1
|
Fehér B, Wacha A, Jezsó B, Bóta A, Pedersen JS, Varga I. The evolution of equilibrium poly(styrene sulfonate) and dodecyl trimethylammonium bromide supramolecular structure in dilute aqueous solution with increasing surfactant binding. J Colloid Interface Sci 2023; 651:992-1007. [PMID: 37586154 DOI: 10.1016/j.jcis.2023.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 07/27/2023] [Accepted: 08/01/2023] [Indexed: 08/18/2023]
Abstract
HYPOTHESIS In the last 20 years, it has been demonstrated that oppositely charged polyelectrolyte-surfactant (PE-S) mixtures are prone to forming kinetically arrested non-equilibrium aggregates, which are present in the prepared mixtures from rather low surfactant-to-polymer-repeat-unit ratios. Practically, this means that the PE-S mixtures used for the structural investigations of the formed PE-S complexes are typically a mixture of the primary PE-S complexes and large non-equilibrium aggregates of close to charge-neutral complexes. EXPERIMENTS In this work, we present a unique approach that allows the preparation of PE-S mixtures in the equilibrium one-phase region (surfactant binding β, is typically below 80%) without forming non-equilibrium aggregates. We used this method to prepare equilibrium, non-aggregated complexes of sodium poly(styrene sulfonate) (NaPSS, Mw = 17 kDa) and dodecyltrimethylammonium bromide (DTAB) (β = 10 - 70%) both in water and in an inert electrolyte (100 mM NaCl). The evolution of the complex structure was monitored by small-angle X-ray scattering (SAXS) as a function of increasing surfactant binding (β), and the measured scattering data were fitted by suitable structural models on an absolute scale where concentrations, compositions, and scattering contrasts calculated from molecular properties are used as restraints. FINDINGS We could show that at low binding (β < 30%), the system is a mixture of bare polyelectrolyte coils and NaPSS-DTAB complexes containing a closed surfactant associates of low aggregation number wrapped by the polyelectrolyte chain. Once all polymer chains are occupied by a micelle-like surfactant aggregate, the aggregation number increases linearly with increasing surfactant chemical potential. Using the structural insight provided by the SAXS measurements, we could fit the experimental binding isotherm data with a physically coherent, simple thermodynamic model. Finally, we also compared the stoichiometric NaPSS-DTAB precipitate's structure with the equilibrium complexes' structure.
Collapse
Affiliation(s)
- Bence Fehér
- Department of Chemistry and Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark; Institute of Chemistry, Eötvös Loránd University, Pázmány Péter sétány 1/A, 1117 Budapest, Hungary.
| | - András Wacha
- Research Centre for Natural Sciences, Institute of Materials and Environmental Chemistry, Magyar tudósok körútja 2, 1117 Budapest, Hungary.
| | - Bálint Jezsó
- Research Centre for Natural Sciences, Institute of Materials and Environmental Chemistry, Magyar tudósok körútja 2, 1117 Budapest, Hungary.
| | - Attila Bóta
- Research Centre for Natural Sciences, Institute of Materials and Environmental Chemistry, Magyar tudósok körútja 2, 1117 Budapest, Hungary.
| | - Jan Skov Pedersen
- Department of Chemistry and Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark.
| | - Imre Varga
- Institute of Chemistry, Eötvös Loránd University, Pázmány Péter sétány 1/A, 1117 Budapest, Hungary.
| |
Collapse
|
2
|
Surface Activity of Surfactant–Polyelectrolyte Mixtures through Nanoplasmonic Sensing Technology. COSMETICS 2022. [DOI: 10.3390/cosmetics9050105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Deposition plays an important role in the active delivery and efficiency of hair and skin formulations since it allows active compounds to interact with surfaces in order to achieve the product’s desired performance characteristics. Therefore, it is essential to study the surface activity and behavior of certain compounds that are frequently used in cosmetic and pharmaceutical formulations in order to understand how they interact with relevant biological surfaces, such as hair and skin. We chose to study the surfactants and conditioning agents utilized in the formulation of conditioning shampoos, which are usually designed to be able to achieve the deposition of these substances on the hair and scalp to provide lubrication and better conditioning for hair fibers, facilitating detangling and providing a better feel. In this study, cationic polymer and salt fractions were varied to obtain eighteen different conditioning shampoo formulations in which the deposition was measured by utilizing a nanoplasmonic sensing technology instrument. Moreover, a wet combing test was performed for each of the formulations to investigate if there was any correlation between the combing force and the surface deposition. The complete study was performed using a sustainable anionic surfactant in order to compare the results with those obtained from the traditional formulations.
Collapse
|
3
|
Fernández-Peña L, Guzmán E, Fernández-Pérez C, Barba-Nieto I, Ortega F, Leonforte F, Rubio RG, Luengo GS. Study of the Dilution-Induced Deposition of Concentrated Mixtures of Polyelectrolytes and Surfactants. Polymers (Basel) 2022; 14:polym14071335. [PMID: 35406209 PMCID: PMC9003019 DOI: 10.3390/polym14071335] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 02/07/2023] Open
Abstract
Mixtures of polyelectrolytes and surfactants are commonly used in many technological applications where the challenge is to provide well-defined modifications of the surface properties, as is the case of washing formulations in cosmetics. However, if contemporary experimental and theoretical methods can provide insights on their behavior in concentrated formulations, less is known on their behavior under practical use conditions, e.g., under dilution and vectorization of deposits. This makes it difficult to make predictions for specific performance, as, for example, good hair manageability after a shampoo or a comfortable sensorial appreciation after a skin cleanser. This is especially important when considering the formulation of new, more eco-friendly formulations. In this work, a detailed study of the phase separation process induced by dilution is described, as well as the impact on the deposition of conditioning material on negatively charged surfaces. In order to gain a more detailed physical insight, several polyelectrolyte–surfactant pairs, formed by two different polymers and five surfactants that, although non-natural or eco-friendly, can be considered as models of classical formulations, have been studied. The results evidenced that upon dilution the behavior, and hence its deposition onto the surface, cannot be predicted in terms of the behavior of simpler pseudo-binary (mixtures of a polymer and a surfactant) or pseudo-ternary mixtures (two polymers and a surfactant). In many cases, phase separation was observed for concentrations similar to those corresponding to the components in some technological formulations, whereas the latter appeared as monophasic systems. Therefore, it may be assumed that the behavior in multicomponent formulations is the result of a complex interplay of synergistic interactions between the different components that will require revisiting when new, more eco-sustainable ingredients are considered.
