1
|
Grizzo A, Dos Santos DM, da Costa VPV, Lopes RG, Inada NM, Correa DS, Campana-Filho SP. Multifunctional bilayer membranes composed of poly(lactic acid), beta-chitin whiskers and silver nanoparticles for wound dressing applications. Int J Biol Macromol 2023; 251:126314. [PMID: 37586628 DOI: 10.1016/j.ijbiomac.2023.126314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 08/08/2023] [Accepted: 08/11/2023] [Indexed: 08/18/2023]
Abstract
Nanomaterial-based wound dressings have been extensively studied for the treatment of both minor and life-threatening tissue injuries. These wound dressings must possess several crucial characteristics, such as tissue compatibility, non-toxicity, appropriate biodegradability to facilitate wound healing, effective antibacterial activity to prevent infection, and adequate physical and mechanical strength to withstand repetitive dynamic forces that could potentially disrupt the healing process. Nevertheless, the development of nanostructured wound dressings that incorporate various functional micro- and nanomaterials in distinct architectures, each serving specific purposes, presents significant challenges. In this study, we successfully developed a novel multifunctional wound dressing based on poly(lactic acid) (PLA) fibrous membranes produced by solution-blow spinning (SBS) and electrospinning. The PLA-based membranes underwent surface modifications aimed at tailoring their properties for utilization as effective wound dressing platforms. Initially, beta-chitin whiskers were deposited onto the membrane surface through filtration, imparting hydrophilic character. Afterward, silver nanoparticles (AgNPs) were incorporated onto the beta-chitin layer using a spray deposition method, resulting in platforms with antimicrobial properties against both Staphylococcus aureus and Escherichia coli. Cytotoxicity studies demonstrated the biocompatibility of the membranes with the neonatal human dermal fibroblast (HDFn) cell line. Moreover, bilayer membranes exhibited a high surface area and porosity (> 80%), remarkable stability in aqueous media, and favorable mechanical properties, making them promising candidates for application as multifunctional wound dressings.
Collapse
Affiliation(s)
- Amanda Grizzo
- Sao Carlos Institute of Chemistry/University of Sao Paulo, 13566-590 Sao Carlos, Sao Paulo, Brazil; Nanotechnology National Laboratory for Agriculture (LNNA), Embrapa Instrumentação, 13560-970, Sao Carlos, Sao Paulo, Brazil
| | - Danilo M Dos Santos
- Nanotechnology National Laboratory for Agriculture (LNNA), Embrapa Instrumentação, 13560-970, Sao Carlos, Sao Paulo, Brazil
| | - Víttor P V da Costa
- Nanotechnology National Laboratory for Agriculture (LNNA), Embrapa Instrumentação, 13560-970, Sao Carlos, Sao Paulo, Brazil; PPGBiotec, Center for Exact Sciences and Technology, Federal University of Sao Carlos (UFSCar), 13565-905 Sao Carlos, Sao Paulo, Brazil
| | - Raphael G Lopes
- Sao Carlos Institute of Physics/University of Sao Paulo, PO Box 369, 13560-970 Sao Carlos, Sao Paulo, Brazil
| | - Natalia M Inada
- Sao Carlos Institute of Physics/University of Sao Paulo, PO Box 369, 13560-970 Sao Carlos, Sao Paulo, Brazil
| | - Daniel S Correa
- Nanotechnology National Laboratory for Agriculture (LNNA), Embrapa Instrumentação, 13560-970, Sao Carlos, Sao Paulo, Brazil; PPGBiotec, Center for Exact Sciences and Technology, Federal University of Sao Carlos (UFSCar), 13565-905 Sao Carlos, Sao Paulo, Brazil.
