1
|
Fajstavr D, Fajstavrová K, Frýdlová B, Slepičková Kasálková N, Švorčík V, Slepička P. Biopolymer Honeycomb Microstructures: A Review. MATERIALS (BASEL, SWITZERLAND) 2023; 16:772. [PMID: 36676507 PMCID: PMC9863042 DOI: 10.3390/ma16020772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/07/2023] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
In this review, we present a comprehensive summary of the formation of honeycomb microstructures and their applications, which include tissue engineering, antibacterial materials, replication processes or sensors. The history of the honeycomb pattern, the first experiments, which mostly involved the breath figure procedure and the improved phase separation, the most recent approach to honeycomb pattern formation, are described in detail. Subsequent surface modifications of the pattern, which involve physical and chemical modifications and further enhancement of the surface properties, are also introduced. Different aspects influencing the polymer formation, such as the substrate influence, a particular polymer or solvent, which may significantly contribute to pattern formation, and thus influence the target structural properties, are also discussed.
Collapse
|
2
|
Ohta T, Tanaka M, Taki S, Nakagawa H, Nagase S. Honeycomb-like Structured Film, a Novel Therapeutic Device, Suppresses Tumor Growth in an In Vivo Ovarian Cancer Model. Cancers (Basel) 2022; 15:cancers15010237. [PMID: 36612230 PMCID: PMC9818543 DOI: 10.3390/cancers15010237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/17/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023] Open
Abstract
Ovarian cancer cell dissemination can lead to the mortality of patients with advanced ovarian cancer. Complete surgery for no gross residual disease contributes to a more favorable prognosis than that of patients with residual disease. HCFs have highly regular porous structures and their 3D porous structures act as scaffolds for cell adhesion. HCFs are fabricated from biodegradable polymers and have been widely used in tissue engineering. This study aimed to show that HCFs suppress tumor growth in an in vivo ovarian cancer model. The HCF pore sizes had a significant influence on tumor growth inhibition, and HCFs induced morphological changes that rounded out ovarian cancer cells. Furthermore, we identified gene ontology (GO) terms and clusters of genes downregulated by HCFs. qPCR analysis demonstrated that a honeycomb structure downregulated the expression of CXCL2, FOXC1, MMP14, and SNAI2, which are involved in cell proliferation, migration, invasion, angiogenesis, focal adhesion, extracellular matrix (ECM), and epithelial-mesenchymal transition (EMT). Collectively, HCFs induced abnormal focal adhesion and cell morphological changes, subsequently inhibiting the differentiation, proliferation and motility of ovarian cancer cells. Our data suggest that HCFs could be a novel device for inhibiting residual tumor growth after surgery, and could reduce surgical invasiveness and improve the prognosis for patients with advanced ovarian cancer.
Collapse
Affiliation(s)
- Tsuyoshi Ohta
- Department of Obstetrics and Gynecology, Faculty of Medicine, Yamagata University, Yamagata 990-9585, Japan
- Correspondence: ; Tel.: +81-23-628-5393
| | - Masaru Tanaka
- Institute for Materials Chemistry and Engineering, Kyushu University, CE41 744 Motooka, Nishi, Fukuoka 819-0395, Japan
| | - Seitaro Taki
- Toyoda Gosei Co., Ltd., 1-1, Higashitakasuka, Futatudera, Miwa-cho, Ama-gun, Aichi 490-1207, Japan
| | - Hiroyuki Nakagawa
- Toyoda Gosei Co., Ltd., 1-1, Higashitakasuka, Futatudera, Miwa-cho, Ama-gun, Aichi 490-1207, Japan
| | - Satoru Nagase
- Department of Obstetrics and Gynecology, Faculty of Medicine, Yamagata University, Yamagata 990-9585, Japan
| |
Collapse
|
3
|
Wu T, Ding J, Yang SS, Zhong L, Liu BF, Xie GJ, Yang F, Pang JW, Ren NQ. A novel cross-flow honeycomb bionic carrier promotes simultaneous nitrification, denitrification and phosphorus removal in IFAS system: Performance, mechanism and keystone species. WATER RESEARCH 2022; 225:119132. [PMID: 36155005 DOI: 10.1016/j.watres.2022.119132] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/13/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
Simultaneously achieving efficient nitrogen (N) and phosphorus (P) removal without adding external carbon source is vital for carbon-neutral wastewater treatment. In this study, a novel cross-flow honeycomb bionic microbial carrier (CF) was developed to improve the efficiency of simultaneous nitrification, denitrification, and P removal (SNDPR) in an integrated fixed-film activated sludge (IFAS) system. A parallel laboratory-scale sequencing batch reactor with the commercialized microbial carriers (CM) (CM-IFAS) was performed as the comparative system for over 233 d The results demonstrated that CF-IFAS exhibited a more consistent N removal efficiency and better performance than CM-IFAS. In the CF-IFAS, the highest N and P removal efficiencies were 95.40% and 100%, respectively. Typical cycle analysis revealed that nitrate was primarily removed by the denitrifying glycogen-accumulating organisms in the CF-IFAS and by denitrifying phosphate-accumulating organisms in the CM-IFAS. The neutral community model showed that the microbial community assembly in both the reactors was driven by deterministic selection rather than stochastic factors. Compared to those in CM-IFAS, the microorganisms in CF-IFAS were more closely related to each other and had more keystone species: norank_f_norank_o_norank_c_OM190, SM1A02, Defluviicoccus, norank_f_ Saprospiraceae, and norank_f_Rhodocyclaceae. The absolute contents of the genes associated with N removal (bacterial amoA, archaeal amoA, NarG, NapA, NirS, and NirK) were higher in CF-IFAS than in CM-IFAS; the N cycle activity was also stronger in the CF-IFAS. Overall, the microecological environment differed between both systems. This study provides novel insights into the potential of bionic carriers to improve SNDPR performance by shaping microbial communities, thereby providing scientific guidance for practical engineering.
Collapse
Affiliation(s)
- Tong Wu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR. China
| | - Jie Ding
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR. China
| | - Shan-Shan Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR. China.
| | - Le Zhong
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR. China
| | - Bing-Feng Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR. China
| | - Guo-Jun Xie
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR. China
| | - Fan Yang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150008, PR. China
| | - Ji-Wei Pang
- China Energy Conservation and Environmental Protection Group, Beijing 100089, PR. China
| | - Nan-Qi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR. China
| |
Collapse
|
4
|
Honeycomb-Structured Porous Films from Poly(3-hydroxybutyrate) and Poly(3-hydroxybutyrate-co-3-hydroxyvalerate): Physicochemical Characterization and Mesenchymal Stem Cells Behavior. Polymers (Basel) 2022; 14:polym14132671. [PMID: 35808716 PMCID: PMC9268957 DOI: 10.3390/polym14132671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/18/2022] [Accepted: 06/24/2022] [Indexed: 02/05/2023] Open
Abstract
Surface morphology affects cell attachment and proliferation. In this research, different films made of biodegradable polymers, poly(3-hydroxybutyrate) (PHB) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHB-co-HV), containing different molecular weights, with microstructured surfaces were investigated. Two methods were used to obtain patterned films—water-assisted self-assembly (“breath figure”) and spin-coating techniques. The water-assisted technique made it possible to obtain porous films with a self-assembled pore structure, which is dependent on the monomer composition of a polymer along with its molecular weight and the technique parameters (distance from the nozzle, volume, and polymer concentration in working solution). Their pore morphologies were evaluated and their hydrophobicity was examined. Mesenchymal stem cells (MSCs) isolated from bone marrow were cultivated on a porous film surface. MSCs’ attachment differed markedly depending on surface morphology. On strip-formed stamp films, MSCs elongated along the structure, however, they interacted with a larger area of film surface. The honeycomb films and column type films did not set the direction of extrusion, but cell flattening depended on structure topography. Thus, stem cells can “feel” the various surface morphologies of self-assembled honeycomb films and change their behavior depending on it.