Collapse
Affiliation(s)
- Laura Fernández-Peña
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain; (L.F.-P.); (C.F.-P.); (I.B.-N.); (F.O.)
- Centro de Espectroscopía y Correlación, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
| | - Eduardo Guzmán
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain; (L.F.-P.); (C.F.-P.); (I.B.-N.); (F.O.)
- Instituto Pluridisciplinar, Universidad Complutense de Madrid, Paseo Juan XXIII 1, 28040 Madrid, Spain
- Correspondence: (E.G.); (R.G.R.); (G.S.L.)
| | - Coral Fernández-Pérez
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain; (L.F.-P.); (C.F.-P.); (I.B.-N.); (F.O.)
| | - Irene Barba-Nieto
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain; (L.F.-P.); (C.F.-P.); (I.B.-N.); (F.O.)
| | - Francisco Ortega
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain; (L.F.-P.); (C.F.-P.); (I.B.-N.); (F.O.)
- Instituto Pluridisciplinar, Universidad Complutense de Madrid, Paseo Juan XXIII 1, 28040 Madrid, Spain
| | - Fabien Leonforte
- L’Oréal Research and Innovation, 1 Avenue Eugène Schueller, 93600 Aulnay-Sous-Bois, France;
| | - Ramón G. Rubio
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain; (L.F.-P.); (C.F.-P.); (I.B.-N.); (F.O.)
- Instituto Pluridisciplinar, Universidad Complutense de Madrid, Paseo Juan XXIII 1, 28040 Madrid, Spain
- Correspondence: (E.G.); (R.G.R.); (G.S.L.)
| | - Gustavo S. Luengo
- L’Oréal Research and Innovation, 1 Avenue Eugène Schueller, 93600 Aulnay-Sous-Bois, France;
- Correspondence: (E.G.); (R.G.R.); (G.S.L.)
| |
Collapse
|
4
|
Petkov JT, Penfold J, Thomas RK. Surfactant self-assembly structures and multilayer formation at the solid-solution interface induces by electrolyte, polymers and proteins. Curr Opin Colloid Interface Sci 2022. [DOI: 10.1016/j.cocis.2021.101541] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
5
|
Performance of Oleic Acid and Soybean Oil in the Preparation of Oil-in-Water Microemulsions for Encapsulating a Highly Hydrophobic Molecule. COLLOIDS AND INTERFACES 2021. [DOI: 10.3390/colloids5040050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This work analyzes the dispersion of a highly hydrophobic molecule, (9Z)-N-(1,3-dihydroxyoctadecan-2-yl)octadec-9-enamide (ceramide-like molecule), with cosmetic and pharmaceutical interest, by exploiting oil-in-water microemulsions. Two different oils, oleic acid and soybean oil, were tested as an oil phase while mixtures of laureth-5-carboxylic acid (Akypo) and 2-propanol were used for the stabilization of the dispersions. This allowed us to obtain stable aqueous-based formulations with a relatively reduced content of oily phase (around 3% w/w), that may enhance the bioavailability of this molecule by its solubilization in nanometric oil droplets (with a size range of 30–80 nm), that allow the incorporation of a ceramide-like molecule of up to 3% w/w, to remain stable for more than a year. The nanometric size of the droplet containing the active ingredient and the stability of the formulations provide the basis for evaluating the efficiency of microemulsions in preparing formulations to enhance the distribution and availability of ceramide-like molecules, helping to reach targets in cosmetic and pharmaceutical formulations.
Collapse
|
6
|
Liu Z, Zhao G, Brewer M, Lv Q, Sudhölter EJR. Comprehensive review on surfactant adsorption on mineral surfaces in chemical enhanced oil recovery. Adv Colloid Interface Sci 2021; 294:102467. [PMID: 34175528 DOI: 10.1016/j.cis.2021.102467] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/23/2021] [Accepted: 06/13/2021] [Indexed: 01/20/2023]
Abstract
With the increasing demand for efficient extraction of residual oil, enhanced oil recovery (EOR) offers prospects for producing more reservoirs' original oil in place. As one of the most promising methods, chemical EOR (cEOR) is the process of injecting chemicals (polymers, alkalis, and surfactants) into reservoirs. However, the main issue that influences the recovery efficiency in surfactant flooding of cEOR is surfactant losses through adsorption to the reservoir rocks. This review focuses on the key issue of surfactant adsorption in cEOR and addresses major concerns regarding surfactant adsorption processes. We first describe the adsorption behavior of surfactants with particular emphasis on adsorption mechanisms, isotherms, kinetics, thermodynamics, and adsorption structures. Factors that affect surfactant adsorption such as surfactant characteristics, solution chemistry, rock mineralogy, and temperature were discussed systematically. To minimize surfactant adsorption, the chemical additives of alkalis, polymers, nanoparticles, co-solvents, and ionic liquids are highlighted as well as implementing with salinity gradient and low salinity water flooding strategies. Finally, current trends and future challenges related to the harsh conditions in surfactant based EOR are outlined. It is expected to provide solid knowledge to understand surfactant adsorption involved in cEOR and contribute to improved flooding strategies with reduced surfactant loss.
