1
|
de Roode JC, Huffman MA. Animal medication. Curr Biol 2024; 34:R808-R812. [PMID: 39255760 DOI: 10.1016/j.cub.2024.07.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
The word 'medicine' is typically associated with humans, but scientists are increasingly realizing that non-human animals also use medication to deal with infections and other health issues. Medication behaviors are shared by a wide diversity of animal species, ranging from ants to apes, from bees to bears, and from caterpillars to capuchins. These animals use a wide variety of medicines provided by nature, ranging from plant chemicals to other animals and clay (Box 1). The targets of medication are equally diverse: while many animals use medication as protection against internal and external parasites and pathogens, animals may also use medicine to reduce inflammation and stress or to improve reproductive function.
Collapse
Affiliation(s)
- Jacobus C de Roode
- Biology Department, Emory University, 1510 Clifton Road, Atlanta, GA 30322, USA.
| | - Michael A Huffman
- Department of Protozoology, Institute of Tropical Medicine, Nagasaki University, Nagasaki City, Japan.
| |
Collapse
|
2
|
Parrella P, Elikan AB, Snow JW. Pathogen- and host-directed pharmacologic strategies for control of Vairimorpha (Nosema) spp. infection in honey bees. J Eukaryot Microbiol 2024; 71:e13026. [PMID: 38572630 DOI: 10.1111/jeu.13026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 03/07/2024] [Indexed: 04/05/2024]
Abstract
Microsporidia are obligate intracellular parasites of the Fungal Kingdom that cause widespread infections in nature, with important effects on invertebrates involved in food production systems. The two microsporidian species Vairimorpha (Nosema) ceranae (and the less common Vairimorpha (Nosema) apis) can cause individual disease in honey bees and contribute to colony collapse. The efficacy, safety, and availability of fumagillin, the only drug currently approved to treat microsporidia infection in bees, is uncertain. In this review, we will discuss some of the most promising alternative strategies for the mitigation of Vairimorpha spp. with an emphasis on infection by V. ceranae, now the dominant species infecting bees. We will focus on pharmacologic interventions where the mechanism of action is known and examine both pathogen-directed and host-directed approaches. As limiting toxicity to host cells has been especially emphasized in treating bees that are already facing numerous stressors, strategies that disrupt pathogen-specific targets may be especially advantageous. Therefore, efforts to increase the knowledge and tools for facilitating the discovery of such targets and pharmacologic agents directed against them should be prioritized.
Collapse
Affiliation(s)
- Parker Parrella
- Department of Biology, Barnard College, New York, New York, USA
| | | | - Jonathan W Snow
- Department of Biology, Barnard College, New York, New York, USA
| |
Collapse
|
3
|
Liao LH, Wu WY, Berenbaum MR. Variation in Pesticide Toxicity in the Western Honey Bee (Apis mellifera) Associated with Consuming Phytochemically Different Monofloral Honeys. J Chem Ecol 2024; 50:397-408. [PMID: 38760625 PMCID: PMC11399171 DOI: 10.1007/s10886-024-01495-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/05/2024] [Accepted: 04/12/2024] [Indexed: 05/19/2024]
Abstract
Insecticide toxicity to insect herbivores has long been known to vary across different host plants; this phenomenon has been widely documented in both foliage-feeders and sap-feeders. Species-specific phytochemical content of hostplant tissues is assumed to determine the pattern of induction of insect enzymes that detoxify insecticides, but specific phytochemicals have rarely been linked to host plant-associated variation in pesticide toxicity. Moreover, no studies to date have examined the effects of nectar source identity and phytochemical composition on the toxicity of insecticides to pollinators. In this study, we compared LD50 values for the insecticide bifenthrin, a frequent contaminant of nectar and pollen in agroecosystems, in the western honey bee, Apis mellifera, consuming three phytochemically different monofloral honeys: Nyssa ogeche (tupelo), Robinia pseudoacacia (black locust), and Fagopyrum esculentum (buckwheat). We found that bifenthrin toxicity (LD50) values for honey bees across different honey diets is linked to their species-specific phytochemical content. The profiles of phenolic acids and flavonoids of buckwheat and locust honeys are richer than is the profile of tupelo honey, with buckwheat honey containing the highest total content of phytochemicals and associated with the highest bifenthrin LD50 in honey bees. The vector fitting in the ordination analysis revealed positive correlations between LD50 values and two honey phytochemical richness estimates, Chao1 and Abundance-based Coverage Estimator (ACE). These findings suggest unequal effects among different phytochemicals, consistent with the interpretation that certain compounds, including ones that are rare, may have a more pronounced effect in mitigating pesticide toxicity.
Collapse
Affiliation(s)
- Ling-Hsiu Liao
- Department of Entomology, University of Illinois Urbana-Champaign, Urbana, IL, USA.
| | - Wen-Yen Wu
- Department of Entomology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - May R Berenbaum
- Department of Entomology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
4
|
Shanahan M, Simone-Finstrom M, Tokarz P, Rinkevich F, Read QD, Spivak M. Thinking inside the box: Restoring the propolis envelope facilitates honey bee social immunity. PLoS One 2024; 19:e0291744. [PMID: 38295039 PMCID: PMC10830010 DOI: 10.1371/journal.pone.0291744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 09/05/2023] [Indexed: 02/02/2024] Open
Abstract
When wild honey bee colonies (Apis mellifera) nest in hollow tree cavities, they coat the rough cavity walls with a continuous layer of propolis, a substance comprised primarily of plant resins. Studies have shown that the resulting "propolis envelope" leads to both individual- and colony-level health benefits. Unfortunately, the smooth wooden boxes most commonly used in beekeeping do little to stimulate propolis collection. As a result, most managed bees live in hives that are propolis-poor. In this study, we assessed different surface texture treatments (rough wood boxes, boxes outfitted with propolis traps, and standard, smooth wood boxes) in terms of their ability to stimulate propolis collection, and we examined the effect of propolis on colony health, pathogen loads, immune gene expression, bacterial gene expression, survivorship, and honey production in both stationary and migratory beekeeping contexts. We found that rough wood boxes are the most effective box type for stimulating propolis deposition. Although the use of rough wood boxes did not improve colony survivorship overall, Melissococcus plutonius detections via gene expression were significantly lower in rough wood boxes, and viral loads for multiple viruses tended to decrease as propolis deposition increased. By the end of year one, honey bee populations in migratory rough box colonies were also significantly larger than those in migratory control colonies. The use of rough wood boxes did correspond with decreased honey production in year one migratory colonies but had no effect during year two. Finally, in both stationary and migratory operations, propolis deposition was correlated with a seasonal decrease and/or stabilization in the expression of multiple immune and bacterial genes, suggesting that propolis-rich environments contribute to hive homeostasis. These findings provide support for the practical implementation of rough box hives as a means to enhance propolis collection and colony health in multiple beekeeping contexts.
