - Volker Winstel
- Research Group Pathogenesis of Bacterial Infections, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
44
|
Camilli G, Blagojevic M, Naglik JR, Richardson JP. Programmed Cell Death: Central Player in Fungal Infections. Trends Cell Biol 2020; 31:179-196. [PMID: 33293167 DOI: 10.1016/j.tcb.2020.11.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 11/08/2020] [Accepted: 11/11/2020] [Indexed: 12/26/2022]
Abstract
Fungal diseases contribute significantly to morbidity and mortality in humans. Although recent research has improved our understanding of the complex and dynamic interplay that occurs between pathogenic fungi and the human host, much remains to be elucidated concerning the molecular mechanisms that drive fungal pathogenicity and host responses to fungal infections. In recent times, there has been a significant increase in studies investigating the immunological functions of microbial-induced host cell death. In addition, pathogens use many strategies to manipulate host cell death pathways to facilitate their survival and dissemination. This review will focus on the mechanisms of host programmed cell death that occur during opportunistic fungal infections, and explore how cell death pathways may affect immunity towards pathogenic fungi.
Collapse
Affiliation(s)
- Giorgio Camilli
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London SE1 1UL, UK.
| | - Mariana Blagojevic
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London SE1 1UL, UK
| | - Julian R Naglik
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London SE1 1UL, UK
| | - Jonathan P Richardson
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London SE1 1UL, UK
| |
Collapse
|
45
|
Early Intracellular Trafficking and Subsequent Activity of Programmed Cell Death in Channel Catfish Macrophages Infected with Edwardsiella ictaluri. Microorganisms 2020; 8:microorganisms8111649. [PMID: 33114369 PMCID: PMC7690889 DOI: 10.3390/microorganisms8111649] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/16/2020] [Accepted: 10/16/2020] [Indexed: 01/07/2023] Open
Abstract
The development of Edwardsiella-containing-vacuoles (ECV) and the ability of Edwardsiella ictaluri to survive and replicate within macrophages suggests a unique process relative to normal phagosomal/lysosomal maturation and programed cell death. Developing ECV showed that endosomal membrane markers Rab5, EEA1, and Rab7 were all detected in both the wild type (WT) and an E. ictaluri type-3 secretion system (T3SS) mutant, 65ST. Co-localization with Lamp1, however, was significantly lower in the WT. The host cell endoplasmic reticulum marker, calnexin, co-localized to 65ST ECV significantly more than WT ECV, while Golgi vesicle marker, giantin, was recruited to WT ECV significantly more than 65ST. The autophagosomal marker LC3 was significantly lower in WT than in 65ST and Western blotting demonstrated significantly greater induction of the membrane localized, lipidated form, LC3-II, in 65ST ECV than in WT ECV. Activity of the apoptosis initiator caspase-8 increased post-infection in 65ST and was significantly lower in WT-infected cells. Executioner caspase-3/7 activity also increased significantly in 65ST-infected cells compared to WT-infected cells. Repression of apoptosis was further demonstrated with flow cytometry using Alexa Fluor 647-labeled Annexin V and propidium iodide. Results indicate that WT ECV fused with early and late endosomes but that phagosomal/lysosomal fusion did not occur. Additionally, WT-infected cells recruited Golgi vesicles for vacuolar size increase and bacterial growth material, and both autophagy and apoptosis were repressed in the WT. This activity was all based on the function of the E. ictaluri T3SS.