Collapse
Affiliation(s)
- Zilong Liu
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Optical Detection Technology for Oil and Gas, College of Science, Unconventional Petroleum Research Institute, China University of Petroleum (Beijing), Beijing 102249, PR China; Organic Materials & Interfaces, Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands.
| | - Ge Zhao
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Optical Detection Technology for Oil and Gas, College of Science, Unconventional Petroleum Research Institute, China University of Petroleum (Beijing), Beijing 102249, PR China
| | - Mark Brewer
- Shell Global Solutions International B.V., Shell Technology Centre Amsterdam (STCA), Grasweg 31, 1031 HW Amsterdam, The Netherlands
| | - Qichao Lv
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Optical Detection Technology for Oil and Gas, College of Science, Unconventional Petroleum Research Institute, China University of Petroleum (Beijing), Beijing 102249, PR China.
| | - Ernst J R Sudhölter
- Organic Materials & Interfaces, Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands.
| |
Collapse
|
7
|
Perrin L, Akanno A, Guzman E, Ortega F, Rubio RG. Pattern Formation upon Evaporation of Sessile Droplets of Polyelectrolyte/Surfactant Mixtures on Silicon Wafers. Int J Mol Sci 2021; 22:7953. [PMID: 34360724 PMCID: PMC8347912 DOI: 10.3390/ijms22157953] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/20/2021] [Accepted: 07/23/2021] [Indexed: 01/26/2023] Open
Abstract
The formation of coffee-ring deposits upon evaporation of sessile droplets containing mixtures of poly(diallyldimethylammonium chloride) (PDADMAC) and two different anionic surfactants were studied. This process is driven by the Marangoni stresses resulting from the formation of surface-active polyelectrolyte-surfactant complexes in solution and the salt arising from the release of counterions. The morphologies of the deposits appear to be dependent on the surfactant concentration, independent of their chemical nature, and consist of a peripheral coffee ring composed of PDADMAC and PDADMAC-surfactant complexes, and a secondary region of dendrite-like structures of pure NaCl at the interior of the residue formed at the end of the evaporation. This is compatible with a hydrodynamic flow associated with the Marangoni stress from the apex of the drop to the three-phase contact line for those cases in which the concentration of the complexes dominates the surface tension, whereas it is reversed when most of the PDADMAC and the complexes have been deposited at the rim and the bulk contains mainly salt.
Collapse
Affiliation(s)
- Lionel Perrin
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense, Ciudad Universitaria s/n, 28040 Madrid, Spain; (A.A.); (E.G.); (F.O.)
- Institute Lumière Matière, Claude Bernard University Lyon 1, Bâtiment Alfred Kastler—4ème Etage Domaine Scientifique de La Doua, 10 Rue Ada Byron, CEDEX, 69622 Villeurbanne, France
| | - Andrew Akanno
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense, Ciudad Universitaria s/n, 28040 Madrid, Spain; (A.A.); (E.G.); (F.O.)
| | - Eduardo Guzman
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense, Ciudad Universitaria s/n, 28040 Madrid, Spain; (A.A.); (E.G.); (F.O.)
- Instituto Pluridisciplinar, Universidad Complutense, Paseo Juan XXIII 1, 28040 Madrid, Spain
| | - Francisco Ortega
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense, Ciudad Universitaria s/n, 28040 Madrid, Spain; (A.A.); (E.G.); (F.O.)
- Instituto Pluridisciplinar, Universidad Complutense, Paseo Juan XXIII 1, 28040 Madrid, Spain
| | - Ramon G. Rubio
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense, Ciudad Universitaria s/n, 28040 Madrid, Spain; (A.A.); (E.G.); (F.O.)
- Instituto Pluridisciplinar, Universidad Complutense, Paseo Juan XXIII 1, 28040 Madrid, Spain
| |
Collapse
|
8
|
Abstract
This work analyzes the dispersion of two highly hydrophobic actives, (9Z)-N-(1,3-dihydroxyoctadecan-2-yl)octadec-9-enamide (ceramidelike molecule) and 2,6-diamino-4-(piperidin-1-yl)pyrimidine 1-oxide (minoxidil), using oil-in-water nanoemulsions with the aim of preparing stable and safe aqueous-based formulations that can be exploited for enhancing the penetration of active compounds through cosmetic substrates. Stable nanoemulsions with a droplet size in the nanometric range (around 200 nm) and a negative surface charge were prepared. It was possible to prepare formulations containing up to 2 w/w% of ceramide-like molecules and more than 10 w/w% of minoxidil incorporated within the oil droplets. This emulsions evidenced a good long-term stability, without any apparent modification for several weeks. Despite the fact that this work is limited to optimize the incorporation of the actives within the nanoemulsion-like formulations, it demonstrated that nanoemulsions should be considered as a very promising tool for enhancing the distribution and availability of hydrophobic molecules with technological interest.
Collapse
|
9
|
Determination of SLES in Personal Care Products by Colloid Titration with Light Reflection Measurements. Molecules 2021; 26:molecules26092716. [PMID: 34063161 PMCID: PMC8124727 DOI: 10.3390/molecules26092716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 04/30/2021] [Accepted: 05/02/2021] [Indexed: 11/16/2022] Open
Abstract
The method of colloid titration with poly(diallyldimethylammonium) chloride has been improved to detect the endpoint with an off-vessel light reflectance sensor. The digital color sensor used measures light reflectance by means of light guides, with no immersion into the reaction solution. In such a method, the optical signal is free of disturbances caused by sticky flocs in the solution. The improved automatic titration set was applied for the determination of sodium laureth sulfate (SLES) in industrial batches and commercial personal care products. The sample color and opacity do not disturb the SLES quantification. When the SLES content lies in the range from 5% to 9%, the optimal sample weight is from 6 g to 3 g.
Collapse
|
10
|
Polyelectrolyte Multilayers on Soft Colloidal Nanosurfaces: A New Life for the Layer-By-Layer Method. Polymers (Basel) 2021; 13:polym13081221. [PMID: 33918844 PMCID: PMC8069484 DOI: 10.3390/polym13081221] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/04/2021] [Accepted: 04/05/2021] [Indexed: 02/07/2023] Open
Abstract
The Layer-by-Layer (LbL) method is a well-established method for the assembly of nanomaterials with controlled structure and functionality through the alternate deposition onto a template of two mutual interacting molecules, e.g., polyelectrolytes bearing opposite charge. The current development of this methodology has allowed the fabrication of a broad range of systems by assembling different types of molecules onto substrates with different chemical nature, size, or shape, resulting in numerous applications for LbL systems. In particular, the use of soft colloidal nanosurfaces, including nanogels, vesicles, liposomes, micelles, and emulsion droplets as a template for the assembly of LbL materials has undergone a significant growth in recent years due to their potential impact on the design of platforms for the encapsulation and controlled release of active molecules. This review proposes an analysis of some of the current trends on the fabrication of LbL materials using soft colloidal nanosurfaces, including liposomes, emulsion droplets, or even cells, as templates. Furthermore, some fundamental aspects related to deposition methodologies commonly used for fabricating LbL materials on colloidal templates together with the most fundamental physicochemical aspects involved in the assembly of LbL materials will also be discussed.
