1
|
Guo Y, Dall'Ara M, Baldo D, Gilmer D, Ratti C. Relative frequency dynamics and loading of beet necrotic yellow vein virus genomic RNAs during the acquisition by its vector Polymyxa betae. J Virol 2025; 99:e0141024. [PMID: 39679720 PMCID: PMC11784302 DOI: 10.1128/jvi.01410-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 11/20/2024] [Indexed: 12/17/2024] Open
Abstract
The beet necrotic yellow vein virus (BNYVV) is a multipartite virus with the highest number (up to five) of genomic segments among RNA viruses. Classified as a soil-borne virus, it is persistently transmitted by the protozoan Polymyxa betae. Previous studies have demonstrated that the relative frequency of the BNYVV genomic RNAs was modified depending on the host plant as well as the infected organ, resulting in distinct stoichiometric ratios between the viral RNAs. In this study, we investigate whether infection by the vector P. betae influences the relative abundance of BNYVV RNAs within the roots of the host plant Beta vulgaris. Furthermore, we examine the relative frequency of BNYVV genomic segments and the viral load of BNYVV at two different stages of P. betae's biological cycle: zoospore and resting spore. Our finding offers new insights into understanding the biology of this soil-borne virus and its vector. Notably, the variations in the relative accumulation of BNYVV RNAs observed in zoospores and resting spores, along with a higher viral load in zoospores compared to resting spores, invite consideration of the virus's replicative capacity within the vector. IMPORTANCE Our understanding of the transmission of plant viruses by protozoan vectors remains poor and fragmented. The fate of viral elements in the living stages of the vector is unknown. Here, we first established a protocol allowing the purification of two forms of the vector free of cellular contaminants. This permitted the examination of the relative frequencies of beet necrotic yellow vein virus RNAs in the roots of its natural host and in two forms of its protozoan vector, Polymyxa betae, responsible for virus transmission. Our findings provide new insights into virus behavior during vector transmission, allowing us to analyze how the virus regulates its RNA frequencies and load within the vector. By focusing on the early stages of viral transmission and separating virus acquisition from transmission to new hosts, we pave the way for experiments aimed at elucidating the molecular mechanisms behind viral acquisition and the maintenance of viral genome integrity by P. betae.
Collapse
Affiliation(s)
- Yi Guo
- DISTAL-Plant Pathology, University of Bologna, Bologna, Italy
- Institute for Sustainable Plant Protection, National Research Council of Italy, Turin, Italy
| | - Mattia Dall'Ara
- DISTAL-Plant Pathology, University of Bologna, Bologna, Italy
- Ri.NOVA Società Cooperativa, Cesena, Italy
| | - David Baldo
- DISTAL-Plant Pathology, University of Bologna, Bologna, Italy
| | - David Gilmer
- Institut de biologie moléculaire des plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Claudio Ratti
- DISTAL-Plant Pathology, University of Bologna, Bologna, Italy
| |
Collapse
|
2
|
Jeon J, Kim HC, Klein TA, Jun H, Choi KS. Insecticide resistance mutations of Anopheles species in the Republic of Korea. PLoS Negl Trop Dis 2025; 19:e0012748. [PMID: 39774408 PMCID: PMC11706468 DOI: 10.1371/journal.pntd.0012748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 12/01/2024] [Indexed: 01/11/2025] Open
Abstract
The number of reported malaria cases transmitted by Anopheles mosquitoes in the Republic of Korea (ROK) increased from 420 in 2022 to 746 in 2023, a 77.6% increase. Eight Anopheles species are currently reported in the ROK, including six species belonging to the Anopheles Hyrcanus Group and one species each belonging to the Barbirostris Group and Lindesayi Group. However, studies on insecticide resistance in the ROK has predominantly concentrated on Anopheles sinensis or more broadly, members of the Hyrcanus Group. Reported differences in vector competence and ecological characteristics of mosquito species in the ROK highlight the importance for conducting accurate evaluations of insecticide resistance for each of the Anopheles species for informing the potential efficacy of vector control to reduce malaria transmission. All eight species of Anopheles mosquitoes were collected in/near the demilitarized zone (DMZ), a malaria high-risk region in the ROK. Additional specimens were collected in Seoul [Yongsan US Army Garrison (USAG)] and Pyeongtaek (Humphreys USAG) where malaria risks are much lower. Anopheles mosquitoes were identified to species using a multiplex PCR method and then evaluated for the presence of acetylcholinesterase-1 (ace-1) and voltage-gated sodium channel (vgsc) regions to identify mutations linked to insecticide resistance. Analysis of the ace-1 region identified insecticide resistance alleles in four species of the Hyrcanus Group (An. sinensis, An. kleini, An. belenrae, and An. pullus), while ace-1 resistance alleles were not observed in the other four species. The screening of the vgsc gene fragment confirmed the presence of resistant alleles only in An. sinensis (considered a poor malaria vector) and An. kleini (a primary malaria vector) in the ROK. This study represents a preliminary investigation of insecticide resistance mutations across all Anopheles species in the ROK. These findings are crucial in advancing mosquito control strategies to mitigate future malaria infections.
Collapse
Affiliation(s)
- Jiseung Jeon
- Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu, Republic of Korea
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea
| | - Heung Chul Kim
- U Inc., Daesakwan-ro 34-gil, Yongsan-gu, Seoul, Republic of Korea
| | - Terry A. Klein
- Force Health Protection and Preventive Medicine, Medical Department Activity-Korea/65th Medical Brigade, Unit 15281, Pyeongtaek, Republic of Korea
| | - Hojong Jun
- Department of Medical Environmental Biology and Tropical Medicine, School of Medicine, Kangwon National University, Chuncheon, Republic of Korea
| | - Kwang Shik Choi
- Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu, Republic of Korea
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
3
|
Legan AW, Allan CW, Jensen ZN, Degain BA, Yang F, Kerns DL, Benowitz KM, Fabrick JA, Li X, Carrière Y, Matzkin LM, Tabashnik BE. Mismatch between lab-generated and field-evolved resistance to transgenic Bt crops in Helicoverpa zea. Proc Natl Acad Sci U S A 2024; 121:e2416091121. [PMID: 39503848 PMCID: PMC11588094 DOI: 10.1073/pnas.2416091121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/03/2024] [Indexed: 11/27/2024] Open
Abstract
Transgenic crops producing crystalline (Cry) proteins from the bacterium Bacillus thuringiensis (Bt) have been used extensively to control some major crop pests. However, many populations of the noctuid moth Helicoverpa zea, one of the most important crop pests in the United States, have evolved practical resistance to several Cry proteins including Cry1Ac. Although mutations in single genes that confer resistance to Cry proteins have been identified in lab-selected and gene-edited strains of H. zea and other lepidopteran pests, the genetic basis of field-evolved resistance to Cry proteins in H. zea has remained elusive. We used a genomic approach to analyze the genetic basis of field-evolved resistance to Cry1Ac in 937 H. zea derived from 17 sites in seven states of the southern United States. We found evidence for extensive gene flow among all populations studied. Field-evolved resistance was not associated with mutations in 20 single candidate genes previously implicated in resistance or susceptibility to Cry proteins in H. zea or other lepidopterans. Instead, resistance in field samples was associated with increased copy number of a cluster of nine trypsin genes. However, trypsin gene amplification occurred in a susceptible sample and not in all resistant samples, implying that this amplification does not always confer resistance and mutations in other genes also contribute to field-evolved resistance to Cry1Ac in H. zea. The mismatch between lab-generated and field-evolved resistance in H. zea is unlike other cases of Bt resistance and reflects challenges for managing this pest.
Collapse
Affiliation(s)
- Andrew W. Legan
- Department of Entomology, University of Arizona, Tucson, AZ85721
| | - Carson W. Allan
- Department of Entomology, University of Arizona, Tucson, AZ85721
| | - Zoe N. Jensen
- Department of Entomology, University of Arizona, Tucson, AZ85721
| | | | - Fei Yang
- Department of Entomology, University of Minnesota, St. Paul, MN55108
| | - David L. Kerns
- Department of Entomology, Texas A&M University, College Station, TX77843
| | - Kyle M. Benowitz
- College of Integrative Sciences and Arts, Arizona State University, Mesa, AZ85212
| | - Jeffrey A. Fabrick
- US Department of Agriculture, Agricultural Research Service, US Arid Land Agricultural Research Center, Maricopa, AZ85138
| | - Xianchun Li
- Department of Entomology, University of Arizona, Tucson, AZ85721
| | - Yves Carrière
- Department of Entomology, University of Arizona, Tucson, AZ85721
| | | | | |
Collapse
|
4
|
Moss S, Jones RT, Pretorius E, da Silva ET, Higgins M, Kristan M, Acford-Palmer H, Collins EL, Rodrigues A, Krishna S, Clark TG, Last A, Campino S. Phenotypic evidence of deltamethrin resistance and identification of selective sweeps in Anopheles mosquitoes on the Bijagós Archipelago, Guinea-Bissau. Sci Rep 2024; 14:22840. [PMID: 39354094 PMCID: PMC11445403 DOI: 10.1038/s41598-024-73996-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 09/23/2024] [Indexed: 10/03/2024] Open
Abstract
Vector control in the Bijagós Archipelago of Guinea-Bissau currently relies on pyrethroid insecticide-treated nets. However, data on insecticide resistance in Guinea-Bissau is limited. This study identified deltamethrin resistance in the Anopheles gambiae sensu lato complex on Bubaque island using WHO tube tests in November 2022. Whole genome sequencing of An. gambiae sensu stricto mosquitoes identified six single nucleotide polymorphisms (SNPs) previously associated with, or putatively associated with, insecticide resistance: T791M, L995F, N1570Y, A1746S and P1874L in the vgsc gene, and L119V in the gste2 gene. Twenty additional non-synonymous SNPs were identified in insecticide-resistance associated genes. Four of these SNPs were present at frequencies over 5% in the population: T154S, I126F and G26S in the vgsc gene and A65S in ace1. Genome wide selection scans using Garud's H12 statistic identified two selective sweeps: one in chromosome X and one in chromosome 2R. Both selective sweeps overlap with metabolic genes previously associated with insecticide resistance, including cyp9k1 and the cyp6aa/cyp6p gene cluster. This study presents the first phenotypic testing for deltamethrin resistance and the first whole genome sequence data for Anophelesgambiae mosquitoes from the Bijagós, contributing data of significance for vector control policy in this region.
Collapse
Affiliation(s)
- Sophie Moss
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK.
| | - Robert T Jones
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Elizabeth Pretorius
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Eunice Teixeira da Silva
- Projecto de Saúde Bandim, Bissau, Guinea-Bissau
- Ministério de Saúde Pública, Bissau, Guinea-Bissau
| | - Matthew Higgins
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Mojca Kristan
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Holly Acford-Palmer
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Emma L Collins
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Amabelia Rodrigues
- Projecto de Saúde Bandim, Bissau, Guinea-Bissau
- Ministério de Saúde Pública, Bissau, Guinea-Bissau
| | - Sanjeev Krishna
- Clinical Academic Group, Institute for Infection and Immunity, and St, George's University Hospitals NHS Foundation Trust, St. George's University of London, London, UK
- Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon
- Institut für Tropenmedizin Universitätsklinikum Tübingen, Tübingen, Germany
| | - Taane G Clark
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
- Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, UK
| | - Anna Last
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Susana Campino
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| |
Collapse
|
5
|
Kientega M, Clarkson CS, Traoré N, Hui TYJ, O'Loughlin S, Millogo AA, Epopa PS, Yao FA, Belem AMG, Brenas J, Miles A, Burt A, Diabaté A. Whole-genome sequencing of major malaria vectors reveals the evolution of new insecticide resistance variants in a longitudinal study in Burkina Faso. Malar J 2024; 23:280. [PMID: 39285410 PMCID: PMC11406867 DOI: 10.1186/s12936-024-05106-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 09/08/2024] [Indexed: 09/19/2024] Open
Abstract
BACKGROUND Intensive deployment of insecticide based malaria vector control tools resulted in the rapid evolution of phenotypes resistant to these chemicals. Understanding this process at the genomic level is important for the deployment of successful vector control interventions. Therefore, longitudinal sampling followed by whole genome sequencing (WGS) is necessary to understand how these evolutionary processes evolve over time. This study investigated the change in genetic structure and the evolution of the insecticide resistance variants in natural populations of Anopheles gambiae over time and space from 2012 to 2017 in Burkina Faso. METHODS New genomic data have been generated from An. gambiae mosquitoes collected from three villages in the western part of Burkina Faso between 2012 and 2017. The samples were whole-genome sequenced and the data used in the An. gambiae 1000 genomes (Ag1000G) project as part of the Vector Observatory. Genomic data were analysed using the analysis pipeline previously designed by the Ag1000G project. RESULTS The results showed similar and consistent nucleotide diversity and negative Tajima's D between An. gambiae sensu stricto (s.s.) and Anopheles coluzzii. Principal component analysis (PCA) and the fixation index (FST) showed a clear genetic structure in the An. gambiae sensu lato (s.l.) species. Genome-wide FST and H12 scans identified genomic regions under divergent selection that may have implications in the adaptation to ecological changes. Novel voltage-gated sodium channel pyrethroid resistance target-site alleles (V402L, I1527T) were identified at increasing frequencies alongside the established alleles (Vgsc-L995F, Vgsc-L995S and N1570Y) within the An. gambiae s.l. POPULATIONS Organophosphate metabolic resistance markers were also identified, at increasing frequencies, within the An. gambiae s.s. populations from 2012 to 2017, including the SNP Ace1-G280S and its associated duplication. Variants simultaneously identified in the same vector populations raise concerns about the long-term efficacy of new generation bed nets and the recently organophosphate pirimiphos-methyl indoor residual spraying in Burkina Faso. CONCLUSION These findings highlighted the benefit of genomic surveillance of malaria vectors for the detection of new insecticide resistance variants, the monitoring of the existing resistance variants, and also to get insights into the evolutionary processes driving insecticide resistance.
Collapse
Affiliation(s)
- Mahamadi Kientega
- Institut de Recherche en Sciences de la Santé (IRSS), 01 BP 545, Bobo-Dioulasso 01, Burkina Faso.
- Université Nazi Boni, 01 BP 1091, Bobo-Dioulasso, Burkina Faso.
| | - Chris S Clarkson
- Vector Surveillance Programme, Genomic Surveillance Unit, Wellcome Sanger Institute, Hinxton, Cambridge, UK
| | - Nouhoun Traoré
- Institut de Recherche en Sciences de la Santé (IRSS), 01 BP 545, Bobo-Dioulasso 01, Burkina Faso
- Université Nazi Boni, 01 BP 1091, Bobo-Dioulasso, Burkina Faso
| | - Tin-Yu J Hui
- Department of Life Sciences, Imperial College London, Silwood Park, Ascot, SL5 7PY, UK
| | - Samantha O'Loughlin
- Department of Life Sciences, Imperial College London, Silwood Park, Ascot, SL5 7PY, UK
| | - Abdoul-Azize Millogo
- Institut de Recherche en Sciences de la Santé (IRSS), 01 BP 545, Bobo-Dioulasso 01, Burkina Faso
- Institut des Sciences des Sociétés, 03 BP 7047, Ouagadougou 03, Burkina Faso
| | - Patric Stephane Epopa
- Institut de Recherche en Sciences de la Santé (IRSS), 01 BP 545, Bobo-Dioulasso 01, Burkina Faso
| | - Franck A Yao
- Institut de Recherche en Sciences de la Santé (IRSS), 01 BP 545, Bobo-Dioulasso 01, Burkina Faso
| | | | - Jon Brenas
- Vector Surveillance Programme, Genomic Surveillance Unit, Wellcome Sanger Institute, Hinxton, Cambridge, UK
| | - Alistair Miles
- Vector Surveillance Programme, Genomic Surveillance Unit, Wellcome Sanger Institute, Hinxton, Cambridge, UK
| | - Austin Burt
- Department of Life Sciences, Imperial College London, Silwood Park, Ascot, SL5 7PY, UK
| | - Abdoulaye Diabaté
- Institut de Recherche en Sciences de la Santé (IRSS), 01 BP 545, Bobo-Dioulasso 01, Burkina Faso.
| |
Collapse
|
6
|
Huang X, Kaufman PE, Athrey GN, Fredregill C, Slotman MA. Unveiling candidate genes for metabolic resistance to malathion in Aedes albopictus through RNA sequencing-based transcriptome profiling. PLoS Negl Trop Dis 2024; 18:e0012243. [PMID: 38865422 PMCID: PMC11168629 DOI: 10.1371/journal.pntd.0012243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 05/23/2024] [Indexed: 06/14/2024] Open
Abstract
Aedes albopictus, also known as the Asian tiger mosquito, is indigenous to the tropical forests of Southeast Asia. Ae. albopictus is expanding across the globe at alarming rates, raising concern over the transmission of mosquito-borne diseases, such as dengue, West Nile fever, yellow fever, and chikungunya fever. Since Ae. albopictus was reported in Houston (Harris County, Texas) in 1985, this species has rapidly expanded to at least 32 states across the United States. Public health efforts aimed at controlling Ae. albopictus, including surveillance and adulticide spraying operations, occur regularly in Harris County. Despite rotation of insecticides to mitigate the development of resistance, multiple mosquito species including Culex quinquefasciatus and Aedes aegypti in Harris County show organophosphate and pyrethroid resistance. Aedes albopictus shows relatively low resistance levels as compared to Ae. aegypti, but kdr-mutation and the expression of detoxification genes have been reported in Ae. albopictus populations elsewhere. To identify potential candidate detoxification genes contributing to metabolic resistance, we used RNA sequencing of field-collected malathion-resistant and malathion-susceptible, and laboratory-maintained susceptible colonies of Ae. albopictus by comparing the relative expression of transcripts from three major detoxification superfamilies involved in malathion resistance due to metabolic detoxification. Between these groups, we identified 12 candidate malathion resistance genes and among these, most genes correlated with metabolic detoxification of malathion, including four P450 and one alpha esterase. Our results reveal the metabolic detoxification and potential cuticular-based resistance mechanisms associated with malathion resistance in Ae. albopictus in Harris County, Texas.
