1
|
Kavoni H, Savizi ISP, Lewis NE, Shojaosadati SA. Recent advances in culture medium design for enhanced production of monoclonal antibodies in CHO cells: A comparative study of machine learning and systems biology approaches. Biotechnol Adv 2025; 78:108480. [PMID: 39571767 DOI: 10.1016/j.biotechadv.2024.108480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/24/2024] [Accepted: 11/14/2024] [Indexed: 11/26/2024]
Abstract
The production of monoclonal antibodies (mAbs) using Chinese Hamster Ovary (CHO) cells has revolutionized the treatment of numerous diseases, solidifying their position as a cornerstone of the biopharmaceutical industry. However, achieving maximum mAb production while upholding strict product quality standards remains a significant hurdle. Optimizing cell culture media emerges as a critical factor in this endeavor, requiring a nuanced understanding of the complex interplay of nutrients, growth factors, and other components that profoundly influence cellular growth, productivity, and product quality. Significant strides have been made in media optimization, including techniques such as media blending, one factor at a time, and statistical design of experiments approaches. The present review provides a comprehensive analysis of the recent advancements in culture media design strategies, focusing on the comparative application of systems biology (SB) and machine learning (ML) approaches. The applications of SB and ML in optimizing CHO cell culture medium and successful examples of their use are summarized. Finally, we highlight the immense potential of integrating SB and ML, emphasizing the development of hybrid models that leverage the strengths of both approaches for robust, efficient, and scalable optimization of mAb production in CHO cells. This review provides a roadmap for researchers and industry professionals to navigate the complex landscape of mAb production optimization, paving the way for developing next-generation CHO cell culture media that drive significant improvements in yield and productivity.
Collapse
Affiliation(s)
- Hossein Kavoni
- Biotechnology Department, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| | - Iman Shahidi Pour Savizi
- Biotechnology Department, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| | - Nathan E Lewis
- Department of Bioengineering, University of California, San Diego, CA, USA; Department of Pediatrics, University of California, San Diego, CA, USA
| | - Seyed Abbas Shojaosadati
- Biotechnology Department, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
2
|
Carter EL, Waterfield NR, Constantinidou C, Alam MT. A temperature-induced metabolic shift in the emerging human pathogen Photorhabdus asymbiotica. mSystems 2024; 9:e0097023. [PMID: 39445821 PMCID: PMC11575385 DOI: 10.1128/msystems.00970-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/29/2023] [Indexed: 10/25/2024] Open
Abstract
Photorhabdus is a bacterial genus containing both insect and emerging human pathogens. Most insect-restricted species display temperature restriction, unable to grow above 34°C, while Photorhabdus asymbiotica can grow at 37°C to infect mammalian hosts and cause Photorhabdosis. Metabolic adaptations have been proposed to facilitate the survival of this pathogen at higher temperatures, yet the biological mechanisms underlying these are poorly understood. We have reconstructed an extensively manually curated genome-scale metabolic model of P. asymbiotica (iEC1073, BioModels ID MODEL2309110001), validated through in silico gene knockout and nutrient utilization experiments with an excellent agreement between experimental data and model predictions. Integration of iEC1073 with transcriptomics data obtained for P. asymbiotica at temperatures of 28°C and 37°C allowed the development of temperature-specific reconstructions representing metabolic adaptations the pathogen undergoes when shifting to a higher temperature in a mammalian compared to insect host. Analysis of these temperature-specific reconstructions reveals that nucleotide metabolism is enriched with predicted upregulated and downregulated reactions. iEC1073 could be used as a powerful tool to study the metabolism of P. asymbiotica, in different genetic or environmental conditions. IMPORTANCE Photorhabdus bacterial species contain both human and insect pathogens, and most of these species cannot grow in higher temperatures. However, Photorhabdus asymbiotica, which infects both humans and insects, can grow in higher temperatures and undergoes metabolic adaptations at a temperature of 37°C compared to that of insect body temperature. Therefore, it is important to examine how this bacterial species can metabolically adapt to survive in higher temperatures. In this work, using a mathematical model, we have examined the metabolic shift that takes place when the bacteria switch from growth conditions in 28°C to 37°C. We show that P. asymbiotica potentially experiences predicted temperature-induced metabolic adaptations at 37°C predominantly clustered within the nucleotide metabolism pathway.
Collapse
Affiliation(s)
- Elena Lucy Carter
- Warwick Medical School, University of Warwick, Gibbet Hill Campus, Coventry, United Kingdom
| | - Nicholas R Waterfield
- Warwick Medical School, University of Warwick, Gibbet Hill Campus, Coventry, United Kingdom
| | - Chrystala Constantinidou
- Warwick Medical School, University of Warwick, Gibbet Hill Campus, Coventry, United Kingdom
- Bioinformatics Research Technology Platform, University of Warwick, Warwick, United Kingdom
| | - Mohammad Tauqeer Alam
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain, United Arab Emirates
| |
Collapse
|
3
|
Lüleci HB, Uzuner D, Cesur MF, İlgün A, Düz E, Abdik E, Odongo R, Çakır T. A benchmark of RNA-seq data normalization methods for transcriptome mapping on human genome-scale metabolic networks. NPJ Syst Biol Appl 2024; 10:124. [PMID: 39448682 PMCID: PMC11502818 DOI: 10.1038/s41540-024-00448-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 09/27/2024] [Indexed: 10/26/2024] Open
Abstract
Genome-scale metabolic models (GEMs) cover the entire list of metabolic genes in an organism and associated reactions, in a tissue/condition non-specific manner. RNA-seq provides crucial information to make the GEMs condition-specific. Integrative Metabolic Analysis Tool (iMAT) and Integrative Network Inference for Tissues (INIT) are the two most popular algorithms to create condition-specific GEMs from human transcriptome data. The normalization method of choice for raw RNA-seq count data affects the model content produced by these algorithms and their predictive accuracy. However, a benchmark of the RNA-seq normalization methods on the performance of iMAT and INIT algorithms is missing in the literature. Another important phenomenon is covariates such as age and gender in a dataset, and they can affect the predictivity of analysis. In this study, we aimed to compare five different RNA-seq data normalization methods (TPM, FPKM, TMM, GeTMM, and RLE) and covariate adjusted versions of the normalized data by mapping them on a human GEM using the iMAT and INIT algorithms to generate personalized metabolic models. We used RNA-seq data for Alzheimer's disease (AD) and lung adenocarcinoma (LUAD) patients. The results demonstrated that RNA-seq data normalized by the RLE, TMM, or GeTMM methods enabled the production of condition-specific metabolic models with considerably low variability in terms of the number of active reactions compared to the within-sample normalization methods (FPKM, TPM). Using these models, we could more accurately capture the disease-associated genes (average accuracy of ~0.80 for AD and ~0.67 for LUAD) for the RLE, TMM, and GeTMM normalization methods. An increase in the accuracies was observed for all the methods when covariate adjustment was applied. We found a similar accuracy trend when we compared the metabolites of perturbed reactions to metabolome data for AD. Together, our benchmark study shows that the between-sample RNA-seq normalization methods reduce false positive predictions at the expense of missing some true positive genes when mapped on GEMs.
