1
|
Fu Q, Qin C, Chen Q, Zhang W, Han M. Effects of Flammulina velutipes powder on the emulsion properties of chicken myofibrillar protein under low-salt conditions. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024. [PMID: 39225323 DOI: 10.1002/jsfa.13843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/15/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024]
Abstract
This study aimed to investigate the influence of varying concentrations of Flammulina velutipes powder (FVP) (0, 4, 8, 12, 16, and 20 g L-1, based on FVP weight per liter of emulsion) on the stability, rheological properties, microstructure, and interfacial protein content of chicken myofibrillar protein (MP) emulsions under low-salt conditions. Visual assessment and the Turbiscan stability index revealed that the stability of MP emulsions improved with increasing FVP concentration. The greatest stability was achieved when the FVP concentration was 16 gL-1. The incorporation of FVP enhanced the elasticity and viscosity of the emulsions by forming a dense three-dimensional network structure. The droplet size of the emulsions initially decreased and then increased with increasing FVP concentration. The addition of FVP increased the amount of protein absorbed by the emulsion layer. Flammulina velutipes powder is promising as a stabilizer that could improve the emulsifying and functional properties of low-salt myofibrillar protein emulsions. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Qingquan Fu
- School of Food Science, Nanjing Xiaozhuang University, Nanjing, China
| | - Chun Qin
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Quanzhan Chen
- School of Food Science, Nanjing Xiaozhuang University, Nanjing, China
| | - Wei Zhang
- School of Food Science, Nanjing Xiaozhuang University, Nanjing, China
| | - Miaomiao Han
- School of Food Science, Nanjing Xiaozhuang University, Nanjing, China
| |
Collapse
|
2
|
Korčok M, Calle J, Veverka M, Vietoris V. Understanding the health benefits and technological properties of β-glucan for the development of easy-to-swallow gels to guarantee food security among seniors. Crit Rev Food Sci Nutr 2023; 63:11504-11521. [PMID: 35766942 DOI: 10.1080/10408398.2022.2093325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The world's population is growing rapidly and the number of elderly people with undernutrition and malnutrition is increasing. Common health problems among seniors are cardiovascular, inflammatory, gastrointestinal, and cognitive disorders, cancer, diabetes, psychological and dental problems. The food industry is trying to meet the demands of an aging society, but these efforts are not sufficient. New strategies are needed, and they demand foods development with modified textures that are easy to swallow, such as gels suitable for seniors. Depending on the specific needs of the elderly, bioactive compounds with health benefits should be included in food systems. Novel foods may play an important role in the prevention, maintenance, and treatment of age-related diseases. One of the most studied bioactive compound is β-glucan, a polysaccharide with approved health claims confirmed by clinical trials, such as "β-glucan contributes to the maintenance of normal blood cholesterol levels" and "the consumption of β-glucan from oats or barley contributes to the reduction of postprandial glucose spikes." In this review, the health benefits, and technological properties of β-glucan for the development of senior-friendly ready-to-swallow gels were described. In addition, some patents and studies conducted in connection with the development of the gel systems were collected.
Collapse
Affiliation(s)
- Melina Korčok
- Institute of Food Sciences, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture, Nitra, Slovakia
| | - Jehannara Calle
- Institute of Food Sciences, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture, Nitra, Slovakia
- Food Research Institute for the Food Industry (IIIA), Havana, Cuba
| | | | - Vladimir Vietoris
- Institute of Food Sciences, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture, Nitra, Slovakia
| |
Collapse
|
3
|
Zhi L, Liu Z, Wu C, Ma X, Hu H, Liu H, Adhikari B, Wang Q, Shi A. Advances in preparation and application of food-grade emulsion gels. Food Chem 2023; 424:136399. [PMID: 37245468 DOI: 10.1016/j.foodchem.2023.136399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 05/10/2023] [Accepted: 05/15/2023] [Indexed: 05/30/2023]
Abstract
Emulsion gel is a semi-solid or solid material with a three-dimensional net structure produced from emulsion through physical, enzymatic, chemical methods or their combination. Emulsion gels are widely used in food, pharmaceutical and cosmetic industries as carriers of bioactive substances and fat substitutes due to their unique properties. The modification of raw materials, and the application of different processing methods and associated process parameters profoundly affect the ease or difficult of gel formation, microstructure, hardness of the resulting emulsion gels. This paper reviews the important research undertaken in the last decade focusing on classification of emulsion gels, their preparation methods, the influence of processing method and associated process parameters on structure-function of emulsion gels. It also highlights current status of emulsion gels in food, pharmaceutical and medical industries and provides future outlook on research directions requiring to provide theoretical support for innovative applications of emulsion gels, particularly in food industry.