Collapse
Affiliation(s)
- Xinyue Huang
- Department of Entomology, Texas A&M University, College Station, Texas, United States of America
| | - Phillip E. Kaufman
- Department of Entomology, Texas A&M University, College Station, Texas, United States of America
| | - Giridhar N. Athrey
- Department of Poultry Science, Texas A&M University, College Station, Texas, United States of America
| | - Chris Fredregill
- Harris County Public Health, Mosquito & Vector Control Division, Houston, Texas, United States of America
| | - Michel A. Slotman
- Department of Entomology, Texas A&M University, College Station, Texas, United States of America
| |
Collapse
|
7
|
Lucas ER, Nagi SC, Kabula B, Batengana B, Kisinza W, Egyir-Yawson A, Essandoh J, Dadzie S, Chabi J, Van't Hof AE, Rippon EJ, Pipini D, Harding NJ, Dyer NA, Clarkson CS, Miles A, Weetman D, Donnelly MJ. Copy number variants underlie the major selective sweeps in insecticide resistance genes in Anopheles arabiensis from Tanzania. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.11.583874. [PMID: 38559088 PMCID: PMC10979859 DOI: 10.1101/2024.03.11.583874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
To keep ahead of the evolution of resistance to insecticides in mosquitoes, national malaria control programmes must make use of a range of insecticides, both old and new, while monitoring resistance mechanisms. Knowledge of the mechanisms of resistance remains limited in Anopheles arabiensis, which in many parts of Africa is of increasing importance because it is apparently less susceptible to many indoor control interventions. Furthermore, comparatively little is known in general about resistance to non-pyrethroid insecticides such as pirimiphos-methyl (PM), which are crucial for effective control in the context of resistance to pyrethroids. We performed a genome-wide association study to determine the molecular mechanisms of resistance to deltamethrin (commonly used in bednets) and PM, in An. arabiensis from two regions in Tanzania. Genomic regions of positive selection in these populations were largely driven by copy number variants (CNVs) in gene families involved in resistance to these two insecticides. We found evidence of a new gene cluster involved in resistance to PM, identifying a strong selective sweep tied to a CNV in the Coeae2g-Coeae6g cluster of carboxylesterase genes. Using complementary data from An. coluzzii in Ghana, we show that copy number at this locus is significantly associated with PM resistance. Similarly, for deltamethrin, resistance was strongly associated with a novel CNV allele in the Cyp6aa / Cyp6p cluster. Against this background of metabolic resistance, target site resistance was very rare or absent for both insecticides. Mutations in the pyrethroid target site Vgsc were at very low frequency in Tanzania, yet combining these samples with three An. arabiensis individuals from West Africa revealed a startling diversity of evolutionary origins of target site resistance, with up to 5 independent origins of Vgsc-995 mutations found within just 8 haplotypes. Thus, despite having been first recorded over 10 years ago, Vgsc resistance mutations in Tanzanian An. arabiensis have remained at stable low frequencies. Overall, our results provide a new copy number marker for monitoring resistance to PM in malaria mosquitoes, and reveal the complex picture of resistance patterns in An. arabiensis.
Collapse
Affiliation(s)
- Eric R Lucas
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - Sanjay C Nagi
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - Bilali Kabula
- National Institute for Medical Research, Amani Research Centre, P.O. Box 81, Muheza, Tanzania
| | - Bernard Batengana
- National Institute for Medical Research, Amani Research Centre, P.O. Box 81, Muheza, Tanzania
| | - William Kisinza
- National Institute for Medical Research, Amani Research Centre, P.O. Box 81, Muheza, Tanzania
| | | | - John Essandoh
- Department of Biomedical Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Sam Dadzie
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Joseph Chabi
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Arjen E Van't Hof
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Branišovská 31, 370 05 České Budějovice, Czech Republic
| | - Emily J Rippon
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - Dimitra Pipini
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - Nicholas J Harding
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, United Kingdom
| | - Naomi A Dyer
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - Chris S Clarkson
- Wellcome Sanger Institute, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - Alistair Miles
- Wellcome Sanger Institute, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - David Weetman
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - Martin J Donnelly
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
- Wellcome Sanger Institute, Hinxton, Cambridge CB10 1SA, United Kingdom
| |
Collapse
|
8
|
Berdan EL, Aubier TG, Cozzolino S, Faria R, Feder JL, Giménez MD, Joron M, Searle JB, Mérot C. Structural Variants and Speciation: Multiple Processes at Play. Cold Spring Harb Perspect Biol 2024; 16:a041446. [PMID: 38052499 PMCID: PMC10910405 DOI: 10.1101/cshperspect.a041446] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Research on the genomic architecture of speciation has increasingly revealed the importance of structural variants (SVs) that affect the presence, abundance, position, and/or direction of a nucleotide sequence. SVs include large chromosomal rearrangements such as fusion/fissions and inversions and translocations, as well as smaller variants such as duplications, insertions, and deletions (CNVs). Although we have ample evidence that SVs play a key role in speciation, the underlying mechanisms differ depending on the type and length of the SV, as well as the ecological, demographic, and historical context. We review predictions and empirical evidence for classic processes such as underdominance due to meiotic aberrations and the coupling effect of recombination suppression before exploring how recent sequencing methodologies illuminate the prevalence and diversity of SVs. We discuss specific properties of SVs and their impact throughout the genome, highlighting that multiple processes are at play, and possibly interacting, in the relationship between SVs and speciation.
Collapse
Affiliation(s)
- Emma L Berdan
- Department of Marine Sciences, Gothenburg University, Gothenburg 40530, Sweden
- Bioinformatics Core, Department of Biostatistics, Harvard T.H. Chan School of Public Health, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Thomas G Aubier
- Laboratoire Évolution & Diversité Biologique, Université Paul Sabatier Toulouse III, UMR 5174, CNRS/IRD, 31077 Toulouse, France
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Salvatore Cozzolino
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte S. Angelo, 80126 Napoli, Italia
| | - Rui Faria
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO, Laboratório Associado, Universidade do Porto, Vairão, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, 4485-661 Vairão, Portugal
| | - Jeffrey L Feder
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Mabel D Giménez
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Genética Humana de Misiones (IGeHM), Parque de la Salud de la Provincia de Misiones "Dr. Ramón Madariaga," N3300KAZ Posadas, Misiones, Argentina
- Facultad de Ciencias Exactas, Químicas y Naturales, Universidad Nacional de Misiones, N3300LQH Posadas, Misiones, Argentina
| | - Mathieu Joron
- Centre d'Ecologie Fonctionnelle et Evolutive, Université de Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Jeremy B Searle
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York 14853, USA
| | - Claire Mérot
- CNRS, UMR 6553 Ecobio, OSUR, Université de Rennes, 35000 Rennes, France
| |
Collapse
|
9
|
Gong Y, Cheng S, Xiu X, Li F, Liu N, Hou M. Molecular Evolutionary Mechanisms of CYP6ER1vA-Type Variant Associated with Resistance to Neonicotinoid Insecticides in Field Populations of Nilaparvata lugens. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:19935-19948. [PMID: 38083901 DOI: 10.1021/acs.jafc.3c03167] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
The evolution of insecticide resistance has threatened the control of Nilaparvata lugens. Research on mechanisms behind neonicotinoid resistance in N. lugens remains incomplete. This study examined P450-mediated resistance to neonicotinoids in a resistant N. lugens strain (XA-2017-3G). The overexpression of CYP6ER1 in the XA-2017-3G strain plays a role in neonicotinoid resistance, as confirmed by RNA interference. Phenotypic analyses of CYP6ER1-mediated resistance in strains, including laboratory-susceptible, field-collected, and imidacloprid-laboratory further-selected strains, revealed that the vA-type/vL-type genotype exhibited greater resistance to neonicotinoids compared to the vA-type/vA-type genotype. The mRNA expression levels of CYP6ER1vA-type were closely correlated with the levels of neonicotinoid resistance in N. lugens strains, in which CYP6ER1vA-type overexpression is in part attributed to increased copy numbers of CYP6ER1. CYP6ER1vA-type-mediated neonicotinoid resistance was further confirmed by a CYP6ER1vA-type transgenic Drosophila melanogaster line. Taken together, our findings strongly suggest that the overexpression of CYP6ER1vA-type, which can be partially attributed to copy number variations, plays a crucial role in N. lugens resistance to neonicotinoids.
Collapse
Affiliation(s)
- Youhui Gong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - Shiyang Cheng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - Xiaojian Xiu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - Fei Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - Nannan Liu
- Department of Entomology and Plant Pathology, Auburn University, Auburn, Alabama 36849, United States
| | - Maolin Hou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| |
Collapse
|
10
|
Ramkumar G, Muthusamy R, Narayanan M, Shivakumar MS, Kweka EJ. Overexpression of cytochrome P450 and esterase genes involved in permethrin resistance in larvae and adults of Culex quinquefasciatus. Parasitol Res 2023; 122:3205-3212. [PMID: 37874391 DOI: 10.1007/s00436-023-08010-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 10/11/2023] [Indexed: 10/25/2023]
Abstract
Mosquitoes are important vectors of several arthropod-borne diseases, which remain a priority for epidemiological research. Mosquito vector control strategies have traditionally relied on chemical insecticides such as synthetic pyrethroids. However, the indiscriminate use of pesticides has resulted in the development of resistance in many mosquito species. In insects, resistance evolves primarily through the overexpression of one or more gene products from the cytochrome P450, carboxylesterase, and glutathione superfamilies. The current study examined the expression of cytochrome P450 CYP6M2, CYP6AA7, CYP6Z2, CYP9J34, α-Esterase, Esterase B1, and neuroactin genes in larvae and adults of a permethrin-resistant (PerRes) and susceptible (Sus) Culex quinquefasciatus strains. The results showed that the CYP6AA7 gene was overexpressed (10-fold) in larvae and adults with PerRes (p < 0.01) followed by CYPJ34 (9.0-fold) and CYP6Z2 (5.0-fold) compared to the Sus, whereas fewer changes in CYP6M gene expression were observed in PerRes adults (p < 0.05), and no expression was found in larvae. The esterase gene was overexpressed in PerRes larvae (9.0-fold) followed by adults (2.5-fold) compared to the susceptible strain. Based on data, the present study suggests that cytochrome P450, CYP6AA7, CYP6Z2, CYP9J34, α-Esterase, Esterase B1, and neuroactin genes were involved in permethrin resistance in larval and adult Cx. quinquefasciatus.
Collapse
Affiliation(s)
- Govindaraju Ramkumar
- Department of Entomology, College of Agricultural and Environmental Sciences, University of Georgia, Griffin, GA, 30223, USA
- Molecular Entomology Laboratory, Department of Biotechnology, School of Biosciences, Periyar University, Salem, 636 011, Tamil Nadu, India
| | - Ranganathan Muthusamy
- PG and Research Centre in Biotechnology, MGR College, Adhiyamaan Educational and Research Institution, Hosur, 635130, Tamil Nadu, India.
| | - Mathiyazhagan Narayanan
- Division of Research and Innovation, Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Science, Chennai, 602105, Tamil Nadu, India
| | | | - Eliningaya J Kweka
- Department of Medical Parasitology and Entomology, School of Medicine, Catholic University of Health and Allied Sciences, P.O. Box 1464, Mwanza, Tanzania
- Research Department, Tropical Pesticides Research Institute, P.O. Box 3024, Arusha, Tanzania
- Tanzania Plant Health and Pesticides Authority, P.O. Box 3024, Arusha, Tanzania
| |
Collapse
|
11
|
Alencar RM, Sepulveda CCP, Martinez-Villegas L, Bahia AC, Santana RA, de Souza IB, D'Elia GMA, Duarte APM, de Lacerda MVG, Monteiro WM, Secundino NFC, Pimenta PFP, Koerich LB. Unravelling the genome of the brackish water malaria vector Anopheles aquasalis. Sci Rep 2023; 13:20472. [PMID: 37993652 PMCID: PMC10665375 DOI: 10.1038/s41598-023-47830-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 11/19/2023] [Indexed: 11/24/2023] Open
Abstract
Malaria is a severe public health problem in several developing tropical and subtropical countries. Anopheles aquasalis is the primary coastal malaria vector in Central and South America and the Caribbean Islands, and it has the peculiar feature of living in water with large changes in salinity. Recent research has recognised An. aquasalis as an important model for studying the interactions of murine and human Plasmodium parasites. This study presents the complete genome of An. aquasalis and offers insights into its evolution and physiology. The genome is similar in size and gene content to other Neotropical anophelines, with 162 Mb and 12,446 protein-coding genes. There are 1387 single-copy orthologs at the Diptera level (eg. An. gambiae, An. darlingi and Drosophila melanogaster). An. aquasalis diverged from An. darlingi, the primary malaria vector in inland South America, nearly 20 million years ago. Proteins related to ion transport and metabolism belong to the most abundant gene families with 660 genes. We identified gene families relevant to osmosis control (e.g., aquaporins, vacuolar-ATPases, Na+/K+-ATPases, and carbonic anhydrases). Evolutionary analysis suggests that all osmotic regulation genes are under strong purifying selection. We also observed low copy number variation in insecticide resistance and immunity-related genes for all known classical pathways. The data provided by this study offers candidate genes for further studies of parasite-vector interactions and for studies on how anophelines of brackish water deal with the high fluctuation in water salinity. We also established data and insights supporting An. aquasalis as an emerging Neotropical malaria vector model for genetic and molecular studies.
Collapse
Affiliation(s)
- Rodrigo Maciel Alencar
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, CEP 69.040-000, Brazil
- Programa de Pós-Graduação em Medicina Tropical, Fundação de Medicina Tropical Heitor Vieira Dourado, Universidade do Estado do Amazonas, Manaus, Amazonas, CEP 69.040-000, Brazil
| | - Cesar Camilo Prado Sepulveda
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, CEP 69.040-000, Brazil
- Programa de Pós-Graduação em Medicina Tropical, Fundação de Medicina Tropical Heitor Vieira Dourado, Universidade do Estado do Amazonas, Manaus, Amazonas, CEP 69.040-000, Brazil
| | - Luis Martinez-Villegas
- Instituto de Pesquisas René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, CEP 30.190-009, Brazil
- Programa de Pós-Graduação em Ciências da Saúde, FIOCRUZ, Belo Horizonte, Minas Gerais, CEP 30.190-009, Brazil
| | - Ana Cristina Bahia
- Laboratório de Bioquímica de Insetos e Parasitos, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, CEP 21.941-170, Brazil
| | - Rosa Amélia Santana
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, CEP 69.040-000, Brazil
- Programa de Pós-Graduação em Medicina Tropical, Fundação de Medicina Tropical Heitor Vieira Dourado, Universidade do Estado do Amazonas, Manaus, Amazonas, CEP 69.040-000, Brazil
- Instituto de Pesquisa Leônidas & Maria Deane, Fundação Oswaldo Cruz, Manaus, Amazonas, CEP 69.027-070, Brazil
| | - Igor Belém de Souza
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, CEP 69.040-000, Brazil
- Programa de Pós-Graduação em Medicina Tropical, Fundação de Medicina Tropical Heitor Vieira Dourado, Universidade do Estado do Amazonas, Manaus, Amazonas, CEP 69.040-000, Brazil
| | - Gigliola Mayara Ayres D'Elia
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, CEP 69.040-000, Brazil
- Programa de Pós-Graduação em Medicina Tropical, Fundação de Medicina Tropical Heitor Vieira Dourado, Universidade do Estado do Amazonas, Manaus, Amazonas, CEP 69.040-000, Brazil
| | - Ana Paula Marques Duarte
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, CEP 69.040-000, Brazil
- Programa de Pós-Graduação em Medicina Tropical, Fundação de Medicina Tropical Heitor Vieira Dourado, Universidade do Estado do Amazonas, Manaus, Amazonas, CEP 69.040-000, Brazil
| | - Marcus Vinicius Guimarães de Lacerda
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, CEP 69.040-000, Brazil
- Instituto de Pesquisa Leônidas & Maria Deane, Fundação Oswaldo Cruz, Manaus, Amazonas, CEP 69.027-070, Brazil
- University of Texas Medical Branch, Galveston, United States of America
| | - Wuelton Marcelo Monteiro
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, CEP 69.040-000, Brazil
- Programa de Pós-Graduação em Medicina Tropical, Fundação de Medicina Tropical Heitor Vieira Dourado, Universidade do Estado do Amazonas, Manaus, Amazonas, CEP 69.040-000, Brazil
| | - Nágila Francinete Costa Secundino
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, CEP 69.040-000, Brazil
- Programa de Pós-Graduação em Medicina Tropical, Fundação de Medicina Tropical Heitor Vieira Dourado, Universidade do Estado do Amazonas, Manaus, Amazonas, CEP 69.040-000, Brazil
- Instituto de Pesquisas René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, CEP 30.190-009, Brazil
- Programa de Pós-Graduação em Ciências da Saúde, FIOCRUZ, Belo Horizonte, Minas Gerais, CEP 30.190-009, Brazil
| | - Paulo Filemon Paolucci Pimenta
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Amazonas, CEP 69.040-000, Brazil.
- Programa de Pós-Graduação em Medicina Tropical, Fundação de Medicina Tropical Heitor Vieira Dourado, Universidade do Estado do Amazonas, Manaus, Amazonas, CEP 69.040-000, Brazil.
- Instituto de Pesquisas René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, CEP 30.190-009, Brazil.
