1
|
Moyer DC, Reimertz J, Segrè D, Fuxman Bass JI. Semi-Automatic Detection of Errors in Genome-Scale Metabolic Models. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.24.600481. [PMID: 38979177 PMCID: PMC11230171 DOI: 10.1101/2024.06.24.600481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Background Genome-Scale Metabolic Models (GSMMs) are used for numerous tasks requiring computational estimates of metabolic fluxes, from predicting novel drug targets to engineering microbes to produce valuable compounds. A key limiting step in most applications of GSMMs is ensuring their representation of the target organism's metabolism is complete and accurate. Identifying and visualizing errors in GSMMs is complicated by the fact that they contain thousands of densely interconnected reactions. Furthermore, many errors in GSMMs only become apparent when considering pathways of connected reactions collectively, as opposed to examining reactions individually. Results We present Metabolic Accuracy Check and Analysis Workflow (MACAW), a collection of algorithms for detecting errors in GSMMs. The relative frequencies of errors we detect in manually curated GSMMs appear to reflect the different approaches used to curate them. Changing the method used to automatically create a GSMM from a particular organism's genome can have a larger impact on the kinds of errors in the resulting GSMM than using the same method with a different organism's genome. Our algorithms are particularly capable of identifying errors that are only apparent at the pathway level, including loops, and nontrivial cases of dead ends. Conclusions MACAW is capable of identifying inaccuracies of varying severity in a wide range of GSMMs. Correcting these errors can measurably improve the predictive capacity of a GSMM. The relative prevalence of each type of error we identify in a large collection of GSMMs could help shape future efforts for further automation of error correction and GSMM creation.
Collapse
|
2
|
Vera-Siguenza E, Escribano-Gonzalez C, Serrano-Gonzalo I, Eskla KL, Spill F, Tennant D. Mathematical reconstruction of the metabolic network in an in-vitro multiple myeloma model. PLoS Comput Biol 2023; 19:e1011374. [PMID: 37713666 PMCID: PMC10503963 DOI: 10.1371/journal.pcbi.1011374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 07/19/2023] [Indexed: 09/17/2023] Open
Abstract
It is increasingly apparent that cancer cells, in addition to remodelling their metabolism to survive and proliferate, adapt and manipulate the metabolism of other cells. This property may be a telling sign that pre-clinical tumour metabolism studies exclusively utilising in-vitro mono-culture models could prove to be limited for uncovering novel metabolic targets able to translate into clinical therapies. Although this is increasingly recognised, and work towards addressing the issue is becoming routinary much remains poorly understood. For instance, knowledge regarding the biochemical mechanisms through which cancer cells manipulate non-cancerous cell metabolism, and the subsequent impact on their survival and proliferation remains limited. Additionally, the variations in these processes across different cancer types and progression stages, and their implications for therapy, also remain largely unexplored. This study employs an interdisciplinary approach that leverages the predictive power of mathematical modelling to enrich experimental findings. We develop a functional multicellular in-silico model that facilitates the qualitative and quantitative analysis of the metabolic network spawned by an in-vitro co-culture model of bone marrow mesenchymal stem- and myeloma cell lines. To procure this model, we devised a bespoke human genome constraint-based reconstruction workflow that combines aspects from the legacy mCADRE & Metabotools algorithms, the novel redHuman algorithm, along with 13C-metabolic flux analysis. Our workflow transforms the latest human metabolic network matrix (Recon3D) into two cell-specific models coupled with a metabolic network spanning a shared growth medium. When cross-validating our in-silico model against the in-vitro model, we found that the in-silico model successfully reproduces vital metabolic behaviours of its in-vitro counterpart; results include cell growth predictions, respiration rates, as well as support for observations which suggest cross-shuttling of redox-active metabolites between cells.