Collapse
|
46
|
Kim JK, Silwal P, Jo EK. Host-Pathogen Dialogues in Autophagy, Apoptosis, and Necrosis during Mycobacterial Infection. Immune Netw 2020; 20:e37. [PMID: 33163245 PMCID: PMC7609165 DOI: 10.4110/in.2020.20.e37] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/15/2020] [Accepted: 10/15/2020] [Indexed: 12/11/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) is an etiologic pathogen of human tuberculosis (TB), a serious infectious disease with high morbidity and mortality. In addition, the threat of drug resistance in anti-TB therapy is of global concern. Despite this, it remains urgent to research for understanding the molecular nature of dynamic interactions between host and pathogens during TB infection. While Mtb evasion from phagolysosomal acidification is a well-known virulence mechanism, the molecular events to promote intracellular parasitism remains elusive. To combat intracellular Mtb infection, several defensive processes, including autophagy and apoptosis, are activated. In addition, Mtb-ingested phagocytes trigger inflammation, and undergo necrotic cell death, potentially harmful responses in case of uncontrolled pathological condition. In this review, we focus on Mtb evasion from phagosomal acidification, and Mtb interaction with host autophagy, apoptosis, and necrosis. Elucidation of the molecular dialogue will shed light on Mtb pathogenesis, host defense, and development of new paradigms of therapeutics.
Collapse
Affiliation(s)
- Jin Kyung Kim
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, Korea.,Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, Korea
| | - Prashanta Silwal
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, Korea.,Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, Korea
| | - Eun-Kyeong Jo
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, Korea.,Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, Korea
| |
Collapse
|
47
|
Zhang Y, Shao Y, Lv Z, Li C. MYC regulates coelomocytes apoptosis by targeting Bax expression in sea cucumber Apostichopus japonicus. FISH & SHELLFISH IMMUNOLOGY 2020; 97:27-33. [PMID: 31843700 DOI: 10.1016/j.fsi.2019.12.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/28/2019] [Accepted: 12/12/2019] [Indexed: 06/10/2023]
Abstract
Myelocytomatosis viral oncogene (MYC), a multifunctional transcription factor, (TF) exerts various physiological and pathological effects on animals. AjMYC could induce coelomocyte apoptosis in Apostichopus japonicus, but the underlying molecular mechanism remains poorly understood. In this study, the promoter sequence of apoptosis regulator Bcl-2-associated X (Bax) was cloned by genomic walking. The AjBax promoter region spaning 1189 bp, containing several transcription factor binding sites, included four potential E-boxes (-1030 bp to -1019 bp, -785 bp to -774 bp, -570 bp to -559 bp, -100 bp to -89 bp), two P53 binding sites (-439 bp to -430 bp, -845 bp to -836 bp), and one NF-κB site (-191 bp to -182 bp). Transient transfection of EPC cells with 5'-deletion constructs linked to luciferase reporter revealed that the region -1189/+454 contributed importantly to the expression of the AjBax. In addition, the AjBax promoter was induced by LPS, PGN or MAN. The four potential MYC binding sites were cotransfected with AjMYC in EPC cell whether AjMYC could activate AjBax expression as a transcriptional factor. Only P1 (-1189/+454) fragment containing the first MYC binding site transfection increased the luciferase activity by 2.08-fold (p < 0.01) compared with the control. The first MYC binding site -1030/-1019 was essential to induce AjBax transcription. Further functional assay indicated that AjBax was significantly induced by 3.54-fold increase (p < 0.01) after AjMYC overexpression in sea cucumber coelomocytes. All our findings supported that AjMYC could regulate coelomocyte apoptosis by directly targeting AjBax expression in A. japonicus.
Collapse
Affiliation(s)
- Yi Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China
| | - Yina Shao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China
| | - Zhimeng Lv
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China
| | - Chenghua Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, PR China.