Collapse
|
5
|
Niari SA, Rahbarghazi R, Geranmayeh MH, Karimipour M. Biomaterials patterning regulates neural stem cells fate and behavior: The interface of biology and material science. J Biomed Mater Res A 2021; 110:725-737. [PMID: 34751503 DOI: 10.1002/jbm.a.37321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 09/19/2021] [Accepted: 10/06/2021] [Indexed: 11/12/2022]
Abstract
The combination of nanotechnology and stem cell biology is one of the most promising advances in the field of regenerative medicine. This novel combination has widely been utilized in vitro settings in an attempt to develop efficient therapeutic strategies to overcome the limited capacity of the central nervous system (CNS) in replacing degenerating neural cells with functionally normal cells after the onset of acute and chronic neurological disorders. Importantly, biomaterials, not only, enhance the endogenous CNS neurogenesis and plasticity, but also, could provide a desirable supportive microenvironment to harness the full potential of the in vitro expanded neural stem cells (NSCs) for regenerative purposes. Here, first, we discuss how the physical and biochemical properties of biomaterials, such as their stiffness and elasticity, could influence the behavior of NSCs. Then, since the NSCs niche or microenvironment is of fundamental importance in controlling the dynamic destiny of NSCs such as their quiescent and proliferative states, topographical effects of surface diversity in biomaterials, that is, the micro-and nano-patterned surfaces will be discussed in detail. Finally, the influence of biomaterials as artificial microenvironments on the behavior of NSCs through the specific mechanotransduction signaling pathway mediated by focal adhesion formation will be reviewed.
Collapse
Affiliation(s)
- Shabnam Asghari Niari
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Hossein Geranmayeh
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.,Neurosciences Research Center (NSRC), Imam Reza Medical Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Karimipour
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
6
|
Luo Y, Li J, Li B, Xia Y, Wang H, Fu C. Physical Cues of Matrices Reeducate Nerve Cells. Front Cell Dev Biol 2021; 9:731170. [PMID: 34646825 PMCID: PMC8502847 DOI: 10.3389/fcell.2021.731170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 08/20/2021] [Indexed: 11/15/2022] Open
Abstract
The behavior of nerve cells plays a crucial role in nerve regeneration. The mechanical, topographical, and electrical microenvironment surrounding nerve cells can activate cellular signaling pathways of mechanical transduction to affect the behavior of nerve cells. Recently, biological scaffolds with various physical properties have been developed as extracellular matrix to regulate the behavior conversion of nerve cell, such as neuronal neurite growth and directional differentiation of neural stem cells, providing a robust driving force for nerve regeneration. This review mainly focused on the biological basis of nerve cells in mechanical transduction. In addition, we also highlighted the effect of the physical cues, including stiffness, mechanical tension, two-dimensional terrain, and electrical conductivity, on neurite outgrowth and differentiation of neural stem cells and predicted their potential application in clinical nerve tissue engineering.
Collapse
Affiliation(s)
- Yiqian Luo
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Jie Li
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Baoqin Li
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Yuanliang Xia
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Hengyi Wang
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Changfeng Fu
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
7
|
Kulikouskaya V, Chyshankou I, Pinchuk S, Vasilevich I, Volotovski I, Agabekov V. Fabrication and characterization of ultrathin spin-coated poly(L-lactic acid) films suitable for cell attachment and curcumin loading. ACTA ACUST UNITED AC 2020; 15:065022. [PMID: 32640441 DOI: 10.1088/1748-605x/aba40a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In the present study, ultrathin poly(L-lactic acid) (PLLA) films were fabricated using the spin-coating technique. Physicochemical properties of the formed materials, including their morphology, thickness, transparency, and contact angle, have been studied. We determined that the morphology of PLLA films could be regulated by changing the polymer concentration and humidity. By altering the humidity, microporous and flat PLLA films can be fabricated. The obtained samples were subsequently used for culturing mesenchymal stem cells and fibroblasts. It has been determined that cells effectively adhered to prepared films and formed on them a monolayer culture with high viability. It has been shown that PLLA films are suitable for the entrapment of curcumin (up to 12.1 μm cm-2) and provide its sustained release in solutions isotonic to blood plasma. The obtained PLLA films appear to be prospective materials for potential application in regenerative medicine as part of cell-containing tissue engineered dressings for chronic wound treatment.
Collapse
Affiliation(s)
- Viktoryia Kulikouskaya
- Laboratory of Micro- and Nanostructured Systems, Institute of Chemistry of New Materials of National Academy of Sciences of Belarus, Minsk, Belarus
| | | | | | | | | | | |
Collapse
|
8
|
Liang J, Li B, Wu L. Recent advances on porous interfaces for biomedical applications. SOFT MATTER 2020; 16:7231-7245. [PMID: 32734999 DOI: 10.1039/d0sm00997k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Porous structures on solid surfaces prepared artificially through the water droplet template method have the features of easy operation, low cost and self-removal of templates, and thus are widely applied in the fields of medicine, biomedicine, adsorption, catalysis, and separation, optical and electronic materials. Due to their tunable dimensions, abundant selection of materials, mechanical stability, high porosity, and enlarged pore surface, the formed porous interfaces show specific significance in bio-related systems. In this study, recent achievements related to applications of porous interfaces and a focus into biological and medical-related systems are summarized. The discussion involves the preparation of porous interfaces, and porous interface-induced cell behaviors including culture, growth, proliferation, adhesion, and differentiation of cells. The inhibitory effect of bacteria and separated features of microorganisms supported by porous interfaces, the immobilization of biomolecules related to proteins, DNA and enzymes, and the controllable drug delivery are also discussed. The summary of recent advances pointed out in the study, are suggestive of insights for motivating unique potential applications including their extension to porous interfaces in biomedical materials.