| | | |
Collapse
|
2
|
Ganesh SS, Anushikaa R, Swetha Victoria VS, Lavanya K, Shanmugavadivu A, Selvamurugan N. Recent Advancements in Electrospun Chitin and Chitosan Nanofibers for Bone Tissue Engineering Applications. J Funct Biomater 2023; 14:jfb14050288. [PMID: 37233398 DOI: 10.3390/jfb14050288] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/07/2023] [Accepted: 05/16/2023] [Indexed: 05/27/2023] Open
Abstract
Treatment of large segmental bone loss caused by fractures, osteomyelitis, and non-union results in expenses of around USD 300,000 per case. Moreover, the worst-case scenario results in amputation in 10% to 14.5% of cases. Biomaterials, cells, and regulatory elements are employed in bone tissue engineering (BTE) to create biosynthetic bone grafts with effective functionalization that can aid in the restoration of such fractured bones, preventing amputation and alleviating expenses. Chitin (CT) and chitosan (CS) are two of the most prevalent natural biopolymers utilized in the fields of biomaterials and BTE. To offer the structural and biochemical cues for augmenting bone formation, CT and CS can be employed alone or in combination with other biomaterials in the form of nanofibers (NFs). When compared with several fabrication methods available to produce scaffolds, electrospinning is regarded as superior since it enables the development of nanostructured scaffolds utilizing biopolymers. Electrospun nanofibers (ENFs) offer unique characteristics, including morphological resemblance to the extracellular matrix, high surface-area-to-volume ratio, permeability, porosity, and stability. This review elaborates on the recent strategies employed utilizing CT and CS ENFs and their biocomposites in BTE. We also summarize their implementation in supporting and delivering an osteogenic response to treat critical bone defects and their perspectives on rejuvenation. The CT- and CS-based ENF composite biomaterials show promise as potential constructions for bone tissue creation.
Collapse
Affiliation(s)
- S Shree Ganesh
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, India
| | - Ramprasad Anushikaa
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, India
| | - Venkadesan Sri Swetha Victoria
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, India
| | - Krishnaraj Lavanya
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, India
| | - Abinaya Shanmugavadivu
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, India
| | - Nagarajan Selvamurugan
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur 603203, India
| |
Collapse
|
3
|
Singh B, Kumari A, Sharma D, Dhiman A, Kumar S. Fabricating gum polysaccharides based nano-composites for drug delivery uses via sustainable green approach. Int J Biol Macromol 2023; 235:123856. [PMID: 36870665 DOI: 10.1016/j.ijbiomac.2023.123856] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/10/2023] [Accepted: 02/24/2023] [Indexed: 03/06/2023]
Abstract
Recent advancements in development of natural polymer nono-composites led to exploration of potential of gum acacia (GA) and tragacanth gum (TG) for design of silver nanoparticles (AgNPs) impregnated grafted copolymers via green approach for use in drug delivery (DD). The formation of copolymers was confirmed by UV-Vis spectroscopy, TEM, SEM, AFM, XPS, XRD, FTIR,TGA and DSC. UV-Vis spectra indicated the formation of AgNPs using GA as reducing agent. TEM, SEM, XPS and XRD revealed impregnation of AgNPs inside the copolymeric network hydrogels. TGA inferred thermal stability of polymer enhanced by grafting and incorporation of AgNPs. The non-Fickian diffusion of antibiotic drug meropenem was revealed from drug encapsulated GA-TG-(AgNPs)-cl-poly(AAm) network which were also pH responsive and release profile was fitted in Korsmeyer-Peppas kinetic model. Sustained release was due to polymer-drug interaction. The polymer-blood interaction demonstrated biocompatible characteristics of polymer. Mucoadhesive property exhibited by copolymers because of supra-molecular interactions. Antimicrobial characteristics were shown by copolymers against bacteria S. flexneri, P. auroginosa, and B. cereus.
Collapse
Affiliation(s)
- Baljit Singh
- Department of Chemistry, Himachal Pradesh University, Shimla 171005, India.