Collapse
Affiliation(s)
- Maggie Shanahan
- Department of Entomology, University of Minnesota, Saint Paul, Minnesota, United States of America
| | - Michael Simone-Finstrom
- Honey Bee Breeding, Genetics and Physiology Research Laboratory, United States Department of Agriculture—Agricultural Research Service, Baton Rouge, Louisiana, United States of America
| | - Philip Tokarz
- Honey Bee Breeding, Genetics and Physiology Research Laboratory, United States Department of Agriculture—Agricultural Research Service, Baton Rouge, Louisiana, United States of America
| | - Frank Rinkevich
- Honey Bee Breeding, Genetics and Physiology Research Laboratory, United States Department of Agriculture—Agricultural Research Service, Baton Rouge, Louisiana, United States of America
| | - Quentin D. Read
- United States Department of Agriculture—Agricultural Research Service Southeast Area, Raleigh, North Carolina, United States of America
| | - Marla Spivak
- Department of Entomology, University of Minnesota, Saint Paul, Minnesota, United States of America
| |
Collapse
|
5
|
Zhang G, Dilday S, Kuesel RW, Hopkins B. Phytochemicals, Probiotics, Recombinant Proteins: Enzymatic Remedies to Pesticide Poisonings in Bees. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:54-62. [PMID: 38127782 PMCID: PMC10785755 DOI: 10.1021/acs.est.3c07581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/30/2023] [Accepted: 11/30/2023] [Indexed: 12/23/2023]
Abstract
The ongoing global decline of bees threatens biodiversity and food safety as both wild plants and crops rely on bee pollination to produce viable progeny or high-quality products in high yields. Pesticide exposure is a major driving force for the decline, yet pesticide use remains unreconciled with bee conservation since studies demonstrate that bees continue to be heavily exposed to and threatened by pesticides in crops and natural habitats. Pharmaceutical methods, including the administration of phytochemicals, probiotics (beneficial bacteria), and recombinant proteins (enzymes) with detoxification functions, show promise as potential solutions to mitigate pesticide poisonings. We discuss how these new methods can be appropriately developed and applied in agriculture from bee biology and ecotoxicology perspectives. As countless phytochemicals, probiotics, and recombinant proteins exist, this Perspective will provide suggestive guidance to accelerate the development of new techniques by directing research and resources toward promising candidates. Furthermore, we discuss practical limitations of the new methods mentioned above in realistic field applications and propose recommendations to overcome these limitations. This Perspective builds a framework to allow researchers to use new detoxification techniques more efficiently in order to mitigate the harmful impacts of pesticides on bees.
Collapse
Affiliation(s)
- Ge Zhang
- Department of Entomology, Washington State University, Pullman, Washington 99164, United States
| | - Sam Dilday
- Department of Entomology, Washington State University, Pullman, Washington 99164, United States
| | - Ryan William Kuesel
- Department of Entomology, Washington State University, Pullman, Washington 99164, United States
| | - Brandon Hopkins
- Department of Entomology, Washington State University, Pullman, Washington 99164, United States
| |
Collapse
|
6
|
Steffan SA, Dharampal PS, Kueneman JG, Keller A, Argueta-Guzmán MP, McFrederick QS, Buchmann SL, Vannette RL, Edlund AF, Mezera CC, Amon N, Danforth BN. Microbes, the 'silent third partners' of bee-angiosperm mutualisms. Trends Ecol Evol 2024; 39:65-77. [PMID: 37940503 DOI: 10.1016/j.tree.2023.09.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 08/30/2023] [Accepted: 09/01/2023] [Indexed: 11/10/2023]
Abstract
While bee-angiosperm mutualisms are widely recognized as foundational partnerships that have shaped the diversity and structure of terrestrial ecosystems, these ancient mutualisms have been underpinned by 'silent third partners': microbes. Here, we propose reframing the canonical bee-angiosperm partnership as a three-way mutualism between bees, microbes, and angiosperms. This new conceptualization casts microbes as active symbionts, processing and protecting pollen-nectar provisions, consolidating nutrients for bee larvae, enhancing floral attractancy, facilitating plant fertilization, and defending bees and plants from pathogens. In exchange, bees and angiosperms provide their microbial associates with food, shelter, and transportation. Such microbial communities represent co-equal partners in tripartite mutualisms with bees and angiosperms, facilitating one of the most important ecological partnerships on land.
Collapse
Affiliation(s)
- Shawn A Steffan
- US Department of Agriculture, Agricultural Research Service, 1575 Linden Drive, Madison, WI 53706, USA; Department of Entomology, University of Wisconsin, 1630 Linden Drive, Madison, WI 53706, USA.