Collapse
|
11
|
Fernández-Peña L, Guzmán E, Ortega F, Bureau L, Leonforte F, Velasco D, Rubio RG, Luengo GS. Physico-chemical study of polymer mixtures formed by a polycation and a zwitterionic copolymer in aqueous solution and upon adsorption onto negatively charged surfaces. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123442] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
12
|
Evaporation of Sessile Droplets of Polyelectrolyte/Surfactant Mixtures on Silicon Wafers. COLLOIDS AND INTERFACES 2021. [DOI: 10.3390/colloids5010012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The wetting and evaporation behavior of droplets of aqueous solutions of mixtures of poly(diallyldimethylammonium chloride) solution, PDADMAC, with two different anionic surfactants, sodium laureth sulfate, SLES, and sodium N-lauroyl N-methyl taurate, SLMT, were studied in terms of the changes of the contact angle θ and contact length L of sessile droplets of the mixtures on silicon wafers at a temperature of 25 °C and different relative humidities in the range of 30–90%. The advancing contact angle θa was found to depend on the surfactant concentration, independent of the relative humidity, with the mixtures containing SLES presenting improved wetting behaviors. Furthermore, a constant droplet contact angle was not observed during evaporation due to pinning of the droplet at the coffee-ring that was formed. The kinetics for the first evaporation stage of the mixture were independent of the relative humidity, with the evaporation behavior being well described in terms of the universal law for evaporation.
Collapse
|
13
|
Sun W, Zeng H, Tang T. Enhanced Adsorption of Anionic Polymer on Montmorillonite by Divalent Cations and the Effect of Salinity. J Phys Chem A 2021; 125:1025-1035. [PMID: 33494601 DOI: 10.1021/acs.jpca.0c08797] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Adsorption of polymers from an aqueous solution onto clay minerals is of great interest to many applications such as water purification and soil conditioning. Molecular dynamics simulations were performed to study the adsorption of anionic polyacrylamide (APAM) on anionic montmorillonite, in an aqueous solution containing monovalent or divalent salts. Compared with monovalent salts (NaCl), the enhancement of APAM adsorption brought by divalent salts (CaCl2) was significant, which could not be explained by the Poisson-Boltzmann theory alone. Each solvated Ca2+ was coordinated by 4-6 water oxygens in its first coordination shell. One to two of these water molecules were displaced when APAM formed a complex with Ca2+. Ca2+ ions in the adsorbed Ca2+-APAM complexes did not serve as bridges sandwiched between APAM and Mt; instead, the complexes carried a residual positive charge and were subsequently attracted to montmorillonite. The number of adsorbed Ca2+-APAM complexes changed with salinity in a nonmonotonic manner, due to the modulation of apparent charges of montmorillonite and APAM by Ca2+. Increasing adsorption of Ca2+-APAM complexes also promoted APAM adsorption through direct hydrogen bonding with montmorillonite. The findings provided new molecular insights into the long-standing debates on the role of divalent ions in promoting polymer adsorption on like-charged solid surfaces.
Collapse
Affiliation(s)
- Wenyuan Sun
- Department of Mechanical Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Hongbo Zeng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Tian Tang
- Department of Mechanical Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| |
Collapse
|
14
|
Lucia A, Guzmán E, Rubio RG, Ortega F. Enhanced solubilization of an insect juvenile hormone (JH) mimetic (piryproxyfen) using eugenol in water nanoemulsions stabilized by a triblock copolymer of poly(ethylenglycol) and poly(propilenglycol). Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125513] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
15
|
Adsorption of Mixtures of a Pegylated Lipid with Anionic and Zwitterionic Surfactants at Solid/Liquid. COLLOIDS AND INTERFACES 2020. [DOI: 10.3390/colloids4040047] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This work explores the association of a pegylated lipid (DSPE-PEG) with different anionic and zwitterionic surfactants (pseudo-binary and pseudo-ternary polymer+ surfactant mixtures), and the adsorption of the polymer + surfactant aggregates onto negatively charged surfaces, with a surface charge density similar to that existing on the damaged hair epicuticle. Dynamic light scattering and zeta potential measurements shows that, in solution, the polymer + surfactant association results from an intricate balance between electrostatic and hydrophobic interactions, which leads to the formation of at least two different types of micellar-like polymer + surfactant aggregates. The structure and physicochemical properties of such aggregates were found strongly dependent on the specific nature and concentration of the surfactant. The adsorption of the polymer + surfactant aggregates onto negatively charged surface was studied using a set of surface-sensitive techniques (quartz crystal microbalance with dissipation monitoring, ellipsometry and Atomic Force Microscopy), which allows obtaining information about the adsorbed amount, the water content of the layers and the topography of the obtained films. Ion-dipole interactions between the negative charges of the surface and the oxyethylene groups of the polymer + surfactant aggregates appear as the main driving force of the deposition process. This is strongly dependent on the surfactant nature and its concentration, with the impact of the latter on the adsorption being especially critical when anionic surfactant are incorporated within the aggregates. This study opens important perspectives for modulating the deposition of a poorly interacting polymer onto negatively charged surfaces, which can impact in the fabrication on different aspects with technological and industrial interest.
