1
|
Peftuloglu D, Bonestroo S, Lenders R, Smid HM, Dicke M, van Loon JJA, Haverkamp A. Olfactory learning in Pieris brassicae butterflies is dependent on the intensity of a plant-derived oviposition cue. Proc Biol Sci 2024; 291:20240533. [PMID: 39109969 PMCID: PMC11305133 DOI: 10.1098/rspb.2024.0533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/16/2024] [Accepted: 07/12/2024] [Indexed: 08/10/2024] Open
Abstract
Butterflies, like many insects, use gustatory and olfactory cues innately to assess the suitability of an oviposition site and are able to associate colours and leaf shapes with an oviposition reward. Studies on other insects have demonstrated that the quality of the reward is a crucial factor in forming associative memory. We set out to investigate whether the large cabbage white Pieris brassicae (Linnaeus) has the ability to associate an oviposition experience with a neutral olfactory cue. In addition, we tested whether the strength of this association is dependent on the gustatory response to the glucosinolate sinigrin, which is a known oviposition stimulus for P. brassicae. Female butterflies were able to associate a neutral odour with an oviposition experience after a single oviposition experience, both in a greenhouse and in a semi-natural outdoor setting. Moreover, butterflies performed best when trained with concentrations of sinigrin that showed the strongest response by specific gustatory neurons on the forelegs. Our study provides novel insight into the role of both gustatory and olfactory cues during oviposition learning in lepidopterans and contributes to a better understanding of how these insects might be able to adapt to a rapidly changing environment.
Collapse
Affiliation(s)
- Dimitri Peftuloglu
- Laboratory of Entomology, Wageningen University & Research, Wageningen6708PB, The Netherlands
| | - Stefan Bonestroo
- Laboratory of Entomology, Wageningen University & Research, Wageningen6708PB, The Netherlands
| | - Roos Lenders
- Laboratory of Entomology, Wageningen University & Research, Wageningen6708PB, The Netherlands
| | - Hans M. Smid
- Laboratory of Entomology, Wageningen University & Research, Wageningen6708PB, The Netherlands
| | - Marcel Dicke
- Laboratory of Entomology, Wageningen University & Research, Wageningen6708PB, The Netherlands
| | - Joop J. A. van Loon
- Laboratory of Entomology, Wageningen University & Research, Wageningen6708PB, The Netherlands
| | - Alexander Haverkamp
- Laboratory of Entomology, Wageningen University & Research, Wageningen6708PB, The Netherlands
| |
Collapse
|
2
|
Cusumano A, Lievens B. Microbe-mediated alterations in floral nectar: consequences for insect parasitoids. CURRENT OPINION IN INSECT SCIENCE 2023; 60:101116. [PMID: 37741616 DOI: 10.1016/j.cois.2023.101116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/11/2023] [Accepted: 09/14/2023] [Indexed: 09/25/2023]
Abstract
Floral nectar is frequently colonized by microbes among which bacteria and yeasts are the most abundant. These microbes have the ability to alter nectar characteristics with consequences for the whole community of flower-visiting insects. Recent research carried out on natural enemies of insect herbivores has shown that microbe-mediated changes in nectar traits can influence the foraging behavior and life history traits of parasitoids. The production of microbial volatile organic compounds can affect the attraction of parasitoids to nectar, while changes in sugar and amino acid composition can impact their longevity. Future research should focus on understanding the effects of nectar microbial colonization on parasitoid reproduction, with a specific emphasis on the interactions among different microbial taxa known to co-occur in floral nectar. Overall, this review highlights the importance of considering the role of nectar-inhabiting microbes in shaping the interactions between parasitoids and their food resources.
Collapse
Affiliation(s)
- Antonino Cusumano
- Department of Agricultural, Food, and Forest Sciences, University of Palermo, 90128 Palermo, Italy.
| | - Bart Lievens
- Department of Microbial and Molecular Systems, KU Leuven, B-3001 Leuven, Belgium
| |
Collapse
|
3
|
Colazza S, Peri E, Cusumano A. Chemical Ecology of Floral Resources in Conservation Biological Control. ANNUAL REVIEW OF ENTOMOLOGY 2023; 68:13-29. [PMID: 36130040 DOI: 10.1146/annurev-ento-120220-124357] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Conservation biological control aims to enhance populations of natural enemies of insect pests in crop habitats, typically by intentional provision of flowering plants as food resources. Ideally, these flowering plants should be inherently attractive to natural enemies to ensure that they are frequently visited. We review the chemical ecology of floral resources in a conservation biological control context, with a focus on insect parasitoids. We highlight the role of floral volatiles as semiochemicals that attract parasitoids to the food resources. The discovery that nectar-inhabiting microbes can be hidden players in mediating parasitoid responses to flowering plants has highlighted the complexity of the interactions between plants and parasitoids. Furthermore, because food webs in agroecosystems do not generally stop at the third trophic level, we also consider responses of hyperparasitoids to floral resources. We thus provide an overview of floral compounds as semiochemicals from a multitrophic perspective, and we focus on the remaining questions that need to be addressed to move the field forward.
Collapse
Affiliation(s)
- Stefano Colazza
- Department of Agricultural, Food, and Forest Sciences, University of Palermo, Palermo, Italy; , ,
| | - Ezio Peri
- Department of Agricultural, Food, and Forest Sciences, University of Palermo, Palermo, Italy; , ,
| | - Antonino Cusumano
- Department of Agricultural, Food, and Forest Sciences, University of Palermo, Palermo, Italy; , ,
| |
Collapse
|
4
|
Memory and the value of social information in foraging bumble bees. Learn Behav 2022; 50:317-328. [DOI: 10.3758/s13420-022-00528-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2022] [Indexed: 11/08/2022]
|
5
|
Ehret G, Romand R. Awareness and consciousness in humans and animals - neural and behavioral correlates in an evolutionary perspective. Front Syst Neurosci 2022; 16:941534. [PMID: 35910003 PMCID: PMC9331465 DOI: 10.3389/fnsys.2022.941534] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/29/2022] [Indexed: 11/29/2022] Open
Abstract
Awareness or consciousness in the context of stimulus perception can directly be assessed in well controlled test situations with humans via the persons' reports about their subjective experiences with the stimuli. Since we have no direct access to subjective experiences in animals, their possible awareness or consciousness in stimulus perception tasks has often been inferred from behavior and cognitive abilities previously observed in aware and conscious humans. Here, we analyze published human data primarily on event-related potentials and brain-wave generation during perception and responding to sensory stimuli and extract neural markers (mainly latencies of evoked-potential peaks and of gamma-wave occurrence) indicating that a person became aware or conscious of the perceived stimulus. These neural correlates of consciousness were then applied to sets of corresponding data from various animals including several species of mammals, and one species each of birds, fish, cephalopods, and insects. We found that the neural markers from studies in humans could also successfully be applied to the mammal and bird data suggesting that species in these animal groups can become subjectively aware of and conscious about perceived stimuli. Fish, cephalopod and insect data remained inconclusive. In an evolutionary perspective we have to consider that both awareness of and consciousness about perceived stimuli appear as evolved, attention-dependent options added to the ongoing neural activities of stimulus processing and action generation. Since gamma-wave generation for functional coupling of brain areas in aware/conscious states is energetically highly cost-intensive, it remains to be shown which animal species under which conditions of lifestyle and ecological niche may achieve significant advantages in reproductive fitness by drawing upon these options. Hence, we started our discussion about awareness and consciousness in animals with the question in how far these expressions of brain activity are necessary attributes for perceiving stimuli and responding in an adaptive way.