| | - Prarthana S Dharampal
- Department of Entomology, University of Wisconsin, 1630 Linden Drive, Madison, WI 53706, USA; Biology Department, McHenry County College, 8900 Northwest Hwy #14, Crystal Lake, IL 60012, USA
| | - Jordan G Kueneman
- Department of Entomology, Cornell University, Comstock Hall, 2126, Ithaca, NY 14853, USA
| | - Alexander Keller
- Cellular and Organismic Networks, Faculty of Biology, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | | | - Quinn S McFrederick
- Department of Entomology, University of California Riverside, Riverside, CA 92521, USA
| | - Stephen L Buchmann
- Department of Entomology, University of Arizona, Tucson, AZ 85721, USA; Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA
| | - Rachel L Vannette
- Department of Entomology and Nematology, University of California, Davis, Davis, CA 95616, USA
| | - Anna F Edlund
- Department of Biology, Bethany College, 31 E Campus Drive, Bethany, WV 26032, USA
| | - Celeste C Mezera
- Department of Entomology, University of Wisconsin, 1630 Linden Drive, Madison, WI 53706, USA
| | - Nolan Amon
- Department of Entomology, University of Wisconsin, 1630 Linden Drive, Madison, WI 53706, USA
| | - Bryan N Danforth
- Department of Entomology, Cornell University, Comstock Hall, 2126, Ithaca, NY 14853, USA
| |
Collapse
|
7
|
Démares F, Gibert L, Lapeyre B, Creusot P, Renault D, Proffit M. Ozone exposure induces metabolic stress and olfactory memory disturbance in honey bees. CHEMOSPHERE 2024; 346:140647. [PMID: 37949186 DOI: 10.1016/j.chemosphere.2023.140647] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 11/04/2023] [Accepted: 11/06/2023] [Indexed: 11/12/2023]
Abstract
Human activities, urbanization, and industrialization contribute to pollution that affects climate and air quality. A main atmospheric pollutant, the tropospheric ozone (O3), can damage living organisms by generating oxidative radicals, causing respiratory problems in humans and reducing yields and growth in plants. Exposure to high concentrations of O3 can result in oxidative stress in plants and animals, eventually leading to substantial ecological consequences. Plants produce volatile organic compounds (VOCs) emitted in the environment and detected by pollinators (mainly by their antennae), foraging for nutritious resources. Several pollinators, including honey bees, recognize and discriminate flowers through olfactory cues and memory. Exposure to different concentrations of O3 was shown to alter the emission of floral VOCs by plants as well as their lifetime in the atmosphere, potentially impacting plant-pollinator interactions. In this report, we assessed the impacts of exposure to field-realistic concentrations of O3 on honey bees' antennal response to floral VOCs, on their olfactory recall and discriminative capacity and on their antioxidant responses. Antennal activity is altered depending on VOCs structure and O3 concentrations. During the behavioral tests, we first check consistency between olfactory learning rates and memory scores after 15 min. Then bees exposed to 120 and 200 ppb of ozone do not exert specific recall responses with rewarded VOCs 90 min after learning, compared to controls whose specific recall responses were consistent between time points. We also report for the first time in honey bees how the superoxide dismutase enzyme, an antioxidant defense against oxidative stress, saw its enzymatic activity rate decreases after exposure to 80 ppb of ozone. This work tends to demonstrate how hurtful can be the impact of air pollutants upon pollinators themselves and how this type of pollution needs to be addressed in future studies aiming at characterizing plant-insect interactions more accurately.
Collapse
Affiliation(s)
- Fabien Démares
- Centre D'Écologie Fonctionnelle et Évolutive (CEFE), Université de Montpellier, CNRS, EPHE, IRD, 34293 Montpellier, France.
| | - Laëtitia Gibert
- Centre D'Écologie Fonctionnelle et Évolutive (CEFE), Université de Montpellier, CNRS, EPHE, IRD, 34293 Montpellier, France
| | - Benoit Lapeyre
- Centre D'Écologie Fonctionnelle et Évolutive (CEFE), Université de Montpellier, CNRS, EPHE, IRD, 34293 Montpellier, France
| | - Pierre Creusot
- Centre D'Écologie Fonctionnelle et Évolutive (CEFE), Université de Montpellier, CNRS, EPHE, IRD, 34293 Montpellier, France
| | - David Renault
- Écosystèmes, Biodiversité, Évolution (EcoBio) CNRS - UMR 6553, Université de Rennes 1, 35042 Rennes, France
| | - Magali Proffit
- Centre D'Écologie Fonctionnelle et Évolutive (CEFE), Université de Montpellier, CNRS, EPHE, IRD, 34293 Montpellier, France
| |
Collapse
|
8
|
Vanderplanck M, Marin L, Michez D, Gekière A. Pollen as Bee Medicine: Is Prevention Better than Cure? BIOLOGY 2023; 12:497. [PMID: 37106698 PMCID: PMC10135463 DOI: 10.3390/biology12040497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/20/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023]
Abstract
To face environmental stressors such as infection, animals may display behavioural plasticity to improve their physiological status through ingestion of specific food. In bees, the significance of medicating pollen may be limited by their ability to exploit it. Until now, studies have focused on the medicinal effects of pollen and nectar after forced-feeding experiments, overlooking spontaneous intake. Here, we explored the medicinal effects of different pollen on Bombus terrestris workers infected by the gut parasite Crithidia bombi. First, we used a forced-feeding experimental design allowing for the distinction between prophylactic and therapeutic effects of pollen, considering host tolerance and resistance. Then, we assessed whether bumble bees favoured medicating resources when infected to demonstrate potential self-medicative behaviour. We found that infected bumble bees had a lower fitness but higher resistance when forced to consume sunflower or heather pollen, and that infection dynamics was more gradual in therapeutic treatments. When given the choice between resources, infected workers did not target medicating pollen, nor did they consume more medicating pollen than uninfected ones. These results emphasize that the access to medicating resources could impede parasite dynamics, but that the cost-benefit trade-off could be detrimental when fitness is highly reduced.
Collapse
Affiliation(s)
| | - Lucie Marin
- Laboratory of Zoology, Research Institute for Biosciences, University of Mons, 7000 Mons, Belgium
| | - Denis Michez
- Laboratory of Zoology, Research Institute for Biosciences, University of Mons, 7000 Mons, Belgium
| | - Antoine Gekière
- Laboratory of Zoology, Research Institute for Biosciences, University of Mons, 7000 Mons, Belgium
| |
Collapse
|
9
|
Penn HJ, Simone-Finstrom MD, de Guzman LI, Tokarz PG, Dickens R. Viral species differentially influence macronutrient preferences based on honey bee genotype. Biol Open 2022; 11:bio059039. [PMID: 36082847 PMCID: PMC9548382 DOI: 10.1242/bio.059039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 09/05/2022] [Indexed: 11/30/2022] Open
Abstract
Food quantity and macronutrients contribute to honey bee health and colony survival by mediating immune responses. We determined if this held true for bees injected with chronic bee paralysis virus (CBPV) and deformed wing virus (DWV), two common honey bee ssRNA viruses. Pollen-substitute diet and syrup consumption rates and macronutrient preferences of two Varroa-resistant stocks (Pol-Line and Russian bees) were compared to Varroa-susceptible Italian bees. Bee stocks varied in consumption, where Italian bees consumed more than Pol-Line and Russian bees. However, the protein: lipid (P:L) ratios of diet consumed by the Italian and Russian bees was greater than that of the Pol-Line bees. Treatment had different effects on consumption based on the virus injected. CBPV was positively correlated with syrup consumption, while DWV was not correlated with consumption. P:L ratios of consumed diet were significantly impacted by the interaction of bee stock and treatment, with the trends differing between CBPV and DWV. Variation in macronutrient preferences based on viral species may indicate differences in energetic costs associated with immune responses to infections impacting different systems. Further, virus species interacted with bee genotype, indicating different mechanisms of viral resistance or tolerance among honey bee genotypes.