Collapse
Affiliation(s)
- Jing Liang
- Key Laboratory of Straw Biology and Utilization, The Ministry of Education, College of Life Science, Jilin Agricultural University, Changchun 130118, China.
| | - Bao Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China.
| | - Lixin Wu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China.
| |
Collapse
|
9
|
Ruiz-Rubio L, Pérez-Álvarez L, Sanchez-Bodón J, Arrighi V, Vilas-Vilela JL. The Effect of the Isomeric Chlorine Substitutions on the Honeycomb-Patterned Films of Poly(x-chlorostyrene)s/Polystyrene Blends and Copolymers via Static Breath Figure Technique. MATERIALS 2019; 12:ma12010167. [PMID: 30621027 PMCID: PMC6337389 DOI: 10.3390/ma12010167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 12/20/2018] [Accepted: 12/31/2018] [Indexed: 11/25/2022]
Abstract
Polymeric thin films patterned with honeycomb structures were prepared from poly(x-chlorostyrene) and statistical poly(x-chlorostyrene-co-styrene) copolymers by static breath figure method. Each polymeric sample was synthesized by free radical polymerization and its solution in tetrahydrofuran cast on glass wafers under 90% relative humidity (RH). The effect of the chorine substitution in the topography and conformational entropy was evaluated. The entropy of each sample was calculated by using Voronoi tessellation. The obtained results revealed that these materials could be a suitable toolbox to develop a honeycomb patterns with a wide range of pore sizes for a potential use in contact guidance induced culture.
Collapse
Affiliation(s)
- Leire Ruiz-Rubio
- Grupo de Química Macromolecular (LABQUIMAC) Dpto. Química-Física, Facultad de Ciencia y Tecnología, Universidad del País Vasco (UPV/EHU), 48940 Leioa, Bizkaia, Spain.
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain.
| | - Leyre Pérez-Álvarez
- Grupo de Química Macromolecular (LABQUIMAC) Dpto. Química-Física, Facultad de Ciencia y Tecnología, Universidad del País Vasco (UPV/EHU), 48940 Leioa, Bizkaia, Spain.
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain.
| | - Julia Sanchez-Bodón
- Grupo de Química Macromolecular (LABQUIMAC) Dpto. Química-Física, Facultad de Ciencia y Tecnología, Universidad del País Vasco (UPV/EHU), 48940 Leioa, Bizkaia, Spain.
| | - Valeria Arrighi
- Chemical Sciences, School of Engineering & Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK.
| | - José Luis Vilas-Vilela
- Grupo de Química Macromolecular (LABQUIMAC) Dpto. Química-Física, Facultad de Ciencia y Tecnología, Universidad del País Vasco (UPV/EHU), 48940 Leioa, Bizkaia, Spain.
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain.
| |
Collapse
|
10
|
Simitzi C, Karali K, Ranella A, Stratakis E. Controlling the Outgrowth and Functions of Neural Stem Cells: The Effect of Surface Topography. Chemphyschem 2018; 19:1143-1163. [DOI: 10.1002/cphc.201701175] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 12/19/2017] [Indexed: 01/03/2023]
Affiliation(s)
- Chara Simitzi
- Institute of Electronic Structure and Laser (IESL); Foundation for Research and Technology-Hellas (FORTH); Heraklion 71003 Greece
| | - Kanelina Karali
- Institute of Electronic Structure and Laser (IESL); Foundation for Research and Technology-Hellas (FORTH); Heraklion 71003 Greece
| | - Anthi Ranella
- Institute of Electronic Structure and Laser (IESL); Foundation for Research and Technology-Hellas (FORTH); Heraklion 71003 Greece
| | - Emmanuel Stratakis
- Institute of Electronic Structure and Laser (IESL); Foundation for Research and Technology-Hellas (FORTH); Heraklion 71003 Greece
| |
Collapse
|
11
|
Calejo MT, Ilmarinen T, Skottman H, Kellomäki M. Breath figures in tissue engineering and drug delivery: State-of-the-art and future perspectives. Acta Biomater 2018; 66:44-66. [PMID: 29183847 DOI: 10.1016/j.actbio.2017.11.043] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 11/09/2017] [Accepted: 11/22/2017] [Indexed: 12/11/2022]
Abstract
The breath figure (BF) method is an easy, low-cost method to prepare films with a highly organized honeycomb-like porous surface. The particular surface topography and porous nature of these materials makes them valuable substrates for studying the complex effects of topography on cell fate, and to produce biomimetic materials with high performance in tissue engineering. Numerous researchers over the last two decades have studied the effects of the honeycomb topography on a variety of primary and immortalized cell lines, and drew important conclusions that can be translated to the construction of optimal biomaterials for cell culture. The literature also encouragingly shows the potential of honeycomb films to induce differentiation of stem cells down a specific lineage without the need for biochemical stimuli. Here, we review the main studies where BF honeycomb films are used as substrates for tissue engineering applications. Furthermore, we highlight the numerous advantages of the porous nature of the films, such as the enhanced, spatially controlled adsorption of proteins, the topographical cues influencing cellular behavior, and the enhanced permeability which is essential both in vitro and in vivo. Finally, this review highlights the elegant use of honeycomb films as drug-eluting biomaterials or as reservoirs for distinct drug delivery systems. STATEMENT OF SIGNIFICANCE Combining biocompatible surfaces and 3D nano/microscale topographies, such as pores or grooves, is an effective strategy for manufacturing tissue engineering scaffolds. The breath figure (BF) method is an easy technique to prepare cell culture substrates with an organized, honeycomb-like porous surface. These surface features make these scaffolds valuable for studying how the cells interact with the biomaterials. Their unique surface topography can also resemble the natural environment of the tissues in the human body. For that reason, numerous studies, using different cell types, have shown that honeycomb films can constitute high performance substrates for cell culture. Here, we review those studies, we highlight the advantages of honeycomb films in tissue engineering and we discuss their potential as unique drug-eluting systems.
Collapse
Affiliation(s)
- Maria Teresa Calejo
- BioMediTech Institute and Faculty of Biomedical Sciences and Engineering, Tampere University of Technology, Tampere, Finland.
| | - Tanja Ilmarinen
- BioMediTech Institute and Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - Heli Skottman
- BioMediTech Institute and Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - Minna Kellomäki
- BioMediTech Institute and Faculty of Biomedical Sciences and Engineering, Tampere University of Technology, Tampere, Finland; BioMediTech Institute and Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| |
Collapse
|
12
|
Vargas-Alfredo N, Santos-Coquillat A, Martínez-Campos E, Dorronsoro A, Cortajarena AL, Del Campo A, Rodríguez-Hernández J. Highly Efficient Antibacterial Surfaces Based on Bacterial/Cell Size Selective Microporous Supports. ACS APPLIED MATERIALS & INTERFACES 2017; 9:44270-44280. [PMID: 29131567 DOI: 10.1021/acsami.7b11337] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We report on the fabrication of efficient antibacterial substrates selective for bacteria, i.e., noncytotoxic against mammalian cells. The strategy proposed is based on the different size of bacteria (1-4 μm) in comparison with mammalian cells (above 20 μm) that permit the bacteria to enter in contact with the inner part of micrometer-sized pores where the antimicrobial functionality are placed. On the contrary, mammalian cells, larger in terms of size, remain at the top surface, thus reducing adverse cytotoxic effects and improving the biocompatibility of the substrates. For this purpose, we fabricated well-ordered functional microporous substrates (3-5 μm) using the breath figures approach that enabled the selective functionalization of the pore cavity, whereas the rest of the surface remained unaffected. Microporous surfaces were prepared from polymer blends comprising a homopolymer (i.e., polystyrene) and a block copolymer (either polystyrene-b-poly(dimethylaminoethyl methacrylate) (PDMAEMA) or a quaternized polystyrene-b-poly(dimethylaminoethyl methacrylate)). As a result, porous surfaces with a narrow size distribution and a clear enrichment of the PDMAEMA or the quaternized PDMAEMA block inside the pores were obtained that, in the case of the quaternized PDMAEMA, provided an excellent antimicrobial activity to the films.