- Programa de Pós-Graduação em Ciências da Saúde, FIOCRUZ, Belo Horizonte, Minas Gerais, CEP 30.190-009, Brazil.
| | - Leonardo Barbosa Koerich
- Departamento de Parasitologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, CEP 31.270-901, Brazil.
| |
Collapse
|
12
|
Thia JA, Umina PA, Hoffmann AA. Ace and ace-like genes of invasive redlegged earth mite: copy number variation, target-site mutations, and their associations with organophosphate insensitivity. PEST MANAGEMENT SCIENCE 2023; 79:4219-4230. [PMID: 37332098 DOI: 10.1002/ps.7619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 06/13/2023] [Accepted: 06/19/2023] [Indexed: 06/20/2023]
Abstract
BACKGROUND Invasive Australian populations of redlegged earth mite, Halotydeus destructor (Tucker), are evolving increasing organophosphate resistance. In addition to the canonical ace gene, the target gene of organophosphates, the H. destructor genome contains many radiated ace-like genes that vary in copy number and amino acid sequence. In this work, we characterise copy number and target-site mutation variation at the canonical ace and ace-like genes and test for potential associations with organophosphate insensitivity. This was achieved through comparisons of whole-genome pool-seq data from alive and dead mites following organophosphate exposure. RESULTS A combination of increased copy number and target-site mutations at the canonical ace was associated with organophosphate insensitivity in H. destructor. Resistant populations were segregating for G119S, A201S, F331Y at the canonical ace. A subset of populations also had copy numbers of canonical ace > 2, which potentially helps overexpress proteins carrying these target-site mutations. Haplotypes possessing different copy numbers and target-site mutations of the canonical ace gene may be under selection across H. destructor populations. We also detected some evidence that increases in copy number of radiated ace-like genes are associated with organophosphate insensitivity, which might suggest potential roles in sequestration or breakdown of organophosphates. CONCLUSION Different combinations of target-site mutations and (or) copy number variation in the canonical ace and ace-like genes may provide non-convergent ways for H. destructor to respond to organophosphate selection. However, these changes may only play a partial role in organophosphate insensitivity, which appears to have a polygenic architecture. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Joshua A Thia
- Bio21 Institute, School of BioSciences, The University of Melbourne, Melbourne, VIC, Australia
| | - Paul A Umina
- Bio21 Institute, School of BioSciences, The University of Melbourne, Melbourne, VIC, Australia
- Cesar Australia, Brunswick, VIC, Australia
| | - Ary A Hoffmann
- Bio21 Institute, School of BioSciences, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
13
|
Muthu Lakshmi Bavithra C, Murugan M, Pavithran S, Naveena K. Enthralling genetic regulatory mechanisms meddling insecticide resistance development in insects: role of transcriptional and post-transcriptional events. Front Mol Biosci 2023; 10:1257859. [PMID: 37745689 PMCID: PMC10511911 DOI: 10.3389/fmolb.2023.1257859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 08/18/2023] [Indexed: 09/26/2023] Open
Abstract
Insecticide resistance in insects severely threatens both human health and agriculture, making insecticides less compelling and valuable, leading to frequent pest management failures, rising input costs, lowering crop yields, and disastrous public health. Insecticide resistance results from multiple factors, mainly indiscriminate insecticide usage and mounted selection pressure on insect populations. Insects respond to insecticide stress at the cellular level by modest yet significant genetic propagations. Transcriptional, co-transcriptional, and post-transcriptional regulatory signals of cells in organisms regulate the intricate processes in gene expressions churning the genetic information in transcriptional units into proteins and non-coding transcripts. Upregulation of detoxification enzymes, notably cytochrome P450s (CYPs), glutathione S-transferases (GSTs), esterases [carboxyl choline esterase (CCE), carboxyl esterase (CarE)] and ATP Binding Cassettes (ABC) at the transcriptional level, modification of target sites, decreased penetration, or higher excretion of insecticides are the noted insect physiological responses. The transcriptional regulatory pathways such as AhR/ARNT, Nuclear receptors, CncC/Keap1, MAPK/CREB, and GPCR/cAMP/PKA were found to regulate the detoxification genes at the transcriptional level. Post-transcriptional changes of non-coding RNAs (ncRNAs) such as microRNAs (miRNA), long non-coding RNAs (lncRNA), and epitranscriptomics, including RNA methylation, are reported in resistant insects. Additionally, genetic modifications such as mutations in the target sites and copy number variations (CNV) are also influencing insecticide resistance. Therefore, these cellular intricacies may decrease insecticide sensitivity, altering the concentrations or activities of proteins involved in insecticide interactions or detoxification. The cellular episodes at the transcriptional and post-transcriptional levels pertinent to insecticide resistance responses in insects are extensively covered in this review. An overview of molecular mechanisms underlying these biological rhythms allows for developing alternative pest control methods to focus on insect vulnerabilities, employing reverse genetics approaches like RNA interference (RNAi) technology to silence particular resistance-related genes for sustained insect management.
Collapse
Affiliation(s)
| | - Marimuthu Murugan
- Department of Agricultural Entomology, Tamil Nadu Agricultural University, Coimbatore, India
| | | | - Kathirvel Naveena
- Centre for Plant Protection Studies, Tamil Nadu Agricultural University, Coimbatore, India
| |
Collapse
|
14
|
Lo Y, Bruxaux J, Rodríguez de la Vega RC, O'Donnell S, Snirc A, Coton M, Le Piver M, Le Prieur S, Roueyre D, Dupont J, Houbraken J, Debuchy R, Ropars J, Giraud T, Branca A. Domestication in dry-cured meat Penicillium fungi: Convergent specific phenotypes and horizontal gene transfers without strong genetic subdivision. Evol Appl 2023; 16:1637-1660. [PMID: 37752962 PMCID: PMC10519415 DOI: 10.1111/eva.13591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/17/2023] [Accepted: 08/18/2023] [Indexed: 09/28/2023] Open
Abstract
Some fungi have been domesticated for food production, with genetic differentiation between populations from food and wild environments, and food populations often acquiring beneficial traits through horizontal gene transfers (HGTs). Studying their adaptation to human-made substrates is of fundamental and applied importance for understanding adaptation processes and for further strain improvement. We studied here the population structures and phenotypes of two distantly related Penicillium species used for dry-cured meat production, P. nalgiovense, the most common species in the dry-cured meat food industry, and P. salamii, used locally by farms. Both species displayed low genetic diversity, lacking differentiation between strains isolated from dry-cured meat and those from other environments. Nevertheless, the strains collected from dry-cured meat within each species displayed slower proteolysis and lipolysis than their wild conspecifics, and those of P. nalgiovense were whiter. Phenotypically, the non-dry-cured meat strains were more similar to their sister species than to their conspecific dry-cured meat strains, indicating an evolution of specific phenotypes in dry-cured meat strains. A comparison of available Penicillium genomes from various environments revealed HGTs, particularly between P. nalgiovense and P. salamii (representing almost 1.5 Mb of cumulative length). HGTs additionally involved P. biforme, also found in dry-cured meat products. We further detected positive selection based on amino acid changes. Our findings suggest that selection by humans has shaped the P. salamii and P. nalgiovense populations used for dry-cured meat production, which constitutes domestication. Several genetic and phenotypic changes were similar in P. salamii, P. nalgiovense and P. biforme, indicating convergent adaptation to the same human-made environment. Our findings have implications for fundamental knowledge on adaptation and for the food industry: the discovery of different phenotypes and of two mating types paves the way for strain improvement by conventional breeding, to elucidate the genomic bases of beneficial phenotypes and to generate diversity.
Collapse
Affiliation(s)
- Ying‐Chu Lo
- IDEEV – Laboratoire Ecologie, Systématique et Evolution, CNRS, AgroParisTechUniversité Paris‐SaclayGif‐sur‐YvetteFrance
| | - Jade Bruxaux
- IDEEV – Laboratoire Ecologie, Systématique et Evolution, CNRS, AgroParisTechUniversité Paris‐SaclayGif‐sur‐YvetteFrance
- Department of Ecology and Environmental ScienceUmeå UniversityUmeåSweden
| | | | - Samuel O'Donnell
- IDEEV – Laboratoire Ecologie, Systématique et Evolution, CNRS, AgroParisTechUniversité Paris‐SaclayGif‐sur‐YvetteFrance
| | - Alodie Snirc
- IDEEV – Laboratoire Ecologie, Systématique et Evolution, CNRS, AgroParisTechUniversité Paris‐SaclayGif‐sur‐YvetteFrance
| | - Monika Coton
- Univ Brest, Laboratoire Universitaire de Biodiversité et Ecologie MicrobiennePlouzanéFrance
| | - Mélanie Le Piver
- Laboratoire Interprofessionnel de Production – SAS L.I.PAurillacFrance
| | - Stéphanie Le Prieur
- IDEEV – Laboratoire Ecologie, Systématique et Evolution, CNRS, AgroParisTechUniversité Paris‐SaclayGif‐sur‐YvetteFrance
| | - Daniel Roueyre
- Laboratoire Interprofessionnel de Production – SAS L.I.PAurillacFrance
| | - Joëlle Dupont
- Origine, Structure, Evolution de la Biodiversité, UMR 7205 CNRS‐MNHN, Muséum National d'Histoire NaturelleParis Cedex 05France
| | - Jos Houbraken
- Westerdijk Fungal Biodiversity InstituteUtrechtThe Netherlands
| | - Robert Debuchy
- Université Paris‐Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC)Gif‐sur‐YvetteFrance
| | - Jeanne Ropars
- IDEEV – Laboratoire Ecologie, Systématique et Evolution, CNRS, AgroParisTechUniversité Paris‐SaclayGif‐sur‐YvetteFrance
| | - Tatiana Giraud
- IDEEV – Laboratoire Ecologie, Systématique et Evolution, CNRS, AgroParisTechUniversité Paris‐SaclayGif‐sur‐YvetteFrance
| | - Antoine Branca
- IDEEV – Laboratoire Ecologie, Systématique et Evolution, CNRS, AgroParisTechUniversité Paris‐SaclayGif‐sur‐YvetteFrance
- IDEEV – Laboratoire Evolution, Génomes Comportement, EcologieCNRS Université Paris Saclay UMR 9191, IRD UMR 247Gif‐sur‐YvetteFrance
| |
Collapse
|
15
|
Lucas ER, Nagi SC, Egyir-Yawson A, Essandoh J, Dadzie S, Chabi J, Djogbénou LS, Medjigbodo AA, Edi CV, Kétoh GK, Koudou BG, Van't Hof AE, Rippon EJ, Pipini D, Harding NJ, Dyer NA, Cerdeira LT, Clarkson CS, Kwiatkowski DP, Miles A, Donnelly MJ, Weetman D. Genome-wide association studies reveal novel loci associated with pyrethroid and organophosphate resistance in Anopheles gambiae and Anopheles coluzzii. Nat Commun 2023; 14:4946. [PMID: 37587104 PMCID: PMC10432508 DOI: 10.1038/s41467-023-40693-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 08/03/2023] [Indexed: 08/18/2023] Open
Abstract
Resistance to insecticides in Anopheles mosquitoes threatens the effectiveness of malaria control, but the genetics of resistance are only partially understood. We performed a large scale multi-country genome-wide association study of resistance to two widely used insecticides: deltamethrin and pirimiphos-methyl, using sequencing data from An. gambiae and An. coluzzii from ten locations in West Africa. Resistance was highly multi-genic, multi-allelic and variable between populations. While the strongest and most consistent association with deltamethrin resistance came from Cyp6aa1, this was based on several independent copy number variants (CNVs) in An. coluzzii, and on a non-CNV haplotype in An. gambiae. For pirimiphos-methyl, signals included Ace1, cytochrome P450s, glutathione S-transferases and the nAChR target site of neonicotinoid insecticides. The regions around Cyp9k1 and the Tep family of immune genes showed evidence of cross-resistance to both insecticides. These locally-varying, multi-allelic patterns highlight the challenges involved in genomic monitoring of resistance, and may form the basis for improved surveillance methods.
Collapse
Affiliation(s)
- Eric R Lucas
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK.
| | - Sanjay C Nagi
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | | | - John Essandoh
- Department of Biomedical Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Samuel Dadzie
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Joseph Chabi
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Luc S Djogbénou
- Tropical Infectious Diseases Research Centre (TIDRC), Université d'Abomey-Calavi (UAC), 01 B.P. 526, Cotonou, Benin
| | - Adandé A Medjigbodo
- Tropical Infectious Diseases Research Centre (TIDRC), Université d'Abomey-Calavi (UAC), 01 B.P. 526, Cotonou, Benin
| | - Constant V Edi
- Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, 01 BP 1303, Abidjan, Côte d'Ivoire
| | - Guillaume K Kétoh
- Laboratory of Ecology and Ecotoxicology, Department of Zoology, Faculty of Sciences, Université de Lomé, 01 B.P. 1515, Lomé, Togo
| | - Benjamin G Koudou
- Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, 01 BP 1303, Abidjan, Côte d'Ivoire
| | - Arjen E Van't Hof
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Branišovská 31, 370 05, České Budějovice, Czech Republic
| | - Emily J Rippon
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Dimitra Pipini
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Nicholas J Harding
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK
| | - Naomi A Dyer
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Louise T Cerdeira
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | | | | | - Alistair Miles
- Wellcome Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK
| | - Martin J Donnelly
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK.
- Wellcome Sanger Institute, Hinxton, Cambridge, CB10 1SA, UK.
| | - David Weetman
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK.
| |
Collapse
|
16
|
Ayettey J, Ablorde A, Amlalo GK, Mensah BA, Kudom AA. Entomological surveillance on Aedes aegypti during covid 19 period in Cape Coast, Ghana: Risk of arboviral outbreaks, multiple insecticide resistance and distribution of F1534C, V410L and V1016I kdr mutations. PLoS Negl Trop Dis 2023; 17:e0011397. [PMID: 37256856 DOI: 10.1371/journal.pntd.0011397] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 05/22/2023] [Indexed: 06/02/2023] Open
Abstract
BACKGROUND The study assessed the risk of transmission of Aedes-borne arboviruses in a community at Cape Coast during the Covid-19 restriction period in 2020 based on entomological indices. The spatial distribution of insecticide resistance was also assessed in Ae. aegypti population from Cape Coast. METHODS Three larval indices were calculated from a household larval survey in 100 randomly selected houses. WHO susceptibility bioassay was performed on female adult Ae. aegypti that were reared from the larvae collected from household containers and other receptacles located outside houses against four insecticides. The mosquitoes were also screened for F1534C, V1016I, and V410L kdr mutations. RESULTS The estimated larval indices in the study community were House index- 34%, Container index- 22.35%, and Breteau index- 2.02. The mosquito population was resistant to Deltamethrin (0.05%), DDT (4%), Fenitrothion (1%), and Bendiocarb (0.1%). A triple kdr mutation, F1534C, V410L and V1016I were detected in the mosquito population. CONCLUSION The study found the risk of an outbreak of Aedes-borne diseases lower in the covid-19 lockdown period than before the pandemic period. The low risk was related to frequent clean-up exercises in the community during the Covid-19 restriction period. Multiple insecticide resistance couple with three kdr mutations detected in the study population could affect the effectiveness of control measures, especially in emergency situations. The study supports sanitation improvement as a tool to control Ae. aegypti and could complement insecticide-based tools in controlling this vector.
Collapse
Affiliation(s)
- Joana Ayettey
- Department of Conservation Biology and Entomology, University of Cape Coast, Cape Coast-Ghana
| | - Aikins Ablorde
- Center for International Health, Ludwig Maximilian University of Munich, Germany
| | - Godwin K Amlalo
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra Ghana
| | - Ben A Mensah
- Department of Conservation Biology and Entomology, University of Cape Coast, Cape Coast-Ghana
| | - Andreas A Kudom
- Department of Conservation Biology and Entomology, University of Cape Coast, Cape Coast-Ghana
| |
Collapse
|
17
|
Haberkorn C, David J, Henri H, Delpuech J, Lasseur R, Vavre F, Varaldi J. A major 6 Mb superlocus is involved in pyrethroid resistance in the common bed bug Cimex lectularius. Evol Appl 2023; 16:1012-1028. [PMID: 37216030 PMCID: PMC10197226 DOI: 10.1111/eva.13550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/23/2023] [Accepted: 04/04/2023] [Indexed: 05/24/2023] Open
Abstract
In the last few years, the bed bug Cimex lectularius has been an increasing problem worldwide, mainly due to the development of insecticide resistance to pyrethroids. The characterization of resistance alleles is a prerequisite to improve surveillance and resistance management. To identify genomic variants associated with pyrethroid resistance in Cimex lectularius, we compared the genetic composition of two recent and resistant populations with that of two ancient-susceptible strains using a genome-wide pool-seq design. We identified a large 6 Mb "superlocus" showing particularly high genetic differentiation and association with the resistance phenotype. This superlocus contained several clustered resistance genes and was also characterized by a high density of structural variants (inversions, duplications). The possibility that this superlocus constitutes a resistance "supergene" that evolved after the clustering of alleles adapted to insecticide and after reduction in recombination is discussed.
Collapse
Affiliation(s)
- Chloé Haberkorn
- CNRS, VetAgro Sup, UMR 5558, Laboratoire de Biométrie et Biologie ÉvolutiveUniversité de Lyon, Université Lyon 1VilleurbanneFrance
- IZInovationLyonFrance
| | - Jean‐Philippe David
- Laboratoire d'Écologie AlpineUMR UGA‐USMB‐CNRS 5553 Université Grenoble Alpes CS 40700Grenoble cedex 9France
| | - Hélène Henri
- CNRS, VetAgro Sup, UMR 5558, Laboratoire de Biométrie et Biologie ÉvolutiveUniversité de Lyon, Université Lyon 1VilleurbanneFrance
| | - Jean‐Marie Delpuech
- CNRS, VetAgro Sup, UMR 5558, Laboratoire de Biométrie et Biologie ÉvolutiveUniversité de Lyon, Université Lyon 1VilleurbanneFrance
| | | | - Fabrice Vavre
- CNRS, VetAgro Sup, UMR 5558, Laboratoire de Biométrie et Biologie ÉvolutiveUniversité de Lyon, Université Lyon 1VilleurbanneFrance
| | - Julien Varaldi
- CNRS, VetAgro Sup, UMR 5558, Laboratoire de Biométrie et Biologie ÉvolutiveUniversité de Lyon, Université Lyon 1VilleurbanneFrance
| |
Collapse
|
18
|
Vidal-Albalat A, Kindahl T, Rajeshwari R, Lindgren C, Forsgren N, Kitur S, Tengo LS, Ekström F, Kamau L, Linusson A. Structure-Activity Relationships Reveal Beneficial Selectivity Profiles of Inhibitors Targeting Acetylcholinesterase of Disease-Transmitting Mosquitoes. J Med Chem 2023; 66:6333-6353. [PMID: 37094110 PMCID: PMC10184127 DOI: 10.1021/acs.jmedchem.3c00234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
Insecticide resistance jeopardizes the prevention of infectious diseases such as malaria and dengue fever by vector control of disease-transmitting mosquitoes. Effective new insecticidal compounds with minimal adverse effects on humans and the environment are therefore urgently needed. Here, we explore noncovalent inhibitors of the well-validated insecticidal target acetylcholinesterase (AChE) based on a 4-thiazolidinone scaffold. The 4-thiazolidinones inhibit AChE1 from the mosquitoes Anopheles gambiae and Aedes aegypti at low micromolar concentrations. Their selectivity depends primarily on the substitution pattern of the phenyl ring; halogen substituents have complex effects. The compounds also feature a pendant aliphatic amine that was important for activity; little variation of this group is tolerated. Molecular docking studies suggested that the tight selectivity profiles of these compounds are due to competition between two binding sites. Three 4-thiazolidinones tested for in vivo insecticidal activity had similar effects on disease-transmitting mosquitoes despite a 10-fold difference in their in vitro activity.