Collapse
Affiliation(s)
- Hannah J. Penn
- USDA ARS Sugarcane Research Unit, 5883 Usda Rd., Houma, LA, USA70360-5578
| | - Michael D. Simone-Finstrom
- USDA ARS Honey Bee Breeding, Genetics and Physiology Laboratory, 1157 Ben Hur Rd., Baton Rouge, LA, USA70820-5502
| | - Lilia I. de Guzman
- USDA ARS Honey Bee Breeding, Genetics and Physiology Laboratory, 1157 Ben Hur Rd., Baton Rouge, LA, USA70820-5502
| | - Philip G. Tokarz
- USDA ARS Honey Bee Breeding, Genetics and Physiology Laboratory, 1157 Ben Hur Rd., Baton Rouge, LA, USA70820-5502
| | - Rachel Dickens
- USDA ARS Honey Bee Breeding, Genetics and Physiology Laboratory, 1157 Ben Hur Rd., Baton Rouge, LA, USA70820-5502
| |
Collapse
|
10
|
Perspectives for Uses of Propolis in Therapy against Infectious Diseases. Molecules 2022; 27:molecules27144594. [PMID: 35889466 PMCID: PMC9320184 DOI: 10.3390/molecules27144594] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/06/2022] [Accepted: 07/06/2022] [Indexed: 01/22/2023] Open
Abstract
Propolis has gained wide popularity over the last decades in several parts of the world. In parallel, the literature about propolis composition and biological properties increased markedly. A great number of papers have demonstrated that propolis from different parts of the world is composed mainly of phenolic substances, frequently flavonoids, derived from plant resins. Propolis has a relevant role in increasing the social immunity of bee hives. Experimental evidence indicates that propolis and its components have activity against bacteria, fungi, and viruses. Mechanisms of action on bacteria, fungi, and viruses are known for several propolis components. Experiments have shown that propolis may act synergistically with antibiotics, antifungals, and antivirus drugs, permitting the administration of lower doses of drugs and higher antimicrobial effects. The current trend of growing resistance of microbial pathogens to the available drugs has encouraged the introduction of propolis in therapy against infectious diseases. Because propolis composition is widely variable, standardized propolis extracts have been produced. Successful clinical trials have included propolis extracts as medicine in dentistry and as an adjuvant in the treatment of patients against COVID-19. Present world health conditions encourage initiatives toward the spread of the niche of propolis, not only as traditional and alternative medicine but also as a relevant protagonist in anti-infectious therapy. Production of propolis and other apiary products is environmentally friendly and may contribute to alleviating the current crisis of the decline of bee populations. Propolis production has had social-economic relevance in Brazil, providing benefits to underprivileged people.
Collapse
|
11
|
Rosengaus R, Traniello J, Bakker T. Sociality and disease: behavioral perspectives in ecological and evolutionary immunology. Behav Ecol Sociobiol 2022; 76:98. [PMID: 35821673 PMCID: PMC9263030 DOI: 10.1007/s00265-022-03203-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Rebeca Rosengaus
- Department of Marine and Environmental Sciences, Northeastern University, Boston, MA 02115-5000 USA
| | - James Traniello
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02215 USA
| | - Theo Bakker
- Institute for Evolutionary Biology and Ecology, University of Bonn, An der Immenburg 1, 53121 Bonn, Germany
| |
Collapse
|
12
|
Penn HJ, Simone-Finstrom MD, de Guzman LI, Tokarz PG, Dickens R. Colony-Level Viral Load Influences Collective Foraging in Honey Bees. FRONTIERS IN INSECT SCIENCE 2022; 2:894482. [PMID: 38468777 PMCID: PMC10926460 DOI: 10.3389/finsc.2022.894482] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 04/13/2022] [Indexed: 03/13/2024]
Abstract
Nutrition is an important component of social insect colony health especially in the face of stressors such as parasitism and viral infections. Honey bees are known to preferentially select nectar and pollen based on macronutrient and phytochemical contents and in response to pathogen loads. However, given that honey bees live in colonies, collective foraging decisions may be impacted directly by forager infection status but also by colony health. This field experiment was conducted to determine if honey bee viral infections are correlated with pollen and nectar foraging and if these associations are impacted more by colony or forager infection. By comparing regressions with and without forager and colony variables and through structural equation models, we were able to determine the relative contributions of colony and forager virus loads on forager decisions. We found that foragers had higher numbers and levels of BQCV and CBPV but lower levels of DWV viruses than their respective colonies. Overall, individuals appeared to forage based a combination of their own and colony health but with greater weight given to colony metrics. Colony parasitism by Varroa mites, positively correlated with both forager and colony DWV-B levels, was negatively associated with nectar weight. Further, colony DWV-B levels were negatively associated with individually foraged pollen protein: lipid ratios but positively correlated with nectar weight and sugar content. This study shows that both colony and forager health can simultaneously mediate individual foraging decisions and that the importance of viral infections and parasite levels varies with foraging metrics. Overall, this work highlights the continued need to explore the interactions of disease, nutrition, and genetics in social interactions and structures.
