1
|
Feng C, Li Y, Luo Y, Zhang L, Zong Y, Zhao K. Mechanisms of Hydrophobic Recovery of Poly(dimethylsiloxane) Elastomers after Plasma/Corona Treatments: A Minireview. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 39466172 DOI: 10.1021/acs.langmuir.4c03086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Plasma/corona treatment could alter the wettability of a poly(dimethylsiloxane) (PDMS) surface from being hydrophobic to being hydrophilic, which has attracted many researchers' attention. However, the treated surface will gradually recover its hydrophobicity as it ages. To understand the recovery, many studies have been performed. Although there is still no general consensus on the recovery mechanisms, several models have been proposed that can explain the reported wetting behavior of hydrophobic recovery. In this minireview, we summarized the reported mechanisms underlying the hydrophobicity-recovery of oxidized PDMS surfaces, which are certainly affected by varied factors including temperature, aging time, stored conditions, and treatment conditions. We hope this minireview can give beginners in the field of microfluidics a better understanding on the various mechanisms that contribute to the hydrophobic recovery of PDMS surfaces and thus take appropriate measures to efficiently maintain the surface wettability of oxidized PDMS chips to prolong their performance.
Collapse
Affiliation(s)
- Chunying Feng
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Yanran Li
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Yan Luo
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | | | - Yiwu Zong
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Kun Zhao
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study and the Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
| |
Collapse
|
2
|
Neves LB, Afonso IS, Nobrega G, Barbosa LG, Lima RA, Ribeiro JE. A Review of Methods to Modify the PDMS Surface Wettability and Their Applications. MICROMACHINES 2024; 15:670. [PMID: 38930640 PMCID: PMC11205751 DOI: 10.3390/mi15060670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/14/2024] [Accepted: 05/17/2024] [Indexed: 06/28/2024]
Abstract
Polydimethylsiloxane (PDMS) has attracted great attention in various fields due to its excellent properties, but its inherent hydrophobicity presents challenges in many applications that require controlled wettability. The purpose of this review is to provide a comprehensive overview of some key strategies for modifying the wettability of PDMS surfaces by providing the main traditional methods for this modification and the results of altering the contact angle and other characteristics associated with this property. Four main technologies are discussed, namely, oxygen plasma treatment, surfactant addition, UV-ozone treatment, and the incorporation of nanomaterials, as these traditional methods are commonly selected due to the greater availability of information, their lower complexity compared to the new techniques, and the lower cost associated with them. Oxygen plasma treatment is a widely used method for improving the hydrophilicity of PDMS surfaces by introducing polar functional groups through oxidation reactions. The addition of surfactants provides a versatile method for altering the wettability of PDMS, where the selection and concentration of the surfactant play an important role in achieving the desired surface properties. UV-ozone treatment is an effective method for increasing the surface energy of PDMS, inducing oxidation, and generating hydrophilic functional groups. Furthermore, the incorporation of nanomaterials into PDMS matrices represents a promising route for modifying wettability, providing adjustable surface properties through controlled dispersion and interfacial interactions. The synergistic effect of nanomaterials, such as nanoparticles and nanotubes, helps to improve wetting behaviour and surface energy. The present review discusses recent advances of each technique and highlights their underlying mechanisms, advantages, and limitations. Additionally, promising trends and future prospects for surface modification of PDMS are discussed, and the importance of tailoring wettability for applications ranging from microfluidics to biomedical devices is highlighted. Traditional methods are often chosen to modify the wettability of the PDMS surface because they have more information available in the literature, are less complex than new techniques, and are also less expensive.
Collapse
Affiliation(s)
- Lucas B. Neves
- Instituto Politécnico de Bragança, Campus Santa Apolónia, 5300-253 Bragança, Portugal;
- Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Sul (IFRS), Campus Erechim, Erechim 99713-028, RS, Brazil;
| | - Inês S. Afonso
- MEtRICs, Mechanical Engineering Department, University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal; (I.S.A.); (G.N.); (R.A.L.)
- CIMO, Instituto Politécnico de Bragança, Campus S. Apolónia, 5300-253 Bragança, Portugal
| | - Glauco Nobrega
- MEtRICs, Mechanical Engineering Department, University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal; (I.S.A.); (G.N.); (R.A.L.)
- CIMO, Instituto Politécnico de Bragança, Campus S. Apolónia, 5300-253 Bragança, Portugal
| | - Luiz G. Barbosa
- Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Sul (IFRS), Campus Erechim, Erechim 99713-028, RS, Brazil;
| | - Rui A. Lima
- MEtRICs, Mechanical Engineering Department, University of Minho, Campus de Azurém, 4800-058 Guimarães, Portugal; (I.S.A.); (G.N.); (R.A.L.)
- CEFT—Transport Phenomena Research Center, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- Associate Laboratory in Chemical Engineering (ALiCE), Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal
| | - João E. Ribeiro
- Instituto Politécnico de Bragança, Campus Santa Apolónia, 5300-253 Bragança, Portugal;
- CIMO, Instituto Politécnico de Bragança, Campus S. Apolónia, 5300-253 Bragança, Portugal
| |
Collapse
|
3
|
Zeng Q, Xu B, Deng J, Shang K, Guo Z, Wu S. Optimization of polydimethylsiloxane (PDMS) surface chemical modification and formulation for improved T cell activation and expansion. Colloids Surf B Biointerfaces 2024; 239:113977. [PMID: 38776594 DOI: 10.1016/j.colsurfb.2024.113977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 04/30/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024]
Abstract
Adoptive T cell therapy has undergone remarkable advancements in recent decades; nevertheless, the rapid and effective ex vivo expansion of tumor-reactive T cells remains a formidable challenge, limiting their clinical application. Artificial antigen-presenting substrates represent a promising avenue for enhancing the efficiency of adoptive immunotherapy and fostering T cell expansion. These substrates offer significant potential by providing flexibility and modularity in the design of tailored stimulatory environments. Polydimethylsiloxane (PDMS) silicone elastomer stands as a widely utilized biomaterial for exploring the varying sensitivity of T cell activation to substrate properties. This paper explores the optimization of PDMS surface modification and formulation to create customized stimulatory surfaces with the goal of enhancing T cell expansion. By employing soft PDMS elastomer functionalized through silanization and activating agent, coupled with site-directed protein immobilization techniques, a novel T cell stimulatory platform is introduced, facilitating T cell activation and proliferation. Notably, our findings underscore that softer modified elastomers (Young' modulus E∼300 kPa) exhibit superior efficacy in stimulating and activating mouse CD4+ T cells compared to their stiffer counterparts (E∼3 MPa). Furthermore, softened modified PDMS substrates demonstrate enhanced capabilities in T cell expansion and Th1 differentiation, offering promising insights for the advancement of T cell-based immunotherapy.
