1
|
Tao MT, Liu SS, Ding TT, Gu ZW, Cheng RJ. Time-dependent nonmonotonic concentration-response and synergism of alkyl glycosides with different alkyl side chain to Vibrio qinghaiensis sp. -Q67. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171375. [PMID: 38431162 DOI: 10.1016/j.scitotenv.2024.171375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/23/2024] [Accepted: 02/27/2024] [Indexed: 03/05/2024]
Abstract
Alkyl glycosides (AGs), commonly used nonionic surfactants, may have toxic effects on the environmental organisms. However, the complex concentration-response patterns of AGs with varying alkyl side chains and their mixtures have not been thoroughly studied. Therefore, the luminescence inhibition toxicities of six AGs with different alkyl side chains, namely, ethyl (AG02), butyl (AG04), hexyl (AG06), octyl (AG08), decyl (AG10), and dodecyl (AG12) glucosides, were determined in Vibrio qinghaiensis sp. -Q67 (Q67) at 0.25, 3, 6, 9, and 12 h. The six AGs exhibited time- and side-chain-dependent nonmonotonic concentration- responses toward Q67. AG02, with a short side chain, presented a concentration-response curve (CRC) with two peaks after 6 h and stimulated the luminescence of Q67 at both 6 and 9 h. AG04, AG06, and AG08 showed S-shaped CRCs at five exposure time points, and their toxicities increased with the side-chain length. AG10 and AG12, with long side chains, exhibited hormesis at 9 and 12 h. Molecular docking was performed to explore the mechanism governing the possible influence of AGs on the luminescence response. The effects of AGs on Q67 could be attributed to multiple luminescence-regulatory proteins, including LuxA, LuxC, LuxD, LuxG, LuxI, and LuxR. Notably, LuxR was identified as the primary binding protein among the six AGs. Given that they may co-exist, binary mixtures of AG10 and AG12 were designed to explore their concentration-response patterns and interactions. The results revealed that all AG10-AG12 binary mixture rays showed time-dependent hormesis on Q67, similar to that shown by their individual components. The interactions of these binary mixtures were mainly characterized by low-concentration additive action and high-concentration synergism at different times.
Collapse
Affiliation(s)
- Meng-Ting Tao
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Shu-Shen Liu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| | - Ting-Ting Ding
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Zhong-Wei Gu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Ru-Jun Cheng
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| |
Collapse
|
2
|
Pessel F, Noirbent G, Boyère C, Arnaud SP, Wong T, Durand L, Benvegnu T. Cascading One-Pot Synthesis of Biodegradable Uronic Acid-Based Surfactants from Oligoalginates, Semi-Refined Alginates, and Crude Brown Seaweeds. Molecules 2023; 28:5201. [PMID: 37446863 DOI: 10.3390/molecules28135201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/26/2023] [Accepted: 07/01/2023] [Indexed: 07/15/2023] Open
Abstract
The present article describes a one-pot and cascade mode process using biocompatible/biodegradable reagents, for simply obtaining surfactant compositions comprising mixtures of d-mannuronic acid and l-guluronic acid directly from oligoalginates or semi-refined alginates (mixtures of alginate, cellulose, hemicellulose, laminaran, and fucan). Simple treatments of partial purification of the reaction crudes (elimination of the salts and/or the residual fatty alcohols) or isolation of the surfactant compositions result in sugar-based compounds having performance levels appropriate to applications in detergency. In addition, the challenging extension of this cascading one-pot synthesis technology to crude milled brown seaweeds was successfully carried out to provide promising surface-active compositions made up of alkyl uronate and alkyl glycoside monosaccharides.