Collapse
Affiliation(s)
- Elias Vera-Siguenza
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- Watson School of Mathematics, University of Birmingham, Birmingham, United Kingdom
| | - Cristina Escribano-Gonzalez
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Irene Serrano-Gonzalo
- Instituto de Investigación Sanitaria Aragón, Fundación Española para el Estudio y Terapéutica de la enfermedad de Gaucher y otras Lisosomales, Zaragoza, España
| | - Kattri-Liis Eskla
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Fabian Spill
- Watson School of Mathematics, University of Birmingham, Birmingham, United Kingdom
| | - Daniel Tennant
- Institute of Metabolism and Systems Research, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
3
|
Yaneske E, Zampieri G, Bertoldi L, Benvenuto G, Angione C. Genome-scale metabolic modelling of SARS-CoV-2 in cancer cells reveals an increased shift to glycolytic energy production. FEBS Lett 2021; 595:2350-2365. [PMID: 34409594 PMCID: PMC8427129 DOI: 10.1002/1873-3468.14180] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/02/2021] [Accepted: 08/15/2021] [Indexed: 01/08/2023]
Abstract
Cancer is considered a high‐risk condition for severe illness resulting from COVID‐19. The interaction between severe acute respiratory syndrome coronavirus‐2 (SARS‐CoV‐2) and human metabolism is key to elucidating the risk posed by COVID‐19 for cancer patients and identifying effective treatments, yet it is largely uncharacterised on a mechanistic level. We present a genome‐scale map of short‐term metabolic alterations triggered by SARS‐CoV‐2 infection of cancer cells. Through transcriptomic‐ and proteomic‐informed genome‐scale metabolic modelling, we characterise the role of RNA and fatty acid biosynthesis in conjunction with a rewiring in energy production pathways and enhanced cytokine secretion. These findings link together complementary aspects of viral invasion of cancer cells, while providing mechanistic insights that can inform the development of treatment strategies.
Collapse
Affiliation(s)
- Elisabeth Yaneske
- School of Computing, Engineering and Digital Technologies, Teesside University, Middlesbrough, UK
| | - Guido Zampieri
- School of Computing, Engineering and Digital Technologies, Teesside University, Middlesbrough, UK.,Department of Biology, University of Padua, Italy
| | | | | | - Claudio Angione
- School of Computing, Engineering and Digital Technologies, Teesside University, Middlesbrough, UK.,Healthcare Innovation Centre, Teesside University, Middlesbrough, UK.,Centre for Digital Innovation, Teesside University, Middlesbrough, UK
| |
Collapse
|
4
|
Sahu A, Blätke MA, Szymański JJ, Töpfer N. Advances in flux balance analysis by integrating machine learning and mechanism-based models. Comput Struct Biotechnol J 2021; 19:4626-4640. [PMID: 34471504 PMCID: PMC8382995 DOI: 10.1016/j.csbj.2021.08.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 08/03/2021] [Accepted: 08/03/2021] [Indexed: 02/08/2023] Open
Abstract
The availability of multi-omics data sets and genome-scale metabolic models for various organisms provide a platform for modeling and analyzing genotype-to-phenotype relationships. Flux balance analysis is the main tool for predicting flux distributions in genome-scale metabolic models and various data-integrative approaches enable modeling context-specific network behavior. Due to its linear nature, this optimization framework is readily scalable to multi-tissue or -organ and even multi-organism models. However, both data and model size can hamper a straightforward biological interpretation of the estimated fluxes. Moreover, flux balance analysis simulates metabolism at steady-state and thus, in its most basic form, does not consider kinetics or regulatory events. The integration of flux balance analysis with complementary data analysis and modeling techniques offers the potential to overcome these challenges. In particular machine learning approaches have emerged as the tool of choice for data reduction and selection of most important variables in big data sets. Kinetic models and formal languages can be used to simulate dynamic behavior. This review article provides an overview of integrative studies that combine flux balance analysis with machine learning approaches, kinetic models, such as physiology-based pharmacokinetic models, and formal graphical modeling languages, such as Petri nets. We discuss the mathematical aspects and biological applications of these integrated approaches and outline challenges and future perspectives.