Collapse
|
16
|
Akanno A, Guzmán E, Ortega F, Rubio RG. Behavior of the water/vapor interface of chitosan solutions with an anionic surfactant: effect of polymer-surfactant interactions. Phys Chem Chem Phys 2020; 22:23360-23373. [PMID: 33047113 DOI: 10.1039/d0cp02470h] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The adsorption of mixtures formed by chitosan and sodium lauryl ether sulfate (SLES) at the water/vapor interface has been studied on the basis of their impact on the equilibrium surface tension of the interface, and the response of such an interface to mechanical deformations. The analysis of the surfactant binding to the chitosan chains evidenced that the chitosan-SLES solutions were mixtures of polyelectrolyte-surfactant complexes and a non-negligible amount of free surfactant molecules. The interfacial properties showed two well-differentiated regions for interfacial adsorption as a function of the SLES concentration: (i) at a low surfactant concentration, co-adsorption of chitosan and SLES occurs, and (ii) at high concentrations, the surface is mostly occupied by SLES molecules. This behavior may be interpreted in terms of a complex equilibration mechanism of the interfacial layers, where different coupled dynamic processes may be involved. Furthermore, the use of the time-concentration superposition principle has confirmed the different dynamic behaviors of the chitosan-SLES adsorption as a function of the SLES concentration. This work sheds light on some of the most fundamental bases governing the physico-chemical behavior of mixtures formed by a biopolymer and a surfactant, where their complex behavior is governed by an intricate balance of bulk and interfacial interactions.
Collapse
Affiliation(s)
- Andrew Akanno
- Departamento de Química Física-Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain.
| | | | | | | |
Collapse
|
17
|
Deposition of Synthetic and Bio-Based Polycations onto Negatively Charged Solid Surfaces: Effect of the Polymer Cationicity, Ionic Strength, and the Addition of an Anionic Surfactant. COLLOIDS AND INTERFACES 2020. [DOI: 10.3390/colloids4030033] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The deposition of layers of different polycations (synthetic or derived from natural, renewable resources) onto oppositely charged surfaces has been studied using ellipsometry and quartz crystal microbalance with dissipation monitoring (QCM-D). Information about the thickness of the deposited layers and their water content was ascertained. The adsorption of the different polycations onto negatively charged surfaces was found to be a complex process, which is influenced by the chemical nature of the polymer chains, ionic strength, polymer concentration and the addition of additives such as surfactants. The experimental picture shows a good agreement with theoretical calculations performed using the Self-Consistent Mean Field (SCF) approach. The results show that the electrostatically-driven deposition can be tuned by modifying the physico-chemical properties of the solutions and the chemical nature of the adsorbed polymer. This versatile approach is a big step forward in aiding the design of new polymers for many industrial applications and, in particular, the design of sustainable washing formulations for cosmetic applications.
Collapse
|
18
|
Guzmán E, Rubio RG, Ortega F. A closer physico-chemical look to the Layer-by-Layer electrostatic self-assembly of polyelectrolyte multilayers. Adv Colloid Interface Sci 2020; 282:102197. [PMID: 32579951 DOI: 10.1016/j.cis.2020.102197] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/06/2020] [Accepted: 06/08/2020] [Indexed: 01/08/2023]
Abstract
The fabrication of polyelectrolyte multilayer films (PEMs) using the Layer-by-Layer (LbL) method is one of the most versatile approaches for manufacturing functional surfaces. This is the result of the possibility to control the assembly process of the LbL films almost at will, by changing the nature of the assembled materials (building blocks), the assembly conditions (pH, ionic strength, temperature, etc.) or even by changing some other operational parameters which may impact in the structure and physico-chemical properties of the obtained multi-layered films. Therefore, the understanding of the impact of the above mentioned parameters on the assembly process of LbL materials plays a critical role in the potential use of the LbL method for the fabrication of new functional materials with technological interest. This review tries to provide a broad physico-chemical perspective to the study of the fabrication process of PEMs by the LbL method, which allows one to take advantage of the many possibilities offered for this approach on the fabrication of new functional nanomaterials.
Collapse
|
19
|
Guzmán E, Fernández-Peña L, Ortega F, Rubio RG. Equilibrium and kinetically trapped aggregates in polyelectrolyte–oppositely charged surfactant mixtures. Curr Opin Colloid Interface Sci 2020. [DOI: 10.1016/j.cocis.2020.04.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
20
|
Fernández-Peña L, Abelenda-Nuñez I, Hernández-Rivas M, Ortega F, Rubio RG, Guzmán E. Impact of the bulk aggregation on the adsorption of oppositely charged polyelectrolyte-surfactant mixtures onto solid surfaces. Adv Colloid Interface Sci 2020; 282:102203. [PMID: 32629241 DOI: 10.1016/j.cis.2020.102203] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/21/2020] [Accepted: 06/22/2020] [Indexed: 12/28/2022]
Abstract
The understanding of the deposition of oppositely charged polyelectrolytes-surfactant mixtures onto solid surfaces presents a high interest in current days due to the recognized impact of the obtained layers on different industrial sectors and the performance of several consumer products (e.g. formulations of shampoos and hair conditioners). This results from the broad range of structures and properties that can present the mixed layers, which in most of the cases mirror the association process occurring between the polyelectrolyte chains and the oppositely charged surfactants in the bulk. Therefore, the understanding of the adsorption processes and characteristics of the adsorbed layers can be only attained from a careful examination of the self-assembly processes occurring in the solution. This review aims to contribute to the understanding of the interaction of polyelectrolyte-surfactant mixtures with solid surfaces, which is probably one of the most underexplored aspects of these type of systems. For this purpose, a comprehensive discussion on the correlations between the aggregates formed in the solutions and the deposition of the obtained complexes upon such association onto solid surfaces will be presented. This makes it necessary to take a closer look to the most important forces driving such processes.