Collapse
Affiliation(s)
- Freddy Pessel
- SurfactGreen, 11 Allée de Beaulieu, CS 50837, F-35708 Rennes, France
| | - Guillaume Noirbent
- CNRS, ISCR-UMR 6226, Ecole Nationale Supérieure de Chimie de Rennes, University of Rennes, F-35000 Rennes, France
| | - Cédric Boyère
- SurfactGreen, 11 Allée de Beaulieu, CS 50837, F-35708 Rennes, France
| | - Sacha Pérocheau Arnaud
- CNRS, ISCR-UMR 6226, Ecole Nationale Supérieure de Chimie de Rennes, University of Rennes, F-35000 Rennes, France
| | - Tiphaine Wong
- CNRS, ISCR-UMR 6226, Ecole Nationale Supérieure de Chimie de Rennes, University of Rennes, F-35000 Rennes, France
| | - Laura Durand
- CNRS, ISCR-UMR 6226, Ecole Nationale Supérieure de Chimie de Rennes, University of Rennes, F-35000 Rennes, France
| | - Thierry Benvegnu
- CNRS, ISCR-UMR 6226, Ecole Nationale Supérieure de Chimie de Rennes, University of Rennes, F-35000 Rennes, France
| |
Collapse
|
3
|
Synthesis and potential application of acylhydrazone functionalized linear poly(glycidol)s. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
4
|
Fu F, Fan Y, Chen L, Zhang J, Li J, Liao J, Zhang G. Surface Properties of Alkyldi(oxyethylene) β-D-Maltoside. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:2643-2655. [PMID: 35176861 DOI: 10.1021/acs.jafc.1c06048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A series of nonionic disaccharide-based surfactants alkyldi(oxyethylene) β-d-maltosides (4a-4h, n = 6-16) were synthesized, and their physicochemical properties were further investigated. Six β-D-maltosides (4c-4h, n = 8-16) exhibited a fan-shaped texture feature, whereas hexyldi(oxyethylene) β-D-maltoside (4a) had the strongest hygroscopicity. Owing to the incorporation of the hydrophilic dioxyethyl spacer (-(OCH2CH2)2-), the related water solubility improved significantly. Tetradecyldi(oxyethylene) β-D-maltoside (4g) had good water solubility, whereas hexadecyldi(oxyethylene) β-D-maltoside (4h) had weak water solubility. Meanwhile, the surface tension of β-D-maltosides (4a-4g, n = 6-14) had a decreasing tendency with increasing the alkyl chain length, whereas 4g had the best surface activity. Furthermore, decyldi(oxyethylene) β-D-maltoside (4e) had the best foaming ability and foam stability. Dodecyldi(oxyethylene) β-D-maltoside (4f) had the best emulsifying property in the rapeseed oil/water system. In contrast, both ammonium dodecyl sulfate (NH4DS)/4f and cetyltrimethylammonium chloride (CTAC)/4f binary surfactant systems showed a synergistic effect in surface activity because the CCMC/CMCidmix was <1. NaCl impacted the surface activity of the aqueous 4f solution through salt-surfactant synergistic effects. The results showed that such surfactants should have potential applications in the related field in the future.
Collapse
Affiliation(s)
- Fang Fu
- College of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, Xiangtan University, Xiangtan 411105, Hunan, People's Republic of China
| | - Yulin Fan
- College of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, Xiangtan University, Xiangtan 411105, Hunan, People's Republic of China
| | - Langqiu Chen
- College of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, Xiangtan University, Xiangtan 411105, Hunan, People's Republic of China
| | - Jing Zhang
- College of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, Xiangtan University, Xiangtan 411105, Hunan, People's Republic of China
| | - Jiping Li
- College of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, Xiangtan University, Xiangtan 411105, Hunan, People's Republic of China
| | - Jingyi Liao
- College of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, Xiangtan University, Xiangtan 411105, Hunan, People's Republic of China
| | - Guochao Zhang
- College of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, Xiangtan University, Xiangtan 411105, Hunan, People's Republic of China
| |
Collapse
|
5
|
Zhang S, Li Y, Hu L. Physical and biological evaluation of glucose hydrazones as biodegradable emulsifiers. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
6
|
Ortiz MS, Alvarado JG, Zambrano F, Marquez R. Surfactants produced from carbohydrate derivatives: A review of the biobased building blocks used in their synthesis. J SURFACTANTS DETERG 2022. [DOI: 10.1002/jsde.12581] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
| | | | | | - Ronald Marquez
- TotalEnergies SE Pôle d'Etudes et de Recherche de Lacq Lacq France
- Laboratoire commun TotalEnergies/ESPCI Paris, Physico‐Chimie des Interfaces Complexes CHEMSTARTUP Lacq France
| |
Collapse
|
7
|