Collapse
Affiliation(s)
- Qiongjiao Zeng
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Bowen Xu
- National Key Laboratory of Immunity & Inflammation, Institute of Immunology, Naval Medical University, Shanghai 200433, China; Department of Clinical Laboratory, Third Affiliated Hospital of Naval Medical University, Shanghai 200438, China
| | - Jiewen Deng
- National Key Laboratory of Immunity & Inflammation, Institute of Immunology, Naval Medical University, Shanghai 200433, China
| | - Kun Shang
- National Key Laboratory of Immunity & Inflammation, Institute of Immunology, Naval Medical University, Shanghai 200433, China
| | - Zhenhong Guo
- National Key Laboratory of Immunity & Inflammation, Institute of Immunology, Naval Medical University, Shanghai 200433, China.
| | - Shuqing Wu
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
4
|
Li Q, Zhang P, Ye Z, Zhang H, Sun X, Gui L. A liquid metal based, integrated parallel electroosmotic micropump cluster drive system. LAB ON A CHIP 2024. [PMID: 38263786 DOI: 10.1039/d3lc00926b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
The application of liquid metal in a microfluidic system enables the fabrication of highly integrated on-chip electroosmotic micropumps (EOPs). In this work, a low-voltage driveable integrated parallel EOP cluster drive system is proposed. This system consists of two layers, a branch-channel layer and a trunk-channel layer. The lower branch-channel layer contains separate parallel pumping channels and a pair of comb liquid metal electrodes. The separated branch channels are connected together through the trunk channels in the upper layer. With this structural arrangement, the parallel micropumps form an integrated micropump cluster for larger pumping capacity. The distance between the pumping channel and the electrode next to it is controlled to 20 μm. To guide the pump design, parametric studies are performed and fully discussed. According to the experimental results, the micropump cluster can be driven at a low voltage of 0.5 V, and the flow rate reaches 274 nL min-1 at 5 V. In addition, the paper finally proposes an electrode protection strategy and an integrated pump-valve drive system which is expected to solve the shortcoming of electroosmotic pumps in terms of long-time storage and driving.
Collapse
Affiliation(s)
- Qian Li
- Liquid Metal and Cryogenic Biomedical Research Center, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 29 Zhongguancun East Road, Haidian District, Beijing, 100190, China.
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Pan Zhang
- Liquid Metal and Cryogenic Biomedical Research Center, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 29 Zhongguancun East Road, Haidian District, Beijing, 100190, China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zi Ye
- Liquid Metal and Cryogenic Biomedical Research Center, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 29 Zhongguancun East Road, Haidian District, Beijing, 100190, China.
| | - Huimin Zhang
- Liquid Metal and Cryogenic Biomedical Research Center, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 29 Zhongguancun East Road, Haidian District, Beijing, 100190, China.
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiao Sun
- Liquid Metal and Cryogenic Biomedical Research Center, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 29 Zhongguancun East Road, Haidian District, Beijing, 100190, China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lin Gui
- Liquid Metal and Cryogenic Biomedical Research Center, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, 29 Zhongguancun East Road, Haidian District, Beijing, 100190, China.
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
5
|
Nooryani M, Benneker AM, Natale G. Self-generated exclusion zone in a dead-end pore microfluidic channel. LAB ON A CHIP 2023; 23:2122-2130. [PMID: 36951143 DOI: 10.1039/d2lc01130a] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Particles can be manipulated by gradients of concentration (diffusiophoresis) and electric potential (electrophoresis) to transport them to desired locations. To establish these gradients, external stimuli are usually required. In this work, we manipulate particles through a self-generated concentration gradient within a PDMS-based microfluidic platform, without directly applying an external field. The interfacial chemistry of the PDMS results in a local increase of hydronium ions, leading to a concentration and electrical potential gradient in the system, which in turn generate a temporary exclusion zone at the pore entrance, extending up to half of the main channel, or 150 μm. With time, this exclusion zone diminishes as equilibrium in the ion concentration is reached. We study the dynamics of the exclusion zone thickness and find that the Sherwood number determines the size and stability of the exclusion zone. Our work shows, that even without introducing external ionic gradients, particle diffusiophoresis is significant in lab-on-a-chip systems. The interfacial chemistry of the microfluidic platform can have a significant influence on particle movement and this should be considered when designing experiments on diffusiophoresis. The observed phenomenon can be employed to design lab-on-a-chip-based sorting of colloidal particles.
Collapse
Affiliation(s)
- Matina Nooryani
- Department of Chemical and Petroleum Engineering, Schulich School of Engineering, University of Calgary, AB, Canada.
| | - Anne M Benneker
- Department of Chemical and Petroleum Engineering, Schulich School of Engineering, University of Calgary, AB, Canada.
| | - Giovanniantonio Natale
- Department of Chemical and Petroleum Engineering, Schulich School of Engineering, University of Calgary, AB, Canada.
| |
Collapse
|
6
|
Vafaiee M, Ejehi F, Mohammadpour R. CNT-PDMS foams as self-powered humidity sensors based on triboelectric nanogenerators driven by finger tapping. Sci Rep 2023; 13:370. [PMID: 36611085 PMCID: PMC9825370 DOI: 10.1038/s41598-023-27690-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 01/05/2023] [Indexed: 01/09/2023] Open
Abstract
An increasing number of frequently applied portable electronics has raised the significance of self-powered systems. In this regard, triboelectric nanogenerators (TENGs) have drawn considerable attention due to their diversity of design and high power output. As a widely used material in TENG electrodes, polydimethylsiloxane (PDMS) shows attractive characteristics, such as electron affinity, flexibility, and facile fabrication. To achieve active TENG-based humidity sensing, we proposed a straightforward method to enhance the hydrophilicity of PDMS by two parallel approaches: 1. Porosity induction, 2. Carbon nanotube (CNT) compositing. Both of the mentioned processes have been performed by water addition during the synthesis procedure, which is not only totally safe (in contrast with the similar foaming/compositing routes), but also applicable for a wide range of nanomaterials. Applying the modified electrode as a single-electrode TENG-based humidity sensor, demonstrated an impressive enhancement of sensing response from 56% up to 108%, compared to the bare electrodes. Moreover, the detecting range of ambient humidity was broadened to higher values of 80% in a linear behavior. The fabricated humidity sensor based on a CNT-PDMS foam not only provides superior sensing characteristics but also is satisfactory for portable applications, due to being lightweight and desirably self-powered.
Collapse
Affiliation(s)
- Mohaddeseh Vafaiee
- Institute for Nanoscience and Nanotechnology, Sharif University of Technology, Tehran, 14588-89694, Iran
| | - Faezeh Ejehi
- Institute for Nanoscience and Nanotechnology, Sharif University of Technology, Tehran, 14588-89694, Iran
| | - Raheleh Mohammadpour
- Institute for Nanoscience and Nanotechnology, Sharif University of Technology, Tehran, 14588-89694, Iran.
| |
Collapse
|
7
|
Gecko-Inspired Adhesive Mechanisms and Adhesives for Robots—A Review. ROBOTICS 2022. [DOI: 10.3390/robotics11060143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Small living organisms such as lizards possess naturally built functional surface textures that enable them to walk or climb on versatile surface topographies. Bio-mimicking the surface characteristics of these geckos has enormous potential to improve the accessibility of modern robotics. Therefore, gecko-inspired adhesives have significant industrial applications, including robotic endoscopy, bio-medical cleaning, medical bandage tapes, rock climbing adhesives, tissue adhesives, etc. As a result, synthetic adhesives have been developed by researchers, in addition to dry fibrillary adhesives, elastomeric adhesives, electrostatic adhesives, and thermoplastic adhesives. All these adhesives represent significant contributions towards robotic grippers and gloves, depending on the nature of the application. However, these adhesives often exhibit limitations in the form of fouling, wear, and tear, which restrict their functionalities and load-carrying capabilities in the natural environment. Therefore, it is essential to summarize the state of the art attributes of contemporary studies to extend the ongoing work in this field. This review summarizes different adhesion mechanisms involving gecko-inspired adhesives and attempts to explain the parameters and limitations which have impacts on adhesion. Additionally, different novel adhesive fabrication techniques such as replica molding, 3D direct laser writing, dip transfer processing, fused deposition modeling, and digital light processing are encapsulated.