| | - Ankita Kumari
- Department of Chemistry, Himachal Pradesh University, Shimla 171005, India
| | - Diwanshi Sharma
- Department of Chemistry, Himachal Pradesh University, Shimla 171005, India
| | - Abhishek Dhiman
- Mahatma Gandhi Government Engineering College Kotla, Jeori, Rampur, Himachal Pradesh 172101, India
| | - Sushil Kumar
- Department of Chemistry, Himachal Pradesh University, Shimla 171005, India
| |
Collapse
|
4
|
Photocatalytic degradation of azo dyes by ultra-small green synthesized silver nanoparticles. J Taiwan Inst Chem Eng 2023. [DOI: 10.1016/j.jtice.2022.104663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
5
|
Bai L, Liu L, Esquivel M, Tardy BL, Huan S, Niu X, Liu S, Yang G, Fan Y, Rojas OJ. Nanochitin: Chemistry, Structure, Assembly, and Applications. Chem Rev 2022; 122:11604-11674. [PMID: 35653785 PMCID: PMC9284562 DOI: 10.1021/acs.chemrev.2c00125] [Citation(s) in RCA: 80] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Chitin, a fascinating biopolymer found in living organisms, fulfills current demands of availability, sustainability, biocompatibility, biodegradability, functionality, and renewability. A feature of chitin is its ability to structure into hierarchical assemblies, spanning the nano- and macroscales, imparting toughness and resistance (chemical, biological, among others) to multicomponent materials as well as adding adaptability, tunability, and versatility. Retaining the inherent structural characteristics of chitin and its colloidal features in dispersed media has been central to its use, considering it as a building block for the construction of emerging materials. Top-down chitin designs have been reported and differentiate from the traditional molecular-level, bottom-up synthesis and assembly for material development. Such topics are the focus of this Review, which also covers the origins and biological characteristics of chitin and their influence on the morphological and physical-chemical properties. We discuss recent achievements in the isolation, deconstruction, and fractionation of chitin nanostructures of varying axial aspects (nanofibrils and nanorods) along with methods for their modification and assembly into functional materials. We highlight the role of nanochitin in its native architecture and as a component of materials subjected to multiscale interactions, leading to highly dynamic and functional structures. We introduce the most recent advances in the applications of nanochitin-derived materials and industrialization efforts, following green manufacturing principles. Finally, we offer a critical perspective about the adoption of nanochitin in the context of advanced, sustainable materials.
Collapse
Affiliation(s)
- Long Bai
- Key
Laboratory of Bio-based Material Science & Technology (Ministry
of Education), Northeast Forestry University, Harbin 150040, P.R. China
- Bioproducts
Institute, Department of Chemical & Biological Engineering, Department
of Chemistry, and Department of Wood Science, 2360 East Mall, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Liang Liu
- Jiangsu
Co-Innovation Center of Efficient Processing and Utilization of Forest
Resources, Jiangsu Key Lab of Biomass-Based Green Fuel and Chemicals,
College of Chemical Engineering, Nanjing
Forestry University, 159 Longpan Road, Nanjing 210037, P.R. China
| | - Marianelly Esquivel
- Polymer
Research Laboratory, Department of Chemistry, National University of Costa Rica, Heredia 3000, Costa Rica
| | - Blaise L. Tardy
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland
- Department
of Chemical Engineering, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Siqi Huan
- Key
Laboratory of Bio-based Material Science & Technology (Ministry
of Education), Northeast Forestry University, Harbin 150040, P.R. China
- Bioproducts
Institute, Department of Chemical & Biological Engineering, Department
of Chemistry, and Department of Wood Science, 2360 East Mall, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Xun Niu
- Bioproducts
Institute, Department of Chemical & Biological Engineering, Department
of Chemistry, and Department of Wood Science, 2360 East Mall, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Shouxin Liu
- Key
Laboratory of Bio-based Material Science & Technology (Ministry
of Education), Northeast Forestry University, Harbin 150040, P.R. China
| | - Guihua Yang
- State
Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of
Sciences, Jinan 250353, China
| | - Yimin Fan
- Jiangsu
Co-Innovation Center of Efficient Processing and Utilization of Forest
Resources, Jiangsu Key Lab of Biomass-Based Green Fuel and Chemicals,
College of Chemical Engineering, Nanjing
Forestry University, 159 Longpan Road, Nanjing 210037, P.R. China
| | - Orlando J. Rojas
- Bioproducts
Institute, Department of Chemical & Biological Engineering, Department
of Chemistry, and Department of Wood Science, 2360 East Mall, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
- Department
of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland
| |
Collapse
|
6
|
Liu Y, Liu Y, Wu M, Zou R, Mao S, Cong P, Hou M, Jin H, Zhao Y, Bao Y. Adipose-derived mesenchymal stem cell-loaded β-chitin nanofiber hydrogel promote wound healing in rats. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2022; 33:12. [PMID: 35050422 PMCID: PMC8776676 DOI: 10.1007/s10856-021-06630-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 11/28/2021] [Indexed: 05/14/2023]
Abstract
Because of stem cells are limited by the low efficiency of their cell homing and survival in vivo, cell delivery systems and scaffolds have attracted a great deal of attention for stem cells' successful clinical practice. β-chitin nanofibers (β-ChNF) were prepared from squid pens in this study. Fourier transform infrared spectroscopy, X-ray diffraction and scanning electron microscopy proved that β-ChNFs with the diameter of 5 to 10 nm were prepared. β-ChNF dispersion became gelled upon the addition of cell culture medium. Cell culture experiments showed that β-ChNFs exhibited negligible cytotoxicity towards ADSCs and L929 cells, and it was found that more exosomes were secreted by the globular ADSCs grown in the β-ChNF hydrogel. The vivo experiments of rats showed that the ADSCs-loaded β-ChNF hydrogel could directly cover the wound surface and significantly accelerate the wound healing and promote the generation of epithelization, granulation tissue and collagen. In addition, the ADSCs-loaded β-ChNF hydrogel clearly regulated the expressions of VEGFR, α-SMA, collagen I and collagen III. Finally, we showed that ADSCs-loaded β-ChNF hydrogel activated the TGFβ/smad signaling. The neutralization of TGFβ markedly reduced Smad phosphorylation and the expressions of TIMP1, VEGFR and α-SMA. Taken together, these findings suggest that ADSCs-loaded β-ChNF hydrogel promises for treating wounds that are challenge to heal via conventional methods. Graphical abstract.