Bois R, Pezron I, Rotureau P, Van Hecke E, Fayet G, Nesterenko A. Foaming behavior of sugar-based surfactants: influence of molecular structure and anticipation from surface properties. J DISPER SCI TECHNOL 2021. [DOI: 10.1080/01932691.2021.1974877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Rémy Bois
- Université de technologie de Compiègne, ESCOM, TIMR (Integrated Transformations of Renewable Matter), Centre de recherche Royallieu, Compiègne Cedex, France
| | - Isabelle Pezron
- Université de technologie de Compiègne, ESCOM, TIMR (Integrated Transformations of Renewable Matter), Centre de recherche Royallieu, Compiègne Cedex, France
| | | | - Elisabeth Van Hecke
- Université de technologie de Compiègne, ESCOM, TIMR (Integrated Transformations of Renewable Matter), Centre de recherche Royallieu, Compiègne Cedex, France
| | - Guillaume Fayet
- INERIS, Parc Technologique Alata, Verneuil-en-Halatte, France
| | - Alla Nesterenko
- Université de technologie de Compiègne, ESCOM, TIMR (Integrated Transformations of Renewable Matter), Centre de recherche Royallieu, Compiègne Cedex, France
| |
Collapse
|
8
|
Fan Y, Fu F, Chen L, Li J, Zhang J, Zhang G, Liao J. Property of alkyltri(oxyethyl) β-d-glucopyranosides. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116853] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Stachowiak N, Kowalonek J, Kozlowska J. Freeze-Dried Matrices Composed of Degradable Polymers with Surfactant-Loaded Microparticles Based on Pectin and Sodium Alginate. MATERIALS (BASEL, SWITZERLAND) 2021; 14:3044. [PMID: 34204985 PMCID: PMC8199913 DOI: 10.3390/ma14113044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/27/2021] [Accepted: 05/29/2021] [Indexed: 12/28/2022]
Abstract
Gelatin/polyvinylpyrrolidone/hydroxyethyl cellulose/glycerol porous matrices with microspheres made of sodium alginate or pectin and sodium alginate were produced. A surfactant was loaded into these microparticles. The microspheres were characterized using optical microscopy, scanning electron microscopy SEM, and laser diffraction particle size analyzer. For the matrices, the density, porosity, swelling capacity, dissolution in phosphate saline buffer were determined and SEM, mechanical, and thermogravimetric studies were applied. The results showed that the size of the two-component microspheres was slightly larger than that of single-ingredient microparticles. The images confirmed the spherical shape of the microparticles. The prepared matrices had high water uptake ability and porosity due to the presence of hydrophilic polymers. The presence of microparticles in the matrices caused a decrease in these parameters. Degradation of the composites with the microspheres was significantly faster than the matrix without them. The addition of microparticles increased the stiffness and toughness of the prepared materials. The efficiency of the thermal decomposition main stage was reduced in the samples with microspheres, whereas a char residue increased in these composites.
Collapse
Affiliation(s)
- Natalia Stachowiak
- Faculty of Chemistry, Nicolaus Copernicus University in Torun, Gagarina 7, 87-100 Torun, Poland; (J.K.); (J.K.)
| | | | | |
Collapse
|
10
|
Zhou R, Jin Y, Shen Y, Zhao P, Zhou Y. Synthesis and application of non-bioaccumulable fluorinated surfactants: a review. JOURNAL OF LEATHER SCIENCE AND ENGINEERING 2021. [DOI: 10.1186/s42825-020-00048-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Abstract
Due to negative effects of conventional fluorinated surfactants with long perfluorocarbon chain (CxF2x+ 1, x≥7) like perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS), these conventional long perfluorocarbon chain surfactants have been restricted in many industrial applications. Nowadays, their potential non-bioaccumulable alternatives have been developed to meet the requirements of environmental sustainable development. In this paper, the recent advances of potential non-bioaccumulable fluorinated surfactants with different fluorocarbon chain structures, including the short perfluorocarbon chain, the branched fluorocarbon chain, and the fluorocarbon chain with weak points, are reviewed from the aspects of synthesis processes, properties, and structure-activity relationships. And their applications in emulsion polymerization of fluorinated olefins, handling membrane proteins, and leather manufacture also are summarized. Furthermore, the challenges embedded in the current non-bioaccumulable fluorinated surfactants are also highlighted and discussed with the hope to provide a valuable reference for the prosperous development of fluorinated surfactants.