Collapse
Affiliation(s)
- Hatice Büşra Lüleci
- Department of Bioengineering, Gebze Technical University, Kocaeli, 41400, Turkey
| | - Dilara Uzuner
- Department of Bioengineering, Gebze Technical University, Kocaeli, 41400, Turkey
| | - Müberra Fatma Cesur
- Department of Bioengineering, Gebze Technical University, Kocaeli, 41400, Turkey
| | - Atılay İlgün
- Department of Bioengineering, Gebze Technical University, Kocaeli, 41400, Turkey
| | - Elif Düz
- Department of Bioengineering, Gebze Technical University, Kocaeli, 41400, Turkey
| | - Ecehan Abdik
- Department of Bioengineering, Gebze Technical University, Kocaeli, 41400, Turkey
| | - Regan Odongo
- Department of Bioengineering, Gebze Technical University, Kocaeli, 41400, Turkey
| | - Tunahan Çakır
- Department of Bioengineering, Gebze Technical University, Kocaeli, 41400, Turkey.
| |
Collapse
|
4
|
Chen Y, Gustafsson J, Yang J, Nielsen J, Kerkhoven EJ. Single-cell omics analysis with genome-scale metabolic modeling. Curr Opin Biotechnol 2024; 86:103078. [PMID: 38359604 DOI: 10.1016/j.copbio.2024.103078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 01/19/2024] [Indexed: 02/17/2024]
Abstract
Single-cell technologies have been widely used in biological studies and generated a plethora of single-cell data to be interpreted. Due to the inclusion of the priori metabolic network knowledge as well as gene-protein-reaction associations, genome-scale metabolic models (GEMs) have been a powerful tool to integrate and thereby interpret various omics data mostly from bulk samples. Here, we first review two common ways to leverage bulk omics data with GEMs and then discuss advances on integrative analysis of single-cell omics data with GEMs. We end by presenting our views on current challenges and perspectives in this field.
Collapse
Affiliation(s)
- Yu Chen
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Johan Gustafsson
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, SE-405 30 Gothenburg, Sweden; Department of Life Sciences, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Jingyu Yang
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jens Nielsen
- Department of Life Sciences, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden; BioInnovation Institute, DK-2200 Copenhagen, Denmark
| | - Eduard J Kerkhoven
- Department of Life Sciences, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden; Novo Nordisk Foundation Center for Biosustainability, Technology University of Denmark, DK-2800 Kgs. Lyngby, Denmark; SciLifeLab, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden.
| |
Collapse
|
5
|
Chen Y, Gustafsson J, Tafur Rangel A, Anton M, Domenzain I, Kittikunapong C, Li F, Yuan L, Nielsen J, Kerkhoven EJ. Reconstruction, simulation and analysis of enzyme-constrained metabolic models using GECKO Toolbox 3.0. Nat Protoc 2024; 19:629-667. [PMID: 38238583 DOI: 10.1038/s41596-023-00931-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 10/13/2023] [Indexed: 03/10/2024]
Abstract
Genome-scale metabolic models (GEMs) are computational representations that enable mathematical exploration of metabolic behaviors within cellular and environmental constraints. Despite their wide usage in biotechnology, biomedicine and fundamental studies, there are many phenotypes that GEMs are unable to correctly predict. GECKO is a method to improve the predictive power of a GEM by incorporating enzymatic constraints using kinetic and omics data. GECKO has enabled reconstruction of enzyme-constrained metabolic models (ecModels) for diverse organisms, which show better predictive performance than conventional GEMs. In this protocol, we describe how to use the latest version GECKO 3.0; the procedure has five stages: (1) expansion from a starting metabolic model to an ecModel structure, (2) integration of enzyme turnover numbers into the ecModel structure, (3) model tuning, (4) integration of proteomics data into the ecModel and (5) simulation and analysis of ecModels. GECKO 3.0 incorporates deep learning-predicted enzyme kinetics, paving the way for improved metabolic models for virtually any organism and cell line in the absence of experimental data. The time of running the whole protocol is organism dependent, e.g., ~5 h for yeast.
Collapse
Affiliation(s)
- Yu Chen
- Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Johan Gustafsson
- Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | - Albert Tafur Rangel
- Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Technology University of Denmark, Lyngby, Denmark
| | - Mihail Anton
- Department of Life Sciences, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Chalmers University of Technology, Gothenburg, Sweden
| | - Iván Domenzain
- Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | | | - Feiran Li
- Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Le Yuan
- Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | - Jens Nielsen
- Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
- BioInnovation Institute, Copenhagen, Denmark
| | - Eduard J Kerkhoven
- Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden.
- Novo Nordisk Foundation Center for Biosustainability, Technology University of Denmark, Lyngby, Denmark.
- SciLifeLab, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden.
| |
Collapse
|
6
|
Carter EL, Constantinidou C, Alam MT. Applications of genome-scale metabolic models to investigate microbial metabolic adaptations in response to genetic or environmental perturbations. Brief Bioinform 2023; 25:bbad439. [PMID: 38048080 PMCID: PMC10694557 DOI: 10.1093/bib/bbad439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/21/2023] [Accepted: 11/08/2023] [Indexed: 12/05/2023] Open
Abstract
Environmental perturbations are encountered by microorganisms regularly and will require metabolic adaptations to ensure an organism can survive in the newly presenting conditions. In order to study the mechanisms of metabolic adaptation in such conditions, various experimental and computational approaches have been used. Genome-scale metabolic models (GEMs) are one of the most powerful approaches to study metabolism, providing a platform to study the systems level adaptations of an organism to different environments which could otherwise be infeasible experimentally. In this review, we are describing the application of GEMs in understanding how microbes reprogram their metabolic system as a result of environmental variation. In particular, we provide the details of metabolic model reconstruction approaches, various algorithms and tools for model simulation, consequences of genetic perturbations, integration of '-omics' datasets for creating context-specific models and their application in studying metabolic adaptation due to the change in environmental conditions.
Collapse
Affiliation(s)
- Elena Lucy Carter
- Warwick Medical School, University of Warwick, Coventry, CV4 7HL, UK
| | | | | |
Collapse
|
7
|
Griesemer M, Navid A. Uses of Multi-Objective Flux Analysis for Optimization of Microbial Production of Secondary Metabolites. Microorganisms 2023; 11:2149. [PMID: 37763993 PMCID: PMC10536367 DOI: 10.3390/microorganisms11092149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/07/2023] [Accepted: 08/16/2023] [Indexed: 09/29/2023] Open
Abstract
Secondary metabolites are not essential for the growth of microorganisms, but they play a critical role in how microbes interact with their surroundings. In addition to this important ecological role, secondary metabolites also have a variety of agricultural, medicinal, and industrial uses, and thus the examination of secondary metabolism of plants and microbes is a growing scientific field. While the chemical production of certain secondary metabolites is possible, industrial-scale microbial production is a green and economically attractive alternative. This is even more true, given the advances in bioengineering that allow us to alter the workings of microbes in order to increase their production of compounds of interest. This type of engineering requires detailed knowledge of the "chassis" organism's metabolism. Since the resources and the catalytic capacity of enzymes in microbes is finite, it is important to examine the tradeoffs between various bioprocesses in an engineered system and alter its working in a manner that minimally perturbs the robustness of the system while allowing for the maximum production of a product of interest. The in silico multi-objective analysis of metabolism using genome-scale models is an ideal method for such examinations.