Collapse
Affiliation(s)
- Günter Ehret
- Institute of Neurobiology, University of Ulm, Ulm, Germany
| | - Raymond Romand
- Faculty of Medicine, Institute de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), University of Strasbourg and Centre National de la Recherche Scientifique (CNRS), Strasbourg, France
| |
Collapse
|
6
|
Adam E, Hansson BS, Knaden M. Fast Learners: One Trial Olfactory Learning in Insects. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.876596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Despite their comparatively small brains, insects are able to survive and thrive in their environment. In the past, it was thought that insects are driven mainly by their instincts. However, today it is well established that they possess unique abilities to learn and use their experience in future decisions. Like many higher animals insects are able to acquire and retain information on when and where to forage, which mate to choose, where to lay their eggs and how to navigate in complex habitats. Learning can be surprisingly fast with only one single encounter with a suitable food source or oviposition site shaping an insect's preference for up to a lifetime. In this review, we discuss the scope and limits of insect learning, focusing in specific on olfactory learning, and we raise the question whether currently used learning paradigms in artificial lab set-ups are able to answer all ecologically relevant questions.
Collapse
|
7
|
de Bruijn JAC, Vet LEM, Smid HM, de Boer JG. Memory extinction and spontaneous recovery shaping parasitoid foraging behavior. Behav Ecol 2021; 32:952-960. [PMID: 34690548 PMCID: PMC8528537 DOI: 10.1093/beheco/arab066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 03/19/2021] [Accepted: 05/22/2021] [Indexed: 11/12/2022] Open
Abstract
Animals can alter their foraging behavior through associative learning, where an encounter with an essential resource (e.g., food or a reproductive opportunity) is associated with nearby environmental cues (e.g., volatiles). This can subsequently improve the animal's foraging efficiency. However, when these associated cues are encountered again, the anticipated resource is not always present. Such an unrewarding experience, also called a memory-extinction experience, can change an animal's response to the associated cues. Although some studies are available on the mechanisms of this process, they rarely focus on cues and rewards that are relevant in an animal's natural habitat. In this study, we tested the effect of different types of ecologically relevant memory-extinction experiences on the conditioned plant volatile preferences of the parasitic wasp Cotesia glomerata that uses these cues to locate its caterpillar hosts. These extinction experiences consisted of contact with only host traces (frass and silk), contact with nonhost traces, or oviposition in a nonhost near host traces, on the conditioned plant species. Our results show that the lack of oviposition, after contacting host traces, led to the temporary alteration of the conditioned plant volatile preference in C. glomerata, but this effect was plant species-specific. These results provide novel insights into how ecologically relevant memory-extinction experiences can fine-tune an animal's foraging behavior. This fine-tuning of learned behavior can be beneficial when the lack of finding a resource accurately predicts current, but not future foraging opportunities. Such continuous reevaluation of obtained information helps animals to prevent maladaptive foraging behavior.
Collapse
Affiliation(s)
- Jessica A C de Bruijn
- Laboratory of Entomology, Plant Sciences Group, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands
| | - Louise E M Vet
- Laboratory of Entomology, Plant Sciences Group, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands
| | - Hans M Smid
- Laboratory of Entomology, Plant Sciences Group, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Jetske G de Boer
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
8
|
de Bruijn JAC, Vosteen I, Vet LEM, Smid HM, de Boer JG. Multi-camera field monitoring reveals costs of learning for parasitoid foraging behaviour. J Anim Ecol 2021; 90:1635-1646. [PMID: 33724445 PMCID: PMC8361673 DOI: 10.1111/1365-2656.13479] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 02/17/2021] [Indexed: 01/04/2023]
Abstract
Dynamic conditions in nature have led to the evolution of behavioural traits that allow animals to use information on local circumstances and adjust their behaviour accordingly, for example through learning. Although learning can improve foraging efficiency, the learned information can become unreliable as the environment continues to change. This could lead to potential fitness costs when memories holding such unreliable information persist. Indeed, persistent unreliable memory was found to reduce the foraging efficiency of the parasitoid Cotesia glomerata under laboratory conditions. Here, we evaluated the effect of such persistent unreliable memory on the foraging behaviour of C. glomerata in the field. This is a critical step in studies of foraging theory, since animal behaviour evolved under the complex conditions present in nature. Existing methods provide little detail on how parasitoids interact with their environment in the field, therefore we developed a novel multi‐camera system that allowed us to trace parasitoid foraging behaviour in detail. With this multi‐camera system, we studied how persistent unreliable memory affected the foraging behaviour of C. glomerata when these memories led parasitoids to plants infested with non‐host caterpillars in a semi‐field set‐up. Our results demonstrate that persistent unreliable memory can lead to maladaptive foraging behaviour in C. glomerata under field conditions and increased the likelihood of oviposition in the non‐host caterpillar Mamestra brassica. Furthermore, these time‐ and egg‐related costs can be context dependent, since they rely on the plant species used. These results provide us with new insight on how animals use previously obtained information in naturally complex and dynamic foraging situations and confirm that costs and benefits of learning depend on the environment animals forage in. Although behavioural studies of small animals in natural habitats remain challenging, novel methods such as our multi‐camera system contribute to understanding the nuances of animal foraging behaviour.