Collapse
Affiliation(s)
- Laura Fernández-Peña
- Departamento de Química Física, Universidad Complutense de Madrid, Ciudad Universitaria s/n, Madrid 28040, Spain; Centro de Espectroscopia Infrarroja-Raman-Correlación, Universidad Complutense de Madrid, Ciudad Universitaria, s/n, Madrid 28040, Spain.
| | - Irene Abelenda-Nuñez
- Departamento de Química Física, Universidad Complutense de Madrid, Ciudad Universitaria s/n, Madrid 28040, Spain
| | - María Hernández-Rivas
- Departamento de Química Física, Universidad Complutense de Madrid, Ciudad Universitaria s/n, Madrid 28040, Spain
| | - Francisco Ortega
- Departamento de Química Física, Universidad Complutense de Madrid, Ciudad Universitaria s/n, Madrid 28040, Spain; Instituto Pluridisciplinar, Universidad Complutense de Madrid, Paseo Juan XXIII 1, Madrid 28040, Spain
| | - Ramón G Rubio
- Departamento de Química Física, Universidad Complutense de Madrid, Ciudad Universitaria s/n, Madrid 28040, Spain; Instituto Pluridisciplinar, Universidad Complutense de Madrid, Paseo Juan XXIII 1, Madrid 28040, Spain
| | - Eduardo Guzmán
- Departamento de Química Física, Universidad Complutense de Madrid, Ciudad Universitaria s/n, Madrid 28040, Spain; Instituto Pluridisciplinar, Universidad Complutense de Madrid, Paseo Juan XXIII 1, Madrid 28040, Spain.
| |
Collapse
|
21
|
Abstract
Most of the currently used products for repairing and conditioning hair rely on the deposition of complex formulations, based on mixtures involving macromolecules and surfactants, onto the surface of hair fibers. This leads to the partial covering of the damaged areas appearing in the outermost region of capillary fibers, which enables the decrease of the friction between fibers, improving their manageability and hydration. The optimization of shampoo and conditioner formulations necessitates a careful examination of the different physicochemical parameters related to the conditioning mechanism, e.g., the thickness of the deposits, its water content, topography or frictional properties. This review discusses different physicochemical aspects which impact the understanding of the most fundamental bases of the conditioning process.
Collapse
|
22
|
Guzmán E, Fernández-Peña L, S. Luengo G, Rubio AM, Rey A, Léonforte F. Self-Consistent Mean Field Calculations of Polyelectrolyte-Surfactant Mixtures in Solution and upon Adsorption onto Negatively Charged Surfaces. Polymers (Basel) 2020; 12:E624. [PMID: 32182867 PMCID: PMC7182847 DOI: 10.3390/polym12030624] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/07/2020] [Accepted: 03/08/2020] [Indexed: 01/18/2023] Open
Abstract
Self-Consistent Mean-Field Calculations (SCF) have provided a semi-quantitative description of the physico-chemical behavior of six different polyelectrolyte-surfactant mixtures. The SCF calculations performed showed that both the formation of polymer-surfactant in bulk and the adsorption of the formed complexes onto negatively-charged surfaces are strongly affected by the specific nature of the considered systems, with the polymer-surfactant interactions playing a central role in the self-assembly of the complexes that, in turn, affects their adsorption onto interfaces and surfaces. This work evidences that SCF calculations are a valuable tool for deepening on the understanding of the complex physico-chemical behavior of polyelectrolyte-surfactant mixtures. However, it is worth noting that the framework obtained on the basis of an SCF approach considered an equilibrium situation which may, in some cases, be far from the real situation appearing in polyelectrolyte-surfactant systems.
Collapse
Affiliation(s)
- Eduardo Guzmán
- Departamento de Química Física, Universidad Complutense de Madrid, 28040 Madrid, Spain; (L.F.-P.); (A.M.R.); (A.R.)
- Instituto Pluridisciplinar, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Laura Fernández-Peña
- Departamento de Química Física, Universidad Complutense de Madrid, 28040 Madrid, Spain; (L.F.-P.); (A.M.R.); (A.R.)
| | | | - Ana María Rubio
- Departamento de Química Física, Universidad Complutense de Madrid, 28040 Madrid, Spain; (L.F.-P.); (A.M.R.); (A.R.)
| | - Antonio Rey
- Departamento de Química Física, Universidad Complutense de Madrid, 28040 Madrid, Spain; (L.F.-P.); (A.M.R.); (A.R.)
| | - Fabien Léonforte
- L’Oréal Research and Innovation, 93600 Aulnay-Sous Bois, France;
| |
Collapse
|
23
|
Guzmán E, Llamas S, Fernández-Peña L, Léonforte F, Baghdadli N, Cazeneuve C, Ortega F, Rubio RG, Luengo GS. Effect of a natural amphoteric surfactant in the bulk and adsorption behavior of polyelectrolyte-surfactant mixtures. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2019.124178] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
24
|
Fernández-Peña L, Guzmán E, Leonforte F, Serrano-Pueyo A, Regulski K, Tournier-Couturier L, Ortega F, Rubio RG, Luengo GS. Effect of molecular structure of eco-friendly glycolipid biosurfactants on the adsorption of hair-care conditioning polymers. Colloids Surf B Biointerfaces 2019; 185:110578. [PMID: 31678812 DOI: 10.1016/j.colsurfb.2019.110578] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/13/2019] [Accepted: 10/10/2019] [Indexed: 11/17/2022]
Abstract
Pseudo-binary mixtures of different glycolipids, four different rhamnolipids (RL) and an alkyl polyglucoside (APG), with poly(diallyl-dimethylammonium chloride) (PDADMAC) have been studied in relation to their adsorption onto negatively charged surfaces to shed light on the impact of the molecular structure of surfactants from natural sources (instead of synthetic surfactant, such as sodium laureth sulfate) on the adsorption of hair-conditioning polymers. For this purpose, the self-assembly of such mixtures in aqueous solution and their adsorption onto negatively charged surfaces mimicking the negative charge of damaged hair fibres have been studied combining experiments and self-consistent field (SCF) calculations. The results show that the specific physico-chemical properties of the surfactants (charge, number of sugar rings present in surfactant structure and length of the hydrocarbon length) play a main role in the control of the adsorption process, with the adsorption efficiency and hydration being improved in relation to conventional sulfate-based systems for mixtures of PDADMAC and glycolipids with the shortest alkyl chains. SCF calculations and Energy Dispersive X-Ray Spectroscopy (EDS) analysis on real hair confirmed such observations. The results allow one to assume that the characteristic of the surfactants, especially rhamnolipids, conditions positively the adsorption potential of polyelectrolytes in these model systems. This study provides important insights on the mechanisms underlying the performance of more complex but eco-friendly washing formulations.