Collapse
Affiliation(s)
| | - Ali Navid
- Lawrence Livermore National Laboratory, Biosciences & Biotechnology Division, Physical & Life Sciences Directorate, Livermore, CA 94550, USA
| |
Collapse
|
8
|
Molversmyr H, Øyås O, Rotnes F, Vik JO. Extracting functionally accurate context-specific models of Atlantic salmon metabolism. NPJ Syst Biol Appl 2023; 9:19. [PMID: 37244928 DOI: 10.1038/s41540-023-00280-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 05/05/2023] [Indexed: 05/29/2023] Open
Abstract
Constraint-based models (CBMs) are used to study metabolic network structure and function in organisms ranging from microbes to multicellular eukaryotes. Published CBMs are usually generic rather than context-specific, meaning that they do not capture differences in reaction activities, which, in turn, determine metabolic capabilities, between cell types, tissues, environments, or other conditions. Only a subset of a CBM's metabolic reactions and capabilities are likely to be active in any given context, and several methods have therefore been developed to extract context-specific models from generic CBMs through integration of omics data. We tested the ability of six model extraction methods (MEMs) to create functionally accurate context-specific models of Atlantic salmon using a generic CBM (SALARECON) and liver transcriptomics data from contexts differing in water salinity (life stage) and dietary lipids. Three MEMs (iMAT, INIT, and GIMME) outperformed the others in terms of functional accuracy, which we defined as the extracted models' ability to perform context-specific metabolic tasks inferred directly from the data, and one MEM (GIMME) was faster than the others. Context-specific versions of SALARECON consistently outperformed the generic version, showing that context-specific modeling better captures salmon metabolism. Thus, we demonstrate that results from human studies also hold for a non-mammalian animal and major livestock species.
Collapse
Affiliation(s)
- Håvard Molversmyr
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
- Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Ove Øyås
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
- Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Filip Rotnes
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
- Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Jon Olav Vik
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway.
- Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway.
| |
Collapse
|
9
|
Zampieri G, Campanaro S, Angione C, Treu L. Metatranscriptomics-guided genome-scale metabolic modeling of microbial communities. CELL REPORTS METHODS 2023; 3:100383. [PMID: 36814842 PMCID: PMC9939383 DOI: 10.1016/j.crmeth.2022.100383] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 10/07/2022] [Accepted: 12/12/2022] [Indexed: 01/09/2023]
Abstract
Multi-omics data integration via mechanistic models of metabolism is a scalable and flexible framework for exploring biological hypotheses in microbial systems. However, although most microorganisms are unculturable, such multi-omics modeling is limited to isolate microbes or simple synthetic communities. Here, we developed an approach for modeling microbial activity and interactions that leverages the reconstruction of metagenome-assembled genomes and associated genome-centric metatranscriptomes. At its core, we designed a method for condition-specific metabolic modeling of microbial communities through the integration of metatranscriptomic data. Using this approach, we explored the behavior of anaerobic digestion consortia driven by hydrogen availability and human gut microbiota dysbiosis associated with Crohn's disease, identifying condition-dependent amino acid requirements in archaeal species and a reduced short-chain fatty acid exchange network associated with disease, respectively. Our approach can be applied to complex microbial communities, allowing a mechanistic contextualization of multi-omics data on a metagenome scale.
Collapse
Affiliation(s)
- Guido Zampieri
- Department of Biology, University of Padova, Padova 35121, Italy
| | - Stefano Campanaro
- Department of Biology, University of Padova, Padova 35121, Italy
- CRIBI Biotechnology Center, University of Padova, Padova 35121, Italy
| | - Claudio Angione
- School of Computing, Engineering and Digital Technologies, Teesside University, Middlesbrough TS1 3BX, UK
- National Horizons Centre, Teesside University, Darlington DL1 1HG, UK
- Centre for Digital Innovation, Teesside University, Middlesbrough TS1 3BX, UK
| | - Laura Treu
- Department of Biology, University of Padova, Padova 35121, Italy
| |
Collapse
|
10
|
Context-Specific Genome-Scale Metabolic Modelling and Its Application to the Analysis of COVID-19 Metabolic Signatures. Metabolites 2023; 13:metabo13010126. [PMID: 36677051 PMCID: PMC9866716 DOI: 10.3390/metabo13010126] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/27/2022] [Accepted: 01/10/2023] [Indexed: 01/19/2023] Open
Abstract
Genome-scale metabolic models (GEMs) have found numerous applications in different domains, ranging from biotechnology to systems medicine. Herein, we overview the most popular algorithms for the automated reconstruction of context-specific GEMs using high-throughput experimental data. Moreover, we describe different datasets applied in the process, and protocols that can be used to further automate the model reconstruction and validation. Finally, we describe recent COVID-19 applications of context-specific GEMs, focusing on the analysis of metabolic implications, identification of biomarkers and potential drug targets.
Collapse
|
11
|
Lüleci HB, Uzuner D, Çakır T, Thambisetty M. Computational Approaches to Assess Abnormal Metabolism in Alzheimer's Disease Using Transcriptomics. Methods Mol Biol 2023; 2561:173-189. [PMID: 36399270 DOI: 10.1007/978-1-0716-2655-9_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Transcriptome-integrated human genome-scale metabolic models (GEMs) have been used widely to assess alterations in metabolism in response to disease. Transcriptome integration leads to identification of metabolic reactions that are differentially inactivated in the tissue of interest. Among the methods available for mapping transcriptome data on GEMs, we focus here on an Integrative Metabolic Analysis Tool (iMAT), which we have recently applied to the analysis of Alzheimer's disease (AD). We provide a detailed protocol for applying iMAT to create models of personalized metabolic networks, which can be further processed to identify reactions associated with abnormal metabolism.