Collapse
Affiliation(s)
- Ying Liu
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, 130117, China
- Emergency Medicine Department of General Hospital of Northern Theater Command, Laboratory of Rescue Center of Severe Wound and Trauma PLA, Shenyang, 110016, China
| | - Yunen Liu
- Emergency Medicine Department of General Hospital of Northern Theater Command, Laboratory of Rescue Center of Severe Wound and Trauma PLA, Shenyang, 110016, China
| | - Mi Wu
- Jihua Laboratory, Foshan, 528200, China
| | - Rufei Zou
- Jihua Laboratory, Foshan, 528200, China
| | - Shun Mao
- Emergency Medicine Department of General Hospital of Northern Theater Command, Laboratory of Rescue Center of Severe Wound and Trauma PLA, Shenyang, 110016, China
| | - Peifang Cong
- Emergency Medicine Department of General Hospital of Northern Theater Command, Laboratory of Rescue Center of Severe Wound and Trauma PLA, Shenyang, 110016, China
| | - Mingxiao Hou
- Emergency Medicine Department of General Hospital of Northern Theater Command, Laboratory of Rescue Center of Severe Wound and Trauma PLA, Shenyang, 110016, China
| | - Hongxu Jin
- Emergency Medicine Department of General Hospital of Northern Theater Command, Laboratory of Rescue Center of Severe Wound and Trauma PLA, Shenyang, 110016, China.
| | - Yan Zhao
- Jihua Laboratory, Foshan, 528200, China.
| | - Yongli Bao
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun, 130117, China.
| |
Collapse
|
7
|
Sirajudheen P, Poovathumkuzhi NC, Vigneshwaran S, Chelaveettil BM, Meenakshi S. Applications of chitin and chitosan based biomaterials for the adsorptive removal of textile dyes from water - A comprehensive review. Carbohydr Polym 2021; 273:118604. [PMID: 34561004 DOI: 10.1016/j.carbpol.2021.118604] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 08/11/2021] [Accepted: 08/20/2021] [Indexed: 12/29/2022]
Abstract
The presence of pollutants in the water bodies deteriorate the water quality and make it unfit for use. From an environmental perspective, it is essential to develop new technologies for the wastewater treatment and recycling of dye contaminated water. The surface modified chitin and chitosan biopolymeric composites based adsorbents, have an important role in the toxic organic dyes from removal wastewater. The surface modification of biopolymers with various organics and inorganics produces more active sites at the surface of the adsorbent, which enhances dye and adsorbent interaction more reliable. Herein, the work brought in the thought of the application of various chitin and chitosan composites in wastewater remediation and suggested the versatility in composites for the development of rapid, selective and effective removal processes for the detoxification of a variety of organic dyes. It further emphasizes the existing obstruction and impending prediction for the deprivation of dyes via adsorption techniques.