Collapse
Affiliation(s)
- Ankur Sahu
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstraße 3, 06466 Gatersleben, Germany
| | - Mary-Ann Blätke
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstraße 3, 06466 Gatersleben, Germany
| | - Jędrzej Jakub Szymański
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstraße 3, 06466 Gatersleben, Germany
| | - Nadine Töpfer
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstraße 3, 06466 Gatersleben, Germany
| |
Collapse
|
5
|
Hanna EM, Zhang X, Eide M, Fallahi S, Furmanek T, Yadetie F, Zielinski DC, Goksøyr A, Jonassen I. ReCodLiver0.9: Overcoming Challenges in Genome-Scale Metabolic Reconstruction of a Non-model Species. Front Mol Biosci 2020; 7:591406. [PMID: 33324679 PMCID: PMC7726423 DOI: 10.3389/fmolb.2020.591406] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 10/22/2020] [Indexed: 12/13/2022] Open
Abstract
The availability of genome sequences, annotations, and knowledge of the biochemistry underlying metabolic transformations has led to the generation of metabolic network reconstructions for a wide range of organisms in bacteria, archaea, and eukaryotes. When modeled using mathematical representations, a reconstruction can simulate underlying genotype-phenotype relationships. Accordingly, genome-scale metabolic models (GEMs) can be used to predict the response of organisms to genetic and environmental variations. A bottom-up reconstruction procedure typically starts by generating a draft model from existing annotation data on a target organism. For model species, this part of the process can be straightforward, due to the abundant organism-specific biochemical data. However, the process becomes complicated for non-model less-annotated species. In this paper, we present a draft liver reconstruction, ReCodLiver0.9, of Atlantic cod (Gadus morhua), a non-model teleost fish, as a practicable guide for cases with comparably few resources. Although the reconstruction is considered a draft version, we show that it already has utility in elucidating metabolic response mechanisms to environmental toxicants by mapping gene expression data of exposure experiments to the resulting model.
Collapse
Affiliation(s)
- Eileen Marie Hanna
- Department of Computer Science and Mathematics, Lebanese American University, Byblos, Lebanon
- Computational Biology Unit, Department of Informatics, University of Bergen, Bergen, Norway
| | - Xiaokang Zhang
- Computational Biology Unit, Department of Informatics, University of Bergen, Bergen, Norway
| | - Marta Eide
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Shirin Fallahi
- Department of Mathematics, University of Bergen, Bergen, Norway
| | | | - Fekadu Yadetie
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Daniel Craig Zielinski
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States
| | - Anders Goksøyr
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Inge Jonassen
- Computational Biology Unit, Department of Informatics, University of Bergen, Bergen, Norway
| |
Collapse
|
6
|
Bento-Silva A, Koistinen VM, Mena P, Bronze MR, Hanhineva K, Sahlstrøm S, Kitrytė V, Moco S, Aura AM. Factors affecting intake, metabolism and health benefits of phenolic acids: do we understand individual variability? Eur J Nutr 2020; 59:1275-1293. [PMID: 31115680 PMCID: PMC7230068 DOI: 10.1007/s00394-019-01987-6] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 05/03/2019] [Indexed: 11/13/2022]
Abstract
INTRODUCTION Phenolic acids are important phenolic compounds widespread in foods, contributing to nutritional and organoleptic properties. FACTORS AFFCETING INDIVIDUAL VARIABILITY The bioavailability of these compounds depends on their free or conjugated presence in food matrices, which is also affected by food processing. Phenolic acids undergo metabolism by the host and residing intestinal microbiota, which causes conjugations and structural modifications of the compounds. Human responses, metabolite profiles and health responses of phenolics, show considerable individual variation, which is affected by absorption, metabolism and genetic variations of subjects. OPINION A better understanding of the gut-host interplay and microbiome biochemistry is becoming highly relevant in understanding the impact of diet and its constituents. It is common to study metabolism and health benefits separately, with some exceptions; however, it should be preferred that health responders and non-responders are studied in combination with explanatory metabolite profiles and gene variants. This approach could turn interindividual variation from a problem in human research to an asset for research on personalized nutrition.