| |
Collapse
|
48
|
Zhang Y, Shao Y, Lv Z, Zhang W, Zhao X, Guo M, Li C. Molecular cloning and functional characterization of MYC transcription factor in pathogen-challenged Apostichopus japonicus. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 102:103487. [PMID: 31472172 DOI: 10.1016/j.dci.2019.103487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/27/2019] [Accepted: 08/27/2019] [Indexed: 06/10/2023]
Abstract
Myelocytomatosis viral oncogene (MYC), a transcription factor in the MYC family, plays vital roles in vertebrate innate immunity by regulating related immune gene expressions. In this study, we cloned and characterized an MYC gene from sea cucumber Apostichopus japonicus via RNA-seq and RACE approaches (designated as AjMYC). A 2074 bp fragment representing the full-length cDNA of AjMYC was obtained. This gene includes an open reading frame (ORF) of 1296 bp encoding a polypeptide of 432 amino acid residues with the molecular weight of 48.85 kDa and theoretical pI of 7.22. SMART analysis indicated that AjMYC shares an MYC common HLH motif (354-406 aa) at the C-terminal. Spatial expression analysis revealed that AjMYC is constitutively expressed in all detected tissues with peak expression in the tentacle. Vibrio splendidus-challenged sea cucumber could significantly boost the expression of AjMYC transcripts by a 5.58-fold increase in the first stage. Similarly, 2.75- and 3.23-fold increases were detected in LPS-exposed coelomocytes at 1 and 24 h, respectively. In this condition, coelomocyte apoptotic rate increased from 11.98% to 56.23% at 1 h and to 59.08% at 24 h. MYC inhibitor treatment could not only inhibit the expression of AjMYC and Ajcaspase3, but also depress the coelomocyte apoptosis. Furthermore, AjMYC overexpression in EPC cells for 24 h also promoted the cell apoptosis rate from 21.31% to 45.85%. Collectively, all these results suggested that AjMYC is an important immune factor in coelomocyte apoptosis toward pathogen-challenged sea cucumber.
Collapse
Affiliation(s)
- Yi Zhang
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China
| | - Yina Shao
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China
| | - Zhimeng Lv
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China
| | - Weiwei Zhang
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China
| | - Xuelin Zhao
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China
| | - Ming Guo
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China
| | - Chenghua Li
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, PR China.
| |
Collapse
|
49
|
Casadevall A, Fang FC. The intracellular pathogen concept. Mol Microbiol 2019; 113:541-545. [PMID: 31762116 DOI: 10.1111/mmi.14421] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/06/2019] [Indexed: 12/21/2022]
Abstract
The intracellular pathogen concept classifies pathogenic microbes on the basis of their site of replication and dependence on host cells. This concept played a fundamental role in establishing the field of cellular microbiology, founded in part by Dr. Pascale Cossart, whose seminal contributions are honored in this issue of Molecular Microbiology. The recognition that microbes can access and replicate in privileged compartments within host cells has led to many new and fruitful lines of investigation into the biology of the cell and mechanisms of cell-mediated immunity. However, like any scientific concept, the intracellular pathogen concept can become a dogma that constrains thinking and oversimplifies complex and dynamic host-pathogen interactions. Growing evidence has blurred the distinction between "intracellular" and "extracellular" pathogens and demonstrated that many pathogens can exist both within and outside of cells. Although the intracellular pathogen concept remains useful, it should not be viewed as a rigid classification of pathogenic microbes, which exhibit remarkable variation and complexity in their behavior in the host.
Collapse
Affiliation(s)
- Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins School of Public Health, Baltimore, MD, USA
| | - Ferric C Fang
- Departments of Laboratory Medicine and Microbiology, University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|
50
|
Stallings CL, Glickman MS. Editorial overview: Attrition warfare: host cell weapons against intracellular pathogens, and how the pathogens fight back. Curr Opin Immunol 2019; 60:vi-ix. [PMID: 31471114 PMCID: PMC7383339 DOI: 10.1016/j.coi.2019.07.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Christina L Stallings
- Department of Molecular Microbiology, Washington University School of Medicine, United States.
| | - Michael S Glickman
- Immunology Program, Sloan Kettering Institute, United States; Division of Infectious Diseases, Memorial Sloan Kettering Cancer Center, United States; Immunology and Microbial Pathogenesis Graduate Program, Weill Cornell Graduate School, United States.
| |
Collapse
|