Collapse
Affiliation(s)
- Jessica A C de Bruijn
- Laboratory of Entomology, Plant Sciences Group, Wageningen University, Wageningen, The Netherlands
| | - Ilka Vosteen
- Laboratory of Entomology, Plant Sciences Group, Wageningen University, Wageningen, The Netherlands
| | - Louise E M Vet
- Laboratory of Entomology, Plant Sciences Group, Wageningen University, Wageningen, The Netherlands.,Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | - Hans M Smid
- Laboratory of Entomology, Plant Sciences Group, Wageningen University, Wageningen, The Netherlands
| | - Jetske G de Boer
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| |
Collapse
|
9
|
Ayelo PM, Pirk CWW, Yusuf AA, Chailleux A, Mohamed SA, Deletre E. Exploring the Kairomone-Based Foraging Behaviour of Natural Enemies to Enhance Biological Control: A Review. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.641974] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Kairomones are chemical signals that mediate interspecific interactions beneficial to organisms that detect the cues. These attractants can be individual compounds or mixtures of herbivore-induced plant volatiles (HIPVs) or herbivore chemicals such as pheromones, i.e., chemicals mediating intraspecific communication between herbivores. Natural enemies eavesdrop on kairomones during their foraging behaviour, i.e., location of oviposition sites and feeding resources in nature. Kairomone mixtures are likely to elicit stronger olfactory responses in natural enemies than single kairomones. Kairomone-based lures are used to enhance biological control strategies via the attraction and retention of natural enemies to reduce insect pest populations and crop damage in an environmentally friendly way. In this review, we focus on ways to improve the efficiency of kairomone use in crop fields. First, we highlight kairomone sources in tri-trophic systems and discuss how these attractants are used by natural enemies searching for hosts or prey. Then we summarise examples of field application of kairomones (pheromones vs. HIPVs) in recruiting natural enemies. We highlight the need for future field studies to focus on the application of kairomone blends rather than single kairomones which currently dominate the literature on field attractants for natural enemies. We further discuss ways for improving kairomone use through attract and reward technique, olfactory associative learning, and optimisation of kairomone lure formulations. Finally, we discuss why the effectiveness of kairomone use for enhancing biological control strategies should move from demonstration of increase in the number of attracted natural enemies, to reducing pest populations and crop damage below economic threshold levels and increasing crop yield.
Collapse
|
10
|
Bertoldi V, Rondoni G, Peri E, Conti E, Brodeur J. Learning can be detrimental for a parasitic wasp. PLoS One 2021; 16:e0238336. [PMID: 33755694 PMCID: PMC7987188 DOI: 10.1371/journal.pone.0238336] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 03/11/2021] [Indexed: 01/04/2023] Open
Abstract
Animals have evolved the capacity to learn, and the conventional view is that learning allows individuals to improve foraging decisions. The parasitoid Telenomus podisi has been shown to parasitize eggs of the exotic stink bug Halyomorpha halys at the same rate as eggs of its coevolved host, Podisus maculiventris, but the parasitoid cannot complete its development in the exotic species. We hypothesized that T. podisi learns to exploit cues from this non-coevolved species, thereby increasing unsuccessful parasitism rates. We conducted bioassays to compare the responses of naïve vs. experienced parasitoids on chemical footprints left by one of the two host species. Both naïve and experienced females showed a higher response to footprints of P. maculiventris than of H. halys. Furthermore, parasitoids that gained an experience on H. halys significantly increased their residence time within the arena and the frequency of re-encounter with the area contaminated by chemical cues. Hence, our study describes detrimental learning where a parasitoid learns to associate chemical cues from an unsuitable host, potentially re-enforcing a reproductive cul-de-sac (evolutionary trap). Maladaptive learning in the T. podisi-H. halys association could have consequences for population dynamics of sympatric native and exotic host species.
Collapse
Affiliation(s)
- Valeria Bertoldi
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università degli Studi di Perugia, Perugia, Italy
| | - Gabriele Rondoni
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università degli Studi di Perugia, Perugia, Italy
| | - Ezio Peri
- Dipartimento di Scienze Agrarie e Forestali, Università degli Studi di Palermo, Palermo, Italy
| | - Eric Conti
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università degli Studi di Perugia, Perugia, Italy
| | - Jacques Brodeur
- Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
11
|
Anton S, Rössler W. Plasticity and modulation of olfactory circuits in insects. Cell Tissue Res 2020; 383:149-164. [PMID: 33275182 PMCID: PMC7873004 DOI: 10.1007/s00441-020-03329-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 10/27/2020] [Indexed: 12/15/2022]
Abstract
Olfactory circuits change structurally and physiologically during development and adult life. This allows insects to respond to olfactory cues in an appropriate and adaptive way according to their physiological and behavioral state, and to adapt to their specific abiotic and biotic natural environment. We highlight here findings on olfactory plasticity and modulation in various model and non-model insects with an emphasis on moths and social Hymenoptera. Different categories of plasticity occur in the olfactory systems of insects. One type relates to the reproductive or feeding state, as well as to adult age. Another type of plasticity is context-dependent and includes influences of the immediate sensory and abiotic environment, but also environmental conditions during postembryonic development, periods of adult behavioral maturation, and short- and long-term sensory experience. Finally, plasticity in olfactory circuits is linked to associative learning and memory formation. The vast majority of the available literature summarized here deals with plasticity in primary and secondary olfactory brain centers, but also peripheral modulation is treated. The described molecular, physiological, and structural neuronal changes occur under the influence of neuromodulators such as biogenic amines, neuropeptides, and hormones, but the mechanisms through which they act are only beginning to be analyzed.