Graphical abstract
Collapse
|
11
|
|
12
|
Physicochemical, foaming and biological properties of lowly irritant anionic sugar-based surfactants. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125525] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
13
|
Paulovičová E, Paulovičová L, Poláková M, Pánik M, Jantová S. In vitro evaluation of immunobiological activity of simple mannolipids. Toxicol In Vitro 2020; 70:105014. [PMID: 33049314 DOI: 10.1016/j.tiv.2020.105014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 09/28/2020] [Accepted: 10/05/2020] [Indexed: 11/30/2022]
Abstract
Immunomodulation, cytotoxicity and anti-cancer activity of selected amphiphilic non-ionic (thio)alkyl α-D-mannosides (with aglycone of C6-C12) were investigated in vitro in human cervix epitheloid carcinoma cell line HeLa, murine melanoma cancer cells B16, murine lymphocytic leukemia cell line L1210, murine fibroblast cell line NIH 3 T3 and murine macrophage cell line RAW 264.7. Toxicological studies revealed structure-dependent immunobiological effectivity based on a tight interaction with relevant cells. The results demonstrated diverse immunomodulation of macrophage cell-line RAW264.7 proliferation and production of Th1 and Th2 cytokines, and induction of pro-inflammatory interleukins IL-1α, TNFα, IL-6, IL-12 and IL-17 and anti-inflammatory IL-10 following (thio)alkyl α-D-mannosides 24 and 48 h exposure. Direct application of alkyl mannosides MOC10 and MOC12 and their thio analogues MSC10 and MSC12 in reconstructed human EpiDerm™ and MOC12 and MSC12 in EpiOcular™ model assays for dermal and ocular irritation together with quantification of human proinflammatory cytokines IL-1α, TNFα, IL-6 and IL-8 culture media release was used to ascertain toxicological safety.
Collapse
Affiliation(s)
- Ema Paulovičová
- Institute of Chemistry, Center for Glycomics, Dept. Immunochemistry of Glycoconjugates, Immunol and Cell Culture Laboratory, Slovak Academy of Sciences, Bratislava, Slovakia.
| | - Lucia Paulovičová
- Institute of Chemistry, Center for Glycomics, Dept. Immunochemistry of Glycoconjugates, Immunol and Cell Culture Laboratory, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Monika Poláková
- Institute of Chemistry, Center for Glycomics, Dept.Glycochemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Miroslav Pánik
- Institute of Management, of the Slovak University of Technology, Slovak University of Technology, Bratislava, Slovakia
| | - Soňa Jantová
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology, Bratislava, Slovakia
| |
Collapse
|
14
|
Wu X, Kuang N, Chen L, Fan Y, Fu F, Li J, Zhang J. Synthesis and property of alkyl dioxyethyl α- D-xyloside. J Mol Liq 2020; 315:113770. [PMID: 32834260 PMCID: PMC7342039 DOI: 10.1016/j.molliq.2020.113770] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 07/01/2020] [Accepted: 07/06/2020] [Indexed: 11/21/2022]
Abstract
Due to the inherent defects of the long alkyl chain in the related hydrophilicity and water solubility, alkyl α-D-xylosides (7) had hardly the practical application as sugar-based surfactants and should be reconstructed to obtain alkyl dioxyethyl α-D-xylosides (5) with dioxyethylene fragment (-(OCH2CH2)2-)) as the hydrophilic spacer to increase the related TPSA value. With D-xylose as the raw material, 1,2-cis alkyl dioxyethyl α-D-xylosides (5a-5f, n = 6-12) were stereoselectively synthesized. Their physicochemical properties including water solubility, surface tension, foamability, emulsification, thermotropic liquid crystal, and hygroscopicity had been investigated. Their water solubility was found to decrease gradually whereas their calculated HLB numbers were 14.72 → 11.67 (n = 6 → 12) with increasing alkyl chain length (n). Dodecyl dioxyethyl α-D-xyloside (5f) had not water solubility because the HLB number was low. Furthermore, their CMC values decreased with increasing the alkyl chain length, and the CMC value of decyl dioxyethyl α-D-xyloside (5e) was as low as 9.21 × 10-5 mol·L-1. Octyl dioxyethyl α-D-xyloside (5c) had the lowest surface tension (27.25 mN·m-1) at the CMC. Both of nonyl and decyl dioxyethyl α-D-xylosides (5d & 5e) possessed good foaming power and foam stability. Decyl dioxyethyl α-D-xyloside (5e) had the strongest emulsifying property either in the toluene/water system or in the octane/water system. Nonyl dioxyethyl α-D-xylosides (5d) had the most stylish SA texture. Hexyl dioxyethyl α-D-xyloside (5a) possessed the strongest hygroscopicity. Therefore, the alkyl dioxyethyl α-D-xylosides as a class of novel sugar-based surfactants will be widely considered as promising candidates for various practical applications.