Collapse
Affiliation(s)
| | - Tomas Kindahl
- Department of Chemistry, Umeå University, SE-90187 Umeå, Sweden
| | | | | | - Nina Forsgren
- CBRN Defence and Security, Swedish Defence Research Agency, SE-90621 Umeå, Sweden
| | - Stanley Kitur
- Centre for Biotechnology Research and Development, Kenya Medical Research Institute, PO Box 54840-00200 Nairobi, Kenya
| | - Laura Sela Tengo
- Centre for Biotechnology Research and Development, Kenya Medical Research Institute, PO Box 54840-00200 Nairobi, Kenya
| | - Fredrik Ekström
- CBRN Defence and Security, Swedish Defence Research Agency, SE-90621 Umeå, Sweden
| | - Luna Kamau
- Centre for Biotechnology Research and Development, Kenya Medical Research Institute, PO Box 54840-00200 Nairobi, Kenya
| | - Anna Linusson
- Department of Chemistry, Umeå University, SE-90187 Umeå, Sweden
| |
Collapse
|
19
|
Huang X, Kaufman PE, Athrey GN, Fredregill C, Alvarez C, Shetty V, Slotman MA. Potential key genes involved in metabolic resistance to malathion in the southern house mosquito, Culex quinquefasciatus, and functional validation of CYP325BC1 and CYP9M12 as candidate genes using RNA interference. BMC Genomics 2023; 24:160. [PMID: 36991322 PMCID: PMC10061707 DOI: 10.1186/s12864-023-09241-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 03/10/2023] [Indexed: 03/31/2023] Open
Abstract
BACKGROUND Metabolic detoxification is one of the major mechanisms contributing to the development of resistance in mosquitoes, including the southern house mosquito, Culex quinquefasciatus. The three major detoxification supergene families, cytochrome P450s, glutathione S-transferases and general esterases, have been demonstrated to play an important role in metabolic resistance. In this study, we performed differential gene expression analysis based on high-throughput transcriptome sequencing on samples from four experimental groups to give insight into key genes involved in metabolic resistance to malathion in Cx. quinquefasciatus. We conducted a whole transcriptome analysis of field captured wild Cx. quinquefasciatus from Harris County (WI), Texas and a malathion susceptible laboratory-maintained Sebring colony (CO) to investigate metabolic insecticide resistance. Field captured mosquitoes were also phenotypically classified into the malathion resistant and malathion susceptible groups following a mortality response measure conducted using a Centers for Disease Control and Prevention (CDC) bottle assay. The live (MR) and dead (MS) specimens from the bottle assay, along with an unselected WI sample and a CO sample were processed for total RNA extraction and subjected to whole-transcriptome sequencing. RESULTS We demonstrated that the genes coding for detoxification enzymes, particularly cytochrome P450s, were highly up-regulated in the MR group compared to the MS group with similar up-regulation observed in the WI group compared to the CO group. A total of 1,438 genes were differentially expressed in comparison between MR and MS group, including 614 up-regulated genes and 824 down-regulated genes. Additionally, 1,871 genes were differentially expressed in comparison between WI and CO group, including 1,083 up-regulated genes and 788 down-regulated genes. Further analysis on differentially expressed genes from three major detoxification supergene families in both comparisons resulted in 16 detoxification genes as candidates potentially associated with metabolic resistance to malathion. Knockdown of CYP325BC1 and CYP9M12 using RNA interference on the laboratory-maintained Sebring strain significantly increased the mortality of Cx. quinquefasciatus after exposure to malathion. CONCLUSION We generated substantial transcriptomic evidence on metabolic detoxification of malathion in Cx. quinquefasciatus. We also validated the functional roles of two candidate P450 genes identified through DGE analysis. Our results are the first to demonstrate that knockdown of CYP325BC1 and CYP9M12 both significantly increased malathion susceptibility in Cx. quinquefasciatus, indicating involvement of these two genes in metabolic resistance to malathion.
Collapse
Affiliation(s)
- Xinyue Huang
- Department of Entomology, Texas A&M University Minnie Bell Heep Center, TAMU 2475 370 Olsen Blvd College Station, College Station, TX 77843 USA
| | - Phillip E. Kaufman
- Department of Entomology, Texas A&M University Minnie Bell Heep Center, TAMU 2475 370 Olsen Blvd College Station, College Station, TX 77843 USA
| | - Giridhar N. Athrey
- Department of Poultry Science, Texas A&M University, College Station, TX 77843 USA
| | - Chris Fredregill
- Harris County Public Health, Mosquito & Vector Control Division, Houston, TX 77021 USA
| | - Christina Alvarez
- Harris County Public Health, Mosquito & Vector Control Division, Houston, TX 77021 USA
| | - Vinaya Shetty
- Department of Entomology, Texas A&M University Minnie Bell Heep Center, TAMU 2475 370 Olsen Blvd College Station, College Station, TX 77843 USA
| | - Michel A. Slotman
- Department of Entomology, Texas A&M University Minnie Bell Heep Center, TAMU 2475 370 Olsen Blvd College Station, College Station, TX 77843 USA
| |
Collapse
|
20
|
Kouamé RM, Lynd A, Kouamé JK, Vavassori L, Abo K, Donnelly MJ, Edi C, Lucas E. Widespread occurrence of copy number variants and fixation of pyrethroid target site resistance in Anopheles gambiae ( s.l.) from southern Côte d'Ivoire. CURRENT RESEARCH IN PARASITOLOGY & VECTOR-BORNE DISEASES 2023; 3:100117. [PMID: 36970448 PMCID: PMC10031352 DOI: 10.1016/j.crpvbd.2023.100117] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 02/09/2023] [Accepted: 02/21/2023] [Indexed: 03/07/2023]
Abstract
Resistance to pyrethroid and organophosphate insecticides in the malaria vector Anopheles gambiae (s.l.) is conferred by a variety of genetic mutations, including single nucleotide polymorphisms (SNPs) and copy number variants (CNVs). Knowledge of the distribution of these mutations in mosquito populations is a prerequisite for establishing better strategies for their management. In this study, a total of 755 Anopheles gambiae (s.l.) from southern Côte d'Ivoire were exposed to deltamethrin or pirimiphos-methyl insecticides and were screened to assess the distribution of SNPs and CNVs known or believed to confer resistance to one or other of the insecticide classes. Most individuals from the An. gambiae (s.l.) complex were identified by molecular tests as Anopheles coluzzii. Survival to deltamethrin (from 94% to 97%) was higher than to pirimiphos-methyl (from 10% to 49%). In An. gambiae (s.s.), the SNP in the Voltage Gated Sodium Channel (Vgsc) at the 995F locus (Vgsc-995F) was fixed, while other target site mutations were rare or absent (Vgsc-402L: 0%; Vgsc-1570Y: 0%, Acetylcholinesterase Acel-280S: 14%). In An. coluzzii, Vgsc-995F was the target site SNP found at highest frequency (65%) followed by other target site mutations (Vgsc-402L: 36%; Vgsc-1570Y: 0.33%; Acel-280S: 45%). The Vgsc-995S SNP was not present. The presence of the Ace1-280S SNP was found to be significantly linked to the presence of the Ace1-CNV, Ace1_AgDup. Significant association was found between the presence of the Ace1_AgDup and pirimiphos-methyl resistance in An. gambiae (s.s.) but not in An. coluzzii. The deletion Ace1_Del97 was found in one specimen of An. gambiae (s.s.). Four CNVs in the Cyp6aa/Cyp6p gene cluster, which contains genes of known importance for resistance, were detected in An. coluzzii, the most frequent being Dup 7 (42%) and Dup 14 (26%). While none of these individual CNV alleles were significantly associated with resistance, copy number in the Cyp6aa gene region in general was associated with increased resistance to deltamethrin. Elevated expression of Cyp6p3 was nearly associated with deltamethrin resistance, although there was no association of resistance with copy number. Use of alternative insecticides and control methods to arrest resistance spread in An. coluzzii populations is merited.
Collapse
Affiliation(s)
- Ruth M.A. Kouamé
- Institut National Polytechnique Félix Houphouët Boigny, BP 1093, Yamoussoukro, Côte d’Ivoire
- Centre Suisse de Recherches Scientifiques en Côte d’Ivoire, 01 BP 1303 Abidjan 01, Côte d’Ivoire
| | - Amy Lynd
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Jackson K.I. Kouamé
- Centre Suisse de Recherches Scientifiques en Côte d’Ivoire, 01 BP 1303 Abidjan 01, Côte d’Ivoire
- Université Nangui Abrogoua, 02 BP 801 Abidjan 02, Côte d’Ivoire
| | - Laura Vavassori
- Centre Suisse de Recherches Scientifiques en Côte d’Ivoire, 01 BP 1303 Abidjan 01, Côte d’Ivoire
- Swiss Tropical and Public Health Institute, Basel, Switzerland
| | - Kouabénan Abo
- Institut National Polytechnique Félix Houphouët Boigny, BP 1093, Yamoussoukro, Côte d’Ivoire
| | - Martin J. Donnelly
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Constant Edi
- Centre Suisse de Recherches Scientifiques en Côte d’Ivoire, 01 BP 1303 Abidjan 01, Côte d’Ivoire
| | - Eric Lucas
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| |
Collapse
|
21
|
Ghosh C, Kumar N, Kushwah RBS, M. S, Joshi SG, Ramanjini CK, Alalamath T, Srinivasan S, Subramani S, Kumar S, Swain S. Enrichment of phenotype among biological forms of Anopheles stephensi Liston through establishment of isofemale lines. Parasit Vectors 2023; 16:79. [PMID: 36855157 PMCID: PMC9976541 DOI: 10.1186/s13071-023-05696-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 02/07/2023] [Indexed: 03/02/2023] Open
Abstract
BACKGROUND Vector management programs rely on knowledge of the biology and genetic make-up of mosquitoes. Anopheles stephensi is a major invasive urban malaria vector, distributed throughout the Indian subcontinent and Middle East, and has recently been expanding its range in Africa. With the existence of three biological forms, distinctly identifiable based on the number of ridges on eggs and varying vectorial competence, An. stephensi is a perfect species for developing isofemale lines, which can be tested for insecticide susceptibility and vectorial competence of various biological forms. METHODS We describe key steps involved in establishment and validation of isofemale lines. Isofemale colonies were further used for the characterization of insecticide susceptibility and differential vector competence. The results were statistically evaluated through descriptive and inferential statistics using Vassar Stat and Prism GraphPad software packages. RESULTS Through a meticulous selection process, we overcame an initial inbreeding depression and found no significant morphometric differences in wings and egg size between the parental and respective isofemale lines in later generations. IndCh and IndInt strains showed variations in resistance to different insecticides belonging to all four major classes. We observed a significant change in vectorial competence between the respective isofemale and parental lines. CONCLUSIONS Isofemale lines can be a valuable resource for characterizing and enhancing several genotypic and phenotypic traits. This is the first detailed report of the establishment of two isofemale lines of type and intermediate biological forms in Anopheles stephensi. The work encompasses characterization of fitness traits among two lines through a transgenerational study. Furthermore, isofemale colonies were established and used to characterize insecticide susceptibility and vector competence. The study provides valuable insights into differential susceptibility status of the parental and isofemale lines to different insecticides belonging to the same class. Corroborating an earlier hypothesis, we demonstrate the high vector competence of the type form relative to the intermediate form using homozygous lines. Using these lines, it is now possible to study host-parasite interactions and identify factors that might be responsible for altered susceptibility and increased vector competence in An. stephensi biological forms that would also pave the way for developing better vector management strategies.
Collapse
Affiliation(s)
- Chaitali Ghosh
- grid.508203.c0000 0004 9410 4854Tata Institute for Genetics and Society, Centre at inStem-GKVK Campus, Bellary Road, Bangalore, 560065 India
| | - Naveen Kumar
- grid.508203.c0000 0004 9410 4854Tata Institute for Genetics and Society, Centre at inStem-GKVK Campus, Bellary Road, Bangalore, 560065 India
| | - Raja Babu Singh Kushwah
- grid.508203.c0000 0004 9410 4854Tata Institute for Genetics and Society, Centre at inStem-GKVK Campus, Bellary Road, Bangalore, 560065 India ,grid.264756.40000 0004 4687 2082Present Address: Department of Entomology, Texas A&M University, College Station, TX 7845 USA
| | - Soumya M.
- grid.508203.c0000 0004 9410 4854Tata Institute for Genetics and Society, Centre at inStem-GKVK Campus, Bellary Road, Bangalore, 560065 India
| | - Soumya Gopal Joshi
- grid.508203.c0000 0004 9410 4854Tata Institute for Genetics and Society, Centre at inStem-GKVK Campus, Bellary Road, Bangalore, 560065 India
| | - Chethan Kumar Ramanjini
- grid.508203.c0000 0004 9410 4854Tata Institute for Genetics and Society, Centre at inStem-GKVK Campus, Bellary Road, Bangalore, 560065 India
| | - Tejashwini Alalamath
- grid.418831.70000 0004 0500 991XInstitute of Bioinformatics and Applied Biotechnology, Biotech Park, Electronic City, Phase I, Bangalore, 560100 India
| | - Subhashini Srinivasan
- grid.418831.70000 0004 0500 991XInstitute of Bioinformatics and Applied Biotechnology, Biotech Park, Electronic City, Phase I, Bangalore, 560100 India
| | - Suresh Subramani
- grid.266100.30000 0001 2107 4242University of California San Diego, La Jolla, CA 92093 USA
| | - Sampath Kumar
- Tata Institute for Genetics and Society, Centre at inStem-GKVK Campus, Bellary Road, Bangalore, 560065, India.
| | - Sunita Swain
- Tata Institute for Genetics and Society, Centre at inStem-GKVK Campus, Bellary Road, Bangalore, 560065, India.
| |
Collapse
|
22
|
Thia JA, Korhonen PK, Young ND, Gasser RB, Umina PA, Yang Q, Edwards O, Walsh T, Hoffmann AA. The redlegged earth mite draft genome provides new insights into pesticide resistance evolution and demography in its invasive Australian range. J Evol Biol 2023; 36:381-398. [PMID: 36573922 PMCID: PMC10107102 DOI: 10.1111/jeb.14144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/13/2022] [Accepted: 11/03/2022] [Indexed: 12/28/2022]
Abstract
Genomic data provide valuable insights into pest management issues such as resistance evolution, historical patterns of pest invasions and ongoing population dynamics. We assembled the first reference genome for the redlegged earth mite, Halotydeus destructor (Tucker, 1925), to investigate adaptation to pesticide pressures and demography in its invasive Australian range using whole-genome pool-seq data from regionally distributed populations. Our reference genome comprises 132 autosomal contigs, with a total length of 48.90 Mb. We observed a large complex of ace genes, which has presumably evolved from a long history of organophosphate selection in H. destructor and may contribute towards organophosphate resistance through copy number variation, target-site mutations and structural variants. In the putative ancestral H. destructor ace gene, we identified three target-site mutations (G119S, A201S and F331Y) segregating in organophosphate-resistant populations. Additionally, we identified two new para sodium channel gene mutations (L925I and F1020Y) that may contribute to pyrethroid resistance. Regional structuring observed in population genomic analyses indicates that gene flow in H. destructor does not homogenize populations across large geographic distances. However, our demographic analyses were equivocal on the magnitude of gene flow; the short invasion history of H. destructor makes it difficult to distinguish scenarios of complete isolation vs. ongoing migration. Nonetheless, we identified clear signatures of reduced genetic diversity and smaller inferred effective population sizes in eastern vs. western populations, which is consistent with the stepping-stone invasion pathway of this pest in Australia. These new insights will inform development of diagnostic genetic markers of resistance, further investigation into the multifaceted organophosphate resistance mechanism and predictive modelling of resistance evolution and spread.
Collapse
Affiliation(s)
- Joshua A Thia
- Bio21 Institute, School of BioSciences, The University of Melbourne, Melbourne, Victoria, Australia
| | - Pasi K Korhonen
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Melbourne, Victoria, Australia
| | - Neil D Young
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Melbourne, Victoria, Australia
| | - Robin B Gasser
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Melbourne, Victoria, Australia
| | | | - Qiong Yang
- Bio21 Institute, School of BioSciences, The University of Melbourne, Melbourne, Victoria, Australia
| | - Owain Edwards
- Land and Water, CSIRO, Floreat, Western Australia, Australia
| | - Tom Walsh
- CSIRO, Black Mountain Laboratories, Canberra, Australian Capital Territory, Australia.,Applied BioSciences, Macquarie University, Sydney, New South Wales, Australia
| | - Ary A Hoffmann
- Bio21 Institute, School of BioSciences, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
23
|
Lucas ER, Nagi SC, Egyir-Yawson A, Essandoh J, Dadzie S, Chabi J, Djogbénou LS, Medjigbodo AA, Edi CV, Ketoh GK, Koudou BG, Van't Hof AE, Rippon EJ, Pipini D, Harding NJ, Dyer NA, Cerdeira LT, Clarkson CS, Kwiatkowski DP, Miles A, Donnelly MJ, Weetman D. Genome-wide association studies reveal novel loci associated with pyrethroid and organophosphate resistance in Anopheles gambiae s.l. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.13.523889. [PMID: 36712022 PMCID: PMC9882144 DOI: 10.1101/2023.01.13.523889] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Resistance to insecticides in Anopheles mosquitoes threatens the effectiveness of the most widespread tools currently used to control malaria. The genetic underpinnings of resistance are still only partially understood, with much of the variance in resistance phenotype left unexplained. We performed a multi-country large scale genome-wide association study of resistance to two insecticides widely used in malaria control: deltamethrin and pirimiphos-methyl. Using a bioassay methodology designed to maximise the phenotypic difference between resistant and susceptible samples, we sequenced 969 phenotyped female An. gambiae and An. coluzzii from ten locations across four countries in West Africa (Benin, Côte d'Ivoire, Ghana and Togo), identifying single nucleotide polymorphisms (SNPs) and copy number variants (CNVs) segregating in the populations. The patterns of resistance association were highly multiallelic and variable between populations, with different genomic regions contributing to resistance, as well as different mutations within a given region. While the strongest and most consistent association with deltamethrin resistance came from the region around Cyp6aa1 , this resistance was based on a combination of several independent CNVs in An. coluzzii , and on a non-CNV bearing haplotype in An. gambiae . Further signals involved a range of cytochrome P450, mitochondrial, and immunity genes. Similarly, for pirimiphos-methyl, while the strongest signal came from the region of Ace1 , more widespread signals included cytochrome P450s, glutathione S-transferases, and a subunit of the nAChR target site of neonicotinoid insecticides. The regions around Cyp9k1 and the Tep family of immune genes were associated with resistance to both insecticide classes, suggesting possible cross-resistance mechanisms. These locally-varying, multigenic and multiallelic patterns highlight the challenges involved in genomic monitoring and surveillance of resistance, and form the basis for improvement of methods used to detect and predict resistance. Based on simulations of resistance variants, we recommend that yet larger scale studies, exceeding 500 phenotyped samples per population, are required to better identify associated genomic regions.