Collapse
Affiliation(s)
- Laura Fernández-Peña
- Departamento de Química Física, Facultad de Ciencias Químicas Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain
| | - Eduardo Guzmán
- Departamento de Química Física, Facultad de Ciencias Químicas Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain; Instituto Pluridisciplinar, Universidad Complutense de Madrid, Paseo Juan XXIII, 1, 28040, Madrid, Spain.
| | | | - Ana Serrano-Pueyo
- Departamento de Química Física, Facultad de Ciencias Químicas Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain
| | | | | | - Francisco Ortega
- Departamento de Química Física, Facultad de Ciencias Químicas Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain; Instituto Pluridisciplinar, Universidad Complutense de Madrid, Paseo Juan XXIII, 1, 28040, Madrid, Spain
| | - Ramón G Rubio
- Departamento de Química Física, Facultad de Ciencias Químicas Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain; Instituto Pluridisciplinar, Universidad Complutense de Madrid, Paseo Juan XXIII, 1, 28040, Madrid, Spain.
| | | |
Collapse
|
25
|
Akanno A, Guzmán E, Fernández-Peña L, Ortega F, G Rubio R. Surfactant-Like Behavior for the Adsorption of Mixtures of a Polycation and Two Different Zwitterionic Surfactants at the Water/Vapor Interface. Molecules 2019; 24:molecules24193442. [PMID: 31547491 PMCID: PMC6804224 DOI: 10.3390/molecules24193442] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 09/18/2019] [Accepted: 09/19/2019] [Indexed: 01/19/2023] Open
Abstract
The bulk and interfacial properties of solutions formed by a polycation (i.e., poly(diallyl-dimethylammonium chloride), PDADMAC) and two different zwitterionic surfactants (i.e., coco-betaine (CB) and cocoamidopropyl-betaine (CAPB)) have been studied. The bulk aggregation of the polyelectrolyte and the two surfactants was analyzed by turbidity and electrophoretic mobility measurements, and the adsorption of the solutions at the fluid interface was studied by surface tension and interfacial dilational rheology measurements. Evidence of polymer-surfactant complex formation in bulk was only found when the number of surfactant molecules was closer to the number of charged monomers in solutions, which suggests that the electrostatic repulsion associated with the presence of a positively charged group in the surfactant hinders the association between PDADMAC and the zwitterionic surfactant for concentrations in which there are no micelles in solution. This lack of interaction in bulk is reflected in the absence of an influence of the polyelectrolyte in the interfacial properties of the mixtures, with the behavior being controlled by the presence of surfactant. This work has evidenced the significant importance of the different interactions involved in the system for controlling the interaction and complexation mechanisms of in polyelectrolyte-surfactant mixtures.
Collapse
Affiliation(s)
- Andrew Akanno
- Departamento de Química Física, Universidad Complutense de Madrid, Facultad de Ciencias Químicas, Ciudad Universitaria s/n, 28040-Madrid, Spain.
- Instituto Pluridisciplina, Universidad Complutense de Madrid, Paseo Juan XXIII 1, 28040-Madrid, Spain.
| | - Eduardo Guzmán
- Departamento de Química Física, Universidad Complutense de Madrid, Facultad de Ciencias Químicas, Ciudad Universitaria s/n, 28040-Madrid, Spain.
- Instituto Pluridisciplina, Universidad Complutense de Madrid, Paseo Juan XXIII 1, 28040-Madrid, Spain.
| | - Laura Fernández-Peña
- Departamento de Química Física, Universidad Complutense de Madrid, Facultad de Ciencias Químicas, Ciudad Universitaria s/n, 28040-Madrid, Spain.
| | - Francisco Ortega
- Departamento de Química Física, Universidad Complutense de Madrid, Facultad de Ciencias Químicas, Ciudad Universitaria s/n, 28040-Madrid, Spain.
- Instituto Pluridisciplina, Universidad Complutense de Madrid, Paseo Juan XXIII 1, 28040-Madrid, Spain.
| | - Ramón G Rubio
- Departamento de Química Física, Universidad Complutense de Madrid, Facultad de Ciencias Químicas, Ciudad Universitaria s/n, 28040-Madrid, Spain.
- Instituto Pluridisciplina, Universidad Complutense de Madrid, Paseo Juan XXIII 1, 28040-Madrid, Spain.
| |
Collapse
|
26
|
Two Different Scenarios for the Equilibration of Polycation—Anionic Solutions at Water–Vapor Interfaces. COATINGS 2019. [DOI: 10.3390/coatings9070438] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The assembly in solution of the cationic polymer poly(diallyldimethylammonium chloride) (PDADMAC) and two different anionic surfactants, sodium lauryl ether sulfate (SLES) and sodium N-lauroyl-N-methyltaurate (SLMT), has been studied. Additionally, the adsorption of the formed complexes at the water–vapor interface have been measured to try to shed light on the complex physico-chemical behavior of these systems under conditions close to that used in commercial products. The results show that, independently of the type of surfactant, polyelectrolyte-surfactant interactions lead to the formation of kinetically trapped aggregates in solution. Such aggregates drive the solution to phase separation, even though the complexes should remain undercharged along the whole range of explored compositions. Despite the similarities in the bulk behavior, the equilibration of the interfacial layers formed upon adsorption of kinetically trapped aggregates at the water–vapor interface follows different mechanisms. This was pointed out by surface tension and interfacial dilational rheology measurements, which showed different equilibration mechanisms of the interfacial layer depending on the nature of the surfactant: (i) formation layers with intact aggregates in the PDADMAC-SLMT system, and (ii) dissociation and spreading of kinetically trapped aggregates after their incorporation at the fluid interface for the PDADMAC-SLES one. This evidences the critical impact of the chemical nature of the surfactant in the interfacial properties of these systems. It is expected that this work may contribute to the understanding of the complex interactions involved in this type of system to exploit its behavior for technological purposes.