Collapse
Affiliation(s)
- Andreia Bento-Silva
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa (ITQB NOVA), Oeiras, Portugal
- Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | - Ville M Koistinen
- Department of Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Pedro Mena
- Human Nutrition Unit, Department of Food and Drugs, University of Parma, Parma, Italy
| | - Maria R Bronze
- Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
- Instituto de Biologia Experimental Tecnológica (iBET), Oeiras, Portugal
| | - Kati Hanhineva
- Department of Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Stefan Sahlstrøm
- Nofima Norwegian Institute of Food Fisheries and Aquaculture, Ås, Norway
| | | | - Sofia Moco
- Nestlé Institute of Health Sciences, Nestlé Research, Lausanne, Switzerland
| | - Anna-Marja Aura
- VTT Technical Research Centre of Finland Ltd, P.O. Box 1000, Tietotie 2, 02044 VTT, Espoo, Finland.
| |
Collapse
|
7
|
Ponce-de-León M, Apaolaza I, Valencia A, Planes FJ. On the inconsistent treatment of gene-protein-reaction rules in context-specific metabolic models. Bioinformatics 2020; 36:1986-1988. [PMID: 31722383 PMCID: PMC8662768 DOI: 10.1093/bioinformatics/btz832] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 10/22/2019] [Accepted: 11/12/2019] [Indexed: 11/12/2022] Open
Abstract
Supplementary information:Supplementary data are
available at Bioinformatics online.
Collapse
Affiliation(s)
- Miguel Ponce-de-León
- Life Sciences Department, Barcelona Supercomputing Center (BSC), Barcelona 08034, Spain
| | - Iñigo Apaolaza
- Tecnun School of Engineering, University of Navarra, San Sebastián 20018, Spain
| | - Alfonso Valencia
- Life Sciences Department, Barcelona Supercomputing Center (BSC), Barcelona 08034, Spain.,ICREA, Barcelona 08010, Spain
| | - Francisco J Planes
- Tecnun School of Engineering, University of Navarra, San Sebastián 20018, Spain
| |
Collapse
|
8
|
Zampieri G, Vijayakumar S, Yaneske E, Angione C. Machine and deep learning meet genome-scale metabolic modeling. PLoS Comput Biol 2019; 15:e1007084. [PMID: 31295267 PMCID: PMC6622478 DOI: 10.1371/journal.pcbi.1007084] [Citation(s) in RCA: 166] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Omic data analysis is steadily growing as a driver of basic and applied molecular biology research. Core to the interpretation of complex and heterogeneous biological phenotypes are computational approaches in the fields of statistics and machine learning. In parallel, constraint-based metabolic modeling has established itself as the main tool to investigate large-scale relationships between genotype, phenotype, and environment. The development and application of these methodological frameworks have occurred independently for the most part, whereas the potential of their integration for biological, biomedical, and biotechnological research is less known. Here, we describe how machine learning and constraint-based modeling can be combined, reviewing recent works at the intersection of both domains and discussing the mathematical and practical aspects involved. We overlap systematic classifications from both frameworks, making them accessible to nonexperts. Finally, we delineate potential future scenarios, propose new joint theoretical frameworks, and suggest concrete points of investigation for this joint subfield. A multiview approach merging experimental and knowledge-driven omic data through machine learning methods can incorporate key mechanistic information in an otherwise biologically-agnostic learning process.