Collapse
Affiliation(s)
- Eric R Lucas
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - Sanjay C Nagi
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | | | - John Essandoh
- Department of Biomedical Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Sam Dadzie
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Joseph Chabi
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Luc S Djogbénou
- Tropical Infectious Diseases Research Centre (TIDRC), Université d'Abomey-Calavi (UAC), 01 B.P. 526, Cotonou, Benin
| | - Adandé A Medjigbodo
- Tropical Infectious Diseases Research Centre (TIDRC), Université d'Abomey-Calavi (UAC), 01 B.P. 526, Cotonou, Benin
| | - Constant V Edi
- Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, 01 BP 1303 Abidjan 01, Côte d'Ivoire
| | - Guillaume K Ketoh
- Laboratory of Ecology and Ecotoxicology, Department of Zoology, Faculty of Sciences, Université de Lomé, 01 B.P: 1515 Lomé 01, Togo
| | - Benjamin G Koudou
- Centre Suisse de Recherches Scientifiques en Côte d'Ivoire, 01 BP 1303 Abidjan 01, Côte d'Ivoire
| | - Arjen E Van't Hof
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Branišovská 31, 370 05 České Budějovice, Czech Republic
| | - Emily J Rippon
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - Dimitra Pipini
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - Nicholas J Harding
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, United Kingdom
| | - Naomi A Dyer
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - Louise T Cerdeira
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - Chris S Clarkson
- Wellcome Sanger Institute, Hinxton, Cambridge CB10 1SA, United Kingdom
| | | | - Alistair Miles
- Wellcome Sanger Institute, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - Martin J Donnelly
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
- Wellcome Sanger Institute, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - David Weetman
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| |
Collapse
|
24
|
Paez S, Kraus RHS, Shapiro B, Gilbert MTP, Jarvis ED, Al-Ajli FO, Ceballos G, Crawford AJ, Fedrigo O, Johnson RN, Johnson WE, Marques-Bonet T, Morin PA, Mueller RC, Ryder OA, Teeling EC, Venkatesh B. Reference genomes for conservation. Science 2022; 377:364-366. [PMID: 35862547 DOI: 10.1126/science.abm8127] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
High-quality reference genomes for non-model species can benefit conservation.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Farooq Omar Al-Ajli
- Vertebrate Genome Laboratory, The Rockefeller University, New York, NY 10065, USA.,Monash University Malaysia Genomics Facility, School of Science, Selangor Darul Ehsan, Malaysia.,Tropical Medicine and Biology Multidisciplinary Platform, Monash University Malaysia, Selangor Darul Ehsan, Malaysia
| | - Gerardo Ceballos
- Instituto de Ecologia, Universidad Nacional Autónoma de Mexico, CU, Coyoacán, 04510 Ciudad de México, Mexico
| | - Andrew J Crawford
- Department of Biological Sciences, Universidad de los Andes, Bogotá 111711, Colombia
| | - Olivier Fedrigo
- Vertebrate Genome Laboratory, The Rockefeller University, New York, NY 10065, USA
| | - Rebecca N Johnson
- Smithsonian National Museum of Natural History, Smithsonian Institution, Washington, DC 20013-7012, USA
| | - Warren E Johnson
- The Walter Reed Biosystematics Unit and Smithsonian Conservation Biology Institute, Smithsonian Institution, 4210 Silver Hill Road, Suitland, MD 20746, USA
| | - Tomas Marques-Bonet
- Institute of Evolutionary Biology (UPF-CSIC), PRBB, Dr. Aiguader 88, 08003 Barcelona, Spain.,Catalan Institution of Research and Advanced Studies (ICREA), Passeig de Lluís Companys, 23, 08010 Barcelona, Spain.,CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Baldiri i Reixac 4 08028, Spain.,Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, Edifici ICTA-ICP, c/ Columnes s/n, 08193 Cerdanyola del Vallès, Spain
| | - Phillip A Morin
- Southwest Fisheries Science Center, National Marine Fisheries Service, NOAA, La Jolla, CA, USA
| | - Ralf C Mueller
- Department of Migration, Max Planck Institute of Animal Behavior, 78315 Radolfzell, Germany.,Department of Biology, University of Konstanz, 78464 Konstanz, Germany
| | - Oliver A Ryder
- San Diego Zoo Wildlife Alliance, Beckman Center, Escondido, CA 92027, USA
| | - Emma C Teeling
- School of Biology and Environmental Science, University College, Dublin, Ireland
| | - Byrappa Venkatesh
- Comparative Genomics Laboratory, Institute of Molecular and Cell Biology, A*STAR, Biopolis, Singapore 138673, Singapore
| |
Collapse
|
25
|
Multi-insecticide resistant malaria vectors in the field remain susceptible to malathion, despite the presence of Ace1 point mutations. PLoS Genet 2022; 18:e1009963. [PMID: 35143477 PMCID: PMC8830663 DOI: 10.1371/journal.pgen.1009963] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 11/23/2021] [Indexed: 12/13/2022] Open
Abstract
Insecticide resistance in Anopheles mosquitoes is seriously threatening the success of insecticide-based malaria vector control. Surveillance of insecticide resistance in mosquito populations and identifying the underlying mechanisms enables optimisation of vector control strategies. Here, we investigated the molecular mechanisms of insecticide resistance in three Anopheles coluzzii field populations from southern Côte d’Ivoire, including Agboville, Dabou and Tiassalé. All three populations were resistant to bendiocarb, deltamethrin and DDT, but not or only very weakly resistant to malathion. The absence of malathion resistance is an unexpected result because we found the acetylcholinesterase mutation Ace1-G280S at high frequencies, which would typically confer cross-resistance to carbamates and organophosphates, including malathion. Notably, Tiassalé was the most susceptible population to malathion while being the most resistant one to the pyrethroid deltamethrin. The resistance ratio to deltamethrin between Tiassalé and the laboratory reference colony was 1,800 fold. By sequencing the transcriptome of individual mosquitoes, we found numerous cytochrome P450-dependent monooxygenases – including CYP6M2, CYP6P2, CYP6P3, CYP6P4 and CYP6P5 – overexpressed in all three field populations. This could be an indication for negative cross-resistance caused by overexpression of pyrethroid-detoxifying cytochrome P450s that may activate pro-insecticides, thereby increasing malathion susceptibility. In addition to the P450s, we found several overexpressed carboxylesterases, glutathione S-transferases and other candidates putatively involved in insecticide resistance. Insecticide-based mosquito control has saved millions of lives from malaria and other vector-borne diseases. However, the emergence and increase of insecticide resistant Anopheles populations seriously threaten to derail malaria control programmes. Surveillance of insecticide resistance and understanding the underlying molecular mechanisms are key for choosing effective vector control strategies. Here, we characterised the degree and mechanisms of resistance in three malaria vector populations from Côte d’Ivoire. Our key finding was that these multi-insecticide resistant malaria vectors largely remained susceptible to malathion, despite the presence of a mutation in the target enzyme of this organophosphate insecticide that would typically confer resistance. Intriguingly, we found overexpression of metabolic P450 enzymes that are known to detoxify insecticides and activate pro-insecticides such as malathion. It is highly probable that, here, we observed P450-mediated negative cross-resistance for the first time in Anopheles field populations. Negative cross-resistance merits further investigation as advantage could be taken of this phenomenon in the fight against multi-resistant malaria vectors.
Collapse
|
26
|
Vargas-Chavez C, Longo Pendy NM, Nsango SE, Aguilera L, Ayala D, González J. Transposable element variants and their potential adaptive impact in urban populations of the malaria vector Anopheles coluzzii. Genome Res 2021; 32:189-202. [PMID: 34965939 PMCID: PMC8744685 DOI: 10.1101/gr.275761.121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 11/24/2021] [Indexed: 11/28/2022]
Abstract
Anopheles coluzzii is one of the primary vectors of human malaria in sub-Saharan Africa. Recently, it has spread into the main cities of Central Africa threatening vector control programs. The adaptation of An. coluzzii to urban environments partly results from an increased tolerance to organic pollution and insecticides. Some of the molecular mechanisms for ecological adaptation are known, but the role of transposable elements (TEs) in the adaptive processes of this species has not been studied yet. As a first step toward assessing the role of TEs in rapid urban adaptation, we sequenced using long reads six An. coluzzii genomes from natural breeding sites in two major Central Africa cities. We de novo annotated TEs in these genomes and in an additional high-quality An. coluzzii genome, and we identified 64 new TE families. TEs were nonrandomly distributed throughout the genome with significant differences in the number of insertions of several superfamilies across the studied genomes. We identified seven putatively active families with insertions near genes with functions related to vectorial capacity, and several TEs that may provide promoter and transcription factor binding sites to insecticide resistance and immune-related genes. Overall, the analysis of multiple high-quality genomes allowed us to generate the most comprehensive TE annotation in this species to date and identify several TE insertions that could potentially impact both genome architecture and the regulation of functionally relevant genes. These results provide a basis for future studies of the impact of TEs on the biology of An. coluzzii.
Collapse
Affiliation(s)
- Carlos Vargas-Chavez
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), 08003 Barcelona, Spain
| | - Neil Michel Longo Pendy
- Centre Interdisciplinaire de Recherches Médicales de Franceville (CIRMF), BP 769, Franceville, Gabon.,École Doctorale Régional (EDR) en Infectiologie Tropicale d'Afrique Centrale, BP 876, Franceville, Gabon
| | - Sandrine E Nsango
- Faculté de Médecine et des Sciences Pharmaceutiques, Université de Douala, BP 2701, Douala, Cameroun
| | - Laura Aguilera
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), 08003 Barcelona, Spain
| | - Diego Ayala
- Centre Interdisciplinaire de Recherches Médicales de Franceville (CIRMF), BP 769, Franceville, Gabon.,Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle (MIVEGEC), Université Montpellier, CNRS, IRD, 64501 Montpellier, France
| | - Josefa González
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), 08003 Barcelona, Spain
| |
Collapse
|
27
|
Zhu S, Gao B, Umetsu Y, Peigneur S, Li P, Ohki S, Tytgat J. Adaptively evolved human oral actinomyces-sourced defensins show therapeutic potential. EMBO Mol Med 2021; 14:e14499. [PMID: 34927385 PMCID: PMC8819291 DOI: 10.15252/emmm.202114499] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 11/29/2021] [Accepted: 12/03/2021] [Indexed: 12/12/2022] Open
Abstract
The development of eukaryote‐derived antimicrobial peptides as systemically administered drugs has proven a challenging task. Here, we report the first human oral actinomyces‐sourced defensin—actinomycesin—that shows promise for systemic therapy. Actinomycesin and its homologs are only present in actinobacteria and myxobacteria, and share similarity with a group of ancient invertebrate‐type defensins reported in fungi and invertebrates. Signatures of natural selection were detected in defensins from the actinomyces colonized in human oral cavity and ruminant rumen and dental plaque, highlighting their role in adaptation to complex multispecies bacterial communities. Consistently, actinomycesin exhibited potent antibacterial activity against oral bacteria and clinical isolates of Staphylococcus and synergized with two classes of human salivary antibacterial factors. Actinomycesin specifically inhibited bacterial peptidoglycan synthesis and displayed weak immunomodulatory activity and low toxicity on human and mammalian cells and ion channels in the heart and central nervous system. Actinomycesin was highly efficient in mice infected with Streptococcus pneumoniae and mice with MRSA‐induced experimental peritoneal infection. This work identifies human oral bacteria as a new source of systemic anti‐infective drugs.
Collapse
Affiliation(s)
- Shunyi Zhu
- Group of Peptide Biology and Evolution, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Bin Gao
- Group of Peptide Biology and Evolution, State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yoshitaka Umetsu
- Center for Nano Materials and Technology (CNMT), Japan Advanced Institute of Science and Technology (JAIST), Nomi, Japan
| | - Steve Peigneur
- Toxicology and Pharmacology, University of Leuven, Leuven, Belgium
| | - Ping Li
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety (Chinese Academy of Sciences), National Center for Nanoscience and Technology, Beijing, China
| | - Shinya Ohki
- Center for Nano Materials and Technology (CNMT), Japan Advanced Institute of Science and Technology (JAIST), Nomi, Japan
| | - Jan Tytgat
- Toxicology and Pharmacology, University of Leuven, Leuven, Belgium
| |
Collapse
|
28
|
Impacts of fungal entomopathogens on survival and immune responses of Aedes albopictus and Culex pipiens mosquitoes in the context of native Wolbachia infections. PLoS Negl Trop Dis 2021; 15:e0009984. [PMID: 34843477 PMCID: PMC8670716 DOI: 10.1371/journal.pntd.0009984] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/14/2021] [Accepted: 11/08/2021] [Indexed: 11/29/2022] Open
Abstract
Microbial control of mosquitoes via the use of symbiotic or pathogenic microbes, such as Wolbachia and entomopathogenic fungi, are promising alternatives to synthetic insecticides to tackle the rapid increase in insecticide resistance and vector-borne disease outbreaks. This study evaluated the susceptibility and host responses of two important mosquito vectors, Ae. albopictus and Cx. pipiens, that naturally carry Wolbachia, to infections by entomopathogenic fungi. Our study indicated that while Wolbachia presence did not provide a protective advantage against entomopathogenic fungal infection, it nevertheless influenced the bacterial / fungal load and the expression of select anti-microbial effectors and phenoloxidase cascade genes in mosquitoes. Furthermore, although host responses from Ae. albopictus and Cx. pipiens were mostly similar, we observed contrasting phenotypes with regards to susceptibility and immune responses to fungal entomopathogenic infection in these two mosquitoes. This study provides new insights into the intricate multipartite interaction between the mosquito host, its native symbiont and pathogenic microbes that might be employed to control mosquito populations. Control of mosquitoes via the use of microbes is a promising alternative to synthetic insecticides and a potential solution to tackle the rapid evolution of insecticide resistance in mosquitoes. Recently, a parasitic microbe named Wolbachia has been found to render the mosquito resistant to virus infections and it is currently showing great promise in reducing dengue cases on tests conducted in the field. On the other side of the symbiotic spectrum, we have entomopathogenic fungi, who have evolved to naturally infect and kill insects, and offer a unique potential to control mosquito populations. In this study, we examined the effect that native Wolbachia can have on the mosquito susceptibility to fungal entomopathogens. Our findings show that while Wolbachia does not affect the action of entomopathogenic fungi on mosquitoes, it does influence the expression of important mosquito immune genes, suggesting that Wolbachia has a closer interaction with the mosquito response to microbial infections than previously reported. Furthermore, our study provides new records on the susceptibility of two important mosquito vectors in the USA (Aedes albopictus and Culex pipiens), with Cx. pipiens showing significant resistance to the action of one fungal entomopathogen tested. This article informs on the mosquito susceptibility and interaction with other microbes that will aid in the selection of fungal entomopathogens to control mosquitoes, especially those that carry native microbes such as Wolbachia.
Collapse
|
29
|
Development of the indirect flight muscles of Aedes aegypti, a main arbovirus vector. BMC DEVELOPMENTAL BIOLOGY 2021; 21:11. [PMID: 34445959 PMCID: PMC8394598 DOI: 10.1186/s12861-021-00242-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 08/08/2021] [Indexed: 11/22/2022]
Abstract
Background Flying is an essential function for mosquitoes, required for mating and, in the case of females, to get a blood meal and consequently function as a vector. Flight depends on the action of the indirect flight muscles (IFMs), which power the wings beat. No description of the development of IFMs in mosquitoes, including Aedes aegypti, is available.
Methods A. aegypti thoraces of larvae 3 and larvae 4 (L3 and L4) instars were analyzed using histochemistry and bright field microscopy. IFM primordia from L3 and L4 and IFMs from pupal and adult stages were dissected and processed to detect F-actin labelling with phalloidin-rhodamine or TRITC, or to immunodetection of myosin and tubulin using specific antibodies, these samples were analyzed by confocal microscopy. Other samples were studied using transmission electron microscopy. Results At L3–L4, IFM primordia for dorsal-longitudinal muscles (DLM) and dorsal–ventral muscles (DVM) were identified in the expected locations in the thoracic region: three primordia per hemithorax corresponding to DLM with anterior to posterior orientation were present. Other three primordia per hemithorax, corresponding to DVM, had lateral position and dorsal to ventral orientation. During L3 to L4 myoblast fusion led to syncytial myotubes formation, followed by myotendon junctions (MTJ) creation, myofibrils assembly and sarcomere maturation. The formation of Z-discs and M-line during sarcomere maturation was observed in pupal stage and, the structure reached in teneral insects a classical myosin thick, and actin thin filaments arranged in a hexagonal lattice structure. Conclusions A general description of A. aegypti IFM development is presented, from the myoblast fusion at L3 to form myotubes, to sarcomere maturation at adult stage. Several differences during IFM development were observed between A. aegypti (Nematoceran) and Drosophila melanogaster (Brachyceran) and, similitudes with Chironomus sp. were observed as this insect is a Nematoceran, which is taxonomically closer to A. aegypti and share the same number of larval stages. Supplementary Information The online version contains supplementary material available at 10.1186/s12861-021-00242-8.
Collapse
|
30
|
Crespi E, Burnap R, Chen J, Das M, Gassman N, Rosa E, Simmons R, Wada H, Wang ZQ, Xiao J, Yang B, Yin J, Goldstone JV. Resolving the Rules of Robustness and Resilience in Biology Across Scales. Integr Comp Biol 2021; 61:2163-2179. [PMID: 34427654 DOI: 10.1093/icb/icab183] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/23/2021] [Accepted: 08/20/2021] [Indexed: 12/29/2022] Open
Abstract
Why do some biological systems and communities persist while others fail? Robustness, a system's stability, and resilience, the ability to return to a stable state, are key concepts that span multiple disciplines within and outside the biological sciences. Discovering and applying common rules that govern the robustness and resilience of biological systems is a critical step toward creating solutions for species survival in the face of climate change, as well as the for the ever-increasing need for food, health, and energy for human populations. We propose that network theory provides a framework for universal scalable mathematical models to describe robustness and resilience and the relationship between them, and hypothesize that resilience at lower organization levels contribute to robust systems. Insightful models of biological systems can be generated by quantifying the mechanisms of redundancy, diversity, and connectivity of networks, from biochemical processes to ecosystems. These models provide pathways towards understanding how evolvability can both contribute to and result from robustness and resilience under dynamic conditions. We now have an abundance of data from model and non-model systems and the technological and computational advances for studying complex systems. Several conceptual and policy advances will allow the research community to elucidate the rules of robustness and resilience. Conceptually, a common language and data structure that can be applied across levels of biological organization needs to be developed. Policy advances such as cross-disciplinary funding mechanisms, access to affordable computational capacity, and the integration of network theory and computer science within the standard biological science curriculum will provide the needed research environments. This new understanding of biological systems will allow us to derive ever more useful forecasts of biological behaviors and revolutionize the engineering of biological systems that can survive changing environments or disease, navigate the deepest oceans, or sustain life throughout the solar system.