Collapse
Affiliation(s)
- Lanyi Zhi
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Zhe Liu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Chao Wu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Xiaojie Ma
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Hui Hu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Hongzhi Liu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Benu Adhikari
- School of Science, RMIT University, Melbourne 3083, VIC, Australia
| | - Qiang Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China.
| | - Aimin Shi
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China.
| |
Collapse
|
4
|
Thermo-irreversible emulsion gels based on deacetylated konjac glucomannan and methylcellulose as animal fat analogs. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
5
|
Wan C, Cheng Q, Zeng M, Huang C. Recent progress in emulsion gels: from fundamentals to applications. SOFT MATTER 2023; 19:1282-1292. [PMID: 36744514 DOI: 10.1039/d2sm01481e] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Emulsion gels, also known as gelled emulsions or emulgels, have garnered great attention both in fundamental research and practical applications due to their superior stability, tunable morphology and microstructure, and promising mechanical and functional properties. From an application perspective, attention in this area has been, historically, mainly focused on food industries, e.g., engineering emulsion gels as fat substitutes or delivery systems for bioactive food ingredients. However, a growing body of studies has, in recent years, begun to demonstrate the full potential of emulsion gels as soft templates for designing advanced functional materials widely applied in a variety of fields, spanning chemical engineering, pharmaceutics, and materials science. Herein, a concise and comprehensive overview of emulsion gels is presented, from fundamentals to applications, highlighting significant recent progress and open questions, to scout for and deepen their potential applications in more fields.
Collapse
Affiliation(s)
- Chuchu Wan
- Key Lab of Materials Chemistry for Energy Conversion and Storage of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China.
| | - Quanyong Cheng
- Key Lab of Materials Chemistry for Energy Conversion and Storage of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China.
| | - Min Zeng
- Key Lab of Materials Chemistry for Energy Conversion and Storage of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China.
| | - Caili Huang
- Key Lab of Materials Chemistry for Energy Conversion and Storage of Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China.
| |
Collapse
|
6
|
Jung DY, Lee HJ, Shin DJ, Kim CH, Jo C. Mechanism of improving emulsion stability of emulsion-type sausage with oyster mushroom (Pleurotus ostreatus) powder as a phosphate replacement. Meat Sci 2022; 194:108993. [PMID: 36174485 DOI: 10.1016/j.meatsci.2022.108993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 09/17/2022] [Accepted: 09/18/2022] [Indexed: 11/28/2022]
Abstract
This research evaluated the potentiality of oyster mushroom powder (OMP) as a phosphate alternative by improving emulsion stability of emulsion-type sausage. Sausage without phosphate (NC), with 0.2% sodium triphosphate (PC), and with 1 and 2% OMP (M1 and M2) were prepared. The OMP addition improved the physicochemical properties of sausage, effectively prevented lipid oxidation, and delayed the growth of aerobic bacteria during 28 days of cold storage compared to NC. The M1 and M2 improved the emulsion stability similar to PC. M2 had the highest water holding capacity and apparent viscosity and the lowest cooking loss (P < 0.05). The addition of OMP resulted in different textural characteristics from that of phosphate due to the formation of emulsion structures randomly entrapped by filament-like components, which were derived from polysaccharides or the conjugates between polysaccharides and proteins. According to the results of this study, emulsion stability promoted by OMP was mainly due to the polysaccharides, which are involved in enhancing viscosity and steric hindrance.
Collapse
Affiliation(s)
- Doo Yeon Jung
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyun Jung Lee
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Dong-Jin Shin
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Republic of Korea; Department of Applied Animal Science, College of Animal Life Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Cho Hyun Kim
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Cheorun Jo
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Republic of Korea; Institute of Green Bio Science and Technology, Seoul National University, Pyungchang 25354, Republic of Korea.