Collapse
Affiliation(s)
- Hatice Büşra Lüleci
- Department of Bioengineering, Gebze Technical University, Gebze, Kocaeli, Turkey
| | - Dilara Uzuner
- Department of Bioengineering, Gebze Technical University, Gebze, Kocaeli, Turkey
| | - Tunahan Çakır
- Department of Bioengineering, Gebze Technical University, Gebze, Kocaeli, Turkey
| | - Madhav Thambisetty
- Clinical and Translational Neuroscience Section, Laboratory of Behavioral Neuroscience, National Institute on Aging (NIA), National Institutes of Health (NIH), Baltimore, MD, USA.
| |
Collapse
|
12
|
Magazzù G, Zampieri G, Angione C. Clinical stratification improves the diagnostic accuracy of small omics datasets within machine learning and genome-scale metabolic modelling methods. Comput Biol Med 2022; 151:106244. [PMID: 36343407 DOI: 10.1016/j.compbiomed.2022.106244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 10/07/2022] [Accepted: 10/22/2022] [Indexed: 12/27/2022]
Abstract
BACKGROUND Recently, multi-omic machine learning architectures have been proposed for the early detection of cancer. However, for rare cancers and their associated small datasets, it is still unclear how to use the available multi-omics data to achieve a mechanistic prediction of cancer onset and progression, due to the limited data available. Hepatoblastoma is the most frequent liver cancer in infancy and childhood, and whose incidence has been lately increasing in several developed countries. Even though some studies have been conducted to understand the causes of its onset and discover potential biomarkers, the role of metabolic rewiring has not been investigated in depth so far. METHODS Here, we propose and implement an interpretable multi-omics pipeline that combines mechanistic knowledge from genome-scale metabolic models with machine learning algorithms, and we use it to characterise the underlying mechanisms controlling hepatoblastoma. RESULTS AND CONCLUSIONS While the obtained machine learning models generally present a high diagnostic classification accuracy, our results show that the type of omics combinations used as input to the machine learning models strongly affects the detection of important genes, reactions and metabolic pathways linked to hepatoblastoma. Our method also suggests that, in the context of computer-aided diagnosis of cancer, optimal diagnostic accuracy can be achieved by adopting a combination of omics that depends on the patient's clinical characteristics.
Collapse
Affiliation(s)
- Giuseppe Magazzù
- School of Computing, Engineering and Digital Technologies, Teesside University, Middlesbrough, England, United Kingdom
| | - Guido Zampieri
- School of Computing, Engineering and Digital Technologies, Teesside University, Middlesbrough, England, United Kingdom; Department of Biology, University of Padova, Padova, Italy
| | - Claudio Angione
- School of Computing, Engineering and Digital Technologies, Teesside University, Middlesbrough, England, United Kingdom; Centre for Digital Innovation, Teesside University, Middlesbrough, England, United Kingdom; National Horizons Centre, Teesside University, Darlington, England, United Kingdom.
| |
Collapse
|
13
|
Cho JS, Kim GB, Eun H, Moon CW, Lee SY. Designing Microbial Cell Factories for the Production of Chemicals. JACS AU 2022; 2:1781-1799. [PMID: 36032533 PMCID: PMC9400054 DOI: 10.1021/jacsau.2c00344] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/26/2022] [Accepted: 07/26/2022] [Indexed: 05/24/2023]
Abstract
The sustainable production of chemicals from renewable, nonedible biomass has emerged as an essential alternative to address pressing environmental issues arising from our heavy dependence on fossil resources. Microbial cell factories are engineered microorganisms harboring biosynthetic pathways streamlined to produce chemicals of interests from renewable carbon sources. The biosynthetic pathways for the production of chemicals can be defined into three categories with reference to the microbial host selected for engineering: native-existing pathways, nonnative-existing pathways, and nonnative-created pathways. Recent trends in leveraging native-existing pathways, discovering nonnative-existing pathways, and designing de novo pathways (as nonnative-created pathways) are discussed in this Perspective. We highlight key approaches and successful case studies that exemplify these concepts. Once these pathways are designed and constructed in the microbial cell factory, systems metabolic engineering strategies can be used to improve the performance of the strain to meet industrial production standards. In the second part of the Perspective, current trends in design tools and strategies for systems metabolic engineering are discussed with an eye toward the future. Finally, we survey current and future challenges that need to be addressed to advance microbial cell factories for the sustainable production of chemicals.
Collapse
Affiliation(s)
- Jae Sung Cho
- Metabolic
and Biomolecular Engineering National Research Laboratory and Systems
Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative
Laboratory, Department of Chemical and Biomolecular Engineering (BK21
four), Korea Advanced Institute of Science
and Technology (KAIST), Daejeon 34141, Republic of Korea
- KAIST
Institute for the BioCentury and KAIST Institute for Artificial Intelligence, Korea Advanced Institute of Science and Technology
(KAIST), Daejeon 34141, Republic of Korea
- BioProcess
Engineering Research Center and BioInformatics Research Center, Korea Advanced Institute of Science and Technology
(KAIST), Daejeon 34141, Republic of Korea
| | - Gi Bae Kim
- Metabolic
and Biomolecular Engineering National Research Laboratory and Systems
Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative
Laboratory, Department of Chemical and Biomolecular Engineering (BK21
four), Korea Advanced Institute of Science
and Technology (KAIST), Daejeon 34141, Republic of Korea
- KAIST
Institute for the BioCentury and KAIST Institute for Artificial Intelligence, Korea Advanced Institute of Science and Technology
(KAIST), Daejeon 34141, Republic of Korea
| | - Hyunmin Eun
- Metabolic
and Biomolecular Engineering National Research Laboratory and Systems
Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative
Laboratory, Department of Chemical and Biomolecular Engineering (BK21
four), Korea Advanced Institute of Science
and Technology (KAIST), Daejeon 34141, Republic of Korea
- KAIST
Institute for the BioCentury and KAIST Institute for Artificial Intelligence, Korea Advanced Institute of Science and Technology
(KAIST), Daejeon 34141, Republic of Korea
| | - Cheon Woo Moon
- Metabolic
and Biomolecular Engineering National Research Laboratory and Systems
Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative
Laboratory, Department of Chemical and Biomolecular Engineering (BK21
four), Korea Advanced Institute of Science
and Technology (KAIST), Daejeon 34141, Republic of Korea
- KAIST
Institute for the BioCentury and KAIST Institute for Artificial Intelligence, Korea Advanced Institute of Science and Technology
(KAIST), Daejeon 34141, Republic of Korea
| | - Sang Yup Lee
- Metabolic
and Biomolecular Engineering National Research Laboratory and Systems
Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative
Laboratory, Department of Chemical and Biomolecular Engineering (BK21
four), Korea Advanced Institute of Science
and Technology (KAIST), Daejeon 34141, Republic of Korea
- KAIST
Institute for the BioCentury and KAIST Institute for Artificial Intelligence, Korea Advanced Institute of Science and Technology
(KAIST), Daejeon 34141, Republic of Korea
- BioProcess
Engineering Research Center and BioInformatics Research Center, Korea Advanced Institute of Science and Technology
(KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
14
|
Kutay M, Gozuacik D, Çakır T. Cancer Recurrence and Omics: Metabolic Signatures of Cancer Dormancy Revealed by Transcriptome Mapping of Genome-Scale Networks. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2022; 26:270-279. [PMID: 35394340 DOI: 10.1089/omi.2022.0008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
A major problem in medicine and oncology is cancer recurrence through the activation of dormant cancer cells. A system scale examination of metabolic dysregulations associated with the cancer dormancy offers promise for the discovery of novel molecular targets for cancer precision medicine, and importantly, for the prevention of cancer recurrence. In this study, we mapped the total mRNA sequencing-based transcriptomic data from dormant cancer cell lines and nondormant cancer controls onto a human genome-scale metabolic network by using a graph-based approach, and two mass balance-based approaches with one based on reaction activity/inactivity and the other one on flux changes. The gene expression datasets were accessed from Gene Expression Omnibus (GSE83142 and GSE114012). This analysis included two diverse cancer types, a liquid and a solid cancer, namely, acute lymphoblastic leukemia and colorectal cancer. For the dormant cancer state, we observed changes in major adenosine triphosphate-producing pathways, including the citric acid cycle, oxidative phosphorylation, and glycolysis/gluconeogenesis, indicating a reprogramming in the metabolism of dormant cells away from Warburg-based energy metabolism. All three computational approaches unanimously predicted that folate metabolism, pyruvate metabolism, and glutamate metabolism, as well as valine/leucine/isoleucine metabolism are likely dysregulated in cancer dormancy. These findings provide new insights and molecular pathway targets on cancer dormancy, comprehensively catalog dormancy-associated metabolic pathways, and inform future research aimed at prevention of cancer recurrence in particular.