Collapse
Affiliation(s)
- Erica Crespi
- School of Biological Sciences, Washington State University
| | - Robert Burnap
- Microbiology and Molecular Genetics, Oklahoma State University
| | - Jing Chen
- Department of Biological Sciences, Virginia Polytechnic Institute and State University
| | - Moumita Das
- School of Physics and Astronomy, Rochester Institute of Technology
| | | | - Epaminondas Rosa
- Department of Physics and School of Biological Sciences, Illinois State University
| | | | - Haruka Wada
- Department of Biological Sciences, Auburn University
| | - Zhen Q Wang
- Department of Biological Sciences, University at Buffalo
| | - Jie Xiao
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine
| | - Bing Yang
- Division of Plant Sciences, University of Missouri
| | - John Yin
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison
| | | |
Collapse
|
31
|
Zoh MG, Gaude T, Prud'homme SM, Riaz MA, David JP, Reynaud S. Molecular bases of P450-mediated resistance to the neonicotinoid insecticide imidacloprid in the mosquito Ae. aegypti. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 236:105860. [PMID: 34015756 DOI: 10.1016/j.aquatox.2021.105860] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 04/06/2021] [Accepted: 05/01/2021] [Indexed: 06/12/2023]
Abstract
Resistance to chemical insecticides including pyrethroids, the main insecticide class used against mosquitoes, has re-kindled interest in the use of neonicotinoids. In this context, the present study aimed to characterize the molecular basis of neonicotinoid resistance in the mosquito Aedes aegypti. Resistance mechanisms were studied by combining transcriptomic and genomic data obtained from a laboratory strain selected at the larval stage after 30 generations of exposure to imidacloprid (Imida-R line). After thirty generations of selection, larvae of the Imida-R line showed an 8-fold increased resistance to imidacloprid and a significant cross-tolerance to the pyrethroids permethrin and deltamethrin. Cross-resistance to pyrethroids was only observed in adults when larvae were previously exposed to imidacloprid suggesting a low but inducible expression of resistance alleles at the adult stage. Resistance of the Imida-R line was associated with a slower larval development time in females. Multiple detoxification enzymes were over-transcribed in larvae in association with resistance including the P450s CYP6BB2, CYP9M9 and CYP6M11 previously associated with pyrethroid resistance. Some of them together with their redox partner NADPH P450 reductase were also affected by non-synonymous mutations associated with resistance. Combining genomic and transcriptomic data allowed identifying promoter variations associated with the up-regulation of CYP6BB2 in the resistant line. Overall, these data confirm the key role of P450s in neonicotinoid resistance in Ae. aegypti and their potential to confer cross-resistance to pyrethroids, raising concerns about the use of neonicotinoids for resistance management in this mosquito species.
Collapse
Affiliation(s)
- Marius Gonse Zoh
- Univ. Grenoble-Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, 38000 Grenoble, France.
| | - Thierry Gaude
- Univ. Grenoble-Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, 38000 Grenoble, France.
| | | | - Muhammad Asam Riaz
- Department of Entomology, College of Agriculture, University of Sargodha, Sargodha Pakistan.
| | - Jean-Philippe David
- Univ. Grenoble-Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, 38000 Grenoble, France.
| | - Stéphane Reynaud
- Univ. Grenoble-Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, 38000 Grenoble, France.
| |
Collapse
|
32
|
Wagah MG, Korlević P, Clarkson C, Miles A, Lawniczak MKN, Makunin A. Genetic variation at the Cyp6m2 putative insecticide resistance locus in Anopheles gambiae and Anopheles coluzzii. Malar J 2021; 20:234. [PMID: 34034756 PMCID: PMC8146665 DOI: 10.1186/s12936-021-03757-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 05/08/2021] [Indexed: 11/17/2022] Open
Abstract
Background The emergence of insecticide resistance is a major threat to malaria control programmes in Africa, with many different factors contributing to insecticide resistance in its vectors, Anopheles mosquitoes. CYP6M2 has previously been recognized as an important candidate in cytochrome P450-mediated detoxification in Anopheles. As it has been implicated in resistance against pyrethroids, organochlorines and carbamates, its broad metabolic activity makes it a potential agent in insecticide cross-resistance. Currently, allelic variation within the Cyp6m2 gene remains unknown. Methods Here, Illumina whole-genome sequence data from Phase 2 of the Anopheles gambiae 1000 Genomes Project (Ag1000G) was used to examine genetic variation in the Cyp6m2 gene across 16 populations in 13 countries comprising Anopheles gambiae and Anopheles coluzzii mosquitoes. To identify whether these alleles show evidence of selection either through potentially modified enzymatic function or by being linked to variants that change the transcriptional profile of the gene, hierarchical clustering of haplotypes, linkage disequilibrium, median joining networks and extended haplotype homozygosity analyses were performed. Results Fifteen missense biallelic substitutions at high frequency (defined as > 5% frequency in one or more populations) are found, which fall into five distinct haplotype groups that carry the main high frequency variants: A13T, D65A, E328Q, Y347F, I359V and A468S. Despite consistent reports of Cyp6m2 upregulation and metabolic activity in insecticide resistant Anophelines, no evidence of directional selection is found occurring on these variants or on the haplotype clusters in which they are found. Conclusion These results imply that emerging resistance associated with Cyp6m2 is potentially driven by distant regulatory loci such as transcriptional factors rather than by its missense variants, or that other genes are playing a more significant role in conferring metabolic resistance. Supplementary Information The online version contains supplementary material available at 10.1186/s12936-021-03757-4.
Collapse
Affiliation(s)
- Martin G Wagah
- Wellcome Sanger Institute, Hinxton, Cambridgeshire, CB10 1SD, UK.
| | - Petra Korlević
- Wellcome Sanger Institute, Hinxton, Cambridgeshire, CB10 1SD, UK.,European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, Cambridgeshire, CB10 1SD, UK
| | | | - Alistair Miles
- University of Oxford, Wellcome Trust Centre for Human Genetics, Oxford, OX3 7BN, UK
| | | | | | - Alex Makunin
- Wellcome Sanger Institute, Hinxton, Cambridgeshire, CB10 1SD, UK
| |
Collapse
|
33
|
Cattel J, Haberkorn C, Laporte F, Gaude T, Cumer T, Renaud J, Sutherland IW, Hertz JC, Bonneville J, Arnaud V, Fustec B, Boyer S, Marcombe S, David J. A genomic amplification affecting a carboxylesterase gene cluster confers organophosphate resistance in the mosquito Aedes aegypti: From genomic characterization to high-throughput field detection. Evol Appl 2021; 14:1009-1022. [PMID: 33897817 PMCID: PMC8061265 DOI: 10.1111/eva.13177] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 11/18/2020] [Indexed: 01/06/2023] Open
Abstract
By altering gene expression and creating paralogs, genomic amplifications represent a key component of short-term adaptive processes. In insects, the use of insecticides can select gene amplifications causing an increased expression of detoxification enzymes, supporting the usefulness of these DNA markers for monitoring the dynamics of resistance alleles in the field. In this context, the present study aims to characterize a genomic amplification event associated with resistance to organophosphate insecticides in the mosquito Aedes aegypti and to develop a molecular assay to monitor the associated resistance alleles in the field. An experimental evolution experiment using a composite population from Laos supported the association between the over-transcription of multiple contiguous carboxylesterase genes on chromosome 2 and resistance to multiple organophosphate insecticides. Combining whole genome sequencing and qPCR on specific genes confirmed the presence of a ~100-Kb amplification spanning at least five carboxylesterase genes at this locus with the co-existence of multiple structural duplication haplotypes. Field data confirmed their circulation in South-East Asia and revealed high copy number polymorphism among and within populations suggesting a trade-off between this resistance mechanism and associated fitness costs. A dual-color multiplex TaqMan assay allowing the rapid detection and copy number quantification of this amplification event in Ae. aegypti was developed and validated on field populations. The routine use of this novel assay will improve the tracking of resistance alleles in this major arbovirus vector.
Collapse
Affiliation(s)
- Julien Cattel
- Laboratoire d'Ecologie Alpine (LECA)UMR 5553 CNRS – Université Grenoble‐AlpesGrenobleFrance
- Present address:
Symbiosis Technologies for Insect Control (SymbioTIC)Plateforme de Recherche CyroiSte ClotildeFrance
| | - Chloé Haberkorn
- Laboratoire d'Ecologie Alpine (LECA)UMR 5553 CNRS – Université Grenoble‐AlpesGrenobleFrance
| | - Fréderic Laporte
- Laboratoire d'Ecologie Alpine (LECA)UMR 5553 CNRS – Université Grenoble‐AlpesGrenobleFrance
| | - Thierry Gaude
- Laboratoire d'Ecologie Alpine (LECA)UMR 5553 CNRS – Université Grenoble‐AlpesGrenobleFrance
| | - Tristan Cumer
- Laboratoire d'Ecologie Alpine (LECA)UMR 5553 CNRS – Université Grenoble‐AlpesGrenobleFrance
| | - Julien Renaud
- Laboratoire d'Ecologie Alpine (LECA)UMR 5553 CNRS – Université Grenoble‐AlpesGrenobleFrance
| | - Ian W. Sutherland
- United States Navy Entomology. Center of ExcellenceNAS JacksonvilleJacksonvilleFLUSA
| | | | - Jean‐Marc Bonneville
- Laboratoire d'Ecologie Alpine (LECA)UMR 5553 CNRS – Université Grenoble‐AlpesGrenobleFrance
| | - Victor Arnaud
- Laboratoire d'Ecologie Alpine (LECA)UMR 5553 CNRS – Université Grenoble‐AlpesGrenobleFrance
| | - Bénédicte Fustec
- Department of MicrobiologyKhon Kaen UniversityKhon KaenThailand
- Institut de Recherche pour le DéveloppementUMR IRD 224‐CNRS 5290‐Université MontpellierMontpellier Cedex 5France
| | - Sébastien Boyer
- Medical and Veterinary EntomologyInstitut Pasteur du CambodgePhnom PenhCambodia
| | - Sébastien Marcombe
- Medical Entomology and Vector‐Borne Disease LaboratoryInstitut Pasteur du LaosVientianeLaos
| | - Jean‐Philippe David
- Laboratoire d'Ecologie Alpine (LECA)UMR 5553 CNRS – Université Grenoble‐AlpesGrenobleFrance
| |
Collapse
|
34
|
A survey of insecticide resistance-conferring mutations in multiple targets in Anopheles sinensis populations across Sichuan, China. Parasit Vectors 2021; 14:169. [PMID: 33743789 PMCID: PMC7981990 DOI: 10.1186/s13071-021-04662-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 02/26/2021] [Indexed: 01/16/2023] Open
Abstract
Background Sichuan province is located in the southwest of China, and was previously a malaria-endemic region. Although no indigenous malaria case has been reported since 2011, the number of imported cases is on the rise. Insecticide-based vector control has played a central role in the prevention of malaria epidemics. However, the efficacy of this strategy is gravely challenged by the development of insecticide resistance. Regular monitoring of insecticide resistance is essential to inform evidence-based vector control. Unfortunately, almost no information is currently available on the status of insecticide resistance and associated mechanisms in Anopheles sinensis, the dominant malaria vector in Sichuan. In this study, efforts were invested in detecting the presence and frequency of insecticide resistance-associated mutations in three genes that encode target proteins of several classes of commonly used insecticides. Methods A total of 446 adults of An. sinensis, collected from 12 locations across Sichuan province of China, were inspected for resistance-conferring mutations in three genes that respectively encode acetylcholinesterase (AChE), voltage-gated sodium channel (VGSC), and GABA receptor (RDL) by DNA Sanger sequencing. Results The G119S mutation in AChE was detected at high frequencies (0.40–0.73). The predominant ace-1 genotype was GGC/AGC (119GS) heterozygotes. Diverse variations at codon 1014 were found in VGSC, leading to three different amino acid substitutions (L1014F/C/S). The 1014F was the predominant resistance allele and was distributed in all 12 populations at varying frequencies from 0.03 to 0.86. The A296S mutation in RDL was frequently present in Sichuan, with 296SS accounting for more than 80% of individuals in six of the 12 populations. Notably, in samples collected from Chengdu (DJY) and Deyang (DYMZ), almost 30% of individuals were found to be resistant homozygotes for all three targets. Conclusions Resistance-related mutations in three target proteins of the four main classes of insecticides were prevalent in most populations. This survey reveals a worrisome situation of multiple resistance genotypes in Sichuan malaria vector. The data strengthen the need for regular monitoring of insecticide resistance and establishing a region-customized vector intervention strategy.
Graphical abstract ![]()
Collapse
|
35
|
Saghaug CS, Klotz C, Kallio JP, Aebischer T, Langeland N, Hanevik K. Genetic Diversity of the Flavohemoprotein Gene of Giardia lamblia: Evidence for High Allelic Heterozygosity and Copy Number Variation. Infect Drug Resist 2020; 13:4531-4545. [PMID: 33376360 PMCID: PMC7755369 DOI: 10.2147/idr.s274543] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/29/2020] [Indexed: 12/12/2022] Open
Abstract
Purpose The flavohemoprotein (gFlHb) in Giardia plays an important role in managing nitrosative and oxidative stress, and potentially also in virulence and nitroimidazole drug tolerance. The aim of this study was to analyze the genetic diversity of gFlHb in Giardia assemblages A and B clinical isolates. Methods gFlHb genes from 20 cultured clinical Giardia isolates were subjected to PCR amplification and cloning, followed by Sanger sequencing. Sequences of all cloned PCR fragments from each isolate were analyzed for single nucleotide variants (SNVs) and compared to genomic Illumina sequence data. Identical clone sequences were sorted into alleles, and diversity was further analyzed. The number of gFlHb gene copies was assessed by mining PacBio de novo assembled genomes in eight isolates. Homology models for assessment of SNV's potential impact on protein function were created using Phyre2. Results A variable copy number of the gFlHb gene, between two and six copies, depending on isolate, was found. A total of 37 distinct sequences, representing different alleles of the gFlHb gene, were identified in AII isolates, and 41 were identified in B isolates. In some isolates, up to 12 different alleles were found. The total allelic diversity was high for both assemblages (>0.9) and was coupled with a nucleotide diversity of <0.01. The genetic variation (SNVs per CDS length) was 4.8% in sub-assemblage AII and 5.4% in assemblage B. The number of non-synonymous (ns) SNVs was high in gFIHb of both assemblages, 1.6% in A and 3.0% in B, respectively. Some of the identified nsSNV are predicted to alter protein structure and possibly function. Conclusion In this study, we present evidence that gFlHb, a putative protective enzyme against oxidative and nitrosative stress in Giardia, is a variable copy number gene with high allelic diversity. The genetic variability of gFlHb may contribute metabolic adaptability against metronidazole toxicity.
Collapse
Affiliation(s)
- Christina S Saghaug
- Department of Clinical Science, University of Bergen, Bergen, Norway.,Norwegian National Advisory Unit on Tropical Infectious Diseases, Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Christian Klotz
- Department of Infectious Diseases, Unit 16 Mycotic and Parasitic Agents and Mycobacteria, Robert Koch-Institute, Berlin, Germany
| | - Juha P Kallio
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Toni Aebischer
- Department of Infectious Diseases, Unit 16 Mycotic and Parasitic Agents and Mycobacteria, Robert Koch-Institute, Berlin, Germany
| | - Nina Langeland
- Department of Clinical Science, University of Bergen, Bergen, Norway.,Norwegian National Advisory Unit on Tropical Infectious Diseases, Department of Medicine, Haukeland University Hospital, Bergen, Norway.,Department of Medicine, Haraldsplass Deaconess Hospital, Bergen, Norway
| | - Kurt Hanevik
- Department of Clinical Science, University of Bergen, Bergen, Norway
| |
Collapse
|
36
|
Thornton J, Gomes B, Ayres C, Reimer L. Insecticide resistance selection and reversal in two strains of Aedes aegypti. Wellcome Open Res 2020; 5:183. [PMID: 33521329 PMCID: PMC7814284 DOI: 10.12688/wellcomeopenres.15974.2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2020] [Indexed: 01/12/2023] Open
Abstract
Background: Laboratory reared mosquito colonies are essential tools to understand insecticide action. However, they differ considerably from wild populations and from each other depending on their origin and rearing conditions, which makes studying the effects of specific resistance mechanisms difficult. This paper describes our methods for establishing multiple resistant strains of Aedes aegypti from two colonies as a new resource for further research on metabolic and target site resistance. Methods: Two resistant colonies of Ae. aegypti, from Cayman and Recife, were selected through 10 generations of exposure to insecticides including permethrin, malathion and temephos, to yield eight strains with different profiles of resistance due to either target site or metabolic resistance. Resistance ratios for each insecticide were calculated for the selected and unselected strains. The frequency of kdr alleles (F1534C and V1016I) in the Cayman strains was determined using TaqMan assays. A comparative gene expression analysis among Recife strains was conducted using qPCR in larvae (CCae3A, CYP6N12, CYP6F3, CYP9M9) and adults (CCae3A, CYP6N12, CYP6BB2, CYP9J28a). Results: In the selected strain of Cayman, mortality against permethrin reduced almost to 0% and kdr became fixated by 5 generations. A similar phenotype was seen in the unselected homozygous resistant colony, whilst mortality in the susceptible homozygous colony rose to 82.9%. The Recife strains showed different responses between exposure to adulticide and larvicide, with detoxification genes in the temephos selected strain staying similar to the baseline, but a reduction in detoxification genes displayed in the other strains. Conclusions: These selected strains, with a range of insecticide resistance phenotypes and genotypes, will support further research on the effects of target-site and/or metabolic resistance mechanisms on various life-history traits, behaviours and vector competence of this important arbovirus vector.
Collapse
Affiliation(s)
- Jonathan Thornton
- Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool, L35QA, UK
| | - Bruno Gomes
- Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool, L35QA, UK
- Laboratório de Bioquímica e Fisiologia de Insetos, Oswaldo Cruz Institute (IOC-FIOCRUZ), Rio de Janeiro, 21040-360, Brazil
| | - Constância Ayres
- Aggeu Magalhães Institute, Oswaldo Cruz Foundation (IAM-FIOCRUZ), Recife, Brazil
| | - Lisa Reimer
- Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool, L35QA, UK
| |
Collapse
|
37
|
Cheng YH, Liu CFJ, Yu YH, Jhou YT, Fujishima M, Tsai IJ, Leu JY. Genome plasticity in Paramecium bursaria revealed by population genomics. BMC Biol 2020; 18:180. [PMID: 33250052 PMCID: PMC7702705 DOI: 10.1186/s12915-020-00912-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 10/29/2020] [Indexed: 11/25/2022] Open
Abstract
Background Ciliates are an ancient and diverse eukaryotic group found in various environments. A unique feature of ciliates is their nuclear dimorphism, by which two types of nuclei, the diploid germline micronucleus (MIC) and polyploidy somatic macronucleus (MAC), are present in the same cytoplasm and serve different functions. During each sexual cycle, ciliates develop a new macronucleus in which newly fused genomes are extensively rearranged to generate functional minichromosomes. Interestingly, each ciliate species seems to have its way of processing genomes, providing a diversity of resources for studying genome plasticity and its regulation. Here, we sequenced and analyzed the macronuclear genome of different strains of Paramecium bursaria, a highly divergent species of the genus Paramecium which can stably establish endosymbioses with green algae. Results We assembled a high-quality macronuclear genome of P. bursaria and further refined genome annotation by comparing population genomic data. We identified several species-specific expansions in protein families and gene lineages that are potentially associated with endosymbiosis. Moreover, we observed an intensive chromosome breakage pattern that occurred during or shortly after sexual reproduction and contributed to highly variable gene dosage throughout the genome. However, patterns of copy number variation were highly correlated among genetically divergent strains, suggesting that copy number is adjusted by some regulatory mechanisms or natural selection. Further analysis showed that genes with low copy number variation among populations tended to function in basic cellular pathways, whereas highly variable genes were enriched in environmental response pathways. Conclusions We report programmed DNA rearrangements in the P. bursaria macronuclear genome that allow cells to adjust gene copy number globally according to individual gene functions. Our results suggest that large-scale gene copy number variation may represent an ancient mechanism for cells to adapt to different environments. Supplementary information The online version contains supplementary material available at 10.1186/s12915-020-00912-2.