Collapse
|
8
|
Flores‐Galicia F, Eden A, Pallandre A, Pennathur S, Haghiri‐Gosnet A. Predicting ion concentration polarization and analyte stacking/focusing at nanofluidic interfaces. Electrophoresis 2022; 43:741-751. [DOI: 10.1002/elps.202100297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/03/2021] [Accepted: 01/04/2022] [Indexed: 11/05/2022]
Affiliation(s)
- Fatima Flores‐Galicia
- Université Paris‐Saclay CNRS Centre de Nanosciences et Nanotechnologies Palaiseau France
| | - Alexander Eden
- Department of Mechanical Engineering University of California Santa Barbara Santa Barbara CA USA
| | - Antoine Pallandre
- Université Paris‐Saclay CNRS Institut de Chimie Physique Orsay France
| | - Sumita Pennathur
- Department of Mechanical Engineering University of California Santa Barbara Santa Barbara CA USA
| | | |
Collapse
|
9
|
Maurya R, Gohil N, Bhattacharjee G, Alzahrani KJ, Ramakrishna S, Singh V. Microfluidics for single cell analysis. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 186:203-215. [PMID: 35033285 DOI: 10.1016/bs.pmbts.2021.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Cells have several internal molecules that are present in low amounts and any fluctuation in its number drives a change in cell behavior. These molecules present inside the cells are continuously fluctuating, thus producing noises in the intrinsic environment and thereby directly affecting the cellular behavior. Single-cell analysis using microfluidics is an important tool for monitoring cell behavior by analyzing internal molecules. Several gene circuits have been designed for this purpose that are labeled with fluorescence encoding genes for monitoring cell dynamics and behavior. We discuss herewith designed and fabricated microfluidics devices that are used for trapping and tracking cells under controlled environmental conditions. This chapter highlights microfluidics chip for monitoring cells to promote their basic understanding.
Collapse
Affiliation(s)
- Rupesh Maurya
- Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana, Gujarat, India
| | - Nisarg Gohil
- Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana, Gujarat, India
| | - Gargi Bhattacharjee
- Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana, Gujarat, India
| | - Khalid J Alzahrani
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Suresh Ramakrishna
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, South Korea; College of Medicine, Hanyang University, Seoul, South Korea
| | - Vijai Singh
- Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana, Gujarat, India.
| |
Collapse
|
10
|
Ho TM, Razzaghi A, Ramachandran A, Mikkonen KS. Emulsion characterization via microfluidic devices: A review on interfacial tension and stability to coalescence. Adv Colloid Interface Sci 2022; 299:102541. [PMID: 34920366 DOI: 10.1016/j.cis.2021.102541] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/22/2021] [Accepted: 10/03/2021] [Indexed: 01/29/2023]
Abstract
Emulsions have gained significant importance in many industries including foods, pharmaceuticals, cosmetics, health care formulations, paints, polymer blends and oils. During emulsion generation, collisions can occur between newly-generated droplets, which may lead to coalescence between the droplets. The extent of coalescence is driven by the properties of the dispersed and continuous phases (e.g. density, viscosity, ion strength and pH), and system conditions (e.g. temperature, pressure or any external applied forces). In addition, the diffusion and adsorption behaviors of emulsifiers which govern the dynamic interfacial tension of the forming droplets, the surface potential, and the duration and frequency of the droplet collisions, contribute to the overall rate of coalescence. An understanding of these complex behaviors, particularly those of interfacial tension and droplet coalescence during emulsion generation, is critical for the design of an emulsion with desirable properties, and for the optimization of the processing conditions. However, in many cases, the time scales over which these phenomena occur are extremely short, typically a fraction of a second, which makes their accurate determination by conventional analytical methods extremely challenging. In the past few years, with advances in microfluidic technology, many attempts have demonstrated that microfluidic systems, characterized by micrometer-size channels, can be successfully employed to precisely characterize these properties of emulsions. In this review, current applications of microfluidic devices to determine the equilibrium and dynamic interfacial tension during droplet formation, and to investigate the coalescence stability of dispersed droplets applicable to the processing and storage of emulsions, are discussed.
Collapse
|
11
|
Trivedi JS, Bera P, Bhalani DV, Jewrajka SK. In situ amphiphilic modification of thin film composite membrane for application in aqueous and organic solvents. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119155] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
12
|
Affiliation(s)
- Kiran Raj M
- Department of Biomedical EngineeringNational University of Singapore Singapore 117576 Singapore
| | - Suman Chakraborty
- Department of Mechanical EngineeringIndian Institute of Technology Kharagpur Kharagpur 721302 India
| |
Collapse
|
13
|
Zhang S, Li S, Xia Z, Cai K. A review of electronic skin: soft electronics and sensors for human health. J Mater Chem B 2020; 8:852-862. [PMID: 31942905 DOI: 10.1039/c9tb02531f] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This article reviews several categories of electronic skins (e-skins) for monitoring signals involved in human health. It covers advanced candidate materials, compositions, structures, and integrate strategies of e-skin, focusing on stretchable and wearable electronics. In addition, this article further discusses the potential applications and expected development of e-skins. It is possible to provide a new generation of sensors which are able to introduce artificial intelligence to the clinic and daily healthcare.