Collapse
Affiliation(s)
- Hannah J. Penn
- USDA ARS, Sugarcane Research Unit, Houma, LA, United States
| | - Michael D. Simone-Finstrom
- USDA ARS, Honey Bee Breeding, Genetics and Physiology Research Laboratory, Baton Rouge, LA, United States
| | - Lilia I. de Guzman
- USDA ARS, Honey Bee Breeding, Genetics and Physiology Research Laboratory, Baton Rouge, LA, United States
| | - Philip G. Tokarz
- USDA ARS, Honey Bee Breeding, Genetics and Physiology Research Laboratory, Baton Rouge, LA, United States
| | - Rachel Dickens
- USDA ARS, Honey Bee Breeding, Genetics and Physiology Research Laboratory, Baton Rouge, LA, United States
| |
Collapse
|
13
|
Bartlett LJ. Frontiers in effective control of problem parasites in beekeeping. Int J Parasitol Parasites Wildl 2022; 17:263-272. [PMID: 35309040 PMCID: PMC8924282 DOI: 10.1016/j.ijppaw.2022.03.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 02/27/2022] [Accepted: 03/01/2022] [Indexed: 12/21/2022]
Abstract
Demand for better control of certain parasites in managed western honey bees (Apis mellifera L.) remains apparent amongst beekeepers in both Europe and North America, and is of widespread public, scientific, and agricultural concern. Academically, interest from numerous fields including veterinary sciences has led to many exemplary reviews of the parasites of honey bees and the treatment options available. However, summaries of current research frontiers in treating both novel and long-known parasites of managed honey bees are lacking. This review complements the currently comprehensive body of literature summarizing the effectiveness of parasite control in managed honey bees by outlining where significant gaps in development, implementation, and uptake lie, including integration into IPM frameworks and separation of cultural, biological, and chemical controls. In particular, I distinguish where challenges in identifying appropriate controls exist in the lab compared to where we encounter hurdles in technology transfer due to regulatory, economic, or cultural contexts. I overview how exciting frontiers in honey bee parasite control research are clearly demonstrated by the abundance of recent publications on novel control approaches, but also caution that temperance must be levied on the applied end of the research engine in believing that what can be achieved in a laboratory research environment can be quickly and effectively marketed for deployment in the field.
Collapse
Affiliation(s)
- Lewis J Bartlett
- Center for the Ecology of Infectious Disease, University of Georgia, Athens, GA, 30602, USA
| |
Collapse
|
14
|
Bartlett LJ, Martinez-Mejia C, Delaplane KS. Honey Bees (Apis mellifera Hymenoptera: Apidae) Preferentially Avoid Sugar Solutions Supplemented with Field-Relevant Concentrations of Hydrogen Peroxide Despite High Tolerance Limits. JOURNAL OF INSECT SCIENCE (ONLINE) 2022; 22:6484925. [PMID: 34958663 PMCID: PMC8711758 DOI: 10.1093/jisesa/ieab102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Indexed: 06/14/2023]
Abstract
Honey bees (Apis mellifera L. Hymeoptera: Apidae) use hydrogen peroxide (synthesized by excreted glucose oxidase) as an important component of social immunity. However, both tolerance of hydrogen peroxide and the production of glucose oxidase in honey is costly. Hydrogen peroxide may also be encountered by honey bees at high concentrations in nectar while foraging, however despite its presence both in their foraged and stored foods, it is unclear if and how bees monitor concentrations of, and their behavioral responses to, hydrogen peroxide. The costs of glucose oxidase production and the presence of hydrogen peroxide in both nectar and honey suggest hypotheses that honey bees preferentially forage on hydrogen peroxide supplemented feed syrups at certain concentrations, and avoid feed syrups supplemented with hydrogen peroxide at concentrations above some tolerance threshold. We test these hypotheses and find that, counter to expectation, honey bees avoid glucose solutions supplemented with field-relevant hydrogen peroxide concentrations and either avoid or don't differentiate supplemented sucrose solutions when given choice assays. This is despite honey bees showing high tolerance for hydrogen peroxide in feed solutions, with no elevated mortality until concentrations of hydrogen peroxide exceed 1% (v/v) in solution, with survival apparent even at concentrations up to 10%. The behavioral interaction of honey bees with hydrogen peroxide during both within-colony synthesis in honey and when foraging on nectar therefore likely relies on interactions with other indicator molecules, and maybe constrained evolutionarily in its plasticity, representing a constitutive immune mechanism.
Collapse
Affiliation(s)
- Lewis J Bartlett
- Center for the Ecology of Infectious Diseases, Odum School of Ecology, University of Georgia, Athens, GA 30602, USA
| | | | - Keith S Delaplane
- Department of Entomology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
15
|
Pusceddu M, Annoscia D, Floris I, Frizzera D, Zanni V, Angioni A, Satta A, Nazzi F. Honeybees use propolis as a natural pesticide against their major ectoparasite. Proc Biol Sci 2021; 288:20212101. [PMID: 34905714 PMCID: PMC8670950 DOI: 10.1098/rspb.2021.2101] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/22/2021] [Indexed: 01/07/2023] Open
Abstract
Honeybees use propolis collected from plants for coating the inner walls of their nest. This substance is also used as a natural antibiotic against microbial pathogens, similarly to many other animals exploiting natural products for self-medication. We carried out chemical analyses and laboratory bioassays to test if honeybees use propolis for social medication against their major ectoparasite: Varroa destructor. We found that propolis is applied to brood cells where it can affect the reproducing parasites, with a positive effect on honeybees and a potential impact on Varroa population. We conclude that propolis can be regarded as a natural pesticide used by the honeybee to limit a dangerous parasite. These findings significantly enlarge our understanding of behavioural immunity in animals and may have important implications for the management of the most important threat to honeybees worldwide.
Collapse
Affiliation(s)
- Michelina Pusceddu
- Dipartimento di Agraria, Sezione di Patologia vegetale ed Entomologia, Università degli Studi di Sassari, Sassari, Italy
| | - Desiderato Annoscia
- Dipartimento di Scienze AgroAlimentari, Ambientali e Animali, Università degli Studi di Udine, Udine, Italy
| | - Ignazio Floris
- Dipartimento di Agraria, Sezione di Patologia vegetale ed Entomologia, Università degli Studi di Sassari, Sassari, Italy
| | - Davide Frizzera
- Dipartimento di Scienze AgroAlimentari, Ambientali e Animali, Università degli Studi di Udine, Udine, Italy
| | - Virginia Zanni
- Dipartimento di Scienze AgroAlimentari, Ambientali e Animali, Università degli Studi di Udine, Udine, Italy
| | - Alberto Angioni
- Dipartimento di Scienze della Vita e dell'Ambiente, Università degli Studi di Cagliari, Cagliari, Italy
| | - Alberto Satta
- Dipartimento di Agraria, Sezione di Patologia vegetale ed Entomologia, Università degli Studi di Sassari, Sassari, Italy
| | - Francesco Nazzi
- Dipartimento di Scienze AgroAlimentari, Ambientali e Animali, Università degli Studi di Udine, Udine, Italy
| |
Collapse
|
16
|
Abstract
The COVID-19 pandemic imposed new norms on human interactions, perhaps best reflected in the widespread application of social distancing. But social distancing is not a human invention and has evolved independently in species as dissimilar as apes and lobsters. Epidemics are common in the wild, where their spread is enhanced by animal movement and sociality while curtailed by population fragmentation, host behavior, and the immune systems of hosts. In the present article, we explore the phenomenon of behavioral immunity in wild animals as compared with humans and its relevance to the control of disease in nature. We start by explaining the evolutionary benefits and risks of sociality, look at how pathogens have shaped animal evolution, and provide examples of pandemics in wild animal populations. Then we review the known occurrences of social distancing in wild animals, the cues used to enforce it, and its efficacy in controlling the spread of diseases in nature.