Collapse
Affiliation(s)
- Merve Kutay
- Department of Bioengineering, Gebze Technical University, Kocaeli, Turkey
| | - Devrim Gozuacik
- Koç University Research Center for Translational Medicine (KUTTAM) and Koc, University School of Medicine, Istanbul, Turkey
- Sabancı University Nanotechnology Research and Application Center (SUNUM), Istanbul, Turkey
| | - Tunahan Çakır
- Department of Bioengineering, Gebze Technical University, Kocaeli, Turkey
| |
Collapse
|
15
|
Vijayakumar S, Angione C. Protocol for hybrid flux balance, statistical, and machine learning analysis of multi-omic data from the cyanobacterium Synechococcus sp. PCC 7002. STAR Protoc 2021; 2:100837. [PMID: 34632416 PMCID: PMC8488602 DOI: 10.1016/j.xpro.2021.100837] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Combining a computational framework for flux balance analysis with machine learning improves the accuracy of predicting metabolic activity across conditions, while enabling mechanistic interpretation. This protocol presents a guide to condition-specific metabolic modeling that integrates regularized flux balance analysis with machine learning approaches to extract key features from transcriptomic and fluxomic data. We demonstrate the protocol as applied to Synechococcus sp. PCC 7002; we also outline how it can be adapted to any species or community with available multi-omic data. For complete details on the use and execution of this protocol, please refer to Vijayakumar et al. (2020).
Collapse
Affiliation(s)
- Supreeta Vijayakumar
- School of Computing, Engineering & Digital Technologies, Teesside University, Middlesbrough, North Yorkshire TS1 3BX, UK
| | - Claudio Angione
- School of Computing, Engineering & Digital Technologies, Teesside University, Middlesbrough, North Yorkshire TS1 3BX, UK
- Centre for Digital Innovation, Teesside University, Middlesbrough TS1 3BX, UK
- Healthcare Innovation Centre, Teesside University, Middlesbrough TS1 3BX, UK
| |
Collapse
|
16
|
Ruan Y, Chen XH, Jiang F, Liu YG, Liang XL, Lv BM, Zhang HY, Zhang QY. Agent Clustering Strategy Based on Metabolic Flux Distribution and Transcriptome Expression for Novel Drug Development. Biomedicines 2021; 9:biomedicines9111640. [PMID: 34829869 PMCID: PMC8615746 DOI: 10.3390/biomedicines9111640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/01/2021] [Accepted: 11/05/2021] [Indexed: 11/16/2022] Open
Abstract
The network module-based method has been used for drug repositioning. The traditional drug repositioning method only uses the gene characteristics of the drug but ignores the drug-triggered metabolic changes. The metabolic network systematically characterizes the connection between genes, proteins, and metabolic reactions. The differential metabolic flux distribution, as drug metabolism characteristics, was employed to cluster the agents with similar MoAs (mechanism of action). In this study, agents with the same pharmacology were clustered into one group, and a total of 1309 agents from the CMap database were clustered into 98 groups based on differential metabolic flux distribution. Transcription factor (TF) enrichment analysis revealed the agents in the same group (such as group 7 and group 26) were confirmed to have similar MoAs. Through this agent clustering strategy, the candidate drugs which can inhibit (Japanese encephalitis virus) JEV infection were identified. This study provides new insights into drug repositioning and their MoAs.
Collapse
|
17
|
Esvap E, Ulgen KO. Advances in Genome-Scale Metabolic Modeling toward Microbial Community Analysis of the Human Microbiome. ACS Synth Biol 2021; 10:2121-2137. [PMID: 34402617 DOI: 10.1021/acssynbio.1c00140] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A genome-scale metabolic model (GEM) represents metabolic pathways of an organism in a mathematical form and can be built using biochemistry and genome annotation data. GEMs are invaluable for understanding organisms since they analyze the metabolic capabilities and behaviors quantitatively and can predict phenotypes. The development of high-throughput data collection techniques led to an immense increase in omics data such as metagenomics, which expand our knowledge on the human microbiome, but this also created a need for systematic analysis of these data. In recent years, GEMs have also been reconstructed for microbial species, including human gut microbiota, and methods for the analysis of microbial communities have been developed to examine the interaction between the organisms or the host. The purpose of this review is to provide a comprehensive guide for the applications of GEMs in microbial community analysis. Starting with GEM repositories, automatic GEM reconstruction tools, and quality control of models, this review will give insights into microbe-microbe and microbe-host interaction predictions and optimization of microbial community models. Recent studies that utilize microbial GEMs and personalized models to infer the influence of microbiota on human diseases such as inflammatory bowel diseases (IBD) or Parkinson's disease are exemplified. Being powerful system biology tools for both species-level and community-level analysis of microbes, GEMs integrated with omics data and machine learning techniques will be indispensable for studying the microbiome and their effects on human physiology as well as for deciphering the mechanisms behind human diseases.
Collapse
Affiliation(s)
- Elif Esvap
- Department of Chemical Engineering, Bogazici University, 34342 Istanbul, Turkey
| | - Kutlu O. Ulgen
- Department of Chemical Engineering, Bogazici University, 34342 Istanbul, Turkey
| |
Collapse
|
18
|
Chung CH, Lin DW, Eames A, Chandrasekaran S. Next-Generation Genome-Scale Metabolic Modeling through Integration of Regulatory Mechanisms. Metabolites 2021; 11:606. [PMID: 34564422 PMCID: PMC8470976 DOI: 10.3390/metabo11090606] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/01/2021] [Accepted: 09/03/2021] [Indexed: 12/18/2022] Open
Abstract
Genome-scale metabolic models (GEMs) are powerful tools for understanding metabolism from a systems-level perspective. However, GEMs in their most basic form fail to account for cellular regulation. A diverse set of mechanisms regulate cellular metabolism, enabling organisms to respond to a wide range of conditions. This limitation of GEMs has prompted the development of new methods to integrate regulatory mechanisms, thereby enhancing the predictive capabilities and broadening the scope of GEMs. Here, we cover integrative models encompassing six types of regulatory mechanisms: transcriptional regulatory networks (TRNs), post-translational modifications (PTMs), epigenetics, protein-protein interactions and protein stability (PPIs/PS), allostery, and signaling networks. We discuss 22 integrative GEM modeling methods and how these have been used to simulate metabolic regulation during normal and pathological conditions. While these advances have been remarkable, there remains a need for comprehensive and widespread integration of regulatory constraints into GEMs. We conclude by discussing challenges in constructing GEMs with regulation and highlight areas that need to be addressed for the successful modeling of metabolic regulation. Next-generation integrative GEMs that incorporate multiple regulatory mechanisms and their crosstalk will be invaluable for discovering cell-type and disease-specific metabolic control mechanisms.