Collapse
Affiliation(s)
- Songyue Zhang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Shunbo Li
- Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education and Key Disciplines Laboratory of Novel Micro-Nano Devices and System Technology, School of Optoelectronics Engineering, Chongqing University, Chongqing 400044, China.
| | - Zengzilu Xia
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| |
Collapse
|
14
|
Saroj SK, Panigrahi PK. Drying pattern and evaporation dynamics of sessile ferrofluid droplet on a PDMS substrate. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.123672] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
Song Y, Feng A, Liu Z, Li D. Zeta potentials of PDMS surfaces modified with poly(ethylene glycol) by physisorption. Electrophoresis 2019; 41:761-768. [DOI: 10.1002/elps.201900246] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 08/14/2019] [Accepted: 08/20/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Yongxin Song
- Department of Marine EngineeringDalian Maritime University Dalian P. R. China
| | - Angran Feng
- China Classification Society Guangzhou Branch Guangzhou P. R. China
| | - Zhijian Liu
- Department of Marine EngineeringDalian Maritime University Dalian P. R. China
| | - Dongqing Li
- Department of Mechanical and Mechatronics EngineeringUniversity of Waterloo Waterloo Canada
| |
Collapse
|
16
|
Amerian M, Amerian M, Sameti M, Seyedjafari E. Improvement of PDMS surface biocompatibility is limited by the duration of oxygen plasma treatment. J Biomed Mater Res A 2019; 107:2806-2813. [PMID: 31430022 DOI: 10.1002/jbm.a.36783] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 08/09/2019] [Accepted: 08/12/2019] [Indexed: 12/22/2022]
Abstract
The recent study focused on the improvement of polydimethylsiloxane (PDMS) surface biocompatibility as the most commonly used biomaterial in maxillofacial prostheses for intraoral defects. Biocompatibility enhances tissue-prosthesis integration to prevent implant dislocation; to evaluate the parameter the study conducted at different times of oxygen plasma exposure. Scanning electron microscopy, contact angle measurement, atomic force microscopy and above all, cell cultivation-as a crucial factor in biocompatibility-carried out to investigate the samples' characteristics. An improved PDMS biocompatibility is expected; referring to the fact that an "optimal range"-not necessarily the maximum values-of surface hydrophilicity and roughness could induce an enhanced cell attachment on the PDMS surface, an "optimum time" of O2 plasma exposure is required to meet this goal. Considering the O2 plasma setup items, the ratio of PDMS components and fabrication process in the current survey, 2.5-min O2 plasma exposure well suited to PDMS surface cell adhesion.
Collapse
Affiliation(s)
- Mehrnaz Amerian
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Mahshid Amerian
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Mahyar Sameti
- Department of Biomedical, Chemical Engineering and Science, Florida Institute of Technology, Melbourne, Florida
| | - Ehsan Seyedjafari
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
17
|
Adekanmbi EO, Dustin J, Srivastava SK. Electro-osmotic surface effects generation in an electrokinetic-based transport device: A comparison of RF and MW plasma generating sources. Electrophoresis 2019; 40:1573-1579. [PMID: 30762241 DOI: 10.1002/elps.201800464] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 01/11/2019] [Accepted: 02/05/2019] [Indexed: 11/06/2022]
Abstract
It is a common practice in insulator-based dielectrophoretic separation to use and reuse PDMS-constructed microdevice for an extended period of time while performing biological and technical replicate experiments. This is usually done to rule out any effects of device variation on separation efficiency. Ensuring that all experimental conditions remain the same is critical to the conclusion that can be drawn from such repeated experiments. One important contributing factor to the flow of materials within the device is electro-osmotic velocity, which stems from the surface condition of the device construction materials. In this paper, we present an affordable microwave-based (MESA-Mgen) oxygen plasma cleaner developed for approximately less than $100 using readily obtainable parts from an average local hardware store with no specialized tools. This low-cost room-air microwave plasma generator was designed using an R-4055, 400 W, 2450 MHz half-pint household microwave oven (Sharp®) for exploring the possibility of sealing polydimethylsiloxane (PDMS) devices onto glass with minimal budgetary commitment. Microfluidic channels generated using MESA-Mgen were evaluated for their electro-osmotic velocities while factors including contact angles, storage-solvent, half-way hydrophobicity period were also explored with MESA-Mgen, and the results were compared to those obtained from the commercially available plasma cleaner (COM-PC). These outcomes revealed that the MESA-Mgen induced hydrophilicity and ensured leak-free sealing of PDMS substrates in a manner comparable with the COM-PC.
Collapse
Affiliation(s)
- Ezekiel O Adekanmbi
- Department of Chemical and Materials Engineering, University of Idaho, Moscow, United States
| | - Jeremiah Dustin
- Department of Nuclear Engineering, University of Idaho, Idaho Falls, United States
| | - Soumya K Srivastava
- Department of Chemical and Materials Engineering, University of Idaho, Moscow, United States
| |
Collapse
|
18
|
A novel simplistic fabrication technique for cranial epidural electrodes for chronic recording and stimulation in rats. J Neurosci Methods 2019; 311:239-242. [PMID: 30389487 DOI: 10.1016/j.jneumeth.2018.10.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 09/18/2018] [Accepted: 10/29/2018] [Indexed: 01/02/2023]
Abstract
BACKGROUND The demand for neuromodulatory and recording tools has resulted in a surge of publications describing techniques for fabricating devices and accessories in-house suitable for neurological recordings. However, many of these fabrication protocols use equipment which are not common to biological laboratories, thus limiting researchers to the use of commercial alternatives. New method:We have developed a simple yet robust implantable stimulating surface electrode which can be fabricated in all wet-bench laboratories. RESULTS Female Sprague-Dawley rats received epidural implantation of the electrodes over the fore and hind limb areas of their motor cortex. Stimulation of the motor cortex successfully evoked fore- and hind limb motor outputs. The device was also able to record surface potentials of the motor cortex following epidural stimulation of the spinal cord. Comparisons with existing methods:For stimulation of the motor cortex, often stiff stainless or copper wires are roughly tucked underneath the skull, with little accuracy of localization. While, commercially available devices utilize burr holes and screw electrodes. Our new electrode design provides us stereotaxic accuracy that was not previously available. CONCLUSION We developed a chronic implantable electrode capable of being fabricated in all wet-labs, are robust, versatile and electrically sensitive enough for long-term chronic use. The simple and versatile electrode design provides scientific, economical and ethical benefits.
Collapse
|
19
|
Li Y, Hu X, Li H, Zhang Y, Chen H. Investigation of cold atmospheric plasma treatment in polydimethylsiloxane microfluidic devices with a transmural method. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2018; 30:384001. [PMID: 30095440 DOI: 10.1088/1361-648x/aad981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Here we report a transmural testing that proves cold atmospheric plasma (CAP) can be used to treat the aqueous samples in polydimethylsiloxane (PDMS) microfluidic devices. The reactive species of CAP are found to be able to pass through the PDMS wall and interact with the aqueous medium in the microchannels. The H2O2 concentration, pH value and the bacterial survival number of the treated medium are detected, respectively, to evaluate the feasibility of this method. The relationship between the concentration of H2O2 in the aqueous samples and the thickness of the channel wall is explained by the diffusion mechanism of plasma species in PDMS. The acidification (i.e. decrease of pH value) and sterilization effect of plasma are also observed in the treated samples. This transmural method allows the CAP treatment in PDMS microfluidic devices, which demonstrates that the plasma biomedicine would have potential applications in biomicrofluidics.