Collapse
Affiliation(s)
- Mark J Butler
- Institute of Environment and Department of Biological Sciences, Florida International University, Miami, Florida, United States
| | - Donald C Behringer
- Emerging Pathogens Institute and Fisheries and Aquatic Sciences Program, University of Florida, Gainesville, Florida, United States
| |
Collapse
|
17
|
Abstract
Although nectar is consumed, primarily as a supplemental food, by a broad range of insects spanning at least five orders, it is processed and stored by only a small number of species, most of which are bees and wasps in the superfamily Apoidea. Within this group, Apis mellifera has evolved remarkable adaptations facilitating nectar processing and storage; in doing so, this species utilizes the end product, honey, for diverse functions with few if any equivalents in other phytophagous insects. Honey and its phytochemical constituents, some of which likely derive from propolis, have functional significance in protecting honey bees against microbial pathogens, toxins, and cold stress, as well as in regulating development and adult longevity. The distinctive properties of A. mellifera honey appear to have arisen in multiple ways, including genome modification; partnerships with microbial symbionts; and evolution of specialized behaviors, including foraging for substances other than nectar. That honey making by A. mellifera involves incorporation of exogenous material other than nectar, as well as endogenous products such as antimicrobial peptides and royal jelly, suggests that regarding honey as little more than a source of carbohydrates for bees is a concept in need of revision.
Collapse
Affiliation(s)
- May R Berenbaum
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA;
| | - Bernarda Calla
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA;
| |
Collapse
|
18
|
Beani L, Mariotti Lippi M, Mulinacci N, Manfredini F, Cecchi L, Giuliani C, Tani C, Meriggi N, Cavalieri D, Cappa F. Altered feeding behavior and immune competence in paper wasps: A case of parasite manipulation? PLoS One 2020; 15:e0242486. [PMID: 33326432 PMCID: PMC7743958 DOI: 10.1371/journal.pone.0242486] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/03/2020] [Indexed: 12/11/2022] Open
Abstract
Paper wasps (Polistes dominula), parasitized by the strepsipteran Xenos vesparum, are castrated and desert the colony to gather on plants where the parasite mates and releases primary larvae, thus completing its lifecycle. One of these plants is the trumpet creeper Campsis radicans: in a previous study the majority of all wasps collected from this plant were parasitized and focused their foraging activity on C. radicans buds. The unexpected prevalence and unusual feeding strategy prompted us to investigate the influence of this plant on wasp behavior and physiology through a multidisciplinary approach. First, in a series of laboratory bioassays, we observed that parasitized wasps spent more time than non-parasitized ones on fresh C. radicans buds, rich of extra-floral nectaries (EFNs), while the same wasps ignored treated buds that lacked nectar drops. Then, we described the structure and ultra-structure of EFNs secreting cells, compatible with the synthesis of phenolic compounds. Subsequently, we analysed extracts from different bud tissues by HPLC-DAD-MS and found that verbascoside was the most abundant bioactive molecule in those tissues rich in EFNs. Finally, we tested the immune-stimulant properties of verbascoside, as the biochemical nature of this compound indicates it might function as an antibacterial and antioxidant. We measured bacterial clearance in wasps, as a proxy for overall immune competence, and observed that it was enhanced after administration of verbascoside-even more so if the wasp was parasitized. We hypothesize that the parasite manipulates wasp behavior to preferentially feed on C. radicans EFNs, since the bioactive properties of verbascoside likely increase host survival and thus the parasite own fitness.
Collapse
Affiliation(s)
- Laura Beani
- Dipartimento di Biologia, Università di Firenze, Firenze, Italia
- * E-mail: (LB); (DC)
| | | | - Nadia Mulinacci
- Dipartimento di NEUROFARBA, Università di Firenze, Firenze, Italia
| | - Fabio Manfredini
- School of Biological Sciences, Royal Holloway University of London, Egham, United Kingdom
- School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Lorenzo Cecchi
- Dipartimento di NEUROFARBA, Università di Firenze, Firenze, Italia
| | - Claudia Giuliani
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Milano, Italia
| | - Corrado Tani
- Dipartimento di NEUROFARBA, Università di Firenze, Firenze, Italia
| | - Niccolò Meriggi
- Dipartimento di Biologia, Università di Firenze, Firenze, Italia
| | - Duccio Cavalieri
- Dipartimento di Biologia, Università di Firenze, Firenze, Italia
- * E-mail: (LB); (DC)
| | - Federico Cappa
- Dipartimento di Biologia, Università di Firenze, Firenze, Italia
| |
Collapse
|
19
|
OneHealth implications of infectious diseases of wild and managed bees. J Invertebr Pathol 2020; 186:107506. [PMID: 33249062 DOI: 10.1016/j.jip.2020.107506] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 10/27/2020] [Accepted: 11/20/2020] [Indexed: 01/23/2023]
Abstract
The OneHealth approach aims to further our understanding of the drivers of human, animal and environmental health, and, ultimately, to improve them by combining approaches and knowledge from medicine, biology and fields beyond. Wild and managed bees are essential pollinators of crops and wild flowers. Their health thus directly impacts on human and environmental health. At the same time, these bee species represent highly amenable and relevant model organisms for a OneHealth approach that aims to study fundamental epidemiological questions. In this review, we focus on how infectious diseases of wild and managed bees can be used as a OneHealth model system, informing fundamental questions on ecological immunology and disease transmission, while addressing how this knowledge can be used to tackle the issues facing pollinator health.