Collapse
Affiliation(s)
- Palliyalil Sirajudheen
- Department of Chemistry, The Gandhigram Rural Institute - Deemed to be University, Gandhigram - 624 302, Dindigul, Tamil Nadu, India; Department of Chemistry, Pocker Sahib Memorial Orphanage College, Tirurangadi - 676306, Malappuram, Kerala, India
| | | | - Sivakumar Vigneshwaran
- Department of Chemistry, The Gandhigram Rural Institute - Deemed to be University, Gandhigram - 624 302, Dindigul, Tamil Nadu, India; Department of Chemistry, Nadar Saraswathi College of Engineering and Technology, 11 Vadapudupatti- 625 531, Theni, Tamil Nadu, India
| | | | - Sankaran Meenakshi
- Department of Chemistry, The Gandhigram Rural Institute - Deemed to be University, Gandhigram - 624 302, Dindigul, Tamil Nadu, India.
| |
Collapse
|
8
|
Bayer IS. A Review of Sustained Drug Release Studies from Nanofiber Hydrogels. Biomedicines 2021; 9:1612. [PMID: 34829843 PMCID: PMC8615759 DOI: 10.3390/biomedicines9111612] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 10/31/2021] [Accepted: 11/02/2021] [Indexed: 12/19/2022] Open
Abstract
Polymer nanofibers have exceptionally high surface area. This is advantageous compared to bulk polymeric structures, as nanofibrils increase the area over which materials can be transported into and out of a system, via diffusion and active transport. On the other hand, since hydrogels possess a degree of flexibility very similar to natural tissue, due to their significant water content, hydrogels made from natural or biodegradable macromolecular systems can even be injectable into the human body. Due to unique interactions with water, hydrogel transport properties can be easily modified and tailored. As a result, combining nanofibers with hydrogels would truly advance biomedical applications of hydrogels, particularly in the area of sustained drug delivery. In fact, certain nanofiber networks can be transformed into hydrogels directly without the need for a hydrogel enclosure. This review discusses recent advances in the fabrication and application of biomedical nanofiber hydrogels with a strong emphasis on drug release. Most of the drug release studies and recent advances have so far focused on self-gelling nanofiber systems made from peptides or other natural proteins loaded with cancer drugs. Secondly, polysaccharide nanofiber hydrogels are being investigated, and thirdly, electrospun biodegradable polymer networks embedded in polysaccharide-based hydrogels are becoming increasingly popular. This review shows that a major outcome from these works is that nanofiber hydrogels can maintain drug release rates exceeding a few days, even extending into months, which is an extremely difficult task to achieve without the nanofiber texture. This review also demonstrates that some publications still lack careful rheological studies on nanofiber hydrogels; however, rheological properties of hydrogels can influence cell function, mechano-transduction, and cellular interactions such as growth, migration, adhesion, proliferation, differentiation, and morphology. Nanofiber hydrogel rheology becomes even more critical for 3D or 4D printable systems that should maintain sustained drug delivery rates.
Collapse
Affiliation(s)
- Ilker S Bayer
- Smart Materials, Istituto Italiano di Tecnologia, 16163 Genova, Italy
| |
Collapse
|
9
|
Peng W, Yan Y, Zhang D, Zhou Y, Na D, Xiao C, Yang C, Wen G, Zhang J. Preparation of thermal stable supported metal (Cu, Au, Pd) nanoparticles via cross-linking cellulose gel confinement strategy. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126809] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
10
|
Xing F, Chi Z, Yang R, Xu D, Cui J, Huang Y, Zhou C, Liu C. Chitin-hydroxyapatite-collagen composite scaffolds for bone regeneration. Int J Biol Macromol 2021; 184:170-180. [PMID: 34052273 DOI: 10.1016/j.ijbiomac.2021.05.019] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 04/19/2021] [Accepted: 05/02/2021] [Indexed: 01/01/2023]
Abstract
Bone defect is usually difficult to recover quickly, and bone scaffold transplantation is considered to be an effective method. Biomaterials have a wide range of application prospects in bone tissue repair, and the two key problems are the selection of materials and cells. The object of this study was to discuss the structural characteristics of bone scaffold materials and their effects on bone repair in vivo. The chitin-hydroxyapatite (HAP)-collagen composite scaffolds (CHCS) was prepared with epichlorohydrin (ECH) as crosslinking agent. The structure was characterized and the compressive strength, porosity, water absorbency and stability were investigated. The biocompatibility and osteogenic differentiation of CHCS in vitro were detected, and the effect of defect repair in vivo was evaluated. The results suggested that HAP not only enhanced the compressive strength of CHCS, but also promoted the formation of calcium nodules due to its bone conductivity. Histological staining showed that collagen promoted collagen deposition and new bone formation. X-ray images also indicated that CHCS transplantation accelerated bone repair. Therefore, CHCs has immense potential in bone regeneration.