Collapse
Affiliation(s)
- Yu-Hsuan Cheng
- Genome and Systems Biology Degree Program, Academia Sinica and National Taiwan University, Taipei, 106, Taiwan.,Institute of Molecular Biology, Academia Sinica, 128 Sec. 2, Academia Road, Nankang, Taipei, 115, Taiwan
| | - Chien-Fu Jeff Liu
- Institute of Molecular Biology, Academia Sinica, 128 Sec. 2, Academia Road, Nankang, Taipei, 115, Taiwan
| | - Yen-Hsin Yu
- Institute of Molecular Biology, Academia Sinica, 128 Sec. 2, Academia Road, Nankang, Taipei, 115, Taiwan
| | - Yu-Ting Jhou
- Institute of Molecular Biology, Academia Sinica, 128 Sec. 2, Academia Road, Nankang, Taipei, 115, Taiwan
| | - Masahiro Fujishima
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, 753-8512, Japan
| | - Isheng Jason Tsai
- Genome and Systems Biology Degree Program, Academia Sinica and National Taiwan University, Taipei, 106, Taiwan.,Biodiversity Research Center, Academia Sinica, Taipei, 115, Taiwan
| | - Jun-Yi Leu
- Genome and Systems Biology Degree Program, Academia Sinica and National Taiwan University, Taipei, 106, Taiwan. .,Institute of Molecular Biology, Academia Sinica, 128 Sec. 2, Academia Road, Nankang, Taipei, 115, Taiwan.
| |
Collapse
|
38
|
Gimenez S, Abdelgaffar H, Goff GL, Hilliou F, Blanco CA, Hänniger S, Bretaudeau A, Legeai F, Nègre N, Jurat-Fuentes JL, d'Alençon E, Nam K. Adaptation by copy number variation increases insecticide resistance in the fall armyworm. Commun Biol 2020; 3:664. [PMID: 33184418 PMCID: PMC7661717 DOI: 10.1038/s42003-020-01382-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 10/14/2020] [Indexed: 12/19/2022] Open
Abstract
Understanding the genetic basis of insecticide resistance is a key topic in agricultural ecology. The adaptive evolution of multi-copy detoxification genes has been interpreted as a cause of insecticide resistance, yet the same pattern can also be generated by the adaptation to host-plant defense toxins. In this study, we tested in the fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae), if adaptation by copy number variation caused insecticide resistance in two geographically distinct populations with different levels of resistance and the two host-plant strains. We observed a significant allelic differentiation of genomic copy number variations between the two geographic populations, but not between host-plant strains. A locus with positively selected copy number variation included a CYP gene cluster. Toxicological tests supported a central role for CYP enzymes in deltamethrin resistance. Our results indicate that copy number variation of detoxification genes might be responsible for insecticide resistance in fall armyworm and that evolutionary forces causing insecticide resistance could be independent of host-plant adaptation.
Collapse
Affiliation(s)
- Sylvie Gimenez
- DGIMI, Univ of Montpellier, INRA, Place Eugène Bataillon, 34095, Montpellier, France
| | - Heba Abdelgaffar
- Department of Entomology and Plant Pathology, University of Tennessee, 370 Plant Biotechnology Building, 2505 E J. Chapman Dr, Knoxville, TN, 37996, USA
| | - Gaelle Le Goff
- Université Côte d'Azur, INRAE, CNRS, ISA, 400 Route des Chappes, 06903, Sophia Antipolis, France
| | - Frédérique Hilliou
- Université Côte d'Azur, INRAE, CNRS, ISA, 400 Route des Chappes, 06903, Sophia Antipolis, France
| | - Carlos A Blanco
- United States Department of Agriculture, Animal and Plant Health Inspection Service, 4700 River Rd, Riverdale, 20737, MD, USA
| | - Sabine Hänniger
- Max Planck Institute for Chemical Ecology, Hans-Knoell-Straße 8, 07745, Jena, Germany
| | - Anthony Bretaudeau
- IGEPP, INRAE, Institut Agro, Univ Rennes, Campus de Beaulieu, 263 Avenue Général Leclerc, 35042, Rennes, France
- GenOuest Core Facility, Univ Rennes, Inria, CNRS, IRISA, Campus de Beaulieu, 263 Avenue Général Leclerc, 35042, Rennes, France
| | - Fabrice Legeai
- IGEPP, INRAE, Institut Agro, Univ Rennes, Campus de Beaulieu, 263 Avenue Général Leclerc, 35042, Rennes, France
- GenOuest Core Facility, Univ Rennes, Inria, CNRS, IRISA, Campus de Beaulieu, 263 Avenue Général Leclerc, 35042, Rennes, France
| | - Nicolas Nègre
- DGIMI, Univ of Montpellier, INRA, Place Eugène Bataillon, 34095, Montpellier, France
| | - Juan Luis Jurat-Fuentes
- Department of Entomology and Plant Pathology, University of Tennessee, 370 Plant Biotechnology Building, 2505 E J. Chapman Dr, Knoxville, TN, 37996, USA
| | - Emmanuelle d'Alençon
- DGIMI, Univ of Montpellier, INRA, Place Eugène Bataillon, 34095, Montpellier, France
| | - Kiwoong Nam
- DGIMI, Univ of Montpellier, INRA, Place Eugène Bataillon, 34095, Montpellier, France.
| |
Collapse
|
39
|
Oumbouke WA, Pignatelli P, Barreaux AMG, Tia IZ, Koffi AA, Ahoua Alou LP, Sternberg ED, Thomas MB, Weetman D, N'Guessan R. Fine scale spatial investigation of multiple insecticide resistance and underlying target-site and metabolic mechanisms in Anopheles gambiae in central Côte d'Ivoire. Sci Rep 2020; 10:15066. [PMID: 32934291 PMCID: PMC7493912 DOI: 10.1038/s41598-020-71933-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 08/20/2020] [Indexed: 11/10/2022] Open
Abstract
Routine monitoring of occurrence, levels and mechanisms of insecticide resistance informs effective management strategies, and should be used to assess the effect of new tools on resistance. As part of a cluster randomised controlled trial evaluating a novel insecticide-based intervention in central Côte d’Ivoire, we assessed resistance and its underlying mechanisms in Anopheles gambiae populations from a subset of trial villages. Resistance to multiple insecticides in An. gambiae s.s. and An. coluzzii was detected across villages, with dose–response assays demonstrating extremely high resistance intensity to the pyrethroid deltamethrin (> 1,500-fold), and mortality following exposure to pyrethroid-treated bednets was low (< 30% mortality in cone bioassays). The 1014F kdr mutation was almost fixed (≥ 90%) in all villages but the 1575Y kdr-amplifying mutation was relatively rare (< 15%). The carbamate and organophosphate resistance-associated Ace-1 G119S mutation was also detected at moderate frequencies (22–43%). Transcriptome analysis identified overexpression of P450 genes known to confer pyrethroid resistance (Cyp9K1, Cyp6P3, and Cyp6M2), and also a carboxylesterase (COEAE1F) as major candidates. Cyp6P3 expression was high but variable (up to 33-fold) and correlated positively with deltamethrin resistance intensity across villages (r2 = 0.78, P = 0.02). Tools and strategies to mitigate the extreme and multiple resistance provided by these mechanisms are required in this area to avoid future control failures.
Collapse
Affiliation(s)
- Welbeck A Oumbouke
- Department of Disease Control, London School of Hygiene and Tropical Medicine, London, UK. .,Institut Pierre Richet (IPR), Institut National de Santé Publique (INSP), Bouaké, Côte d'Ivoire.
| | - Patricia Pignatelli
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, UK
| | - Antoine M G Barreaux
- School of Biological Sciences, University of Bristol, Bristol, UK.,Department of Entomology, Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Innocent Z Tia
- Institut Pierre Richet (IPR), Institut National de Santé Publique (INSP), Bouaké, Côte d'Ivoire
| | - Alphonsine A Koffi
- Institut Pierre Richet (IPR), Institut National de Santé Publique (INSP), Bouaké, Côte d'Ivoire
| | - Ludovic P Ahoua Alou
- Institut Pierre Richet (IPR), Institut National de Santé Publique (INSP), Bouaké, Côte d'Ivoire
| | - Eleanore D Sternberg
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, UK.,Department of Entomology, Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Matthew B Thomas
- Department of Entomology, Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, PA, 16802, USA
| | - David Weetman
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, UK
| | - Raphael N'Guessan
- Department of Disease Control, London School of Hygiene and Tropical Medicine, London, UK.,Institut Pierre Richet (IPR), Institut National de Santé Publique (INSP), Bouaké, Côte d'Ivoire
| |
Collapse
|
40
|
Arévalo-Cortés A, Mejia-Jaramillo AM, Granada Y, Coatsworth H, Lowenberger C, Triana-Chavez O. The Midgut Microbiota of Colombian Aedes aegypti Populations with Different Levels of Resistance to the Insecticide Lambda-cyhalothrin. INSECTS 2020; 11:insects11090584. [PMID: 32882829 PMCID: PMC7565445 DOI: 10.3390/insects11090584] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/11/2020] [Accepted: 08/24/2020] [Indexed: 12/12/2022]
Abstract
Insecticide resistance in Aedes aegypti populations is a problem that hinders vector control and dengue prevention programs. In this study, we determined the susceptibility of Ae. aegypti populations from six Colombian regions to the pyrethroid lambda-cyhalothrin and evaluated the presence of the V1016I mutation in the sodium channel gene, which has been broadly involved in the resistance to this insecticide. The diversity of the gut microbiota of these mosquito populations was also analyzed. Only mosquitoes from Bello were susceptible to lambda-cyhalothrin and presented a lower allelic frequency of the V1016I mutation. Remarkably, there was not an important change in allelic frequencies among populations with different resistance ratios, indicating that other factors or mechanisms contributed to the resistant phenotype. Treatment of mosquitoes with antibiotics led us to hypothesize that the intestinal microbiota could contribute to the resistance to lambda-cyhalothrin. Beta diversity analysis showed significant differences in the species of bacteria present between susceptible and resistant populations. We identified 14 OTUs of bacteria that were unique in resistant mosquitoes. We propose that kdr mutations are important in the development of resistance to lambda-cyhalothrin at low insecticide concentrations but insect symbionts could play an essential role in the metabolization of pyrethroid insecticides at higher concentrations, contributing to the resistant phenotype in Ae. aegypti.
Collapse
Affiliation(s)
- Andrea Arévalo-Cortés
- Group Biología y Control de Enfermedades Infecciosas, Universidad de Antioquia, Calle 70 No. 52-21, Medellín 050010, Colombia; (A.A.-C.); (A.M.M.-J.); (Y.G.)
| | - Ana M. Mejia-Jaramillo
- Group Biología y Control de Enfermedades Infecciosas, Universidad de Antioquia, Calle 70 No. 52-21, Medellín 050010, Colombia; (A.A.-C.); (A.M.M.-J.); (Y.G.)
| | - Yurany Granada
- Group Biología y Control de Enfermedades Infecciosas, Universidad de Antioquia, Calle 70 No. 52-21, Medellín 050010, Colombia; (A.A.-C.); (A.M.M.-J.); (Y.G.)
| | - Heather Coatsworth
- Centre for Cell Biology, Development, and Disease, Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada; (H.C.); (C.L.)
| | - Carl Lowenberger
- Centre for Cell Biology, Development, and Disease, Department of Biological Sciences, Simon Fraser University, 8888 University Drive, Burnaby, BC V5A 1S6, Canada; (H.C.); (C.L.)
| | - Omar Triana-Chavez
- Group Biología y Control de Enfermedades Infecciosas, Universidad de Antioquia, Calle 70 No. 52-21, Medellín 050010, Colombia; (A.A.-C.); (A.M.M.-J.); (Y.G.)
- Correspondence: ; Tel.: +57-4-219-6520
| |
Collapse
|
41
|
Dorant Y, Cayuela H, Wellband K, Laporte M, Rougemont Q, Mérot C, Normandeau E, Rochette R, Bernatchez L. Copy number variants outperform SNPs to reveal genotype–temperature association in a marine species. Mol Ecol 2020; 29:4765-4782. [PMID: 32803780 DOI: 10.1111/mec.15565] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 07/16/2020] [Accepted: 07/21/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Yann Dorant
- Institut de Biologie Intégrative des Systèmes (IBIS) Université Laval Québec QC Canada
| | - Hugo Cayuela
- Institut de Biologie Intégrative des Systèmes (IBIS) Université Laval Québec QC Canada
| | - Kyle Wellband
- Institut de Biologie Intégrative des Systèmes (IBIS) Université Laval Québec QC Canada
| | - Martin Laporte
- Institut de Biologie Intégrative des Systèmes (IBIS) Université Laval Québec QC Canada
| | - Quentin Rougemont
- Institut de Biologie Intégrative des Systèmes (IBIS) Université Laval Québec QC Canada
| | - Claire Mérot
- Institut de Biologie Intégrative des Systèmes (IBIS) Université Laval Québec QC Canada
| | - Eric Normandeau
- Institut de Biologie Intégrative des Systèmes (IBIS) Université Laval Québec QC Canada
| | - Rémy Rochette
- Department of Biology University of New Brunswick Saint John NB Canada
| | - Louis Bernatchez
- Institut de Biologie Intégrative des Systèmes (IBIS) Université Laval Québec QC Canada
| |
Collapse
|
42
|
Thornton J, Gomes B, Ayres C, Reimer L. Insecticide resistance selection and reversal in two strains of Aedes aegypti. Wellcome Open Res 2020; 5:183. [PMID: 33521329 PMCID: PMC7814284 DOI: 10.12688/wellcomeopenres.15974.1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/14/2020] [Indexed: 12/14/2022] Open
Abstract
Background: Laboratory reared mosquito colonies are essential tools to understand insecticide action. However, they differ considerably from wild populations and from each other depending on their origin and rearing conditions, which makes studying the effects of specific resistance mechanisms difficult. This paper describes our methods for establishing multiple resistant strains of Aedes aegypti from two colonies as a new resource for further research on metabolic and target site resistance. Methods: Two resistant colonies of Ae. aegypti, from Cayman and Recife, were selected through 10 generations of exposure to insecticides including permethrin, malathion and temephos, to yield eight strains with different profiles of resistance due to either target site or metabolic resistance. Resistance ratios for each insecticide were calculated for the selected and unselected strains. The frequency of kdr alleles in the Cayman strains was determined using TaqMan assays. A comparative gene expression analysis among Recife strains was conducted using qPCR in larvae (CCae3A, CYP6N12, CYP6F3, CYP9M9) and adults (CCae3A, CYP6N12, CYP6BB2, CYP9J28a). Results: In the selected strain of Cayman, mortality against permethrin reduced almost to 0% and kdr became fixated by 5 generations. A similar phenotype was seen in the unselected homozygous resistant colony, whilst mortality in the susceptible homozygous colony rose to 82.9%. The Recife strains showed different responses between exposure to adulticide and larvicide, with detoxification genes in the temephos selected strain staying similar to the baseline, but a reduction in detoxification genes displayed in the other strains. Conclusions: These selected strains, with a range of insecticide resistance phenotypes and genotypes, will support further research on the effects of target-site and/or metabolic resistance mechanisms on various life-history traits, behaviours and vector competence of this important arbovirus vector.
Collapse
Affiliation(s)
- Jonathan Thornton
- Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool, L35QA, UK
| | - Bruno Gomes
- Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool, L35QA, UK
- Laboratório de Bioquímica e Fisiologia de Insetos, Oswaldo Cruz Institute (IOC-FIOCRUZ), Rio de Janeiro, 21040-360, Brazil
| | - Constância Ayres
- Aggeu Magalhães Institute, Oswaldo Cruz Foundation (IAM-FIOCRUZ), Recife, Brazil
| | - Lisa Reimer
- Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool, L35QA, UK
| |
Collapse
|
43
|
Genomic Variant Analyses in Pyrethroid Resistant and Susceptible Malaria Vector, Anopheles sinensis. G3-GENES GENOMES GENETICS 2020; 10:2185-2193. [PMID: 32423920 PMCID: PMC7341135 DOI: 10.1534/g3.120.401279] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Anopheles sinensis is a major malaria vector in Southeast Asia. Resistance to pyrethroid insecticides in this species has impeded malaria control in the region. Previous studies found that An. sinensis populations from Yunnan Province, China were highly resistant to deltamethrin and did not carry mutations in the voltage-gated sodium channel gene that cause knockdown resistance. In this study, we tested the hypothesis that other genomic variants are associated with the resistance phenotype. Using paired-end whole genome sequencing (DNA-seq), we generated 108 Gb of DNA sequence from deltamethrin -resistant and -susceptible mosquito pools with an average coverage of 83.3× depth. Using a stringent filtering method, we identified a total of 916,926 single nucleotide variants (SNVs), including 32,240 non-synonymous mutations. A total of 958 SNVs differed significantly in allele frequency between deltamethrin -resistant and -susceptible mosquitoes. Of these, 43 SNVs were present within 37 genes that code for immunity, detoxification, cuticular, and odorant proteins. A subset of 12 SNVs were randomly selected for genotyping of individual mosquitoes by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and showed consistent allele frequencies with the pooled DNA-seq derived allele frequencies. In addition, copy number variations (CNVs) were detected in 56 genes, including 33 that contained amplification alleles and 23 that contained deletion alleles in resistant mosquitoes compared to susceptible mosquitoes. The genomic variants described here provide a useful resource for future studies on the genetic mechanism of insecticide resistance in this important malaria vector species.
Collapse
|
44
|
Cattel J, Faucon F, Le Péron B, Sherpa S, Monchal M, Grillet L, Gaude T, Laporte F, Dusfour I, Reynaud S, David J. Combining genetic crosses and pool targeted DNA-seq for untangling genomic variations associated with resistance to multiple insecticides in the mosquito Aedes aegypti. Evol Appl 2020; 13:303-317. [PMID: 31993078 PMCID: PMC6976963 DOI: 10.1111/eva.12867] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 08/07/2019] [Accepted: 08/26/2019] [Indexed: 01/01/2023] Open
Abstract
In addition to combating vector-borne diseases, studying the adaptation of mosquitoes to insecticides provides a remarkable example of evolution-in-action driving the selection of complex phenotypes. Actually, most resistant mosquito populations show multi-resistance phenotypes as a consequence of the variety of insecticides employed and of the complexity of selected resistance mechanisms. Such complexity makes the identification of alleles conferring resistance to specific insecticides challenging and prevents the development of molecular assays to track them in the field. Here we showed that combining simple genetic crosses with pool targeted DNA-seq can enhance the specificity of resistance allele's detection while maintaining experimental work and sequencing effort at reasonable levels. A multi-resistant population of the mosquito Aedes aegypti was exposed to three distinct insecticides (deltamethrin, bendiocarb and fenitrothion), and survivors to each insecticide were crossed with a susceptible strain to generate three distinct lines. F2 individuals from each line were then segregated based on their survival to two insecticide doses. Hundreds of genes covering all detoxifying enzymes and insecticide targets together with more than 7,000 intergenic regions equally spread over mosquito genome were sequenced from pools of F0 and F2 individuals unexposed or surviving insecticide. Differential coverage analysis identified 39 detoxification enzymes showing an increased gene copy number in association with resistance. Combining an allele frequency filtering approach with a Bayesian F ST-based genome scan identified multiple genomic regions showing strong selection signatures together with 50 nonsynonymous variations associated with resistance. This study provides a simple and cost-effective approach to improve the specificity of resistance allele's detection in multi-resistant populations while reducing false positives frequently arising when comparing populations showing divergent genetic backgrounds. The identification of novel DNA resistance markers opens new opportunities for improving the tracking of insecticide resistance in the field.