Collapse
Affiliation(s)
- Nelson Vargas-Alfredo
- Polymer Functionalization Group (FUPOL), Instituto de Ciencia y Tecnología de Polímeros (ICTP), Consejo Superior de Investigaciones Científicas (CSIC) , C/Juan de la Cierva 3, 28006 Madrid, Spain
| | - Ana Santos-Coquillat
- Tissue Engineering Group, Instituto de Estudios Biofuncionales (IEB), Associated Unit to the ICTP-CSIC Group, Universidad Complutense de Madrid (UCM) , Paseo Juan XXIII, No. 1, 28040 Madrid, Spain
| | - Enrique Martínez-Campos
- Tissue Engineering Group, Instituto de Estudios Biofuncionales (IEB), Associated Unit to the ICTP-CSIC Group, Universidad Complutense de Madrid (UCM) , Paseo Juan XXIII, No. 1, 28040 Madrid, Spain
| | - Ane Dorronsoro
- CIC biomaGUNE, Parque Tecnológico de San Sebastián , Paseo Miramón 182, 20014 Donostia-San Sebastián, Spain
| | - Aitziber L Cortajarena
- CIC biomaGUNE, Parque Tecnológico de San Sebastián , Paseo Miramón 182, 20014 Donostia-San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science , Ma Díaz de Haro 3, 48013 Bilbao, Spain
| | - Adolfo Del Campo
- Instituto de Cerámica y Vidrio (ICV-CSIC) , C/Kelsen 5, 28049 Madrid, Spain
| | - Juan Rodríguez-Hernández
- Polymer Functionalization Group (FUPOL), Instituto de Ciencia y Tecnología de Polímeros (ICTP), Consejo Superior de Investigaciones Científicas (CSIC) , C/Juan de la Cierva 3, 28006 Madrid, Spain
| |
Collapse
|
13
|
Vargas-Alfredo N, Martínez-Campos E, Santos-Coquillat A, Dorronsoro A, Cortajarena AL, Del Campo A, Rodríguez-Hernández J. Fabrication of biocompatible and efficient antimicrobial porous polymer surfaces by the Breath Figures approach. J Colloid Interface Sci 2017; 513:820-830. [PMID: 29222981 DOI: 10.1016/j.jcis.2017.11.050] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 11/14/2017] [Accepted: 11/16/2017] [Indexed: 10/18/2022]
Abstract
We designed and fabricated highly efficient and selective antibacterial substrates, i.e. surface non-cytotoxic against mammalian cells but exhibiting strong antibacterial activity. For that purpose, microporous substrates (pore sizes in the range of 3-5 μm) were fabricated using the Breath Figures approach (BFs). These substrates have additionally a defined chemical composition in the pore cavity (herein either a poly(acrylic acid) or the antimicrobial peptide Nisin) while the composition of the rest of the surface is identical to the polymer matrix. As a result, considering the differences in size of bacteria (1-4 μm) in comparison to mammalian cells (above 10 µm) the bacteria were able to enter in contact with the inner part of the pores where the antimicrobial functionality has been placed. On the opposite, mammalian cells remain in contact with the top surface thus preventing cytotoxic effects and enhancing the biocompatibility of the substrates. The resulting antimicrobial surfaces were exposed to Staphylococcus aureus as a model bacteria and murine endothelial C166-GFP cells. Superior antibacterial performance while maintaining an excellent biocompatibility was obtained by those surfaces prepared using PAA while no evidence of significant antibacterial activity was observed at those surfaces prepared using Nisin.
Collapse
Affiliation(s)
- Nelson Vargas-Alfredo
- Polymer Functionalization Group (FUPOL), Instituto de Ciencia y Tecnología de Polímeros (ICTP), Consejo Superior de Investigaciones Científicas (CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain
| | - Enrique Martínez-Campos
- Tissue Engineering Group (TEG), Instituto de Estudios Biofuncionales (IEB), Universidad Complutense de Madrid (UCM), Associated Unit to the Institute of Polymer Science and Technology (CSIC), Paseo Juan XXIII, N°1, 28040, Spain
| | - Ana Santos-Coquillat
- Tissue Engineering Group (TEG), Instituto de Estudios Biofuncionales (IEB), Universidad Complutense de Madrid (UCM), Associated Unit to the Institute of Polymer Science and Technology (CSIC), Paseo Juan XXIII, N°1, 28040, Spain
| | - Ane Dorronsoro
- CIC biomaGUNE, Parque Tecnológico de San Sebastián, Paseo Miramón 182, 20014 Donostia-San Sebastián, Spain
| | - Aitziber L Cortajarena
- CIC biomaGUNE, Parque Tecnológico de San Sebastián, Paseo Miramón 182, 20014 Donostia-San Sebastián, Spain; Ikerbasque, Basque Foundation for Science, Mª Díaz de Haro 3, 48013 Bilbao, Spain
| | - Adolfo Del Campo
- Instituto de Cerámica y Vidrio (ICV-CSIC), C/Kelsen 5, 28049 Madrid, Spain
| | - Juan Rodríguez-Hernández
- Polymer Functionalization Group (FUPOL), Instituto de Ciencia y Tecnología de Polímeros (ICTP), Consejo Superior de Investigaciones Científicas (CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain.
| |
Collapse
|
14
|
de León AS, Vargas-Alfredo N, Gallardo A, Fernández-Mayoralas A, Bastida A, Muñoz-Bonilla A, Rodríguez-Hernández J. Microfluidic Reactors Based on Rechargeable Catalytic Porous Supports: Heterogeneous Enzymatic Catalysis via Reversible Host-Guest Interactions. ACS APPLIED MATERIALS & INTERFACES 2017; 9:4184-4191. [PMID: 28035806 DOI: 10.1021/acsami.6b13554] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We report on the fabrication of a microfluidic device in which the reservoir contains a porous surface with enzymatic catalytic activity provided by the reversible immobilization of horseradish peroxidase onto micrometer size pores. The porous functional reservoir was obtained by the Breath Figures approach by casting in a moist environment a solution containing a mixture of high molecular weight polystyrene (HPS) and a poly(styrene-co-cyclodextrin based styrene) (P(S-co-SCD)) statistical copolymer. The pores enriched in CD were employed to immobilize horseradish peroxidase (previously modified with adamantane) by host-guest interactions (HRP-Ada). These surfaces exhibit catalytic activity that remains stable during several reaction cycles. Moreover, the porous platforms could be recovered by using free water-soluble β-CD with detergents. An excess of β-CD/TritonX100 in solution disrupts the interactions between HRP-Ada and the CD-modified substrate thus allowing us to recover the employed enzyme and reuse the platform.