Collapse
Affiliation(s)
- Yongjian Li
- State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, People's Republic of China
| | | | | | | | | |
Collapse
|
20
|
Ghaleh H, Jalili K, Maher BM, Rahbarghazi R, Mehrjoo M, Bonakdar S, Abbasi F. Biomimetic antifouling PDMS surface developed via well-defined polymer brushes for cardiovascular applications. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2018.08.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
21
|
Chadly DM, Oleksijew AM, Coots KS, Fernandez JJ, Kobayashi S, Kessler JA, Matsuoka AJ. Full Factorial Microfluidic Designs and Devices for Parallelizing Human Pluripotent Stem Cell Differentiation. SLAS Technol 2018; 24:41-54. [PMID: 29995450 DOI: 10.1177/2472630318783497] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Human pluripotent stem cells (hPSCs) are promising therapeutic tools for regenerative therapies and disease modeling. Differentiation of cultured hPSCs is influenced by both exogenous factors added to the cultures and endogenously secreted molecules. Optimization of protocols for the differentiation of hPSCs into different cell types is difficult because of the many variables that can influence cell fate. We present microfluidic devices designed to perform three- and four-factor, two-level full factorial experiments in parallel for investigating and directly optimizing hPSC differentiation. These devices feature diffusion-isolated, independent culture wells that allow for control of both exogenous and endogenous cellular signals and that allow for immunocytochemistry (ICC) and confocal microscopy in situ. These devices are fabricated by soft lithography in conjunction with 3D-printed molds and are operable with a single syringe pump, eliminating the need for specialized equipment or cleanroom facilities. Their utility was demonstrated by on-chip differentiation of hPSCs into the auditory neuron lineage. More broadly, these devices enable multiplexing for experimentation with any adherent cell type or even multiple cell types, allowing efficient investigation of the effects of medium conditions, pharmaceuticals, or other soluble reagents.
Collapse
Affiliation(s)
- Duncan M Chadly
- 1 Department of Otolaryngology and Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Andrew M Oleksijew
- 1 Department of Otolaryngology and Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Kyle S Coots
- 1 Department of Otolaryngology and Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Jose J Fernandez
- 2 Department of Chemical and Biological Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL, USA
| | - Shun Kobayashi
- 1 Department of Otolaryngology and Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - John A Kessler
- 3 Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Akihiro J Matsuoka
- 1 Department of Otolaryngology and Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.,4 Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, School of Communication, Northwestern University, Evanston, IL, USA.,5 Hugh Knowles Center for Hearing Research, Northwestern University, Evanston, IL, USA
| |
Collapse
|
22
|
Strategies to hydrophilize silicones via spontaneous adsorption of poly(vinyl alcohol) from aqueous solution. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2018.03.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
23
|
Plegue TJ, Kovach KM, Thompson AJ, Potkay JA. Stability of Polyethylene Glycol and Zwitterionic Surface Modifications in PDMS Microfluidic Flow Chambers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:492-502. [PMID: 29231737 DOI: 10.1021/acs.langmuir.7b03095] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Blood-material interactions are crucial to the lifetime, safety, and overall success of blood contacting devices. Hydrophilic polymer coatings have been employed to improve device lifetime by shielding blood contacting materials from the natural foreign body response, primarily the intrinsic pathway of the coagulation cascade. These coatings have the ability to repel proteins, cells, bacteria, and other micro-organisms. Coatings are desired to have long-term stability, so that the nonthrombogenic and nonfouling effects gained are long lasting. Unfortunately, there exist limited studies which investigate their stability under dynamic flow conditions as encountered in a physiological setting. In addition, direct comparisons between multiple coatings are lacking in the literature. In this study, we investigate the stability of polyethylene glycol (PEG), zwitterionic sulfobetaine silane (SBSi), and zwitterionic polyethylene glycol sulfobetaine silane (PEG-SBSi) grafted by a room temperature, sequential flow chemistry process on polydimethylsiloxane (PDMS) over time under ambient, static fluid (no flow), and physiologically relevant flow conditions and compare the results to uncoated PDMS controls. PEG, SBSi, and PEG-SBSi coatings maintained contact angles below 20° for up to 35 days under ambient conditions. SBSi and PEG-SBSi showed increased stability and hydrophilicity after 7 days under static conditions. They also retained contact angles ≤40° for all shear rates after 7 days under flow, demonstrating their potential for long-term stability. The effectiveness of the coatings to resist platelet adhesion was also studied under physiological flow conditions. PEG showed a 69% reduction in adhered platelets, PEG-SBSi a significant 80% reduction, and SBSi a significant 96% reduction compared to uncoated control samples, demonstrating their potential applicability for blood contacting applications. In addition, the presented coatings and their stability under shear may be of interest in other applications including marine coatings, lab on a chip devices, and contact lenses, where it is desirable to reduce surface fouling due to proteins, cells, and other organisms.
Collapse
Affiliation(s)
- Thomas J Plegue
- VA Ann Arbor Healthcare System , Ann Arbor, Michigan 48105, United States
| | - Kyle M Kovach
- Department of Biomedical Engineering, Case Western Reserve University , Cleveland, Ohio 44106, United States
| | - Alex J Thompson
- VA Ann Arbor Healthcare System , Ann Arbor, Michigan 48105, United States
- Department of Surgery, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Joseph A Potkay
- VA Ann Arbor Healthcare System , Ann Arbor, Michigan 48105, United States
- Department of Surgery, University of Michigan , Ann Arbor, Michigan 48109, United States
| |
Collapse
|
24
|
Ma YD, Chang WH, Luo K, Wang CH, Liu SY, Yen WH, Lee GB. Digital quantification of DNA via isothermal amplification on a self-driven microfluidic chip featuring hydrophilic film-coated polydimethylsiloxane. Biosens Bioelectron 2018; 99:547-554. [DOI: 10.1016/j.bios.2017.08.026] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 08/01/2017] [Accepted: 08/11/2017] [Indexed: 10/19/2022]
|
25
|
Affiliation(s)
- Alinaghi Salari
- Department of Chemical Engineering; University of Toronto; 200 College Street Toronto Ontario M5S 3E5 Canada
| | - Eugenia Kumacheva
- Department of Chemical Engineering; University of Toronto; 200 College Street Toronto Ontario M5S 3E5 Canada
- Department of Chemistry; University of Toronto; 80 Saint George Street Toronto Ontario M5S 3H6 Canada
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; 164 College Street Toronto Ontario M5S 3G9 Canada
| |
Collapse
|
26
|
Wang H, Wang C, Gao D, Li M, Zhu Y, Zhu Y. Heat/durability resistance of the superhydrophobic PPS-based coatings prepared by spraying non-fluorinated polymer solution. Colloid Polym Sci 2016. [DOI: 10.1007/s00396-016-3914-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
27
|
Tebbe M, Lentz S, Guerrini L, Fery A, Alvarez-Puebla RA, Pazos-Perez N. Fabrication and optical enhancing properties of discrete supercrystals. NANOSCALE 2016; 8:12702-9. [PMID: 26898333 DOI: 10.1039/c5nr09017b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Discrete gold nanoparticle crystals with tunable size and morphology are fabricated via a fast and inexpensive template-assisted method. The highly precise hierarchical organization of the plasmonic building blocks yields superstructures with outstanding behaviour for surface-enhanced Raman scattering analysis.