| |
Collapse
|
7
|
Zheng C, Yan C, Xie H, Huang L, Fu H, Zhang T, Huang Z. Preparation, properties, and degradation mechanism of thermosensitive self-degradation microgel. J DISPER SCI TECHNOL 2021. [DOI: 10.1080/01932691.2021.2010566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Cunchuan Zheng
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, The People’s Republic of China
| | - Chaozong Yan
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, The People’s Republic of China
| | - Hu Xie
- Xinjiang Oilfield Company’s first Gas Production, PetroChina Xinjiang Oilfield Company, Changji Hui Autonomous Prefecture, The People’s Republic of China
| | - Lamei Huang
- Research Institute of Exploration and Development, Tarim Oilfield Company, PetroChina, Tarim, The People’s Republic of China
| | - Haoran Fu
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, The People’s Republic of China
| | - Tailiang Zhang
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, The People’s Republic of China
- Oil and Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Chengdu, The People’s Republic of China
| | - Zhiyu Huang
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, The People’s Republic of China
- Oil and Gas Field Applied Chemistry Key Laboratory of Sichuan Province, Chengdu, The People’s Republic of China
| |
Collapse
|
8
|
Kedzior SA, Cranmer-Smith S, Behabtu N, Kim K, Lenges C, Bryant SL, Trifkovic M. Elucidating the effect of enzymatic polymerized polysaccharide particle morphology on emulsion properties. Carbohydr Polym 2021; 251:117112. [DOI: 10.1016/j.carbpol.2020.117112] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 09/11/2020] [Accepted: 09/12/2020] [Indexed: 01/04/2023]
|
9
|
Veverka M, Dubaj T, Gallovič J, Veverková E, Šimon P, Lokaj J, Jorík V. Formulations of Staphylococcus aureus bacteriophage in biodegradable beta-glucan and arabinogalactan-based matrices. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101909] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Atta AM, Ezzat AO, Al-Lohedan HA, Tawfeek AM, Alobaidi AA. Preparation of pH Responsive Polystyrene and Polyvinyl Pyridine Nanospheres Stabilized by Mickering Microgel Emulsions. NANOMATERIALS 2019; 9:nano9121693. [PMID: 31816812 PMCID: PMC6955766 DOI: 10.3390/nano9121693] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 11/21/2019] [Accepted: 11/25/2019] [Indexed: 01/15/2023]
Abstract
New pH-sensitive polystyrene, PS, and poly(4-vinylpyridine), P4-VP, nanospheres were prepared by using surfactant-free method based on soft microgels (Mickering emulsion). The formation of stable Mickering cyclohexane/water emulsions was investigated by using soft microgel particles of poly(acrylamide), PAAm, poly(2-acrylamido-2-methylpropane sulfonic acid), PAMPS, and sodium salt of PAMPS, PAMPS-Na, as stabilizers. The dynamic light scattering (DLS), optical microscopy, and scanning electron microscopy (SEM) were used to investigate the optimum conditions and effects of surrounding solutions on the microgels characteristics and their corresponding Mickering emulsions. The cyclohexane/water Mickering emulsions stabilized by softer and neutral charged microgels were considerably more stable under the same conditions. Furthermore, the stimuli-responsive properties of PAMPS microgel stabilized cyclohexane/water Mickering emulsions suggest the potential utility in the preparation of PS and P4-VP nanospheres. The effects of pH changes on the morphology, particle sizes, and surface charges of PS and P4-VP microgels were evaluated to prove the pH-sensitivity of the prepared nanospheres.