Collapse
Affiliation(s)
- Alberto Sanz de León
- Mechano(Bio)Chemistry, Max Planck Institute of Colloids and Interfaces , Science Park Potsdam-Golm, 14424 Potsdam, Germany
| | | | | | | | | | - Alexandra Muñoz-Bonilla
- Departamento de Química-Física Aplicada, Facultad de Ciencias, Universidad Autónoma de Madrid , C/Francisco Tomás y Valiente 7, Cantoblanco, 28049 Madrid, Spain
| | | |
Collapse
|
15
|
Lins LC, Wianny F, Livi S, Dehay C, Duchet-Rumeau J, Gérard JF. Effect of polyvinylidene fluoride electrospun fiber orientation on neural stem cell differentiation. J Biomed Mater Res B Appl Biomater 2016; 105:2376-2393. [PMID: 27571576 DOI: 10.1002/jbm.b.33778] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Revised: 06/29/2016] [Accepted: 08/14/2016] [Indexed: 12/17/2022]
Abstract
Electrospun polymer piezoelectric fibers can be used in neural tissue engineering (NTE) to mimic the physical, biological, and material properties of the native extracellular matrix. In this work, we have developed scaffolds based on polymer fiber architectures for application in NTE. To study the role of such three-dimensional scaffolds, a rotating drum collector was used for electrospinning poly(vinylidene) fluoride (PVDF) polymer at various rotation speeds. The morphology, orientation, polymorphism, as well as the mechanical behavior of the nonaligned and aligned fiber-based architectures were characterized. We have demonstrated that the jet flow and the electrostatic forces generated by electrospinning of PVDF induced local conformation changes which promote the generation of the β-phase. Fiber anisotropy could be a critical feature for the design of suitable scaffolds for NTEs. We thus assessed the impact of PVDF fiber alignment on the behavior of monkey neural stem cells (NSCs). NSCs were seeded on nonaligned and aligned scaffolds and their morphology, adhesion, and differentiation capacities into the neuronal and glial pathways were studied using microscopic techniques. Significant changes in the growth and differentiation capacities of NSCs into neuronal and glial cells as a function of the fiber alignment were evidenced. These results demonstrate that PVDF scaffolds may serve as instructive scaffolds for NSC survival and differentiation, and may be valuable tools for the development of cell- and scaffold-based strategies for neural repair. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 2376-2393, 2017.
Collapse
Affiliation(s)
- Luanda C Lins
- Université de Lyon, Ingénierie des Matériaux Polymères CNRS, UMR 5223; INSA Lyon, F-69621, Villeurbanne, France
| | - Florence Wianny
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 69500, Bron, France
| | - Sebastien Livi
- Université de Lyon, Ingénierie des Matériaux Polymères CNRS, UMR 5223; INSA Lyon, F-69621, Villeurbanne, France
| | - Colette Dehay
- Univ Lyon, Université Claude Bernard Lyon 1, Inserm, Stem Cell and Brain Research Institute U1208, 69500, Bron, France
| | - Jannick Duchet-Rumeau
- Université de Lyon, Ingénierie des Matériaux Polymères CNRS, UMR 5223; INSA Lyon, F-69621, Villeurbanne, France
| | - Jean-François Gérard
- Université de Lyon, Ingénierie des Matériaux Polymères CNRS, UMR 5223; INSA Lyon, F-69621, Villeurbanne, France
| |
Collapse
|
16
|
Martínez-Campos E, Elzein T, Bejjani A, García-Granda MJ, Santos-Coquillat A, Ramos V, Muñoz-Bonilla A, Rodríguez-Hernández J. Toward Cell Selective Surfaces: Cell Adhesion and Proliferation on Breath Figures with Antifouling Surface Chemistry. ACS APPLIED MATERIALS & INTERFACES 2016; 8:6344-6353. [PMID: 26909529 DOI: 10.1021/acsami.5b12832] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We report the preparation of microporous functional polymer surfaces that have been proven to be selective surfaces toward eukaryotic cells while maintaining antifouling properties against bacteria. The fabrication of functional porous films has been carried out by the breath figures approach that allowed us to create porous interfaces with either poly(ethylene glycol) methyl ether methacrylate (PEGMA) or 2,3,4,5,6-pentafluorostyrene (5FS). For this purpose, blends of block copolymers in a polystyrene homopolymer matrix have been employed. In contrast to the case of single functional polymer, using blends enables us to vary the chemical distribution of the functional groups inside and outside the formed pores. In particular, fluorinated groups were positioned at the edges while the hydrophilic PEGMA groups were selectively located inside the pores, as demonstrated by TOF-SIMS. More interestingly, studies of cell adhesion, growth, and proliferation on these surfaces confirmed that PEGMA functionalized interfaces are excellent candidates to selectively allow cell growth and proliferation while maintaining antifouling properties.