Collapse
Affiliation(s)
- Carolina H. Chung
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; (C.H.C.); (A.E.)
| | - Da-Wei Lin
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Alec Eames
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; (C.H.C.); (A.E.)
| | - Sriram Chandrasekaran
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; (C.H.C.); (A.E.)
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA;
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI 48109, USA
- Center for Bioinformatics and Computational Medicine, University of Michigan, Ann Arbor, MI 48109, USA
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
19
|
Sahu A, Blätke MA, Szymański JJ, Töpfer N. Advances in flux balance analysis by integrating machine learning and mechanism-based models. Comput Struct Biotechnol J 2021; 19:4626-4640. [PMID: 34471504 PMCID: PMC8382995 DOI: 10.1016/j.csbj.2021.08.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 08/03/2021] [Accepted: 08/03/2021] [Indexed: 02/08/2023] Open
Abstract
The availability of multi-omics data sets and genome-scale metabolic models for various organisms provide a platform for modeling and analyzing genotype-to-phenotype relationships. Flux balance analysis is the main tool for predicting flux distributions in genome-scale metabolic models and various data-integrative approaches enable modeling context-specific network behavior. Due to its linear nature, this optimization framework is readily scalable to multi-tissue or -organ and even multi-organism models. However, both data and model size can hamper a straightforward biological interpretation of the estimated fluxes. Moreover, flux balance analysis simulates metabolism at steady-state and thus, in its most basic form, does not consider kinetics or regulatory events. The integration of flux balance analysis with complementary data analysis and modeling techniques offers the potential to overcome these challenges. In particular machine learning approaches have emerged as the tool of choice for data reduction and selection of most important variables in big data sets. Kinetic models and formal languages can be used to simulate dynamic behavior. This review article provides an overview of integrative studies that combine flux balance analysis with machine learning approaches, kinetic models, such as physiology-based pharmacokinetic models, and formal graphical modeling languages, such as Petri nets. We discuss the mathematical aspects and biological applications of these integrated approaches and outline challenges and future perspectives.
Collapse
Affiliation(s)
- Ankur Sahu
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstraße 3, 06466 Gatersleben, Germany
| | - Mary-Ann Blätke
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstraße 3, 06466 Gatersleben, Germany
| | - Jędrzej Jakub Szymański
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstraße 3, 06466 Gatersleben, Germany
| | - Nadine Töpfer
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstraße 3, 06466 Gatersleben, Germany
| |
Collapse
|
20
|
Magadán S, Mikelez-Alonso I, Borrego F, González-Fernández Á. Nanoparticles and trained immunity: Glimpse into the future. Adv Drug Deliv Rev 2021; 175:113821. [PMID: 34087325 DOI: 10.1016/j.addr.2021.05.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/27/2021] [Accepted: 05/29/2021] [Indexed: 12/17/2022]
Abstract
Emerging evidences show that innate immune cells can display changes in their functional programs after infection or vaccination, which lead to immunomodulation (increased or reduced responsiveness) upon secondary activation to the same stimuli or even to a different one. Innate cells acquire features of immunological memory, nowadays using the new term of "trained immunity" or "innate immune memory", which is different from the specific memory immune response elicited by B and T lymphocytes. The review focused on the concept of trained immunity, mostly on myeloid cells. Special attention is dedicated to the pathogen recognition along the evolution (bacteria, plants, invertebrate and vertebrate animals), and to techniques used to study epigenetic reprogramming and metabolic rewiring. Nanomaterials can be recognized by immune cells offering a very promising way to learn about trained immunity. Nanomaterials could be modified in order to immunomodulate the responses ad hoc. Many therapeutic possibilities are opened, and they should be explored.
Collapse
|
21
|
Multiscale models quantifying yeast physiology: towards a whole-cell model. Trends Biotechnol 2021; 40:291-305. [PMID: 34303549 DOI: 10.1016/j.tibtech.2021.06.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/26/2021] [Accepted: 06/28/2021] [Indexed: 12/21/2022]
Abstract
The yeast Saccharomyces cerevisiae is widely used as a cell factory and as an important eukaryal model organism for studying cellular physiology related to human health and disease. Yeast was also the first eukaryal organism for which a genome-scale metabolic model (GEM) was developed. In recent years there has been interest in expanding the modeling framework for yeast by incorporating enzymatic parameters and other heterogeneous cellular networks to obtain a more comprehensive description of cellular physiology. We review the latest developments in multiscale models of yeast, and illustrate how a new generation of multiscale models could significantly enhance the predictive performance and expand the applications of classical GEMs in cell factory design and basic studies of yeast physiology.
Collapse
|
22
|
Abnormal brain cholesterol homeostasis in Alzheimer's disease-a targeted metabolomic and transcriptomic study. NPJ Aging Mech Dis 2021; 7:11. [PMID: 34075056 PMCID: PMC8169871 DOI: 10.1038/s41514-021-00064-9] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 03/18/2021] [Indexed: 02/02/2023] Open
Abstract
The role of brain cholesterol metabolism in Alzheimer's disease (AD) remains unclear. Peripheral and brain cholesterol levels are largely independent due to the impermeability of the blood brain barrier (BBB), highlighting the importance of studying the role of brain cholesterol homeostasis in AD. We first tested whether metabolite markers of brain cholesterol biosynthesis and catabolism were altered in AD and associated with AD pathology using linear mixed-effects models in two brain autopsy samples from the Baltimore Longitudinal Study of Aging (BLSA) and the Religious Orders Study (ROS). We next tested whether genetic regulators of brain cholesterol biosynthesis and catabolism were altered in AD using the ANOVA test in publicly available brain tissue transcriptomic datasets. Finally, using regional brain transcriptomic data, we performed genome-scale metabolic network modeling to assess alterations in cholesterol biosynthesis and catabolism reactions in AD. We show that AD is associated with pervasive abnormalities in cholesterol biosynthesis and catabolism. Using transcriptomic data from Parkinson's disease (PD) brain tissue samples, we found that gene expression alterations identified in AD were not observed in PD, suggesting that these changes may be specific to AD. Our results suggest that reduced de novo cholesterol biosynthesis may occur in response to impaired enzymatic cholesterol catabolism and efflux to maintain brain cholesterol levels in AD. This is accompanied by the accumulation of nonenzymatically generated cytotoxic oxysterols. Our results set the stage for experimental studies to address whether abnormalities in cholesterol metabolism are plausible therapeutic targets in AD.