Collapse
Affiliation(s)
- Guido Zampieri
- Department of Computer Science and Information Systems, Teesside University, Middlesbrough, United Kingdom
| | - Supreeta Vijayakumar
- Department of Computer Science and Information Systems, Teesside University, Middlesbrough, United Kingdom
| | - Elisabeth Yaneske
- Department of Computer Science and Information Systems, Teesside University, Middlesbrough, United Kingdom
| | - Claudio Angione
- Department of Computer Science and Information Systems, Teesside University, Middlesbrough, United Kingdom
- Healthcare Innovation Centre, Teesside University, Middlesbrough, United Kingdom
| |
Collapse
|
9
|
Sertbas M, Ulgen KO. Unlocking Human Brain Metabolism by Genome-Scale and Multiomics Metabolic Models: Relevance for Neurology Research, Health, and Disease. ACTA ACUST UNITED AC 2018; 22:455-467. [DOI: 10.1089/omi.2018.0088] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Mustafa Sertbas
- Department of Chemical Engineering, Bogazici University, Istanbul, Turkey
| | - Kutlu O. Ulgen
- Department of Chemical Engineering, Bogazici University, Istanbul, Turkey
| |
Collapse
|
10
|
Smith RW, van Rosmalen RP, Martins Dos Santos VAP, Fleck C. DMPy: a Python package for automated mathematical model construction of large-scale metabolic systems. BMC SYSTEMS BIOLOGY 2018; 12:72. [PMID: 29914475 PMCID: PMC6006996 DOI: 10.1186/s12918-018-0584-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 05/14/2018] [Indexed: 12/21/2022]
Abstract
Background Models of metabolism are often used in biotechnology and pharmaceutical research to identify drug targets or increase the direct production of valuable compounds. Due to the complexity of large metabolic systems, a number of conclusions have been drawn using mathematical methods with simplifying assumptions. For example, constraint-based models describe changes of internal concentrations that occur much quicker than alterations in cell physiology. Thus, metabolite concentrations and reaction fluxes are fixed to constant values. This greatly reduces the mathematical complexity, while providing a reasonably good description of the system in steady state. However, without a large number of constraints, many different flux sets can describe the optimal model and we obtain no information on how metabolite levels dynamically change. Thus, to accurately determine what is taking place within the cell, finer quality data and more detailed models need to be constructed. Results In this paper we present a computational framework, DMPy, that uses a network scheme as input to automatically search for kinetic rates and produce a mathematical model that describes temporal changes of metabolite fluxes. The parameter search utilises several online databases to find measured reaction parameters. From this, we take advantage of previous modelling efforts, such as Parameter Balancing, to produce an initial mathematical model of a metabolic pathway. We analyse the effect of parameter uncertainty on model dynamics and test how recent flux-based model reduction techniques alter system properties. To our knowledge this is the first time such analysis has been performed on large models of metabolism. Our results highlight that good estimates of at least 80% of the reaction rates are required to accurately model metabolic systems. Furthermore, reducing the size of the model by grouping reactions together based on fluxes alters the resulting system dynamics. Conclusion The presented pipeline automates the modelling process for large metabolic networks. From this, users can simulate their pathway of interest and obtain a better understanding of how altering conditions influences cellular dynamics. By testing the effects of different parameterisations we are also able to provide suggestions to help construct more accurate models of complete metabolic systems in the future. Electronic supplementary material The online version of this article (10.1186/s12918-018-0584-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Robert W Smith
- Laboratory of Systems & Synthetic Biology, Wageningen UR, Stippeneng 4, Wageningen, 6708WE, The Netherlands.,LifeGlimmer GmbH, Markelstrasse 38, Berlin, 12163, Germany
| | - Rik P van Rosmalen
- Laboratory of Systems & Synthetic Biology, Wageningen UR, Stippeneng 4, Wageningen, 6708WE, The Netherlands
| | - Vitor A P Martins Dos Santos
- Laboratory of Systems & Synthetic Biology, Wageningen UR, Stippeneng 4, Wageningen, 6708WE, The Netherlands.,LifeGlimmer GmbH, Markelstrasse 38, Berlin, 12163, Germany
| | - Christian Fleck
- Laboratory of Systems & Synthetic Biology, Wageningen UR, Stippeneng 4, Wageningen, 6708WE, The Netherlands.