Collapse
Affiliation(s)
- Xiubing Wu
- College of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, Xiangtan University, Xiangtan City, 411105, Hunan, People's Republic of China
| | - Na Kuang
- College of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, Xiangtan University, Xiangtan City, 411105, Hunan, People's Republic of China
| | - Langqiu Chen
- College of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, Xiangtan University, Xiangtan City, 411105, Hunan, People's Republic of China
| | - Yulin Fan
- College of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, Xiangtan University, Xiangtan City, 411105, Hunan, People's Republic of China
| | - Fang Fu
- College of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, Xiangtan University, Xiangtan City, 411105, Hunan, People's Republic of China
| | - Jiping Li
- College of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, Xiangtan University, Xiangtan City, 411105, Hunan, People's Republic of China
| | - Jing Zhang
- College of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, Xiangtan University, Xiangtan City, 411105, Hunan, People's Republic of China
| |
Collapse
|
15
|
Fu F, Fan Y, Chen L, Zhang J, Li J. Water Solubility and Surface Activity of Alkoxyethyl β-d-Maltosides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:8330-8340. [PMID: 32677832 DOI: 10.1021/acs.jafc.0c00349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Green surfactants alkyl glycosides are key to solve the inherent problem of water solubility due to their commercial application and extensive scientific research. Based on the enhancement strategy of hydrophilicity through the reconstruction of the conventional alkyl β-d-maltoside by introducing an oxyethyl group (-OCH2CH2-), d-maltose was used to prepare a series of nonionic disaccharide-based surfactants alkoxyethyl β-d-maltosides (4a-h, n = 6-16) so that the related water solubility was effectively improved, while the corresponding surface activity and other excellent properties were still maintained. Their physicochemical properties, including water solubility, surface activity, moisture absorption, and thermotropic liquid crystalline behavior, were investigated. The liquid crystal texture of alkoxyethyl β-d-maltosides (n = 7-16) has a fan-shaped focal conic texture. Furthermore, decoxyethyl β-d-maltoside had the strongest foaming characteristic and the best foam stability. Moreover, dodecoxyethyl β-d-maltoside (4f, n =12) had stronger emulsifying activity in the rapeseed oil/water system. Finally, CTAC/4f binary surfactants had an obvious synergistic effect. Such β-d-maltosides should have good application prospects in the future.