Collapse
Affiliation(s)
- Moritz Tebbe
- Department of Physical Chemistry II, University of Bayreuth Universitaetsstrasse 30, Bayreuth 95440, Germany.
| | | | | | | | | | | |
Collapse
|
28
|
Saucedo-Espinosa MA, Lapizco-Encinas BH. Refinement of current monitoring methodology for electroosmotic flow assessment under low ionic strength conditions. BIOMICROFLUIDICS 2016; 10:033104. [PMID: 27375813 PMCID: PMC4902815 DOI: 10.1063/1.4953183] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 05/22/2016] [Indexed: 05/12/2023]
Abstract
Current monitoring is a well-established technique for the characterization of electroosmotic (EO) flow in microfluidic devices. This method relies on monitoring the time response of the electric current when a test buffer solution is displaced by an auxiliary solution using EO flow. In this scheme, each solution has a different ionic concentration (and electric conductivity). The difference in the ionic concentration of the two solutions defines the dynamic time response of the electric current and, hence, the current signal to be measured: larger concentration differences result in larger measurable signals. A small concentration difference is needed, however, to avoid dispersion at the interface between the two solutions, which can result in undesired pressure-driven flow that conflicts with the EO flow. Additional challenges arise as the conductivity of the test solution decreases, leading to a reduced electric current signal that may be masked by noise during the measuring process, making for a difficult estimation of an accurate EO mobility. This contribution presents a new scheme for current monitoring that employs multiple channels arranged in parallel, producing an increase in the signal-to-noise ratio of the electric current to be measured and increasing the estimation accuracy. The use of this parallel approach is particularly useful in the estimation of the EO mobility in systems where low conductivity mediums are required, such as insulator based dielectrophoresis devices.
Collapse
Affiliation(s)
- Mario A Saucedo-Espinosa
- Microscale Bioseparations Laboratory, Rochester Institute of Technology , Rochester, New York 14623, USA
| | - Blanca H Lapizco-Encinas
- Microscale Bioseparations Laboratory, Rochester Institute of Technology , Rochester, New York 14623, USA
| |
Collapse
|
29
|
Lin D, Zhao Q, Yan M. Surface modification of polydimethylsiloxane microfluidic chips by polyamidoamine dendrimers for amino acid separation. J Appl Polym Sci 2016. [DOI: 10.1002/app.43580] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Dong Lin
- School of Pharmacy; Binzhou Medical University; Yantai 264003 People's Republic of China
| | - Qin Zhao
- College of Food Engineering; Ludong University; Yantai 264025 People's Republic of China
| | - Miaomiao Yan
- School of Pharmacy; Binzhou Medical University; Yantai 264003 People's Republic of China
| |
Collapse
|
30
|
Khnouf R, Karasneh D, Albiss BA. Protein immobilization on the surface of polydimethylsiloxane and polymethyl methacrylate microfluidic devices. Electrophoresis 2015; 37:529-35. [DOI: 10.1002/elps.201500333] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 10/21/2015] [Accepted: 10/23/2015] [Indexed: 11/09/2022]
Affiliation(s)
- Ruba Khnouf
- Department of Biomedical Engineering, Faculty of Engineering; Jordan University of Science and Technology; Irbid Jordan
| | - Dina Karasneh
- Department of Biomedical Engineering, Faculty of Engineering; Jordan University of Science and Technology; Irbid Jordan
| | - Borhan Aldeen Albiss
- Department of Applied Physics, Faculty of Science and Arts; Jordan University of Science and Technology; Irbid Jordan
| |
Collapse
|
31
|
Zuchowska A, Kwiatkowski P, Jastrzebska E, Chudy M, Dybko A, Brzozka Z. Adhesion of MRC-5 and A549 cells on poly(dimethylsiloxane) surface modified by proteins. Electrophoresis 2015; 37:536-44. [PMID: 26311334 DOI: 10.1002/elps.201500250] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 07/15/2015] [Accepted: 07/24/2015] [Indexed: 01/09/2023]
Abstract
PDMS is a very popular material used for fabrication of Lab-on-a-Chip systems for biological applications. Although PDMS has numerous advantages, it is a highly hydrophobic material, which inhibits adhesion and proliferation of the cells. PDMS surface modifications are used to enrich growth of the cells. However, due to the fact that each cell type has specific adhesion, it is necessary to optimize the parameters of these modifications. In this paper, we present an investigation of normal (MRC-5) and carcinoma (A549) human lung cell adhesion and proliferation on modified PDMS surfaces. We have chosen these cell types because often they are used as models for basic cancer research. To the best of our knowledge, this is the first presentation of this type of investigation. The combination of a gas-phase processing (oxygen plasma or ultraviolet irradiation) and wet chemical methods based on proteins' adsorption was used in our experiments. Different proteins such as poly-l-lysine, fibronectin, laminin, gelatin, and collagen were incubated with the activated PDMS samples. To compare with other works, here, we also examined how ratio of prepolymer to curing agent (5:1, 10:1, and 20:1) influences PDMS hydrophilicity during further modifications. The highest adhesion of the tested cells was observed for the usage of collagen, regardless of PDMS ratio. However, the MRC-5 cell line demonstrated better adhesion than A549 cells. This is probably due to the difference in their morphology and type (normal/cancer).
Collapse
Affiliation(s)
- Agnieszka Zuchowska
- Department of Microbioanalytics, Institute of Biotechnology, Warsaw University of Technology, Warsaw, Poland
| | - Piotr Kwiatkowski
- Department of Microbioanalytics, Institute of Biotechnology, Warsaw University of Technology, Warsaw, Poland
| | - Elzbieta Jastrzebska
- Department of Microbioanalytics, Institute of Biotechnology, Warsaw University of Technology, Warsaw, Poland
| | - Michal Chudy
- Department of Microbioanalytics, Institute of Biotechnology, Warsaw University of Technology, Warsaw, Poland
| | - Artur Dybko
- Department of Microbioanalytics, Institute of Biotechnology, Warsaw University of Technology, Warsaw, Poland
| | - Zbigniew Brzozka
- Department of Microbioanalytics, Institute of Biotechnology, Warsaw University of Technology, Warsaw, Poland
| |
Collapse
|
32
|
Hoshian S, Jokinen V, Hjort K, Ras RHA, Franssila S. Amplified and localized photoswitching of TiO2 by micro- and nanostructuring. ACS APPLIED MATERIALS & INTERFACES 2015; 7:15593-15599. [PMID: 26115550 DOI: 10.1021/acsami.5b04309] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Fast photoswitching of wetting properties is important for the development of micro/nanofluidic systems and lab-on-a-chip devices. Here, we show how structuring the surface amplifies photoswitching properties. Atomic layer-deposited titanium dioxide (TiO2) has phototunable hydrophilic properties due to its surface chemistry, but microscale overhang pillars and additional nanoscale topography can override the chemistry and make the surface superhydrophobic. Three switching processes are achieved simply by controlling the UV exposure time: from (1) rolling superhydrophobic to sticky superhydrophobic (Cassie-Baxter to Wenzel), (2) superhydrophobic to hydrophilic, and (3) superhydrophobic to superhydrophilic after 1, 5, and 10 min of UV exposure, respectively. We report the fastest reversible switching to date: 1 min of UV exposure is enough to promote a rolling-to-sticky transition, and mild heating (30 min at 60 °C) is sufficient for recovery. This performance is caused by a combination of the photoswitching properties of TiO2, the micropillar overhang geometry, and surface nanostructuring. We demonstrate that the switching also can be performed locally by introducing microwriting under a water droplet.