Collapse
Affiliation(s)
- Sylvia Anton
- IGEPP, INRAE, Institut Agro, Univ Rennes, INRAE, 49045, Angers, France.
| | - Wolfgang Rössler
- Behavioral Physiology and Sociobiology (Zoology II), Biozentrum, University of Würzburg, Am Hubland, 97074, Würzburg, Germany.
| |
Collapse
|
12
|
Haverkamp A, Smid HM. A neuronal arms race: the role of learning in parasitoid-host interactions. CURRENT OPINION IN INSECT SCIENCE 2020; 42:47-54. [PMID: 32947014 DOI: 10.1016/j.cois.2020.09.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/21/2020] [Accepted: 09/07/2020] [Indexed: 06/11/2023]
Abstract
Parasitic wasps and their larval hosts are intimately connected by an array of behavioral adaptations and counter-adaptations. This co-evolution has led to highly specific, natural variation in learning rates and memory consolidation in parasitoid wasps. Similarly, the hosts of the parasitoids show specific sensory adaptations as well as non-associative learning strategies for parasitoid avoidance. However, these neuronal and behavioral adaptations of both hosts and wasps have so far been studied largely apart from each other. Here we argue that a parallel investigation of the nervous system in wasps and their hosts might lead to novel insights into the evolution of insect behavior and the neurobiology of learning and memory.
Collapse
Affiliation(s)
- Alexander Haverkamp
- Laboratory of Entomology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands.
| | - Hans M Smid
- Laboratory of Entomology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands.
| |
Collapse
|
13
|
Young FJ, Montgomery SH. Pollen feeding in Heliconius butterflies: the singular evolution of an adaptive suite. Proc Biol Sci 2020; 287:20201304. [PMID: 33171092 PMCID: PMC7735275 DOI: 10.1098/rspb.2020.1304] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 10/15/2020] [Indexed: 12/21/2022] Open
Abstract
Major evolutionary transitions can be triggered by behavioural novelty, and are often associated with 'adaptive suites', which involve shifts in multiple co-adapted traits subject to complex interactions. Heliconius butterflies represent one such example, actively feeding on pollen, a behaviour unique among butterflies. Pollen feeding permits a prolonged reproductive lifespan, and co-occurs with a constellation of behavioural, neuroanatomical, life history, morphological and physiological traits that are absent in closely related, non-pollen-feeding genera. As a highly tractable system, supported by considerable ecological and genomic data, Heliconius are an excellent model for investigating how behavioural innovation can trigger a cascade of adaptive shifts in multiple diverse, but interrelated, traits. Here, we synthesize current knowledge of pollen feeding in Heliconius, and explore potential interactions between associated, putatively adaptive, traits. Currently, no physiological, morphological or molecular innovation has been explicitly linked to the origin of pollen feeding, and several hypothesized links between different aspects of Heliconius biology remain poorly tested. However, resolving these uncertainties will contribute to our understanding of how behavioural innovations evolve and subsequently alter the evolutionary trajectories of diverse traits impacting resource acquisition, life history, senescence and cognition.
Collapse
Affiliation(s)
- Fletcher J. Young
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
- School of Biological Science, University of Bristol, 24 Tyndall Avenue, Bristol UBS8 1TQ, UK
| | - Stephen H. Montgomery
- School of Biological Science, University of Bristol, 24 Tyndall Avenue, Bristol UBS8 1TQ, UK
| |
Collapse
|
14
|
Strain differences rather than species differences contribute to variation in associative learning ability in Nasonia. Anim Behav 2020. [DOI: 10.1016/j.anbehav.2020.07.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
15
|
Context-Dependence and the Development of Push-Pull Approaches for Integrated Management of Drosophila suzukii. INSECTS 2019; 10:insects10120454. [PMID: 31847450 PMCID: PMC6956413 DOI: 10.3390/insects10120454] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/09/2019] [Accepted: 12/10/2019] [Indexed: 11/28/2022]
Abstract
Sustainable pest control requires a systems approach, based on a thorough ecological understanding of an agro-ecosystem. Such fundamental understanding provides a basis for developing strategies to manipulate the pest’s behaviour, distribution, and population dynamics, to be employed for crop protection. This review focuses on the fundamental knowledge required for the development of an effective push-pull approach. Push-pull is a strategy to repel a pest from a crop, while attracting it toward an external location. It often relies on infochemicals (e.g., pheromones or allelochemicals) that are relevant in the ecology of the pest insect and can be exploited as lure or repellent. Importantly, responsiveness of insects to infochemicals is dependent on both the insect’s internal physiological state and external environmental conditions. This context-dependency reflects the integration of cues from different sensory modalities, the effect of mating and/or feeding status, as well as diurnal or seasonal rhythms. Furthermore, when the costs of responding to an infochemical outweigh the benefits, resistance can rapidly evolve. Here, we argue that profound knowledge on context-dependence is important for the development and implementation of push-pull approaches. We illustrate this by discussing the relevant fundamental knowledge on the invasive pest species Drosophila suzukii as an example.
Collapse
|
16
|
Williams-Simon PA, Posey C, Mitchell S, Ng'oma E, Mrkvicka JA, Zars T, King EG. Multiple genetic loci affect place learning and memory performance in Drosophila melanogaster. GENES, BRAIN, AND BEHAVIOR 2019; 18:e12581. [PMID: 31095869 PMCID: PMC6718298 DOI: 10.1111/gbb.12581] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/11/2019] [Accepted: 05/13/2019] [Indexed: 12/25/2022]
Abstract
Learning and memory are critical functions for all animals, giving individuals the ability to respond to changes in their environment. Within populations, individuals vary, however the mechanisms underlying this variation in performance are largely unknown. Thus, it remains to be determined what genetic factors cause an individual to have high learning ability and what factors determine how well an individual will remember what they have learned. To genetically dissect learning and memory performance, we used the Drosophila synthetic population resource (DSPR), a multiparent mapping resource in the model system Drosophila melanogaster, consisting of a large set of recombinant inbred lines (RILs) that naturally vary in these and other traits. Fruit flies can be trained in a "heat box" to learn to remain on one side of a chamber (place learning) and can remember this (place memory) over short timescales. Using this paradigm, we measured place learning and memory for ~49 000 individual flies from over 700 DSPR RILs. We identified 16 different loci across the genome that significantly affect place learning and/or memory performance, with 5 of these loci affecting both traits. To identify transcriptomic differences associated with performance, we performed RNA-Seq on pooled samples of seven high performing and seven low performing RILs for both learning and memory and identified hundreds of genes with differences in expression in the two sets. Integrating our transcriptomic results with the mapping results allowed us to identify nine promising candidate genes, advancing our understanding of the genetic basis underlying natural variation in learning and memory performance.