Collapse
Affiliation(s)
- Fang Fu
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, People's Republic of China
| | - Yulin Fan
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, People's Republic of China
| | - Langqiu Chen
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, People's Republic of China
| | - Jing Zhang
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, People's Republic of China
| | - Jiping Li
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, People's Republic of China
| |
Collapse
|
16
|
Foaming Characteristics of Beverages and Its Relevance to Food Processing. FOOD ENGINEERING REVIEWS 2020. [DOI: 10.1007/s12393-020-09213-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
17
|
Fan Y, Fu F, Chen L, Li J, Zhang J. Surface Activity of Alkoxy Ethoxyethyl β-d-Glucopyranosides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:2684-2695. [PMID: 32083874 DOI: 10.1021/acs.jafc.9b05966] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Dioxyethene fragment (-(OCH2CH2)2-) was introduced into traditional alkyl β-d-glucopyranosides to ameliorate the water solubility, and eight nonionic surfactants, that is, alkoxy ethoxyethyl β-d-glucopyranosides with alkyl chain lengths (n = 6-16), were synthesized and characterized. Their hydrophilic and lipophilic balance number, water solubility, critical micelle concentration (cmc), γcmc, Γmax, and hygroscopic rate decreased with an increase in the alkyl chain length. Hexadecoxy ethoxyethyl β-d-glucopyranoside had no water solubility at 25 °C. Decoxy ethoxyethyl β-d-glucopyranoside had the best emulsifying property in the toluene/water and n-octane/water systems and the strongest foaming property, whereas dodecoxy ethoxyethyl β-d-glucopyranoside had the best emulsifying property in the rapeseed oil/water system. Such β-d-glucopyranosides (n = 6-12) exhibited excellent surface activity. In addition, for the binary mixture of alkoxy ethoxyethyl β-d-glucopyranosides (n = 8, 10, 12) and sodium dodecyl sulfate or cetyl trimethyl ammonium chloride, their cmc values were lower than the pure β-d-glucopyranosides, indicating that they had synergistic interactions. The fan focal conic textures of alkoxy ethoxyethyl β-d-glucopyranosides (n = 7-16) were observed during the cooling process under a polarizing optical microscope. Alkoxy ethoxyethyl β-d-glucopyranosides (n = 14, 16) had the related melting points and the clear points with differential scanning calorimetry. With β-d-glucopyranosides (n = 6-16) and n-butanol as the surfactant and cosurfactant, respectively, and with cyclohexane as the oil phase, the related microemulsion areas in their pseudoternary phase diagram system were investigated with the visual observation at 25 °C. Along with the slashing requirements of petroleum consumption, environmental protection, and green and sustainable development, nonionic sugar-based alkoxy ethoxyethyl β-d-glucopyranosides should be expected to have their potential practical application because of their strengthened hydrophilicity, improved water solubility, and enhanced surface activity.
Collapse
Affiliation(s)
- Yulin Fan
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, People's Republic of China
| | - Fang Fu
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, People's Republic of China
| | - Langqiu Chen
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, People's Republic of China
| | - Jiping Li
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, People's Republic of China
| | - Jing Zhang
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, People's Republic of China
| |
Collapse
|
18
|
Wu X, Chen L, Fan Y, Fu F, Li J, Zhang J. Water Solubility and Surface Property of Alkyl Di-/Tri-/Tetraoxyethyl β-d-Xylopyranosides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:10361-10372. [PMID: 31487173 DOI: 10.1021/acs.jafc.9b03435] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Alkyl di-/tri-/tetraoxyethyl β-d-xylopyranosides as derivatives of alkyl xylosides are a class of non-ionic sugar-based surfactants. They were stereoselectively synthesized by the Helferich method. Their properties including hydrophilic-lipophilic balance number, water solubility, surface property, foam property, emulsifying property, and thermotropic liquid crystal property were mainly investigated. The results showed that their water solubility decreased with increasing the alkyl chain length and increasing the number of the oligooxyethyl fragment. The critical micelle concentration had a monotonous decreasing trend with increasing the alkyl chain length. Nonyl di-/tri-/tetraoxyethyl β-d-xylopyranosides [-(OCH2CH2)m-, where m = 2, 3, and 4] exhibited the most excellent foaming ability and foam stability. In the n-octane/water system, dodecyl tetraoxyethyl β-d-xylopyranosides and tetradecyl tetraoxyethyl β-d-xylopyranosides had the strongest emulsion ability. In addition, some alkyl di-/tri-/tetraoxyethyl β-d-xylopyranosides had thermotropic liquid crystal properties. Such sugar-based surfactants, alkyl di-/tri-/tetraoxyethyl β-d-xylopyranosides, will be expected to develop for a variety of practical application.