Collapse
Affiliation(s)
- Julien Cattel
- Laboratoire d’Ecologie Alpine (LECA)UMR 5553 CNRS – Université Grenoble‐AlpesGrenobleFrance
| | - Frédéric Faucon
- Laboratoire d’Ecologie Alpine (LECA)UMR 5553 CNRS – Université Grenoble‐AlpesGrenobleFrance
| | - Bastien Le Péron
- Laboratoire d’Ecologie Alpine (LECA)UMR 5553 CNRS – Université Grenoble‐AlpesGrenobleFrance
| | - Stéphanie Sherpa
- Laboratoire d’Ecologie Alpine (LECA)UMR 5553 CNRS – Université Grenoble‐AlpesGrenobleFrance
| | - Marie Monchal
- Laboratoire d’Ecologie Alpine (LECA)UMR 5553 CNRS – Université Grenoble‐AlpesGrenobleFrance
| | - Lucie Grillet
- Laboratoire d’Ecologie Alpine (LECA)UMR 5553 CNRS – Université Grenoble‐AlpesGrenobleFrance
| | - Thierry Gaude
- Laboratoire d’Ecologie Alpine (LECA)UMR 5553 CNRS – Université Grenoble‐AlpesGrenobleFrance
| | - Frederic Laporte
- Laboratoire d’Ecologie Alpine (LECA)UMR 5553 CNRS – Université Grenoble‐AlpesGrenobleFrance
| | | | - Stéphane Reynaud
- Laboratoire d’Ecologie Alpine (LECA)UMR 5553 CNRS – Université Grenoble‐AlpesGrenobleFrance
| | - Jean‐Philippe David
- Laboratoire d’Ecologie Alpine (LECA)UMR 5553 CNRS – Université Grenoble‐AlpesGrenobleFrance
| |
Collapse
|
45
|
Transcriptomic analysis of insecticide resistance in the lymphatic filariasis vector Culex quinquefasciatus. Sci Rep 2019; 9:11406. [PMID: 31388075 PMCID: PMC6684662 DOI: 10.1038/s41598-019-47850-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 07/25/2019] [Indexed: 11/08/2022] Open
Abstract
Culex quinquefasciatus plays an important role in transmission of vector-borne diseases of public health importance, including lymphatic filariasis (LF), as well as many arboviral diseases. Currently, efforts to tackle C. quinquefasciatus vectored diseases are based on either mass drug administration (MDA) for LF, or insecticide-based interventions. Widespread and intensive insecticide usage has resulted in increased resistance in mosquito vectors, including C. quinquefasciatus. Herein, the transcriptome profile of Ugandan bendiocarb-resistant C. quinquefasciatus was explored to identify candidate genes associated with insecticide resistance. High levels of insecticide resistance were observed for five out of six insecticides tested, with the lowest mortality (0.97%) reported to permethrin, while for DDT, lambdacyhalothrin, bendiocarb and deltamethrin the mortality rate ranged from 1.63-3.29%. Resistance to bendiocarb in exposed mosquitoes was marked, with 2.04% mortality following 1 h exposure and 58.02% after 4 h. Genotyping of the G119S Ace-1 target site mutation detected a highly significant association (p < 0.0001; OR = 25) between resistance and Ace1-119S. However, synergist assays using the P450 inhibitor PBO, or the esterase inhibitor TPP resulted in markedly increased mortality (to ≈80%), suggesting a role of metabolic resistance in the resistance phenotype. Using a novel, custom 60 K whole-transcriptome microarray 16 genes significantly overexpressed in resistant mosquitoes were detected, with the P450 Cyp6z18 showing the highest differential gene expression (>8-fold increase vs unexposed controls). These results provide evidence that bendiocarb resistance in Ugandan C. quinquefasciatus is mediated by both target-site mechanisms and over-expression of detoxification enzymes.
Collapse
|
46
|
Lucas ER, Miles A, Harding NJ, Clarkson CS, Lawniczak MKN, Kwiatkowski DP, Weetman D, Donnelly MJ. Whole-genome sequencing reveals high complexity of copy number variation at insecticide resistance loci in malaria mosquitoes. Genome Res 2019; 29:1250-1261. [PMID: 31345938 PMCID: PMC6673711 DOI: 10.1101/gr.245795.118] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 06/26/2019] [Indexed: 01/16/2023]
Abstract
Polymorphisms in genetic copy number can influence gene expression, coding sequence, and zygosity, making them powerful actors in the evolutionary process. Copy number variants (CNVs) are however understudied, being more difficult to detect than single-nucleotide polymorphisms. We take advantage of the intense selective pressures on the major malaria vector Anopheles gambiae, caused by the widespread use of insecticides for malaria control, to investigate the role of CNVs in the evolution of insecticide resistance. Using the whole-genome sequencing data from 1142 samples in the An. gambiae 1000 genomes project, we identified 250 gene-containing CNVs, encompassing a total of 267 genes of which 28 were in gene families linked to metabolic insecticide resistance, representing significant enrichment of these families. The five major gene clusters for metabolic resistance all contained CNVs, with 44 different CNVs being found across these clusters and multiple CNVs frequently covering the same genes. These 44 CNVs are widespread (45% of individuals carry at least one of them) and have been spreading through positive selection, indicated by their high local frequencies and extended haplotype homozygosity. Our results demonstrate the importance of CNVs in the response to selection, highlighting the urgent need to identify the contribution of each CNV to insecticide resistance and to track their spread as the use of insecticides in malaria endemic countries intensifies and as the operational deployment of next-generation bed nets targeting metabolic resistance gathers pace. Our detailed descriptions of CNVs found across the species range provide the tools to do so.
Collapse
Affiliation(s)
- Eric R Lucas
- Liverpool School of Tropical Medicine, Liverpool L3 5QA, United Kingdom
| | - Alistair Miles
- Wellcome Sanger Institute, Hinxton, Cambridge CB10 1SA, United Kingdom.,Big Data Institute, University of Oxford, Li Ka Shing Centre for Health Information and Discovery, Oxford OX3 7LF, United Kingdom
| | - Nicholas J Harding
- Big Data Institute, University of Oxford, Li Ka Shing Centre for Health Information and Discovery, Oxford OX3 7LF, United Kingdom
| | - Chris S Clarkson
- Wellcome Sanger Institute, Hinxton, Cambridge CB10 1SA, United Kingdom
| | | | - Dominic P Kwiatkowski
- Wellcome Sanger Institute, Hinxton, Cambridge CB10 1SA, United Kingdom.,Big Data Institute, University of Oxford, Li Ka Shing Centre for Health Information and Discovery, Oxford OX3 7LF, United Kingdom
| | - David Weetman
- Liverpool School of Tropical Medicine, Liverpool L3 5QA, United Kingdom
| | - Martin J Donnelly
- Liverpool School of Tropical Medicine, Liverpool L3 5QA, United Kingdom.,Wellcome Sanger Institute, Hinxton, Cambridge CB10 1SA, United Kingdom
| | | |
Collapse
|
47
|
Using targeted next-generation sequencing to characterize genetic differences associated with insecticide resistance in Culex quinquefasciatus populations from the southern U.S. PLoS One 2019; 14:e0218397. [PMID: 31269040 PMCID: PMC6608931 DOI: 10.1371/journal.pone.0218397] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 05/31/2019] [Indexed: 11/19/2022] Open
Abstract
Resistance to insecticides can hamper the control of mosquitoes such as Culex quinquefasciatus, known to vector arboviruses such as West Nile virus and others. The strong selective pressure exerted on a mosquito population by the use of insecticides can result in heritable genetic changes associated with resistance. We sought to characterize genetic differences between insecticide resistant and susceptible Culex quinquefasciatus mosquitoes using targeted DNA sequencing. To that end, we developed a panel of 122 genes known or hypothesized to be involved in insecticide resistance, and used an Ion Torrent PGM sequencer to sequence 125 unrelated individuals from seven populations in the southern U.S. whose resistance phenotypes to permethrin and malathion were known from previous CDC bottle bioassay testing. Data analysis consisted of discovering SNPs (Single Nucleotide Polymorphism) and genes with evidence of copy number variants (CNVs) statistically associated with resistance. Ten of the seventeen genes found to be present in higher copy numbers were experimentally validated with real-time PCR. Of those, six, including the gene with the knock-down resistance (kdr) mutation, showed evidence of a ≥ 1.5 fold increase compared to control DNA. The SNP analysis revealed 228 unique SNPs that had significant p-values for both a Fisher’s Exact Test and the Cochran-Armitage Test for Trend. We calculated the population frequency for each of the 64 nonsynonymous SNPs in this group. Several genes not previously well characterized represent potential candidates for diagnostic assays when further validation is conducted.
Collapse
|
48
|
Ghurye J, Koren S, Small ST, Redmond S, Howell P, Phillippy AM, Besansky NJ. A chromosome-scale assembly of the major African malaria vector Anopheles funestus. Gigascience 2019; 8:giz063. [PMID: 31157884 PMCID: PMC6545970 DOI: 10.1093/gigascience/giz063] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 03/28/2019] [Accepted: 05/06/2019] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Anopheles funestus is one of the 3 most consequential and widespread vectors of human malaria in tropical Africa. However, the lack of a high-quality reference genome has hindered the association of phenotypic traits with their genetic basis in this important mosquito. FINDINGS Here we present a new high-quality A. funestus reference genome (AfunF3) assembled using 240× coverage of long-read single-molecule sequencing for contigging, combined with 100× coverage of short-read Hi-C data for chromosome scaffolding. The assembled contigs total 446 Mbp of sequence and contain substantial duplication due to alternative alleles present in the sequenced pool of mosquitos from the FUMOZ colony. Using alignment and depth-of-coverage information, these contigs were deduplicated to a 211 Mbp primary assembly, which is closer to the expected haploid genome size of 250 Mbp. This primary assembly consists of 1,053 contigs organized into 3 chromosome-scale scaffolds with an N50 contig size of 632 kbp and an N50 scaffold size of 93.811 Mbp, representing a 100-fold improvement in continuity versus the current reference assembly, AfunF1. CONCLUSION This highly contiguous and complete A. funestus reference genome assembly will serve as an improved basis for future studies of genomic variation and organization in this important disease vector.
Collapse
Affiliation(s)
- Jay Ghurye
- Department of Computer Science, University of Maryland, 8125 Paint Branch Drive, College Park, MD 20742, USA
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Sergey Koren
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Scott T Small
- Eck Institute for Global Health and Department of Biological Sciences, University of Notre Dame, 317 Galvin Life Science Center, Notre Dame, IN 46556, USA
| | - Seth Redmond
- Infectious Disease and Microbiome Program, Broad Institute, 415 Main Street, Cambridge, MA 02142, USA
- Department of Immunology and Infectious Disease, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Boston, MA 02115, USA
| | - Paul Howell
- Centers for Disease Control and Prevention, 1600 Clifton Road, Atlanta, GA 30329, USA
| | - Adam M Phillippy
- Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Nora J Besansky
- Eck Institute for Global Health and Department of Biological Sciences, University of Notre Dame, 317 Galvin Life Science Center, Notre Dame, IN 46556, USA
| |
Collapse
|
49
|
Nchoutpouen E, Talipouo A, Djiappi-Tchamen B, Djamouko-Djonkam L, Kopya E, Ngadjeu CS, Doumbe-Belisse P, Awono-Ambene P, Kekeunou S, Wondji CS, Antonio-Nkondjio C. Culex species diversity, susceptibility to insecticides and role as potential vector of Lymphatic filariasis in the city of Yaoundé, Cameroon. PLoS Negl Trop Dis 2019; 13:e0007229. [PMID: 30943198 PMCID: PMC6464241 DOI: 10.1371/journal.pntd.0007229] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 04/15/2019] [Accepted: 02/10/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Culex species are widespread across Cameroon and responsible for high burden of nuisance in most urban settings. However, despite their high nuisance, they remain less studied compared to anophelines. The present study aimed to assess Culex species distribution, susceptibility to insecticide, bionomics and role in Lymphatic Filariasis (LF) transmission in the city of Yaoundé. METHODS Mosquito collections were conducted from March to December 2017 using Centre for Disease Control light traps (CDC-LT), human landing catches (HLC) and larval collections. Mosquitoes were identified using morphological identification keys. Mosquitoes from the Culex pipiens complex were further identified using Polymerase Chain Reaction (PCR) to assess the presence of sibling species. Bioassays were conducted with 2-5 day-old unfed females to assess mosquito susceptibility to DDT, permethrin, deltamethrin and bendiocarb following WHO guidelines. Dead, control and surviving mosquitoes from bioassays were screened by PCR to detect the presence of knockdown resistance (kdr) alleles. Pools of mosquitoes were examined by PCR to detect the presence of Wuchereria bancrofti. RESULTS A total of 197,956 mosquitoes belonging to thirteen species were collected. The density of mosquito collected varied according to the collection methods, districts and seasons. Culex quinquefasciatus emerged as the most abundant and the only species of the Culex pipiens complex in Yaoundé. Culex species were found breeding in different types of breeding sites including polluted and unpolluted sites. All Culex species including Cx antennatus, Cx duttoni, Cx perfuscus and Cx tigripes were found to be highly resistant to permethrin, deltamethrin and DDT. Culex quinquefasciatus was also found to be resistant to bendiocarb. A high frequency of the West Africa kdr allele was recorded in resistant Cx. quinquefasciatus. Out of the 247 pooled samples of 25 Culex spp. examined for the presence of Wuchereria bancrofti, none was found infected. CONCLUSION The study confirms the high adaptation of Culex species particularly Culex quinquefasciatus to the urban environment and no implication of this species in the transmission of LF in Yaoundé Cameroon. Culex species predominance in urban settings highlight potential transmission risk of West Nile and rift valley fever in Yaoundé.
Collapse
Affiliation(s)
- Elysee Nchoutpouen
- Laboratoire de Recherche sur le Paludisme, Organisation de Coordination pour la lutte Contreles Endémies en Afrique Centrale (OCEAC), Yaoundé, Cameroon
- Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon
| | - Abdou Talipouo
- Laboratoire de Recherche sur le Paludisme, Organisation de Coordination pour la lutte Contreles Endémies en Afrique Centrale (OCEAC), Yaoundé, Cameroon
- Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon
| | - Borel Djiappi-Tchamen
- Laboratoire de Recherche sur le Paludisme, Organisation de Coordination pour la lutte Contreles Endémies en Afrique Centrale (OCEAC), Yaoundé, Cameroon
- Vector Borne Infectious Disease Unit of the Laboratory of Applied Biology and Ecology (VBID-LABEA), Department of Animal Biology, Faculty of Science, University of Dschang, Dschang, Cameroon
| | - Landre Djamouko-Djonkam
- Laboratoire de Recherche sur le Paludisme, Organisation de Coordination pour la lutte Contreles Endémies en Afrique Centrale (OCEAC), Yaoundé, Cameroon
- Vector Borne Infectious Disease Unit of the Laboratory of Applied Biology and Ecology (VBID-LABEA), Department of Animal Biology, Faculty of Science, University of Dschang, Dschang, Cameroon
| | - Edmond Kopya
- Laboratoire de Recherche sur le Paludisme, Organisation de Coordination pour la lutte Contreles Endémies en Afrique Centrale (OCEAC), Yaoundé, Cameroon
- Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon
| | - Carmene Sandra Ngadjeu
- Laboratoire de Recherche sur le Paludisme, Organisation de Coordination pour la lutte Contreles Endémies en Afrique Centrale (OCEAC), Yaoundé, Cameroon
- Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon
| | - Patricia Doumbe-Belisse
- Laboratoire de Recherche sur le Paludisme, Organisation de Coordination pour la lutte Contreles Endémies en Afrique Centrale (OCEAC), Yaoundé, Cameroon
- Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon
| | - Parfait Awono-Ambene
- Laboratoire de Recherche sur le Paludisme, Organisation de Coordination pour la lutte Contreles Endémies en Afrique Centrale (OCEAC), Yaoundé, Cameroon
| | | | - Charles Sinclair Wondji
- Vector Biology Liverpool School of Tropical medicine Pembroke Place, Liverpool, United Kingdom
| | - Christophe Antonio-Nkondjio
- Laboratoire de Recherche sur le Paludisme, Organisation de Coordination pour la lutte Contreles Endémies en Afrique Centrale (OCEAC), Yaoundé, Cameroon
- Vector Biology Liverpool School of Tropical medicine Pembroke Place, Liverpool, United Kingdom
| |
Collapse
|
50
|
Long-Term Population Studies Uncover the Genome Structure and Genetic Basis of Xenobiotic and Host Plant Adaptation in the Herbivore Tetranychus urticae. Genetics 2019; 211:1409-1427. [PMID: 30745439 DOI: 10.1534/genetics.118.301803] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 02/02/2019] [Indexed: 01/11/2023] Open
Abstract
Pesticide resistance arises rapidly in arthropod herbivores, as can host plant adaptation, and both are significant problems in agriculture. These traits have been challenging to study as both are often polygenic and many arthropods are genetically intractable. Here, we examined the genetic architecture of pesticide resistance and host plant adaptation in the two-spotted spider mite, Tetranychus urticae, a global agricultural pest. We show that the short generation time and high fecundity of T. urticae can be readily exploited in experimental evolution designs for high-resolution mapping of quantitative traits. As revealed by selection with spirodiclofen, an acetyl-CoA carboxylase inhibitor, in populations from a cross between a spirodiclofen-resistant and a spirodiclofen-susceptible strain, and which also differed in performance on tomato, we found that a limited number of loci could explain quantitative resistance to this compound. These were resolved to narrow genomic intervals, suggesting specific candidate genes, including acetyl-CoA carboxylase itself, clustered and copy variable cytochrome P450 genes, and NADPH cytochrome P450 reductase, which encodes a redox partner for cytochrome P450s. For performance on tomato, candidate genomic regions for response to selection were distinct from those responding to the synthetic compound and were consistent with a more polygenic architecture. In accomplishing this work, we exploited the continuous nature of allele frequency changes across experimental populations to resolve the existing fragmented T. urticae draft genome to pseudochromosomes. This improved assembly was indispensable for our analyses, as it will be for future research with this model herbivore that is exceptionally amenable to genetic studies.
Collapse
|