Collapse
|
20
|
Tauber JP, Tozkar CÖ, Schwarz RS, Lopez D, Irwin RE, Adler LS, Evans JD. Colony-Level Effects of Amygdalin on Honeybees and Their Microbes. INSECTS 2020; 11:E783. [PMID: 33187240 PMCID: PMC7698215 DOI: 10.3390/insects11110783] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 11/25/2022]
Abstract
Amygdalin, a cyanogenic glycoside, is found in the nectar and pollen of almond trees, as well as in a variety of other crops, such as cherries, nectarines, apples and others. It is inevitable that western honeybees (Apis mellifera) consistently consume amygdalin during almond pollination season because almond crops are almost exclusively pollinated by honeybees. This study tests the effects of a field-relevant concentration of amygdalin on honeybee microbes and the activities of key honeybee genes. We executed a two-month field trial providing sucrose solutions with or without amygdalin ad libitum to free-flying honeybee colonies. We collected adult worker bees at four time points and used RNA sequencing technology and our HoloBee database to assess global changes in microbes and honeybee transcripts. Our hypothesis was that amygdalin will negatively affect bee microbes and possibly immune gene regulation. Using a log2 fold-change cutoff at two and intraday comparisons, we show no large change of bacterial counts, fungal counts or key bee immune gene transcripts, due to amygdalin treatment in relation to the control. However, relatively large titer decreases in the amygdalin treatment relative to the control were found for several viruses. Chronic bee paralysis virus levels had a sharp decrease (-14.4) with titers then remaining less than the control, Black queen cell virus titers were lower at three time points (<-2) and Deformed wing virus titers were lower at two time points (<-6) in amygdalin-fed compared to sucrose-fed colonies. Titers of Lotmaria passim were lower in the treatment group at three of the four dates (<-4). In contrast, Sacbrood virus had two dates with relative increases in its titers (>2). Overall, viral titers appeared to fluctuate more so than bacteria, as observed by highly inconstant patterns between treatment and control and throughout the season. Our results suggest that amygdalin consumption may reduce several honeybee viruses without affecting other microbes or colony-level expression of immune genes.
Collapse
Affiliation(s)
- James P. Tauber
- Bee Research Laboratory, Beltsville Agricultural Research Center, US Department of Agriculture, Beltsville, MD 20705, USA; (C.Ö.T.); (R.S.S.); (D.L.)
| | - Cansu Ö. Tozkar
- Bee Research Laboratory, Beltsville Agricultural Research Center, US Department of Agriculture, Beltsville, MD 20705, USA; (C.Ö.T.); (R.S.S.); (D.L.)
- Department of Agricultural Biotechnology, Faculty of Agriculture, Yüzüncü Yıl University, Van 65000, Turkey
| | - Ryan S. Schwarz
- Bee Research Laboratory, Beltsville Agricultural Research Center, US Department of Agriculture, Beltsville, MD 20705, USA; (C.Ö.T.); (R.S.S.); (D.L.)
- Department of Biology, Fort Lewis College, 1000 Rim Drive, Durango, CO 81301, USA
| | - Dawn Lopez
- Bee Research Laboratory, Beltsville Agricultural Research Center, US Department of Agriculture, Beltsville, MD 20705, USA; (C.Ö.T.); (R.S.S.); (D.L.)
| | - Rebecca E. Irwin
- Department of Applied Ecology, North Carolina State University, Raleigh, NC 27695, USA;
| | - Lynn S. Adler
- Department of Biology, University of Massachusetts, Amherst, MA 01003, USA;
| | - Jay D. Evans
- Bee Research Laboratory, Beltsville Agricultural Research Center, US Department of Agriculture, Beltsville, MD 20705, USA; (C.Ö.T.); (R.S.S.); (D.L.)
| |
Collapse
|
21
|
Saelao P, Borba RS, Ricigliano V, Spivak M, Simone-Finstrom M. Honeybee microbiome is stabilized in the presence of propolis. Biol Lett 2020; 16:20200003. [PMID: 32370688 PMCID: PMC7280041 DOI: 10.1098/rsbl.2020.0003] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 04/04/2020] [Indexed: 12/23/2022] Open
Abstract
Honeybees have developed many unique mechanisms to help ensure the proper maintenance of homeostasis within the hive. One method includes the collection of chemically complex plant resins combined with wax to form propolis, which is deposited throughout the hive. Propolis is believed to play a significant role in reducing disease load in the colony due to its antimicrobial and antiseptic properties. However, little is known about how propolis may interact with bee-associated microbial symbionts, and if propolis alters microbial community structure. In this study, we found that propolis appears to maintain a stable microbial community composition and reduce the overall taxonomic diversity of the honeybee microbiome. Several key members of the gut microbiota were significantly altered in the absence of propolis, suggesting that it may play an important role in maintaining favourable abundance and composition of gut symbionts. Overall, these findings suggest that propolis may help to maintain honeybee colony microbial health by limiting changes to the overall microbial community.
Collapse
Affiliation(s)
- Perot Saelao
- USDA-ARS Honey Bee Breeding, Genetics, and Physiology Laboratory, Baton Rouge, LA 70820, USA
| | - Renata S. Borba
- Alberta Beekeepers Commission, Edmonton, Alberta, CanadaT5M 3T9
| | - Vincent Ricigliano
- USDA-ARS Honey Bee Breeding, Genetics, and Physiology Laboratory, Baton Rouge, LA 70820, USA
| | - Marla Spivak
- Department of Entomology, University of Minnesota, St Paul, MN 55108, USA
| | - Michael Simone-Finstrom
- USDA-ARS Honey Bee Breeding, Genetics, and Physiology Laboratory, Baton Rouge, LA 70820, USA
| |
Collapse
|
22
|
McMenamin AJ, Daughenbaugh KF, Flenniken ML. The Heat Shock Response in the Western Honey Bee (Apis mellifera) is Antiviral. Viruses 2020; 12:E245. [PMID: 32098425 PMCID: PMC7077298 DOI: 10.3390/v12020245] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/17/2020] [Accepted: 02/19/2020] [Indexed: 12/22/2022] Open
Abstract
Honey bees (Apismellifera) are an agriculturally important pollinator species that live in easily managed social groups (i.e., colonies). Unfortunately, annual losses of honey bee colonies in many parts of the world have reached unsustainable levels. Multiple abiotic and biotic stressors, including viruses, are associated with individual honey bee and colony mortality. Honey bees have evolved several antiviral defense mechanisms including conserved immune pathways (e.g., Toll, Imd, JAK/STAT) and dsRNA-triggered responses including RNA interference and a non-sequence specific dsRNA-mediated response. In addition, transcriptome analyses of virus-infected honey bees implicate an antiviral role of stress response pathways, including the heat shock response. Herein, we demonstrate that the heat shock response is antiviral in honey bees. Specifically, heat-shocked honey bees (i.e., 42 °C for 4 h) had reduced levels of the model virus, Sindbis-GFP, compared with bees maintained at a constant temperature. Virus-infection and/or heat shock resulted in differential expression of six heat shock protein encoding genes and three immune genes, many of which are positively correlated. The heat shock protein encoding and immune gene transcriptional responses observed in virus-infected bees were not completely recapitulated by administration of double stranded RNA (dsRNA), a virus-associated molecular pattern, indicating that additional virus-host interactions are involved in triggering antiviral stress response pathways.