Collapse
|
23
|
Exploring the Metabolic Heterogeneity of Cancers: A Benchmark Study of Context-Specific Models. J Pers Med 2021; 11:jpm11060496. [PMID: 34205912 PMCID: PMC8229374 DOI: 10.3390/jpm11060496] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 05/25/2021] [Accepted: 05/28/2021] [Indexed: 12/18/2022] Open
Abstract
Metabolic heterogeneity is a hallmark of cancer and can distinguish a normal phenotype from a cancer phenotype. In the systems biology domain, context-specific models facilitate extracting physiologically relevant information from high-quality data. Here, to utilize the heterogeneity of metabolic patterns to discover biomarkers of all cancers, we benchmarked thousands of context-specific models using well-established algorithms for the integration of omics data into the generic human metabolic model Recon3D. By analyzing the active reactions capable of carrying flux and their magnitude through flux balance analysis, we proved that the metabolic pattern of each cancer is unique and could act as a cancer metabolic fingerprint. Subsequently, we searched for proper feature selection methods to cluster the flux states characterizing each cancer. We employed PCA-based dimensionality reduction and a random forest learning algorithm to reveal reactions containing the most relevant information in order to effectively identify the most influential fluxes. Conclusively, we discovered different pathways that are probably the main sources for metabolic heterogeneity in cancers. We designed the GEMbench website to interactively present the data, methods, and analysis results.
Collapse
|
24
|
Cakmak A, Celik MH. Personalized Metabolic Analysis of Diseases. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2021; 18:1014-1025. [PMID: 32750887 DOI: 10.1109/tcbb.2020.3008196] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The metabolic wiring of patient cells is altered drastically in many diseases, including cancer. Understanding the nature of such changes may pave the way for new therapeutic opportunities as well as the development of personalized treatment strategies for patients. In this paper, we propose an algorithm called Metabolitics, which allows systems-level analysis of changes in the biochemical network of cells in disease states. It enables the study of a disease at both reaction- and pathway-level granularities for a detailed and summarized view of disease etiology. Metabolitics employs flux variability analysis with a dynamically built objective function based on biofluid metabolomics measurements in a personalized manner. Moreover, Metabolitics builds supervised classification models to discriminate between patients and healthy subjects based on the computed metabolic network changes. The use of Metabolitics is demonstrated for three distinct diseases, namely, breast cancer, Crohn's disease, and colorectal cancer. Our results show that the constructed supervised learning models successfully differentiate patients from healthy individuals by an average f1-score of 88 percent. Besides, in addition to the confirmation of previously reported breast cancer-associated pathways, we discovered that Biotin Metabolism along with Arginine and Proline Metabolism is subject to a significant increase in flux capacity, which have not been reported before.
Collapse
|
25
|
Abdik E, Çakır T. Systematic investigation of mouse models of Parkinson's disease by transcriptome mapping on a brain-specific genome-scale metabolic network. Mol Omics 2021; 17:492-502. [PMID: 34370801 DOI: 10.1039/d0mo00135j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Genome-scale metabolic networks enable systemic investigation of metabolic alterations caused by diseases by providing interpretation of omics data. Although Mus musculus (mouse) is one of the most commonly used model organisms for neurodegenerative diseases, a brain-specific metabolic network model of mice has not yet been reconstructed. Here we reconstructed the first brain-specific metabolic network model of mice, iBrain674-Mm, by a homology-based approach, which consisted of 992 reactions controlled by 674 genes and distributed over 48 pathways. We validated the newly reconstructed network model by showing that it predicts healthy resting-state metabolic phenotypes of mouse brain compatible with the literature. We later used iBrain674-Mm to interpret various experimental mouse models of Parkinson's Disease (PD) at the transcriptome level. To this end, we applied a constraint-based modelling based biomarker prediction method called TIMBR (Transcriptionally Inferred Metabolic Biomarker Response) to predict altered metabolite production from transcriptomic data. Systemic analysis of seven different PD mouse models by TIMBR showed that the neuronal levels of glutamate, lactate, creatine phosphate, neuronal acetylcholine, bilirubin and formate increased in most of the PD mouse models, whereas the levels of melatonin, epinephrine, astrocytic formate and astrocytic bilirubin decreased. Although most of the predictions were consistent with the literature, there were some inconsistencies among different PD mouse models, signifying that there is no perfect experimental model to reflect PD metabolism. The newly reconstructed brain-specific genome-scale metabolic network model of mice can make important contributions to the interpretation and development of experimental mouse models of PD and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Ecehan Abdik
- Department of Bioengineering, Gebze Technical University, Kocaeli, Turkey.
| | | |
Collapse
|
26
|
Ebata K, Yamashiro S, Iida K, Okada M. Building patient-specific models for receptor tyrosine kinase signaling networks. FEBS J 2021; 289:90-101. [PMID: 33755310 DOI: 10.1111/febs.15831] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/26/2021] [Accepted: 03/19/2021] [Indexed: 12/16/2022]
Abstract
Cancer progresses due to changes in the dynamic interactions of multidimensional factors associated with gene mutations. Cancer research has actively adopted computational methods, including data-driven and mathematical model-driven approaches, to identify causative factors and regulatory rules that can explain the complexity and diversity of cancers. A data-driven, statistics-based approach revealed correlations between gene alterations and clinical outcomes in many types of cancers. A model-driven mathematical approach has elucidated the dynamic features of cancer networks and identified the mechanisms of drug efficacy and resistance. More recently, machine learning methods have emerged that can be used for mining omics data and classifying patient. However, as the strengths and weaknesses of each method becoming apparent, new analytical tools are emerging to combine and improve the methodologies and maximize their predictive power for classifying cancer subtypes and prognosis. Here, we introduce recent advances in cancer systems biology aimed at personalized medicine, with focus on the receptor tyrosine kinase signaling network.
Collapse
Affiliation(s)
- Kyoichi Ebata
- Institute for Protein Research, Osaka University, Suita, Japan
| | - Sawa Yamashiro
- Institute for Protein Research, Osaka University, Suita, Japan
| | - Keita Iida
- Institute for Protein Research, Osaka University, Suita, Japan
| | - Mariko Okada
- Institute for Protein Research, Osaka University, Suita, Japan.,Center for Drug Design and Research, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Japan.,Institute for Chemical Research, Kyoto University, Japan
| |
Collapse
|
27
|
Dahal S, Yurkovich JT, Xu H, Palsson BO, Yang L. Synthesizing Systems Biology Knowledge from Omics Using Genome-Scale Models. Proteomics 2020; 20:e1900282. [PMID: 32579720 PMCID: PMC7501203 DOI: 10.1002/pmic.201900282] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 06/13/2020] [Indexed: 12/18/2022]
Abstract
Omic technologies have enabled the complete readout of the molecular state of a cell at different biological scales. In principle, the combination of multiple omic data types can provide an integrated view of the entire biological system. This integration requires appropriate models in a systems biology approach. Here, genome-scale models (GEMs) are focused upon as one computational systems biology approach for interpreting and integrating multi-omic data. GEMs convert the reactions (related to metabolism, transcription, and translation) that occur in an organism to a mathematical formulation that can be modeled using optimization principles. A variety of genome-scale modeling methods used to interpret multiple omic data types, including genomics, transcriptomics, proteomics, metabolomics, and meta-omics are reviewed. The ability to interpret omics in the context of biological systems has yielded important findings for human health, environmental biotechnology, bioenergy, and metabolic engineering. The authors find that concurrent with advancements in omic technologies, genome-scale modeling methods are also expanding to enable better interpretation of omic data. Therefore, continued synthesis of valuable knowledge, through the integration of omic data with GEMs, are expected.