Collapse
Affiliation(s)
| | - Christopher Posey
- Division of Biological Sciences, University of Missouri, Columbia, Missouri
| | - Samuel Mitchell
- Division of Biological Sciences, University of Missouri, Columbia, Missouri
| | - Enoch Ng'oma
- Division of Biological Sciences, University of Missouri, Columbia, Missouri
| | - James A Mrkvicka
- Division of Biological Sciences, University of Missouri, Columbia, Missouri
| | - Troy Zars
- Division of Biological Sciences, University of Missouri, Columbia, Missouri
| | - Elizabeth G King
- Division of Biological Sciences, University of Missouri, Columbia, Missouri
| |
Collapse
|
17
|
Groothuis J, van den Heuvel K, Smid HM. Species- and size-related differences in dopamine-like immunoreactive clusters in the brain of Nasonia vitripennis and N. giraulti. Cell Tissue Res 2019; 379:261-273. [PMID: 31440818 DOI: 10.1007/s00441-019-03079-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 07/24/2019] [Indexed: 11/26/2022]
Abstract
An extreme reduction in body size has been shown to negatively impact the memory retention level of the parasitic wasp Nasonia vitripennis. In addition, N. vitripennis and Nasonia giraulti, closely related parasitic wasps, differ markedly in the number of conditioning trials required to form long-term memory. These differences in memory dynamics may be associated with differences in the dopaminergic neurons in the Nasonia brains. Here, we used dopamine immunoreactivity to identify and count the number of cell bodies in dopaminergic clusters of normal- and small-sized N. vitripennis and normal-sized N. giraulti. We counted in total a maximum of approximately 160 dopaminergic neurons per brain. These neurons were present in 9 identifiable clusters (D1a, D1b, D2, D3, D4a, D4b, D5, D6 and D7). Our analysis revealed that N. giraulti had fewer cells in the D2 and D4a clusters but more in D4b, compared with normal-sized N. vitripennis. In addition, we found fewer cells in the D5 and D7 cluster of small-sized N. vitripennis compared to normal-sized N. vitripennis. A comparison of our findings with the literature on dopaminergic clusters in the fruit fly Drosophila melanogaster and the honey bee Apis mellifera indicates that clusters D2, D3 and D5 may play a role in memory formation in Nasonia wasps. The results from both the species comparison and the size comparison are therefore of high interest and importance for our understanding of the complex intricacies that underlie the memory dynamics of insects.
Collapse
Affiliation(s)
- Jitte Groothuis
- Laboratory of Entomology, Wageningen University, P.O. Box 16, 6700, AA, Wageningen, The Netherlands
| | - Krista van den Heuvel
- Laboratory of Entomology, Wageningen University, P.O. Box 16, 6700, AA, Wageningen, The Netherlands
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | - Hans M Smid
- Laboratory of Entomology, Wageningen University, P.O. Box 16, 6700, AA, Wageningen, The Netherlands.
| |
Collapse
|
18
|
Groothuis J, Pfeiffer K, El Jundi B, Smid HM. The Jewel Wasp Standard Brain: Average shape atlas and morphology of the female Nasonia vitripennis brain. ARTHROPOD STRUCTURE & DEVELOPMENT 2019; 51:41-51. [PMID: 31357033 DOI: 10.1016/j.asd.2019.100878] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 07/25/2019] [Accepted: 07/25/2019] [Indexed: 06/10/2023]
Abstract
Nasonia, a genus of parasitoid wasps, is a promising model system in the study of developmental and evolutionary genetics, as well as complex traits such as learning. Of these "jewel wasps", the species Nasonia vitripennis is widely spread and widely studied. To accelerate neuroscientific research in this model species, fundamental knowledge of its nervous system is needed. To this end, we present an average standard brain of recently eclosed naïve female N. vitripennis wasps obtained by the iterative shape averaging method. This "Jewel Wasp Standard Brain" includes the optic lobe (excluding the lamina), the anterior optic tubercle, the antennal lobe, the lateral horn, the mushroom body, the central complex, and the remaining unclassified neuropils in the central brain. Furthermore, we briefly describe these well-defined neuropils and their subregions in the N. vitripennis brain. A volumetric analysis of these neuropils is discussed in the context of brains of other insect species. The Jewel Wasp Standard Brain will provide a framework to integrate and consolidate the results of future neurobiological studies in N. vitripennis. In addition, the volumetric analysis provides a baseline for future work on age- and experience-dependent brain plasticity.
Collapse
Affiliation(s)
- Jitte Groothuis
- Laboratory of Entomology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands
| | - Keram Pfeiffer
- Behavioral Physiology and Sociobiology (Zoology II), University of Würzburg, Biocenter, Am Hubland, 97074, Würzburg, Germany
| | - Basil El Jundi
- Behavioral Physiology and Sociobiology (Zoology II), University of Würzburg, Biocenter, Am Hubland, 97074, Würzburg, Germany
| | - Hans M Smid
- Laboratory of Entomology, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, the Netherlands.
| |
Collapse
|
19
|
|
20
|
van der Woude E, Groothuis J, Smid HM. No gains for bigger brains: Functional and neuroanatomical consequences of relative brain size in a parasitic wasp. J Evol Biol 2019; 32:694-705. [PMID: 30929291 PMCID: PMC6850633 DOI: 10.1111/jeb.13450] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 10/25/2018] [Accepted: 03/26/2019] [Indexed: 11/28/2022]
Abstract
Heritable genetic variation in relative brain size can underlie the relationship between brain performance and the relative size of the brain. We used bidirectional artificial selection to study the consequences of genetic variation in relative brain size on brain morphology, cognition and longevity in Nasonia vitripennis parasitoid wasps. Our results show a robust change in relative brain size after 26 generations of selection and six generations of relaxation. Total average neuropil volume of the brain was 16% larger in wasps selected for relatively large brains than in wasps selected for relatively small brains, whereas the body length of the large‐brained wasps was smaller. Furthermore, the relative volume of the antennal lobes was larger in wasps with relatively large brains. Relative brain size did not influence olfactory memory retention, whereas wasps that were selected for larger relative brain size had a shorter longevity, which was even further reduced after a learning experience. These effects of genetic variation on neuropil composition and memory retention are different from previously described effects of phenotypic plasticity in absolute brain size. In conclusion, having relatively large brains may be costly for N. vitripennis, whereas no cognitive benefits were recorded.