Collapse
Affiliation(s)
| | | | - Klas Hjort
- ‡Division of Microsystems Technology, Uppsala University, SE-752 37 Uppsala, Sweden
| | | | | |
Collapse
|
33
|
Ramírez-Gutiérrez D, Nieto-Draghi C, Pannacci N, Castro LV, Álvarez-Ramírez F, Creton B. Surface photografting of acrylic acid on poly(dimethylsiloxane). Experimental and dissipative particle dynamics studies. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:1400-1409. [PMID: 25558765 DOI: 10.1021/la503694h] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
This work includes both experimental and theoretical studies of the wetting property changes of water on a surface of poly(dimethylsiloxane) (PDMS) modified with different amounts of acrylic acid (AA). The default surface properties of PDMS were changed from hydrophobic to hydrophilic behavior which was characterized with contact angle measurements by two approaches: (i) experimental tests of samples subjected to a photografting polymerization procedure to obtain a functionalized surface and (ii) DPD (dissipative particle dynamics) simulations which also involve the calculation of sets of repulsive parameters determined following two methods: the use of the "Blends" module in the Materials Studio software and the calculation of cohesive energy density with molecular simulations. Changes of contact angle values observed from both experimental and numerical simulation results provide qualitative and quantitative information on the wetting behavior of photografted surfaces.
Collapse
|
34
|
Hoshian S, Jokinen V, Somerkivi V, Lokanathan AR, Franssila S. Robust superhydrophobic silicon without a low surface-energy hydrophobic coating. ACS APPLIED MATERIALS & INTERFACES 2015; 7:941-9. [PMID: 25522296 DOI: 10.1021/am507584j] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Superhydrophobic surfaces without low surface-energy (hydrophobic) modification such as silanization or (fluoro)polymer coatings are crucial for water-repellent applications that need to survive under harsh UV or IR exposures and mechanical abrasion. In this work, robust low-hysteresis superhydrophobic surfaces are demonstrated using a novel hierarchical silicon structure without a low surface-energy coating. The proposed geometry produces superhydrophobicity out of silicon that is naturally hydrophilic. The structure is composed of collapsed silicon nanowires on top and bottom of T-shaped micropillars. Collapsed silicon nanowires cause superhydrophobicity due to nanoscale air pockets trapped below them. T-shaped micropillars significantly decrease the water contact angle hysteresis because microscale air pockets are trapped between them and can not easily escape. Robustness is studied under mechanical polishing, high-energy photoexposure, high temperature, high-pressure water shower, and different acidic and solvent environments. Mechanical abrasion damages the nanowires on top of micropillars, but those at the bottom survive. Small increase of hysteresis is seen, but the surface is still superhydrophobic after abrasion.
Collapse
Affiliation(s)
- Sasha Hoshian
- Department of Materials Science and Engineering and ‡Department of Pulp and Paper Technology, Aalto University School of Chemical Technology , 02150 Espoo, Finland
| | | | | | | | | |
Collapse
|
35
|
Nguyen L, Hang M, Wang W, Tian Y, Wang L, McCarthy TJ, Chen W. Simple and improved approaches to long-lasting, hydrophilic silicones derived from commercially available precursors. ACS APPLIED MATERIALS & INTERFACES 2014; 6:22876-83. [PMID: 25506712 DOI: 10.1021/am507152d] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Three types of commercially derived methylsilicone materials, Sylgard-184, Q(V)Q(H) (an MQ-based silicone containing no dimethylsiloxane, D units), and D(V)D(H) (a D-based silicone with no additives), were judiciously chosen to study the conditions under which long-lasting hydrophilicity after oxygen plasma treatment can be obtained. A 30 s plasma treatment time under controlled conditions was found to be optimal in terms of achieving the lowest initial advancing and receding contact angles of θ(A)/θ(R) = 10°/5° with undetectable surface damage. Vacuum treatment, a necessary step prior to plasma ignition that has been overlooked in previous studies, as well as room temperature curing were explored as means to remove low molecular weight species. For thin films (a few micrometers), 40 min vacuum treatment was sufficient to achieve low dynamic contact angles of θ(A)/θ(R) = 51-56°/38-43° on all three types of silicones measured more than 30 days after the plasma treatments. These values indicate superior hydrophilicity relative to what has been reported. The small and slow rise in contact angle over time is likely caused by the intrinsic nature of the silicone materials, i.e., surface reorientation of hydrophilic functional groups to the bulk and condensation of surface silanol groups, and is thus unavoidable. For thick films (∼1 mm), room temperature curing in addition to vacuum treatment was required to reduce hydrophobic recovery and to achieve long-lasting hydrophilicity. The final contact angles for thick samples were slightly higher than the corresponding thin film samples due to the greater "reservoir" depth and migration length for mobile species. In particular, Sylgard exhibited inferior performance among the thick samples, and we attribute this to the additives in its commercial formulation. Furthermore, unlike polydimethylsiloxane-based silicones, Q(V)Q(H) does not contain equilibration products of the Dn-type; its thin films perform as well as those of Sylgard and D(V)D(H). Silicones without D units are promising materials with intrinsically low hydrophobic recovery characteristics and long-lasting hydrophilicity after oxygen plasma treatment.
Collapse
Affiliation(s)
- Lien Nguyen
- Chemistry Department, Mount Holyoke College , 50 College Street, South Hadley, Massachusetts 01075, United States
| | | | | | | | | | | | | |
Collapse
|
36
|
Moustafa ME, Gadepalli VS, Elmak AA, Lee W, Rao RR, Yadavalli VK. Large area micropatterning of cells on polydimethylsiloxane surfaces. J Biol Eng 2014; 8:24. [PMID: 25383093 PMCID: PMC4223844 DOI: 10.1186/1754-1611-8-24] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 09/30/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Precise spatial control and patterning of cells is an important area of research with numerous applications in tissue engineering, as well as advancing an understanding of fundamental cellular processes. Poly (dimethyl siloxane) (PDMS) has long been used as a flexible, biocompatible substrate for cell culture with tunable mechanical characteristics. However, fabrication of suitable physico-chemical barriers for cells on PDMS substrates over large areas is still a challenge. RESULTS Here, we present an improved technique which integrates photolithography and cell culture on PDMS substrates wherein the barriers to cell adhesion are formed using the photo-activated graft polymerization of polyethylene glycol diacrylate (PEG-DA). PDMS substrates with varying stiffness were prepared by varying the base to crosslinker ratio from 5:1 to 20:1. All substrates show controlled cell attachment confined to fibronectin coated PDMS microchannels with a resistance to non-specific adhesion provided by the covalently immobilized, hydrophilic PEG-DA. CONCLUSIONS Using photolithography, it is possible to form patterns of high resolution stable at 37°C over 2 weeks, and microstructural complexity over large areas of a few cm(2). As a robust and scalable patterning method, this technique showing homogenous and stable cell adhesion and growth over macroscales can bring microfabrication a step closer to mass production for biomedical applications.