Collapse
Affiliation(s)
- Sanjeev Dahal
- Department of Chemical Engineering, Queen’s University, Kingston, Canada
| | | | - Hao Xu
- Department of Chemical Engineering, Queen’s University, Kingston, Canada
| | - Bernhard O. Palsson
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Laurence Yang
- Department of Chemical Engineering, Queen’s University, Kingston, Canada
| |
Collapse
|
28
|
Abstract
Lipid droplets (LDs) are now recognized as omnipresent and dynamic subcellular organelles of amazing morphological and functional diversity. Beyond the obvious benefit of having molecules full of chemical energy stored in a dedicated structural entity, LDs may also be viewed as a safe harbor for potentially damaging metabolites. This protective function might in many cases even supersede the relevance of lipid storage for eventual energy gain and membrane biogenesis. Furthermore, the LD surface constitutes a unique membrane environment, creating a platform for hosting specific proteins and thus enabling their interactions. These metabolic hotspots would contribute decisively to compartmentalized metabolism in the cytosol. LDs are also communicating extensively with other subcellular organelles in directing and regulating lipid metabolism. Deciphering the relevance of LD storage and regulation at the organismic level will be essential for the understanding of widespread and serious metabolic complications in humans. Increasing attention is also devoted to pathogens appropriating LDs for their own benefit. LD biology is still considered an emerging research area in rapid and vibrant development, attracting scientists from all disciplines of the life sciences and beyond, which is mirrored by the accompanying review collection. Here, we present our personal views on areas we believe are especially exciting and hold great potential for future developments. Particularly, we address issues relating to LD biogenesis and heterogeneity, required technological advances, and the complexity of human physiology.
Collapse
|
29
|
Jamil IN, Remali J, Azizan KA, Nor Muhammad NA, Arita M, Goh HH, Aizat WM. Systematic Multi-Omics Integration (MOI) Approach in Plant Systems Biology. FRONTIERS IN PLANT SCIENCE 2020; 11:944. [PMID: 32754171 PMCID: PMC7371031 DOI: 10.3389/fpls.2020.00944] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 06/10/2020] [Indexed: 05/03/2023]
Abstract
Across all facets of biology, the rapid progress in high-throughput data generation has enabled us to perform multi-omics systems biology research. Transcriptomics, proteomics, and metabolomics data can answer targeted biological questions regarding the expression of transcripts, proteins, and metabolites, independently, but a systematic multi-omics integration (MOI) can comprehensively assimilate, annotate, and model these large data sets. Previous MOI studies and reviews have detailed its usage and practicality on various organisms including human, animals, microbes, and plants. Plants are especially challenging due to large poorly annotated genomes, multi-organelles, and diverse secondary metabolites. Hence, constructive and methodological guidelines on how to perform MOI for plants are needed, particularly for researchers newly embarking on this topic. In this review, we thoroughly classify multi-omics studies on plants and verify workflows to ensure successful omics integration with accurate data representation. We also propose three levels of MOI, namely element-based (level 1), pathway-based (level 2), and mathematical-based integration (level 3). These MOI levels are described in relation to recent publications and tools, to highlight their practicality and function. The drawbacks and limitations of these MOI are also discussed for future improvement toward more amenable strategies in plant systems biology.
Collapse
Affiliation(s)
- Ili Nadhirah Jamil
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia (UKM), Bangi, Malaysia
| | - Juwairiah Remali
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia (UKM), Bangi, Malaysia
| | - Kamalrul Azlan Azizan
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia (UKM), Bangi, Malaysia
| | - Nor Azlan Nor Muhammad
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia (UKM), Bangi, Malaysia
| | - Masanori Arita
- Bioinformation & DDBJ Center, National Institute of Genetics (NIG), Mishima, Japan
- Metabolome Informatics Team, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Hoe-Han Goh
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia (UKM), Bangi, Malaysia
| | - Wan Mohd Aizat
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia (UKM), Bangi, Malaysia
| |
Collapse
|
30
|
Integration of Time-Series Transcriptomic Data with Genome-Scale CHO Metabolic Models for mAb Engineering. Processes (Basel) 2020. [DOI: 10.3390/pr8030331] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Chinese hamster ovary (CHO) cells are the most commonly used cell lines in biopharmaceutical manufacturing. Genome-scale metabolic models have become a valuable tool to study cellular metabolism. Despite the presence of reference global genome-scale CHO model, context-specific metabolic models may still be required for specific cell lines (for example, CHO-K1, CHO-S, and CHO-DG44), and for specific process conditions. Many integration algorithms have been available to reconstruct specific genome-scale models. These methods are mainly based on integrating omics data (i.e., transcriptomics, proteomics, and metabolomics) into reference genome-scale models. In the present study, we aimed to investigate the impact of time points of transcriptomics integration on the genome-scale CHO model by assessing the prediction of growth rates with each reconstructed model. We also evaluated the feasibility of applying extracted models to different cell lines (generated from the same parental cell line). Our findings illustrate that gene expression at various stages of culture slightly impacts the reconstructed models. However, the prediction capability is robust enough on cell growth prediction not only across different growth phases but also in expansion to other cell lines.
Collapse
|
31
|
Human Systems Biology and Metabolic Modelling: A Review-From Disease Metabolism to Precision Medicine. BIOMED RESEARCH INTERNATIONAL 2019; 2019:8304260. [PMID: 31281846 PMCID: PMC6590590 DOI: 10.1155/2019/8304260] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 02/07/2019] [Accepted: 05/20/2019] [Indexed: 01/06/2023]
Abstract
In cell and molecular biology, metabolism is the only system that can be fully simulated at genome scale. Metabolic systems biology offers powerful abstraction tools to simulate all known metabolic reactions in a cell, therefore providing a snapshot that is close to its observable phenotype. In this review, we cover the 15 years of human metabolic modelling. We show that, although the past five years have not experienced large improvements in the size of the gene and metabolite sets in human metabolic models, their accuracy is rapidly increasing. We also describe how condition-, tissue-, and patient-specific metabolic models shed light on cell-specific changes occurring in the metabolic network, therefore predicting biomarkers of disease metabolism. We finally discuss current challenges and future promising directions for this research field, including machine/deep learning and precision medicine. In the omics era, profiling patients and biological processes from a multiomic point of view is becoming more common and less expensive. Starting from multiomic data collected from patients and N-of-1 trials where individual patients constitute different case studies, methods for model-building and data integration are being used to generate patient-specific models. Coupled with state-of-the-art machine learning methods, this will allow characterizing each patient's disease phenotype and delivering precision medicine solutions, therefore leading to preventative medicine, reduced treatment, and in silico clinical trials.
Collapse
|