Collapse
Affiliation(s)
- Emma van der Woude
- Laboratory of Entomology, Wageningen University, Wageningen, The Netherlands
| | - Jitte Groothuis
- Laboratory of Entomology, Wageningen University, Wageningen, The Netherlands
| | - Hans M Smid
- Laboratory of Entomology, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
21
|
Rouse J, Watkinson K, Bretman A. Flexible memory controls sperm competition responses in male Drosophila melanogaster. Proc Biol Sci 2019; 285:rspb.2018.0619. [PMID: 29848652 DOI: 10.1098/rspb.2018.0619] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 04/30/2018] [Indexed: 11/12/2022] Open
Abstract
Males of many species use social cues to predict sperm competition (SC) and tailor their reproductive strategies, such as ejaculate or behavioural investment, accordingly. While these plastic strategies are widespread, the underlying mechanisms remain largely unknown. Plastic behaviour requires individuals to learn and memorize cues associated with environmental change before using this experience to modify behaviour. Drosophila melanogaster respond to an increase in SC threat by extending mating duration after exposure to a rival male. This behaviour shows lag times between environmental change and behavioural response suggestive of acquisition and loss of memory. Considering olfaction is important for a male's ability to assess the SC environment, we hypothesized that an olfactory learning and memory pathway may play a key role in controlling this plastic behaviour. We assessed the role of genes and brain structures known to be involved in learning and memory. We show that SC responses depend on anaesthesia-sensitive memory, specifically the genes rut and amn We also show that the γ lobes of the mushroom bodies are integral to the control of plastic mating behaviour. These results reveal the genetic and neural properties required for reacting to changes in the SC environment.
Collapse
Affiliation(s)
- J Rouse
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - K Watkinson
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - A Bretman
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| |
Collapse
|
22
|
Vosteen I, van den Meiracker N, Poelman EH. Getting confused: learning reduces parasitoid foraging efficiency in some environments with non-host-infested plants. Oecologia 2019; 189:919-930. [PMID: 30929072 PMCID: PMC6486909 DOI: 10.1007/s00442-019-04384-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 03/13/2019] [Indexed: 10/27/2022]
Abstract
Foraging animals face the difficult task to find resources in complex environments that contain conflicting information. The presence of a non-suitable resource that provides attractive cues can be expected to confuse foraging animals and to reduce their foraging efficiency. We used the parasitoid Cotesia glomerata to study the effect of non-host-infested plants and associative learning on parasitoid foraging efficiency. Inexperienced C. glomerata did not prefer volatiles emitted from host (Pieris brassicae)-infested plants over volatiles from non-host (Mamestra brassicae)-infested plants and parasitoids that had to pass non-host-infested plants needed eight times longer to reach the host-infested plant compared to parasitoids that had to pass undamaged plants. Contrary to our expectations, oviposition experience on a host-infested leaf decreased foraging efficiency due to more frequent visits of non-host-infested plants. Oviposition experience did not only increase the responsiveness of C. glomerata to the host-infested plants, but also the attraction towards herbivore-induced plant volatiles in general. Experience with non-host-infested leaves on the contrary resulted in a reduced attraction towards non-host-infested plants, but did not increase foraging efficiency. Our study shows that HIPVs emitted by non-host-infested plants can confuse foraging parasitoids and reduce their foraging efficiency when non-host-infested plants are abundant. Our results further suggest that the effect of experience on foraging efficiency in the presence of non-host-infested plants depends on the similarity between the rewarding and the non-rewarding cue as well as on the completeness of information that parasitoids have acquired about the rewarding and non-rewarding cues.
Collapse
Affiliation(s)
- Ilka Vosteen
- Laboratory of Entomology, Wageningen University, Wageningen, The Netherlands.
- Department of Chemical Ecology, Bielefeld University, Bielefeld, Germany.
| | | | - Erik H Poelman
- Laboratory of Entomology, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
23
|
Kruidhof HM, Kostenko O, Smid HM, Vet LEM. Integrating Parasitoid Olfactory Conditioning in Augmentative Biological Control: Potential Impact, Possibilities, and Challenges. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00084] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
24
|
Sommerlandt FMJ, Brockmann A, Rössler W, Spaethe J. Immediate early genes in social insects: a tool to identify brain regions involved in complex behaviors and molecular processes underlying neuroplasticity. Cell Mol Life Sci 2019; 76:637-651. [PMID: 30349993 PMCID: PMC6514070 DOI: 10.1007/s00018-018-2948-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 09/25/2018] [Accepted: 10/15/2018] [Indexed: 01/31/2023]
Abstract
Social insects show complex behaviors and master cognitive tasks. The underlying neuronal mechanisms, however, are in most cases only poorly understood due to challenges in monitoring brain activity in freely moving animals. Immediate early genes (IEGs) that get rapidly and transiently expressed following neuronal stimulation provide a powerful tool for detecting behavior-related neuronal activity in vertebrates. In social insects, like honey bees, and in insects in general, this approach is not yet routinely established, even though these genes are highly conserved. First studies revealed a vast potential of using IEGs as neuronal activity markers to analyze the localization, function, and plasticity of neuronal circuits underlying complex social behaviors. We summarize the current knowledge on IEGs in social insects and provide ideas for future research directions.
Collapse
Affiliation(s)
- Frank M J Sommerlandt
- Behavioral Physiology and Sociobiology (Zoology II), Biozentrum, University of Würzburg, Am Hubland, 97074, Würzburg, Germany.