Collapse
|
27
|
Akanno A, Guzmán E, Fernández-Peña L, Llamas S, Ortega F, Rubio RG. Equilibration of a Polycation-Anionic Surfactant Mixture at the Water/Vapor Interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:7455-7464. [PMID: 29856927 DOI: 10.1021/acs.langmuir.8b01343] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The adsorption of concentrated poly(diallyldimethylammonium chloride) (PDADMAC)-sodium lauryl ether sulfate (SLES) mixtures at the water/vapor interface has been studied by different surface tension techniques and dilational viscoelasticity measurements. This work tries to shed light on the way in which the formation of polyelectrolyte-surfactant complexes in the bulk affects the interfacial properties of mixtures formed by a polycation and an oppositely charged surfactant. The results are discussed in terms of a two-step adsorption-equilibration of PDADMAC-SLES complexes at the interface, with the initial stages involving the diffusion of kinetically trapped aggregates formed in the bulk to the interface followed by the dissociation and spreading of such aggregates at the interface. This latter process becomes the main contribution to the surface tension decrease. This work aids our understanding of the most fundamental basis of the physicochemical behavior of concentrated polyelectrolyte-surfactant mixtures which present complex bulk and interfacial interactions with interest in both basic and applied sciences.
Collapse
Affiliation(s)
- Andrew Akanno
- Departamento de Química Física , Universidad Complutense de Madrid, Ciudad Universitaria s/n , 28040 Madrid , Spain
- Instituto Pluridisciplinar, Universidad Complutense de Madrid , Paseo Juan XXIII, 1 , 28040 Madrid , Spain
| | - Eduardo Guzmán
- Departamento de Química Física , Universidad Complutense de Madrid, Ciudad Universitaria s/n , 28040 Madrid , Spain
- Instituto Pluridisciplinar, Universidad Complutense de Madrid , Paseo Juan XXIII, 1 , 28040 Madrid , Spain
| | - Laura Fernández-Peña
- Departamento de Química Física , Universidad Complutense de Madrid, Ciudad Universitaria s/n , 28040 Madrid , Spain
| | - Sara Llamas
- Departamento de Química Física , Universidad Complutense de Madrid, Ciudad Universitaria s/n , 28040 Madrid , Spain
| | - Francisco Ortega
- Departamento de Química Física , Universidad Complutense de Madrid, Ciudad Universitaria s/n , 28040 Madrid , Spain
- Instituto Pluridisciplinar, Universidad Complutense de Madrid , Paseo Juan XXIII, 1 , 28040 Madrid , Spain
| | - Ramón G Rubio
- Departamento de Química Física , Universidad Complutense de Madrid, Ciudad Universitaria s/n , 28040 Madrid , Spain
- Instituto Pluridisciplinar, Universidad Complutense de Madrid , Paseo Juan XXIII, 1 , 28040 Madrid , Spain
| |
Collapse
|
28
|
Llamas S, Fernández-Peña L, Akanno A, Guzmán E, Ortega V, Ortega F, Csaky AG, Campbell RA, Rubio RG. Towards understanding the behavior of polyelectrolyte-surfactant mixtures at the water/vapor interface closer to technologically-relevant conditions. Phys Chem Chem Phys 2018; 20:1395-1407. [PMID: 29297520 DOI: 10.1039/c7cp05528e] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Polyelectrolyte-surfactant mixtures and their interactions with fluid interfaces are an important research field due to their use in technological applications. Most of the existing knowledge on these systems is based on models in which the polyelectrolyte concentration is around 50 times lower than that used in commercial formulations. The present work marks a step to close the gap on the understanding of their behavior under more practically-relevant conditions. The adsorption of concentrated mixtures of poly(diallyldimethyl-ammonium) chloride and sodium N-lauroyl-N-methyltaurate at the water/vapor interface with a crude mixing protocol has been studied by different surface tension techniques, Brewster angle microscopy, neutron reflectometry, and several bulk characterization techniques. Kinetically-trapped aggregates formed during mixing influence the interfacial morphology of mixtures produced in the equilibrium one-phase region, yet fluctuations in the surface tension isotherm result depending on the tensiometric technique applied. At low bulk surfactant concentrations, the free surfactant concentration is very low, and the interfacial composition matches the trend of the bulk complexes, which is a behavior that has not been observed in studies on more dilute mixtures. Nevertheless, a transition to synergistic co-adsorption of complexes and free surfactant is observed at the higher bulk surfactant concentrations studied. This transition appears to be a special feature of these more concentrated mixtures, which deserves attention in future studies of systems with additional components.
Collapse
Affiliation(s)
- Sara Llamas
- Departamento de Química Física I-Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Li D, Zhou W, Zhou Q, Ye G, Wang T, Wu J, Chang Y, Xu J. Transparent 1T-MoS 2 nanofilm robustly anchored on substrate by layer-by-layer self-assembly and its ultra-high cycling stability as supercapacitors. NANOTECHNOLOGY 2017; 28:395401. [PMID: 28694391 DOI: 10.1088/1361-6528/aa7ee3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Two-dimensional MoS2 materials have attracted more and more interest and been applied to the field of energy storage because of its unique physical, optical, electronic and electrochemical properties. However, there are no reports on high-stable transparent MoS2 nanofilms as supercapacitors electrode. Here, we describe a transparent 1T-MoS2 nanofilm electrode with super-long stability anchored on the indium tin oxide (ITO) glass by a simple alternate layer-by-layer (LBL) self-assembly of a highly charged cationic poly(diallyldimethylammonium chloride) (PDDA) and negative single-/few-layer 1T MoS2 nanosheets. The ITO/(PDDA/MoS2)20 electrode shows a transmittance of 51.6% at 550 nm and obviously exhibits excellent transparency by naked eye observation. Ultrasonic damage test validates that the (PDDA/MoS2)20 film with the average thickness about 50 nm is robustly anchored on ITO substrate. Additionally, the electrochemical results indicate that the ITO/(PDDA/MoS2)20 film shows areal capacitance of 1.1 mF cm-2 and volumetric capacitance of 220 F cm-3 at 0.04 mA cm-2, 130.6% retention of the original capacitance value after 5000 cycles. Further experiments indicate that the formation of transparent (PDDA/MoS2) x nanofilm by LBL self-assembly can be extended to other substrates, e.g., slide glass and flexible polyethylene terephthalate (PET). Thus, the easily available (PDDA/MoS2) x nanofilm electrode has great potential for application in transparent and/or flexible optoelectronic and electronics devices.
Collapse
Affiliation(s)
- Danqin Li
- School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang 330013, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|