Collapse
Affiliation(s)
- Enrique Martínez-Campos
- Tissue Engineering Group, Instituto de Estudios Biofuncionales, Universidad Complutense de Madrid , Paseo Juan XXIII, no. 1 28040 Madrid, Spain
| | - Tamara Elzein
- Lebanese Atomic Energy Commission, National Council for Scientific Research CNRS-L , P.O. Box 11-8281, Riad El Solh, 1107 2260, Beirut, Lebanon
| | - Alice Bejjani
- Lebanese Atomic Energy Commission, National Council for Scientific Research CNRS-L , P.O. Box 11-8281, Riad El Solh, 1107 2260, Beirut, Lebanon
| | - Maria Jesús García-Granda
- Tissue Engineering Group, Instituto de Estudios Biofuncionales, Universidad Complutense de Madrid , Paseo Juan XXIII, no. 1 28040 Madrid, Spain
| | - Ana Santos-Coquillat
- Tissue Engineering Group, Instituto de Estudios Biofuncionales, Universidad Complutense de Madrid , Paseo Juan XXIII, no. 1 28040 Madrid, Spain
| | - Viviana Ramos
- Tissue Engineering Group, Instituto de Estudios Biofuncionales, Universidad Complutense de Madrid , Paseo Juan XXIII, no. 1 28040 Madrid, Spain
| | - Alexandra Muñoz-Bonilla
- Departamento de Química Física Aplicada, Facultad de Ciencias, Universidad Autónoma de Madrid , C/Francisco Tomás y Valiente 7, Cantoblanco, 28049 Madrid, Spain
| | - Juan Rodríguez-Hernández
- Instituto de Ciencia y Tecnología de Polímeros (ICTP), Consejo Superior de Investigaciones Científicas (CSIC) , C/Juan de la Cierva 3, 28006 Madrid, Spain
| |
Collapse
|
17
|
Zhang Y, Gordon A, Qian W, Chen W. Engineering nanoscale stem cell niche: direct stem cell behavior at cell-matrix interface. Adv Healthc Mater 2015. [PMID: 26222885 DOI: 10.1002/adhm.201500351] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Biophysical cues on the extracellular matrix (ECM) have proven to be significant regulators of stem cell behavior and evolution. Understanding the interplay of these cells and their extracellular microenvironment is critical to future tissue engineering and regenerative medicine, both of which require a means of controlled differentiation. Research suggests that nanotopography, which mimics the local, nanoscale, topographic cues within the stem cell niche, could be a way to achieve large-scale proliferation and control of stem cells in vitro. This Progress Report reviews the history and contemporary advancements of this technology, and pays special attention to nanotopographic fabrication methods and the effect of different nanoscale patterns on stem cell response. Finally, it outlines potential intracellular mechanisms behind this response.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Mechanical and Aerospace Engineering; New York University; Brooklyn NY 11201 USA
| | - Andrew Gordon
- Department of Mechanical and Aerospace Engineering; New York University; Brooklyn NY 11201 USA
| | - Weiyi Qian
- Department of Mechanical and Aerospace Engineering; New York University; Brooklyn NY 11201 USA
| | - Weiqiang Chen
- Department of Mechanical and Aerospace Engineering; New York University; Brooklyn NY 11201 USA
| |
Collapse
|
18
|
Jhala D, Vasita R. A Review on Extracellular Matrix Mimicking Strategies for an Artificial Stem Cell Niche. POLYM REV 2015. [DOI: 10.1080/15583724.2015.1040552] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
19
|
Zhang A, Bai H, Li L. Breath Figure: A Nature-Inspired Preparation Method for Ordered Porous Films. Chem Rev 2015; 115:9801-68. [PMID: 26284609 DOI: 10.1021/acs.chemrev.5b00069] [Citation(s) in RCA: 233] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Aijuan Zhang
- College of Materials, Xiamen University , Xiamen, 361005, People's Republic of China
| | - Hua Bai
- College of Materials, Xiamen University , Xiamen, 361005, People's Republic of China
| | - Lei Li
- College of Materials, Xiamen University , Xiamen, 361005, People's Republic of China
| |
Collapse
|
20
|
Zhao C, Pan C, Sandstedt J, Fu Y, Lindahl A, Liu J. Combination of positive charges and honeycomb pores to promote MC3T3-E1 cell behaviour. RSC Adv 2015. [DOI: 10.1039/c5ra00756a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Symmetric poly(l-lactide) (PLLA)-based dendritic l-lysine copolymer, with the PLLA block as the core and the lysine dendrons in the two ends, was prepared through a divergent method. The honeycomb pores on this copolymer film significantly enhanced the MC3T3-E1 cell functions.
Collapse
Affiliation(s)
- Changhong Zhao
- SMIT Center
- School of Mechatronic Engineering and Automation & Key Laboratory of Advanced Display and System Applications
- Shanghai University
- Shanghai 201800
- China
| | - Changjiang Pan
- Jiangsu Provincial Key Laboratory for Interventional Medical Devices
- Huaiyin Institute of Technology
- Huai'an 223003
- China
| | - Joakim Sandstedt
- Department of Clinical Chemistry and Transfusion Medicine
- Institute of Biomedicine
- The Sahlgrenska Academy
- 41345 Göteborg
- Sweden
| | - Yifeng Fu
- SHT Smart High Tech AB
- Se 411 33 Gothenburg
- Sweden
| | - Anders Lindahl
- Department of Clinical Chemistry and Transfusion Medicine
- Institute of Biomedicine
- The Sahlgrenska Academy
- 41345 Göteborg
- Sweden
| | - Johan Liu
- SMIT Center
- School of Mechatronic Engineering and Automation & Key Laboratory of Advanced Display and System Applications
- Shanghai University
- Shanghai 201800
- China
| |
Collapse
|
21
|
Wu XH, Wu ZY, Su JC, Yan YG, Yu BQ, Wei J, Zhao LM. Nano-hydroxyapatite promotes self-assembly of honeycomb pores in poly(l-lactide) films through breath-figure method and MC3T3-E1 cell functions. RSC Adv 2015. [DOI: 10.1039/c4ra13843k] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The effects of nano-hydroxyapatite particles on the formation of honeycomb poly(l-lactide) films and MC3T3-E1 cell functions were investigated.
Collapse
Affiliation(s)
- X. H. Wu
- Department of Biomedical Engineering
- Case Western Reserve University
- Cleveland
- USA
| | - Z. Y. Wu
- State Key Laboratory of Bioreactor Engineering
- East China University of Science and Technology
- Shanghai 200237
- P.R. China
| | - J. C. Su
- Department of Orthopaedics
- Changhai Hospital
- Second Military Medical University
- Shanghai 200433
- P.R. China
| | - Y. G. Yan
- College of Physical Science and Technology
- Sichuan University
- Chengdu 610041
- P.R. China
| | - B. Q. Yu
- Department of Orthopaedics
- Changhai Hospital
- Second Military Medical University
- Shanghai 200433
- P.R. China
| | - J. Wei
- State Key Laboratory of Bioreactor Engineering
- East China University of Science and Technology
- Shanghai 200237
- P.R. China
| | - L. M. Zhao
- State Key Laboratory of Bioreactor Engineering
- East China University of Science and Technology
- Shanghai 200237
- P.R. China
| |
Collapse
|
22
|
Khan F, Tanaka M, Ahmad SR. Fabrication of polymeric biomaterials: a strategy for tissue engineering and medical devices. J Mater Chem B 2015; 3:8224-8249. [DOI: 10.1039/c5tb01370d] [Citation(s) in RCA: 153] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Fabrication of biomaterials scaffolds using various methods and techniques is discussed, utilising biocompatible, biodegradable and stimuli-responsive polymers and their composites. This review covers the lithography and printing techniques, self-organisation and self-assembly methods for 3D structural scaffolds generation, and smart hydrogels, for tissue regeneration and medical devices.