Collapse
Affiliation(s)
- Alexander J. McMenamin
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717, USA; (A.J.M.); (K.F.D.)
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA
- Pollinator Health Center, Montana State University, Bozeman, MT 59717, USA
| | - Katie F. Daughenbaugh
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717, USA; (A.J.M.); (K.F.D.)
- Pollinator Health Center, Montana State University, Bozeman, MT 59717, USA
| | - Michelle L. Flenniken
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717, USA; (A.J.M.); (K.F.D.)
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT 59717, USA
- Pollinator Health Center, Montana State University, Bozeman, MT 59717, USA
| |
Collapse
|
23
|
Mura A, Pusceddu M, Theodorou P, Angioni A, Floris I, Paxton RJ, Satta A. Propolis Consumption Reduces Nosema ceranae Infection of European Honey Bees ( Apis mellifera). INSECTS 2020; 11:insects11020124. [PMID: 32075232 PMCID: PMC7074184 DOI: 10.3390/insects11020124] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/04/2020] [Accepted: 02/13/2020] [Indexed: 12/14/2022]
Abstract
Nosema ceranae is a widespread obligate intracellular parasite of the ventriculus of many species of honey bee (Apis), including the Western honey bee Apis mellifera, in which it may lead to colony death. It can be controlled in A. mellifera by feeding the antibiotic fumagillin to a colony, though this product is toxic to humans and its use has now been banned in many countries, so in beekeeping, there exists a need for alternative and safe products effective against N. ceranae. Honeybees produce propolis from resinous substances collected from plants and use it to protect their nest from parasites and pathogens; propolis is thought to decrease the microbial load of the hive. We hypothesized that propolis might also reduce N. ceranae infection of individual bees and that they might consume propolis as a form of self-medication. To test these hypotheses, we evaluated the effects of an ethanolic extract of propolis administered orally on the longevity and spore load of experimentally N. ceranae-infected worker bees and also tested whether infected bees were more attracted to, and consumed a greater proportion of, a diet containing propolis in comparison to uninfected bees. Propolis extracts and ethanol (solvent control) increased the lifespan of N. ceranae-infected bees, but only propolis extract significantly reduced spore load. Our propolis extract primarily contained derivatives of caffeic acid, ferulic acid, ellagic acid and quercetin. Choice, scan sampling and food consumption tests did not reveal any preference of N. ceranae-infected bees for commercial candy containing propolis. Our research supports the hypothesis that propolis represents an effective and safe product to control N. ceranae but worker bees seem not to use it to self-medicate when infected with this pathogen.
Collapse
Affiliation(s)
- Alessandra Mura
- Department of Agricultural Sciences, University of Sassari, 07100 Sassari, Italy; (A.M.); (M.P.); (I.F.)
| | - Michelina Pusceddu
- Department of Agricultural Sciences, University of Sassari, 07100 Sassari, Italy; (A.M.); (M.P.); (I.F.)
| | - Panagiotis Theodorou
- General Zoology, Institute of Biology, Martin Luther University Halle-Wittenberg, Hoher Weg 8, 06120 Halle (Saale), Germany; (P.T.); (R.J.P.)
| | - Alberto Angioni
- Department of Life and Environmental Sciences, University of Cagliari, 09124 Cagliari, Italy;
| | - Ignazio Floris
- Department of Agricultural Sciences, University of Sassari, 07100 Sassari, Italy; (A.M.); (M.P.); (I.F.)
| | - Robert J. Paxton
- General Zoology, Institute of Biology, Martin Luther University Halle-Wittenberg, Hoher Weg 8, 06120 Halle (Saale), Germany; (P.T.); (R.J.P.)
| | - Alberto Satta
- Department of Agricultural Sciences, University of Sassari, 07100 Sassari, Italy; (A.M.); (M.P.); (I.F.)
- Correspondence: ; Tel.: +39-079229364; Fax: +39-079229329
| |
Collapse
|
24
|
López-Uribe MM, Ricigliano VA, Simone-Finstrom M. Defining Pollinator Health: A Holistic Approach Based on Ecological, Genetic, and Physiological Factors. Annu Rev Anim Biosci 2019; 8:269-294. [PMID: 31618045 DOI: 10.1146/annurev-animal-020518-115045] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Evidence for global bee population declines has catalyzed a rapidly evolving area of research that aims to identify the causal factors and to effectively assess the status of pollinator populations. The term pollinator health emerged through efforts to understand causes of bee decline and colony losses, but it lacks a formal definition. In this review, we propose a definition for pollinator health and synthesize the available literature on the application of standardized biomarkers to assess health at the individual, colony, and population levels. We focus on biomarkers in honey bees, a model species, but extrapolate the potential application of these approaches to monitor the health status of wild bee populations. Biomarker-guided health measures can inform beekeeper management decisions, wild bee conservation efforts, and environmental policies. We conclude by addressing challenges to pollinator health from a One Health perspective that emphasizes the interplay between environmental quality and human, animal, and bee health.
Collapse
Affiliation(s)
- Margarita M López-Uribe
- Department of Entomology, Center for Pollinator Research, Pennsylvania State University, University Park, Pennsylvania 16802, USA;
| | - Vincent A Ricigliano
- Honey Bee Breeding, Genetics and Physiology Research, USDA-ARS, Baton Rouge, Louisiana 70820, USA; ,
| | - Michael Simone-Finstrom
- Honey Bee Breeding, Genetics and Physiology Research, USDA-ARS, Baton Rouge, Louisiana 70820, USA; ,
| |
Collapse
|