Collapse
Affiliation(s)
- Xiubing Wu
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry , Xiangtan University , Xiangtan , Hunan 411105 , People's Republic of China
| | - Langqiu Chen
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry , Xiangtan University , Xiangtan , Hunan 411105 , People's Republic of China
| | - Yulin Fan
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry , Xiangtan University , Xiangtan , Hunan 411105 , People's Republic of China
| | - Fang Fu
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry , Xiangtan University , Xiangtan , Hunan 411105 , People's Republic of China
| | - Jiping Li
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry , Xiangtan University , Xiangtan , Hunan 411105 , People's Republic of China
| | - Jing Zhang
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry , Xiangtan University , Xiangtan , Hunan 411105 , People's Republic of China
| |
Collapse
|
19
|
Gaudin T, Lu H, Fayet G, Berthauld-Drelich A, Rotureau P, Pourceau G, Wadouachi A, Van Hecke E, Nesterenko A, Pezron I. Impact of the chemical structure on amphiphilic properties of sugar-based surfactants: A literature overview. Adv Colloid Interface Sci 2019; 270:87-100. [PMID: 31200263 DOI: 10.1016/j.cis.2019.06.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 05/20/2019] [Accepted: 06/03/2019] [Indexed: 01/26/2023]
Abstract
In this review, structure-property trends are systematically analyzed for four amphiphilic properties of sugar-based surfactants: critical micelle concentration (CMC), its associated surface tension (γCMC), efficiency (pC20) and Krafft temperature (TK). First, the impact on amphiphilic properties of the alkyl chain size and the presence of branching and/or unsaturation is investigated. Then, various polar head parameters are explored, such as the degree of polymerization of the sugar unit (mono- or oligosaccharides), the chemical nature of the linker and the sugar configuration. Some systematic comparisons between ethoxylated surfactants and sugar-based surfactants are also carried out. While some structural trends with the impact of alkyl chain length or the polar head size are now well understood, this analysis points out that systematic studies of more specific effects of alkyl chain (e.g. branching, unsaturation, presence of rings, position on the polar head) and polar head (e.g. linker, anomeric configuration, internal stereochemistry, cyclic vs. acyclic sugar residues) were scarcer or not available to date. This work encourages the use of these structural trends in the perspective of developing new bio-based surfactants and their consideration in predictive models. It also highlights the need of further experimental tests to fill remaining gaps notably to explore some specific structural features (such as the introduction of rings in the alkyl chain or the position of the alkyl chain on the polar head) and towards applicative properties (like foaming capacity or wettability).
Collapse
|
20
|
Huang Z, Qi P, Liu Y, Chai C, Wang Y, Song A, Hao J. Ionic-surfactants-based thermotropic liquid crystals. Phys Chem Chem Phys 2019; 21:15256-15281. [DOI: 10.1039/c9cp02697e] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Ionic surfactants can be combined with various functional groups through electrostatic interaction, resulting in a series of thermotropic liquid crystals (TLCs).
Collapse
Affiliation(s)
- Zhaohui Huang
- Key Laboratory of Colloid and Interface Chemistry
- Shandong University
- Ministry of Education
- Jinan
- China
| | - Ping Qi
- Key Laboratory of Colloid and Interface Chemistry
- Shandong University
- Ministry of Education
- Jinan
- China
| | - Yihan Liu
- Key Laboratory of Colloid and Interface Chemistry
- Shandong University
- Ministry of Education
- Jinan
- China
| | - Chunxiao Chai
- Key Laboratory of Colloid and Interface Chemistry
- Shandong University
- Ministry of Education
- Jinan
- China
| | - Yitong Wang
- Key Laboratory of Colloid and Interface Chemistry
- Shandong University
- Ministry of Education
- Jinan
- China
| | - Aixin Song
- Key Laboratory of Colloid and Interface Chemistry
- Shandong University
- Ministry of Education
- Jinan
- China
| | - Jingcheng Hao
- Key Laboratory of Colloid and Interface Chemistry
- Shandong University
- Ministry of Education
- Jinan
- China
| |
Collapse
|