Collapse
Affiliation(s)
- Mahmoud E Moustafa
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA 23284 USA
| | - Venkat S Gadepalli
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA 23284 USA
| | - Ahmed A Elmak
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA 23284 USA
| | - Woomin Lee
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA 23284 USA
| | - Raj R Rao
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA 23284 USA
| | - Vamsi K Yadavalli
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA 23284 USA
| |
Collapse
|
37
|
Gong T, Zhu Y, Xie W, Wang N, Zhang J, Ren W. Study on modification of single-walled carbon nanotubes on the surface of monocrystalline silicon solar cells. APPLIED OPTICS 2014; 53:6457-6463. [PMID: 25322233 DOI: 10.1364/ao.53.006457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 08/25/2014] [Indexed: 06/04/2023]
Abstract
Modification of single-walled carbon nanotubes (SWNTs) on the surface of monocrystalline silicon solar cells was investigated. The modification was realized by dropping a well-distributed mixture of SWNTs and ethanol with different dosages on the surface of monocrystalline silicon solar cells in the same effective area. The experimental results showed that the increasing rates of conversion efficiency, short-circuit current, and fill factor were 4.37%, 2.18%, and 2.11%, respectively; the open circuit voltage and series resistance decreased by 0.11% and 9.37% compared with the bare solar cell without an antireflection (AR) layer, when the modification reached the best state by dropping a 0.5 mL mixture solution with a concentration of 0.08 g/L. With the energy-band diagrams of the heterojunction and p-n junction, the principles of the modification of SWNTs on monocrystalline silicon solar cells and the reasons for the change of electrical parameters were analyzed theoretically. Through experiments and theoretical analyses, the modification of SWNTs on solar cells is a potential and effective way to improve the performance of solar cells.
Collapse
|
38
|
Sriram KK, Chang CL, Rajesh Kumar U, Chou CF. DNA combing on low-pressure oxygen plasma modified polysilsesquioxane substrates for single-molecule studies. BIOMICROFLUIDICS 2014; 8:052102. [PMID: 25332730 PMCID: PMC4189429 DOI: 10.1063/1.4892515] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 07/28/2014] [Indexed: 05/21/2023]
Abstract
Molecular combing and flow-induced stretching are the most commonly used methods to immobilize and stretch DNA molecules. While both approaches require functionalization steps for the substrate surface and the molecules, conventionally the former does not take advantage of, as the latter, the versatility of microfluidics regarding robustness, buffer exchange capability, and molecule manipulation using external forces for single molecule studies. Here, we demonstrate a simple one-step combing process involving only low-pressure oxygen (O2) plasma modified polysilsesquioxane (PSQ) polymer layer to facilitate both room temperature microfluidic device bonding and immobilization of stretched single DNA molecules without molecular functionalization step. Atomic force microscopy and Kelvin probe force microscopy experiments revealed a significant increase in surface roughness and surface potential on low-pressure O2 plasma treated PSQ, in contrast to that with high-pressure O2 plasma treatment, which are proposed to be responsible for enabling effective DNA immobilization. We further demonstrate the use of our platform to observe DNA-RNA polymerase complexes and cancer drug cisplatin induced DNA condensation using wide-field fluorescence imaging.
Collapse
Affiliation(s)
| | - Chun-Ling Chang
- Institute of Physics , Academia Sinica, Taipei 11529, Taiwan
| | | | | |
Collapse
|
39
|
Kalinova R, Mincheva R, Dubois P. Imparting Adhesion Property to Silicone Materials. ACTA ACUST UNITED AC 2014. [DOI: 10.7569/raa.2014.097302] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
40
|
Synthesis of UV-Curable PDMS-Modified Urethane Acrylate Oligomer and Physical Properties of the Cured Film. ELASTOMERS AND COMPOSITES 2013. [DOI: 10.7473/ec.2013.48.4.249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
41
|
Bubendorfer AJ, Ingham B, Kennedy JV, Arnold WM. Contamination of PDMS microchannels by lithographic molds. LAB ON A CHIP 2013; 13:4312-4316. [PMID: 24080639 DOI: 10.1039/c3lc50641j] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
By use of synchrotron X-ray fluorescence and Rutherford backscattering spectrometry, we show the SU-8 soft lithographic process contaminates PDMS. Residues of the antimony containing photoinitiator are transferred from the master mold to the surface of PDMS, uncontrollably intensifying the surface potential, leading to electroosmotic flow variability in PDMS microfluidic devices.
Collapse
|
42
|
Ferreira P, Carvalho Á, Correia TR, Antunes BP, Correia IJ, Alves P. Functionalization of polydimethylsiloxane membranes to be used in the production of voice prostheses. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2013; 14:055006. [PMID: 27877613 PMCID: PMC5090376 DOI: 10.1088/1468-6996/14/5/055006] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 08/26/2013] [Indexed: 05/08/2023]
Abstract
The voice is produced by the vibration of vocal cords which are located in the larynx. Therefore, one of the major consequences for patients subjected to laryngectomy is losing their voice. In these cases, a synthetic one-way valve set (voice prosthesis) can be implanted in order to allow restoration of speech. Most voice prostheses are produced with silicone-based materials such as polydimethylsiloxane (PDMS). This material has excellent properties, such as optical transparency, chemical and biological inertness, non-toxicity, permeability to gases and excellent mechanical resistance that are fundamental for its application in the biomedical field. However, PDMS is very hydrophobic and this property causes protein adsorption which is followed by microbial adhesion and biofilm formation. To overcome these problems, surface modification of materials has been proposed in this study. A commercial silicone elastomer, SylgardTM 184 was used to prepare membranes whose surface was modified by grafting 2-hydroxyethylmethacrylate and methacrylic acid by low-pressure plasma treatment. The hydrophilicity, hydrophobic recovery and surface energy of the produced materials were determined. Furthermore, the cytotoxicity and antibacterial activity of the materials were also assessed. The results obtained revealed that the PDMS surface modification performed did not affect the material's biocompatibility, but decreased their hydrophobic character and bacterial adhesion and growth on its surface.
Collapse
Affiliation(s)
- Paula Ferreira
- CIEPQPF, Departamento de Engenharia Química, Universidade de Coimbra, Polo II, Pinhal de Marrocos, 3030-790 Coimbra, Portugal
| | - Álvaro Carvalho
- CIEPQPF, Departamento de Engenharia Química, Universidade de Coimbra, Polo II, Pinhal de Marrocos, 3030-790 Coimbra, Portugal
| | - Tiago Ruivo Correia
- CICS-UBI, Centro de Investigação em Ciências da Saúde, Faculdade de Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal
| | - Bernardo Paiva Antunes
- CICS-UBI, Centro de Investigação em Ciências da Saúde, Faculdade de Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal
| | - Ilídio Joaquim Correia
- CICS-UBI, Centro de Investigação em Ciências da Saúde, Faculdade de Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal
| | - Patrícia Alves
- CIEPQPF, Departamento de Engenharia Química, Universidade de Coimbra, Polo II, Pinhal de Marrocos, 3030-790 Coimbra, Portugal
| |
Collapse
|