Collapse
Affiliation(s)
- Ferdous Khan
- Senior Polymer Chemist
- ECOSE-Biopolymer
- Knauf Insulation Limited
- St. Helens
- UK
| | - Masaru Tanaka
- Biomaterials Science Group
- Department of Biochemical Engineering
- Graduate School of Science and Engineering
- Yamagata University
- Yonezawa
| | - Sheikh Rafi Ahmad
- Centre for Applied Laser Spectroscopy
- CDS
- DEAS
- Cranfield University
- Swindon
| |
Collapse
|
23
|
Muñoz-Bonilla A, Fernández-García M, Rodríguez-Hernández J. Towards hierarchically ordered functional porous polymeric surfaces prepared by the breath figures approach. Prog Polym Sci 2014. [DOI: 10.1016/j.progpolymsci.2013.08.006] [Citation(s) in RCA: 192] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
24
|
Abstract
Within the adult organism, stem cells reside in defined anatomical microenvironments called niches. These architecturally diverse microenvironments serve to balance stem cell self-renewal and differentiation. Proper regulation of this balance is instrumental to tissue repair and homeostasis, and any imbalance can potentially lead to diseases such as cancer. Within each of these microenvironments, a myriad of chemical and physical stimuli interact in a complex (synergistic or antagonistic) manner to tightly regulate stem cell fate. The in vitro replication of these in vivo microenvironments will be necessary for the application of stem cells for disease modeling, drug discovery, and regenerative medicine purposes. However, traditional reductionist approaches have only led to the generation of cell culture methods that poorly recapitulate the in vivo microenvironment. To that end, novel engineering and systems biology approaches have allowed for the investigation of the biological and mechanical stimuli that govern stem cell fate. In this review, the application of these technologies for the dissection of stem cell microenvironments will be analyzed. Moreover, the use of these engineering approaches to construct in vitro stem cell microenvironments that precisely control stem cell fate and function will be reviewed. Finally, the emerging trend of using high-throughput, combinatorial methods for the stepwise engineering of stem cell microenvironments will be explored.
Collapse
Affiliation(s)
- David A Brafman
- Department of Cellular and Molecular Medicine, Stem Cell Program, University of California at San Diego, La Jolla, California
| |
Collapse
|
25
|
de León AS, Rodríguez-Hernández J, Cortajarena AL. Honeycomb patterned surfaces functionalized with polypeptide sequences for recognition and selective bacterial adhesion. Biomaterials 2013. [DOI: 10.1016/j.biomaterials.2012.10.074] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
26
|
Fei Z, Wu Y, Sharma S, Gallego-Perez D, Higuita-Castro N, Hansford D, Lannutti JJ, Lee LJ. Gene Delivery to Cultured Embryonic Stem Cells Using Nanofiber-Based Sandwich Electroporation. Anal Chem 2013; 85:1401-7. [DOI: 10.1021/ac302140p] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Zhengzheng Fei
- William G. Lowrie
Department
of Chemical and Biomolecular Engineering, The Ohio State University, 125A Koffolt Laboratories, 140 West 19th
Avenue, Columbus, Ohio 43210, United States
- NSF Nanoscale Science and Engineering
Center for Affordable Nanoengineering of Polymer Biomedical Devices, The Ohio State University, 174 W 18th Avenue, Room
1012, Columbus, Ohio 43210, United States
| | - Yun Wu
- NSF Nanoscale Science and Engineering
Center for Affordable Nanoengineering of Polymer Biomedical Devices, The Ohio State University, 174 W 18th Avenue, Room
1012, Columbus, Ohio 43210, United States
| | - Sadhana Sharma
- NSF Nanoscale Science and Engineering
Center for Affordable Nanoengineering of Polymer Biomedical Devices, The Ohio State University, 174 W 18th Avenue, Room
1012, Columbus, Ohio 43210, United States
| | - Daniel Gallego-Perez
- NSF Nanoscale Science and Engineering
Center for Affordable Nanoengineering of Polymer Biomedical Devices, The Ohio State University, 174 W 18th Avenue, Room
1012, Columbus, Ohio 43210, United States
| | - Natalia Higuita-Castro
- NSF Nanoscale Science and Engineering
Center for Affordable Nanoengineering of Polymer Biomedical Devices, The Ohio State University, 174 W 18th Avenue, Room
1012, Columbus, Ohio 43210, United States
- Department of Biomedical Engineering, The Ohio State University, 270 Bevis Hall, 1080 Carmack
Road, Columbus, Ohio 43210, United States
| | - Derek Hansford
- NSF Nanoscale Science and Engineering
Center for Affordable Nanoengineering of Polymer Biomedical Devices, The Ohio State University, 174 W 18th Avenue, Room
1012, Columbus, Ohio 43210, United States
- Department of Biomedical Engineering, The Ohio State University, 270 Bevis Hall, 1080 Carmack
Road, Columbus, Ohio 43210, United States
| | - John J. Lannutti
- NSF Nanoscale Science and Engineering
Center for Affordable Nanoengineering of Polymer Biomedical Devices, The Ohio State University, 174 W 18th Avenue, Room
1012, Columbus, Ohio 43210, United States
- Department of Materials Science
and Engineering, The Ohio State University, 477 W Hall, 2041 College Road, Columbus, Ohio 43210, United States
| | - Ly James Lee
- William G. Lowrie
Department
of Chemical and Biomolecular Engineering, The Ohio State University, 125A Koffolt Laboratories, 140 West 19th
Avenue, Columbus, Ohio 43210, United States
- NSF Nanoscale Science and Engineering
Center for Affordable Nanoengineering of Polymer Biomedical Devices, The Ohio State University, 174 W 18th Avenue, Room
1012, Columbus, Ohio 43210, United States
| |
Collapse
|
27
|
|
28
|
Wu X, Wang S. Regulating MC3T3-E1 cells on deformable poly(ε-caprolactone) honeycomb films prepared using a surfactant-free breath figure method in a water-miscible solvent. ACS APPLIED MATERIALS & INTERFACES 2012; 4:4966-4975. [PMID: 22889037 DOI: 10.1021/am301334s] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Honeycomb poly(ε-caprolactone) (PCL) films with tunable pore diameters of 3.5, 6.0, and 10 μm were fabricated directly from solutions in water-miscible, relatively nontoxic tetrahydrofuran using the breath-figure method without assistance of a surfactant. These honeycomb PCL films were characterized in terms of structures and enhanced hydrophobicity. Aiming at fostering bone tissue engineering outcomes, we cultured mouse preosteoblastic MC3T3-E1 cells on these honeycomb films as well as on the flat control, and evaluated their adhesion, spreading, proliferation, alkaline phosphatase (ALP) activity, and calcium content. These cell behaviors were further correlated with the expression levels of integrin subunits of α(1), α(2), β(1), and bone-specific gene markers of ALP, collagen type I (COL I), osteocalcin (OCN), and osteopontin (OPN). Honeycomb PCL films remarkably promoted MC3T3-E1 cell adhesion, spreading, proliferation, differentiation, and gene expression. This effect was more prominent when the pore diameter was smaller in the studied range. In addition, honeycomb PCL films were stretched into groove-like structures, on which MC3T3-E1 cells were aligned with a smaller cell area, a higher percentage of aligned cells, and a higher cell elongation ratio when the pores were smaller.