| |
Collapse
|
11
|
The vagus neurometabolic interface and clinical disease. Int J Obes (Lond) 2018; 42:1101-1111. [PMID: 29795463 DOI: 10.1038/s41366-018-0086-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 03/07/2018] [Accepted: 03/12/2018] [Indexed: 01/07/2023]
Abstract
The nervous system both monitors and modulates body metabolism to maintain homoeostasis. In disease states such as obesity and diabetes, the neurometabolic interface is dysfunctional and contributes to clinical illness. The vagus nerve, in particular, with both sensory and motor fibres, provides an anatomical substrate for this interface. Its sensory fibres contain receptors for important circulating metabolic mediators, including leptin and cholecystokinin, and provide real-time information about these mediators to the central nervous system. In turn, efferent fibres within the vagus nerve participate in a brain-gut axis to regulate metabolism. In this review, we describe these vagus nerve-mediated metabolic pathways and recent clinical trials of vagus nerve stimulation for the management of obesity. These early studies suggest that neuromodulation approaches that employ electricity to tune neurometabolic circuits may represent a new tool in the clinical armamentarium directed against obesity.
Collapse
|
12
|
Apaolaza I, José-Eneriz ES, Agirre X, Prósper F, Planes FJ. COBRA methods and metabolic drug targets in cancer. Mol Cell Oncol 2017; 5:e1389672. [PMID: 29404389 PMCID: PMC5791858 DOI: 10.1080/23723556.2017.1389672] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 10/03/2017] [Accepted: 10/05/2017] [Indexed: 02/09/2023]
Abstract
The identification of therapeutic strategies exploiting the metabolic alterations of malignant cells is a relevant area in cancer research. Here, we discuss a novel computational method, based on the COBRA (COnstraint-Based Reconstruction and Analysis) framework for metabolic networks, to perform this task. Current and future steps are presented.
Collapse
Affiliation(s)
- Iñigo Apaolaza
- CEIT and Tecnun, University of Navarra, Manuel de Lardizábal 13, San Sebastián, Spain
| | - Edurne San José-Eneriz
- Area de Hemato-Oncología, IDISNA, Ciberonc, Centro de Investigación Médica Aplicada (CIMA), University of Navarra, Pío XII 55, Pamplona, Spain
| | - Xabier Agirre
- Area de Hemato-Oncología, IDISNA, Ciberonc, Centro de Investigación Médica Aplicada (CIMA), University of Navarra, Pío XII 55, Pamplona, Spain
| | - Felipe Prósper
- Area de Hemato-Oncología, IDISNA, Ciberonc, Centro de Investigación Médica Aplicada (CIMA), University of Navarra, Pío XII 55, Pamplona, Spain
| | - Francisco J Planes
- CEIT and Tecnun, University of Navarra, Manuel de Lardizábal 13, San Sebastián, Spain
| |
Collapse
|
13
|
Eyassu F, Angione C. Modelling pyruvate dehydrogenase under hypoxia and its role in cancer metabolism. ROYAL SOCIETY OPEN SCIENCE 2017; 4:170360. [PMID: 29134060 PMCID: PMC5666243 DOI: 10.1098/rsos.170360] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 09/25/2017] [Indexed: 05/18/2023]
Abstract
Metabolism is the only biological system that can be fully modelled at genome scale. As a result, metabolic models have been increasingly used to study the molecular mechanisms of various diseases. Hypoxia, a low-oxygen tension, is a well-known characteristic of many cancer cells. Pyruvate dehydrogenase (PDH) controls the flux of metabolites between glycolysis and the tricarboxylic acid cycle and is a key enzyme in metabolic reprogramming in cancer metabolism. Here, we develop and manually curate a constraint-based metabolic model to investigate the mechanism of pyruvate dehydrogenase under hypoxia. Our results characterize the activity of pyruvate dehydrogenase and its decline during hypoxia. This results in lactate accumulation, consistent with recent hypoxia studies and a well-known feature in cancer metabolism. We apply machine-learning techniques on the flux datasets to identify reactions that drive these variations. We also identify distinct features on the structure of the variables and individual metabolic components in the switch from normoxia to hypoxia. Our results provide a framework for future studies by integrating multi-omics data to predict condition-specific metabolic phenotypes under hypoxia.
Collapse
|