Collapse
|
11
|
Karp S, Wyrwisz J, Kurek MA. Comparative analysis of the physical properties of o/w emulsions stabilised by cereal β-glucan and other stabilisers. Int J Biol Macromol 2019; 132:236-243. [DOI: 10.1016/j.ijbiomac.2019.03.212] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/25/2019] [Accepted: 03/27/2019] [Indexed: 12/24/2022]
|
12
|
Veverka M, Dubaj T, Veverková E, Šimon P, Husár Š, Tomanová K, Jorík V. Beta-glucan and arabinogalactan-based xerogels for abuse-deterrent opioid formulations. Eur J Pharm Sci 2019; 129:132-139. [DOI: 10.1016/j.ejps.2019.01.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 12/18/2018] [Accepted: 01/04/2019] [Indexed: 10/27/2022]
|
13
|
Grundy MML, McClements DJ, Ballance S, Wilde PJ. Influence of oat components on lipid digestion using an in vitro model: Impact of viscosity and depletion flocculation mechanism. Food Hydrocoll 2018; 83:253-264. [PMID: 30283194 PMCID: PMC6020131 DOI: 10.1016/j.foodhyd.2018.05.018] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Depletion flocculation is a well-known instability mechanism that can occur in oil-in-water emulsions when the concentration of non-adsorbed polysaccharide exceeds a certain level. This critical flocculation concentration depends on the molecular characteristics of the polysaccharide molecules, such as their molecular weight and hydrodynamic radius. In this study, a range of analytical methods (dynamic shear rheology, optical microscopy, and static light-scattering) were used to investigate the interaction between lipid droplets and polysaccharides (guar gum and β-glucans) of varying weight-average molecular weight and hydrodynamic radius, and concentration. The aim of this work was to see if the health benefits of soluble fibers like β-glucans could be explained by their influence on the structure and digestibility of lipid emulsions. The apparent viscosity of the emulsions increased with increasing polysaccharide concentration, molecular weight, and hydrodynamic radius. Droplet flocculation was observed in the emulsions only at certain polysaccharide concentrations, which was attributed to a depletion effect. In addition, the water-soluble components in oat flakes, flour, and bran were extracted using aqueous solutions, to examine their impact on emulsion stability and properties. Then, the rate and extent of lipolysis of a sunflower oil-in-water emulsion in the presence of these oat extracts were monitored using the pH-stat method. However, the inhibition of lipolysis was not linearly related to the viscosity of the oat solutions. The water-soluble extracts of β-glucan collected from oat flakes had a significant inhibitory effect on lipolysis. The results of this study increase our understanding of the possible mechanisms influencing the impact of oat constituents on lipid digestion. This work also highlights the importance of considering the molecular properties of polysaccharides, and not just their impact on solution viscosity.
Collapse
Affiliation(s)
- Myriam M L Grundy
- Quadram Institute Bioscience, Norwich Research Park, Colney, Norwich NR4 7UA, UK.,University of Reading, School of Agriculture, Policy and Development, Earley Gate, Reading RG6 6AR, UK
| | - David J McClements
- Biopolymers and Colloids Laboratory, Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | - Simon Ballance
- Nofima, Norwegian Institute for Food, Fisheries and Aquaculture Research, PB 210, N-1431 Ås, Norway
| | - Peter J Wilde
- Quadram Institute Bioscience, Norwich Research Park, Colney, Norwich NR4 7UA, UK
| |
Collapse
|
14
|
Tasker A, Sainsbury F, Puttick S. Particle-Stabilized Fluid-Fluid Interfaces: The Impact of Core Composition on Interfacial Structure. Front Chem 2018; 6:383. [PMID: 30214900 PMCID: PMC6125302 DOI: 10.3389/fchem.2018.00383] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 08/09/2018] [Indexed: 12/18/2022] Open
Abstract
The encapsulation of small molecule drugs in nanomaterials has become an increasingly popular approach to the delivery of therapeutics. The use of emulsions as templates for the synthesis of drug impregnated nanomaterials is an exciting area of research, and a great deal of progress has been made in understanding the interfacial chemistry that is critical to controlling the physicochemical properties of both the encapsulated material and the templated material. For example, control of the interfacial tension between an oil and aqueous phase is a fundamental concern when designing drug delivery vehicles that are stabilized by particulate surfactants at the fluid interface. Particles in general are capable of self-assembly at a fluid interface, with a preference for one or the other of the phases, and much work has focussed on modification of the particle properties to optimize formation and stability of the emulsion. An issue arises however when a model, single oil system is translated into more complex, real-world scenarios, which are often multi-component, with the incorporation of charged active ingredients and other excipients. The result is potentially a huge change in the properties of the dispersed phase which can lead to a failure in the capability of particles to continue to stabilize the interface. In this mini-review, we will focus on two encapsulation strategies based on the selective deposition of particles or proteins on a fluid-fluid interface: virus-like particles and polymer microcapsules formed from particle-stabilized emulsion templates. The similarity between these colloidal systems lies in the fact that particulate entities are used to stabilize fluid cores. We will focus on those studies that have described the effect of subtle changes in core composition on the self-assembly of particles at the fluid-fluid interface and how this influences the resulting capsule structure.
Collapse
Affiliation(s)
- Alison Tasker
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, QLD, Australia
- Commonwealth Scientific and Industrial Research Organisation, Probing Biosystems Future Science Platform, Brisbane, QLD, Australia
| | - Frank Sainsbury
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, QLD, Australia
| | - Simon Puttick
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, QLD, Australia
- Commonwealth Scientific and Industrial Research Organisation, Probing Biosystems Future Science Platform, Brisbane, QLD, Australia
| |
Collapse
|