| | - Axel Brockmann
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bellary Road, Bangalore, 560065, India
| | - Wolfgang Rössler
- Behavioral Physiology and Sociobiology (Zoology II), Biozentrum, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Johannes Spaethe
- Behavioral Physiology and Sociobiology (Zoology II), Biozentrum, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| |
Collapse
|
25
|
Kraaijeveld K, Oostra V, Liefting M, Wertheim B, de Meijer E, Ellers J. Regulatory and sequence evolution in response to selection for improved associative learning ability in Nasonia vitripennis. BMC Genomics 2018; 19:892. [PMID: 30526508 PMCID: PMC6288879 DOI: 10.1186/s12864-018-5310-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 11/26/2018] [Indexed: 12/14/2022] Open
Abstract
Background Selection acts on the phenotype, yet only the genotype is inherited. While both the phenotypic and genotypic response to short-term selection can be measured, the link between these is a major unsolved problem in evolutionary biology, in particular for complex behavioural phenotypes. Results Here we characterize the genomic and the transcriptomic basis of associative learning ability in the parasitic wasp Nasonia vitripennis and use gene network analysis to link the two. We artificially selected for improved associative learning ability in four independent pairs of lines and identified signatures of selection across the genome. Allele frequency diverged consistently between the selected and control lines in 118 single nucleotide polymorphisms (SNPs), clustering in 51 distinct genomic regions containing 128 genes. The majority of SNPs were found in regulatory regions, suggesting a potential role for gene expression evolution. We therefore sequenced the transcriptomes of selected and control lines and identified 36 consistently differentially expressed transcripts with large changes in expression. None of the differentially expressed genes also showed sequence divergence as a result of selection. Instead, gene network analysis showed many of the genes with consistent allele frequency differences and all of the differentially expressed genes to cluster in a single co-expression network. At a functional level, both genomic and transcriptomic analyses implicated members of gene networks known to be involved in neural plasticity and cognitive processes. Conclusions Taken together, our results reveal how specific cognitive abilities can readily respond to selection via a complex interplay between regulatory and sequence evolution. Electronic supplementary material The online version of this article (10.1186/s12864-018-5310-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ken Kraaijeveld
- Department of Ecological Science, Faculty of Earth and Life Sciences, Vrije Universiteit, De Boelelaan 1085, 1081, HV, Amsterdam, The Netherlands.
| | - Vicencio Oostra
- Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, WC1E 6BT, London, UK
| | - Maartje Liefting
- Department of Ecological Science, Faculty of Earth and Life Sciences, Vrije Universiteit, De Boelelaan 1085, 1081, HV, Amsterdam, The Netherlands
| | - Bregje Wertheim
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Emile de Meijer
- Leiden Genome Technology Center, Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Jacintha Ellers
- Department of Ecological Science, Faculty of Earth and Life Sciences, Vrije Universiteit, De Boelelaan 1085, 1081, HV, Amsterdam, The Netherlands
| |
Collapse
|
26
|
Nieberding CM, Van Dyck H, Chittka L. Adaptive learning in non-social insects: from theory to field work, and back. CURRENT OPINION IN INSECT SCIENCE 2018; 27:75-81. [PMID: 30025638 DOI: 10.1016/j.cois.2018.03.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 03/16/2018] [Accepted: 03/21/2018] [Indexed: 06/08/2023]
Abstract
We review the evidence that learning affects fitness in non-social insects. Early accounts date back from the 1970s and were based on field-based observational and experimental work, yet exploration of the ways in which various forms of learning increase fitness remains limited in non-social insects. We highlight the concerns that arise when artificial laboratory settings, which do not take the ecology of the species into account, are used to estimate fitness benefits of learning. We argue that ecologically-relevant experimental designs are most useful to provide fitness estimates of learning, that is, designs that include: firstly, offspring of wild-caught animals producing newly established stocks under relevant breeding conditions, combined with common-garden and reciprocal transplant experiments; secondly, the spatio-temporal dynamics of key ecological resources; and thirdly, the natural behaviours of the animals while searching for, and probing, resources. Finally, we provide guidelines for the study of fitness-learning relationships in an eco-evolutionary framework.
Collapse
Affiliation(s)
- Caroline M Nieberding
- Biodiversity Research Centre, Earth and Life Institute, Université catholique de Louvain, Belgium.
| | - Hans Van Dyck
- Biodiversity Research Centre, Earth and Life Institute, Université catholique de Louvain, Belgium
| | - Lars Chittka
- School of Biological and Chemical Sciences, Queen Mary University of London, UK; Wissenschaftskolleg/Institute for Advanced Study, Wallotstr. 19, 14193 Berlin, Germany
| |
Collapse
|
27
|
Rice AM, McQuillan MA. Maladaptive learning and memory in hybrids as a reproductive isolating barrier. Proc Biol Sci 2018; 285:20180542. [PMID: 29848649 PMCID: PMC5998094 DOI: 10.1098/rspb.2018.0542] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 05/10/2018] [Indexed: 01/02/2023] Open
Abstract
Selection against hybrid offspring, or postzygotic reproductive isolation, maintains species boundaries in the face of gene flow from hybridization. In this review, we propose that maladaptive learning and memory in hybrids is an important, but overlooked form of postzygotic reproductive isolation. Although a role for learning in premating isolation has been supported, whether learning deficiencies can contribute to postzygotic isolation has rarely been tested. We argue that the novel genetic combinations created by hybridization have the potential to impact learning and memory abilities through multiple possible mechanisms, and that any displacement from optima in these traits is likely to have fitness consequences. We review evidence supporting the potential for hybridization to affect learning and memory, and evidence of links between learning abilities and fitness. Finally, we suggest several avenues for future research. Given the importance of learning for fitness, especially in novel and unpredictable environments, maladaptive learning and memory in hybrids may be an increasingly important source of postzygotic reproductive isolation.
Collapse
Affiliation(s)
- Amber M Rice
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015, USA
| | - Michael A McQuillan
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015, USA
| |
Collapse
|
28
|
Ugajin A, Uchiyama H, Miyata T, Sasaki T, Yajima S, Ono M. Identification and initial characterization of novel neural immediate early genes possibly differentially contributing to foraging-related learning and memory processes in the honeybee. INSECT MOLECULAR BIOLOGY 2018; 27:154-165. [PMID: 29096051 DOI: 10.1111/imb.12355] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Despite possessing a limited number of neurones compared to vertebrates, honeybees show remarkable learning and memory performance, an example being 'dance communication'. In this phenomenon, foraging honeybees learn the location of a newly discovered food source and transmit the information to nestmates by symbolic abdomen vibrating behaviour, leading to navigation of nestmates to the new food source. As an initial step toward understanding the detailed molecular mechanisms underlying the sophisticated learning and memory performance of the honeybee, we focused on the neural immediate early genes (IEGs), which are specific genes quickly transcribed after neural activity without de novo protein synthesis. Although these have been reported to play an essential role in learning and memory processes in vertebrates, far fewer studies have been performed in insects in this regard. From RNA-sequencing analysis and subsequent assays, we identified three genes, Src homology 3 (SH3) domain binding kinase, family with sequence similarity 46 and GB47136, as novel neural IEGs in the honeybee. Foragers and/or orientating bees, which fly around their hives to memorize the positional information, showed induced expression of these IEGs in the mushroom body, a higher-order centre essential for learning and memory, indicating a possible role for the novel IEGs in foraging-related learning and memory processes in the honeybee.