Collapse
Affiliation(s)
- Xiaohui Wu
- Department of Materials Science and Engineering, The University of Tennessee, Knoxville, Tennessee 37996, USA
| | | |
Collapse
|
29
|
Moore SW, Sheetz MP. Biophysics of substrate interaction: influence on neural motility, differentiation, and repair. Dev Neurobiol 2012; 71:1090-101. [PMID: 21739614 DOI: 10.1002/dneu.20947] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The identity and behavior of a cell is shaped by the molecular and mechanical composition of its surroundings. Molecular cues have firmly established roles in guiding both neuronal fate decisions and the migration of cells and axons. However, there is growing evidence that topographical and rigidity cues in the extracellular environment act synergistically with these molecular cues. Like chemical cues, physical factors do not elicit a fixed response, but rather one that depends on the sensory makeup of the cell. Moreover, from developmental studies and the plasticity of neural tissue, it is evident that there is dynamic feedback between physical and chemical factors to produce the final morphology. Here, we focus on our current understanding of how these physical cues shape cellular differentiation and migration, and discuss their relevance to repairing the injured nervous system.
Collapse
Affiliation(s)
- Simon W Moore
- Department of Biological Sciences, Columbia University, Sherman Fairchild Center, Amsterdam Ave., New York, NY 10027, USA.
| | | |
Collapse
|
30
|
Nikkhah M, Edalat F, Manoucheri S, Khademhosseini A. Engineering microscale topographies to control the cell-substrate interface. Biomaterials 2012; 33:5230-46. [PMID: 22521491 PMCID: PMC3619386 DOI: 10.1016/j.biomaterials.2012.03.079] [Citation(s) in RCA: 428] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Accepted: 03/27/2012] [Indexed: 01/12/2023]
Abstract
Cells in their in vivo microenvironment constantly encounter and respond to a multitude of signals. While the role of biochemical signals has long been appreciated, the importance of biophysical signals has only recently been investigated. Biophysical cues are presented in different forms including topography and mechanical stiffness imparted by the extracellular matrix and adjoining cells. Microfabrication technologies have allowed for the generation of biomaterials with microscale topographies to study the effect of biophysical cues on cellular function at the cell-substrate interface. Topographies of different geometries and with varying microscale dimensions have been used to better understand cell adhesion, migration, and differentiation at the cellular and sub-cellular scales. Furthermore, quantification of cell-generated forces has been illustrated with micropillar topographies to shed light on the process of mechanotransduction. In this review, we highlight recent advances made in these areas and how they have been utilized for neural, cardiac, and musculoskeletal tissue engineering application.
Collapse
Affiliation(s)
- Mehdi Nikkhah
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Faramarz Edalat
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Sam Manoucheri
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ali Khademhosseini
- Center for Biomedical Engineering, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| |
Collapse
|
31
|
Tanaka M. Design of novel 2D and 3D biointerfaces using self-organization to control cell behavior. Biochim Biophys Acta Gen Subj 2011; 1810:251-8. [DOI: 10.1016/j.bbagen.2010.10.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2010] [Revised: 10/01/2010] [Accepted: 10/12/2010] [Indexed: 11/25/2022]
|
32
|
Prabhakaran MP, Venugopal J, Ghasemi-Mobarakeh L, Kai D, Jin G, Ramakrishna S. Stem Cells and Nanostructures for Advanced Tissue Regeneration. BIOMEDICAL APPLICATIONS OF POLYMERIC NANOFIBERS 2011. [DOI: 10.1007/12_2011_113] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
33
|
Lim YC, Johnson J, Fei Z, Wu Y, Farson DF, Lannutti JJ, Choi HW, Lee LJ. Micropatterning and characterization of electrospun poly(ε-caprolactone)/gelatin nanofiber tissue scaffolds by femtosecond laser ablation for tissue engineering applications. Biotechnol Bioeng 2010; 108:116-26. [DOI: 10.1002/bit.22914] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
34
|
McNamara LE, McMurray RJ, Biggs MJP, Kantawong F, Oreffo ROC, Dalby MJ. Nanotopographical control of stem cell differentiation. J Tissue Eng 2010; 2010:120623. [PMID: 21350640 PMCID: PMC3042612 DOI: 10.4061/2010/120623] [Citation(s) in RCA: 248] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Accepted: 07/16/2010] [Indexed: 01/08/2023] Open
Abstract
Stem cells have the capacity to differentiate into various lineages, and the ability to reliably direct stem cell fate determination would have tremendous potential for basic research and clinical therapy. Nanotopography provides a useful tool for guiding differentiation, as the features are more durable than surface chemistry and can be modified in size and shape to suit the desired application. In this paper, nanotopography is examined as a means to guide differentiation, and its application is described in the context of different subsets of stem cells, with a particular focus on skeletal (mesenchymal) stem cells. To address the mechanistic basis underlying the topographical effects on stem cells, the likely contributions of indirect (biochemical signal-mediated) and direct (force-mediated) mechanotransduction are discussed. Data from proteomic research is also outlined in relation to topography-mediated fate determination, as this approach provides insight into the global molecular changes at the level of the functional effectors.
Collapse
Affiliation(s)
- Laura E McNamara
- Centre for Cell Engineering, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland
| | | | | | | | | | | |
Collapse
|
35
|
SUMITOMO K, ARAKAWA T, SATO H, TANIOKA A, SAITO S, KOIKE S, YAMAGUCHI Y. Cell Cultivation on Positive Photosensitive Silicone Resin. KOBUNSHI RONBUNSHU 2010. [DOI: 10.1295/koron.67.375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
36
|
Martínez E, Lagunas A, Mills CA, Rodríguez-Seguí S, Estévez M, Oberhansl S, Comelles J, Samitier J. Stem cell differentiation by functionalized micro- and nanostructured surfaces. Nanomedicine (Lond) 2009; 4:65-82. [PMID: 19093897 DOI: 10.2217/17435889.4.1.65] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
New fabrication technologies and, in particular, new nanotechnologies have provided biomaterial and biomedical scientists with enormous possibilities when designing customized supports and scaffolds with controlled nanoscale topography and chemistry. The main issue now is how to effectively design these components and choose the appropriate combination of structure and chemistry to tailor towards applications as challenging and complex as stem cell differentiation. Occasionally, an incomplete knowledge of the fundamentals of biological differentiation processes has hampered this issue. However, the recent technological advances in creating controlled cellular microenvironments can be seen as a powerful tool for furthering fundamental biology studies. This article reviews the main strategies followed to achieve solutions to this challenge, particularly emphasizing the working hypothesis followed by the authors to elucidate the mechanisms behind the observed effects of structured surfaces on cell behavior.
Collapse
Affiliation(s)
- E Martínez
- Nanobioengineering group, Institute for Bioengineering of Catalonia (IBEC), Barcelona, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Hernández-Guerrero M, Min E, Barner-Kowollik C, Müller AHE, Stenzel MH. Grafting thermoresponsive polymers onto honeycomb structured porous films using the RAFT process. ACTA ACUST UNITED AC 2008. [DOI: 10.1039/b807495j] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|