Collapse
Affiliation(s)
- A Ugajin
- Laboratory of Applied Entomology and Zoology, Graduate School of Agriculture, Tamagawa University, Machida, Tokyo, Japan
| | - H Uchiyama
- NODAI Genome Research Center, Tokyo University of Agriculture, Setagaya-ku, Tokyo, Japan
| | - T Miyata
- Department of Agri-Production Sciences, College of Agriculture, Tamagawa University, Machida, Tokyo, Japan
| | - T Sasaki
- Honeybee Science Research Center, Tamagawa University, Machida, Tokyo, Japan
| | - S Yajima
- NODAI Genome Research Center, Tokyo University of Agriculture, Setagaya-ku, Tokyo, Japan
- Department of Bioscience, Tokyo University of Agriculture, Setagaya-ku, Tokyo, Japan
| | - M Ono
- Laboratory of Applied Entomology and Zoology, Graduate School of Agriculture, Tamagawa University, Machida, Tokyo, Japan
- Honeybee Science Research Center, Tamagawa University, Machida, Tokyo, Japan
| |
Collapse
|
29
|
Giunti G, Benelli G, Palmeri V, Canale A. Bactrocera oleae-induced olive VOCs routing mate searching in Psyttalia concolor males: impact of associative learning. BULLETIN OF ENTOMOLOGICAL RESEARCH 2018; 108:40-47. [PMID: 28464964 DOI: 10.1017/s0007485317000451] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Olfaction is a key sense routing foraging behaviour in parasitoids. Preferences for food, mate and host stimuli can be innate in parasitic wasps. Alternatively, learning-mediated mechanisms play a crucial role. Females of the braconid parasitoid Psyttalia concolor exploit olfactory cues arising from tephritid hosts and related microhabitats. However, little is known on the olfactory stimuli routing males searching for mates. In this study, we focused on the attractiveness of Bactrocera oleae-induced olive volatiles towards P. concolor males. Furthermore, we evaluated learning occurrence in virgin males, when trained for selected unattractive volatile organic compounds (VOCs) associated with mate rewards. (E)-β-Ocimene, α-pinene and limonene attracted virgin males in Y-tube bioassays. Unattractive VOCs evoked positive chemotaxis after associative learning training. P. concolor males exposed to VOCs during a successful or unsuccessful mating, showed short-term preference for these VOCs (<1 h). However, memory consolidation was strictly dependent on reward value. Indeed, males experiencing a successful mating showed a fast consolidation into protein dependent long-term memory, appearing after 24 h. On the other hand, males experiencing a less valuable training experience (i.e. unsuccessful courtship), did not show consolidated memory after 24 h. Overall, our findings suggest that P. concolor virgin males may exploit VOCs from the host microhabitat to boost their mate searching activity, thus their reproductive success. However, since learning is a costly process, P. concolor males retained durable memories just in presence of a valuable reward, thus avoiding maladaptive behaviours.
Collapse
Affiliation(s)
- G Giunti
- Department of Agriculture,University "Mediterranea" of Reggio Calabria,Loc. Feo di Vito, 89122 Reggio Calabria,Italy
| | - G Benelli
- Department of Agriculture, Food and Environment,University of Pisa,via del Borghetto 80, 56124 Pisa,Italy
| | - V Palmeri
- Department of Agriculture,University "Mediterranea" of Reggio Calabria,Loc. Feo di Vito, 89122 Reggio Calabria,Italy
| | - A Canale
- Department of Agriculture, Food and Environment,University of Pisa,via del Borghetto 80, 56124 Pisa,Italy
| |
Collapse
|
30
|
Valvassori SS, Borges CP, Varela RB, Bavaresco DV, Bianchini G, Mariot E, Arent CO, Resende WR, Budni J, Quevedo J. The different effects of lithium and tamoxifen on memory formation and the levels of neurotrophic factors in the brain of male and female rats. Brain Res Bull 2017; 134:228-235. [DOI: 10.1016/j.brainresbull.2017.08.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 08/03/2017] [Accepted: 08/07/2017] [Indexed: 01/22/2023]
|
31
|
Abram PK, Cusumano A, Abram K, Colazza S, Peri E. Testing the habituation assumption underlying models of parasitoid foraging behavior. PeerJ 2017; 5:e3097. [PMID: 28321365 PMCID: PMC5357337 DOI: 10.7717/peerj.3097] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 02/15/2017] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Habituation, a form of non-associative learning, has several well-defined characteristics that apply to a wide range of physiological and behavioral responses in many organisms. In classic patch time allocation models, habituation is considered to be a major mechanistic component of parasitoid behavioral strategies. However, parasitoid behavioral responses to host cues have not previously been tested for the known, specific characteristics of habituation. METHODS In the laboratory, we tested whether the foraging behavior of the egg parasitoid Trissolcus basalis shows specific characteristics of habituation in response to consecutive encounters with patches of host (Nezara viridula) chemical contact cues (footprints), in particular: (i) a training interval-dependent decline in response intensity, and (ii) a training interval-dependent recovery of the response. RESULTS As would be expected of a habituated response, wasps trained at higher frequencies decreased their behavioral response to host footprints more quickly and to a greater degree than those trained at low frequencies, and subsequently showed a more rapid, although partial, recovery of their behavioral response to host footprints. This putative habituation learning could not be blocked by cold anesthesia, ingestion of an ATPase inhibitor, or ingestion of a protein synthesis inhibitor. DISCUSSION Our study provides support for the assumption that diminishing responses of parasitoids to chemical indicators of host presence constitutes habituation as opposed to sensory fatigue, and provides a preliminary basis for exploring the underlying mechanisms.
Collapse
Affiliation(s)
- Paul K Abram
- Université de Montréal, Institut de Recherche en Biologie Végétale, Montréal, Canada
| | - Antonino Cusumano
- Dipartimento di Scienze Agrarie e Forestali, Università degli Studi di Palermo, Palermo, Italy.,Department of Entomology, Wageningen University, Wageningen, The Netherlands
| | - Katrina Abram
- Université de Montréal, Institut de Recherche en Biologie Végétale, Montréal, Canada
| | - Stefano Colazza
- Dipartimento di Scienze Agrarie e Forestali, Università degli Studi di Palermo, Palermo, Italy
| | - Ezio Peri
- Dipartimento di Scienze Agrarie e Forestali, Università degli Studi di Palermo, Palermo, Italy
| |
Collapse
|