Collapse
Affiliation(s)
- Fei Xing
- College of Marine Life Sciences, Ocean University of China, 266003 Qingdao, China
| | - Zhe Chi
- College of Marine Life Sciences, Ocean University of China, 266003 Qingdao, China
| | - Rongxue Yang
- College of Marine Life Sciences, Ocean University of China, 266003 Qingdao, China
| | - Derong Xu
- The Affiliated Hospital of Qingdao University, 266000 Qingdao, China
| | - Jiufa Cui
- The Affiliated Hospital of Qingdao University, 266000 Qingdao, China
| | - Yufen Huang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 30013 Hsinchu, Taiwan, Republic of China
| | - Chuanli Zhou
- The Affiliated Hospital of Qingdao University, 266000 Qingdao, China.
| | - Chenguang Liu
- College of Marine Life Sciences, Ocean University of China, 266003 Qingdao, China.
| |
Collapse
|
11
|
Olmos D, González-Benito J. Polymeric Materials with Antibacterial Activity: A Review. Polymers (Basel) 2021; 13:613. [PMID: 33670638 PMCID: PMC7922637 DOI: 10.3390/polym13040613] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 02/02/2021] [Accepted: 02/10/2021] [Indexed: 12/21/2022] Open
Abstract
Infections caused by bacteria are one of the main causes of mortality in hospitals all over the world. Bacteria can grow on many different surfaces and when this occurs, and bacteria colonize a surface, biofilms are formed. In this context, one of the main concerns is biofilm formation on medical devices such as urinary catheters, cardiac valves, pacemakers or prothesis. The development of bacteria also occurs on materials used for food packaging, wearable electronics or the textile industry. In all these applications polymeric materials are usually present. Research and development of polymer-based antibacterial materials is crucial to avoid the proliferation of bacteria. In this paper, we present a review about polymeric materials with antibacterial materials. The main strategies to produce materials with antibacterial properties are presented, for instance, the incorporation of inorganic particles, micro or nanostructuration of the surfaces and antifouling strategies are considered. The antibacterial mechanism exerted in each case is discussed. Methods of materials preparation are examined, presenting the main advantages or disadvantages of each one based on their potential uses. Finally, a review of the main characterization techniques and methods used to study polymer based antibacterial materials is carried out, including the use of single force cell spectroscopy, contact angle measurements and surface roughness to evaluate the role of the physicochemical properties and the micro or nanostructure in antibacterial behavior of the materials.
Collapse
Affiliation(s)
- Dania Olmos
- Department of Materials Science and Engineering and Chemical Engineering, Instituto de Química y Materiales Álvaro Alonso Barba (IQMAA), Universidad Carlos III de Madrid, Leganés, 28911 Madrid, Spain
| | - Javier González-Benito
- Department of Materials Science and Engineering and Chemical Engineering, Instituto de Química y Materiales Álvaro Alonso Barba (IQMAA), Universidad Carlos III de Madrid, Leganés, 28911 Madrid, Spain
| |
Collapse
|
12
|
Satitsri S, Muanprasat C. Chitin and Chitosan Derivatives as Biomaterial Resources for Biological and Biomedical Applications. Molecules 2020; 25:molecules25245961. [PMID: 33339290 PMCID: PMC7766609 DOI: 10.3390/molecules25245961] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 01/30/2023] Open
Abstract
Chitin is a long-chain polymer of N-acetyl-glucosamine, which is regularly found in the exoskeleton of arthropods including insects, shellfish and the cell wall of fungi. It has been known that chitin can be used for biological and biomedical applications, especially as a biomaterial for tissue repairing, encapsulating drug for drug delivery. However, chitin has been postulated as an inducer of proinflammatory cytokines and certain diseases including asthma. Likewise, chitosan, a long-chain polymer of N-acetyl-glucosamine and d-glucosamine derived from chitin deacetylation, and chitosan oligosaccharide, a short chain polymer, have been known for their potential therapeutic effects, including anti-inflammatory, antioxidant, antidiarrheal, and anti-Alzheimer effects. This review summarizes potential utilization and limitation of chitin, chitosan and chitosan oligosaccharide in a variety of diseases. Furthermore, future direction of research and development of chitin, chitosan, and chitosan oligosaccharide for biomedical applications is discussed.
Collapse
|
13
|
Ding X, Yu W, Wan Y, Yang M, Hua C, Peng N, Liu Y. A pH/ROS-responsive, tumor-targeted drug delivery system based on carboxymethyl chitin gated hollow mesoporous silica nanoparticles for anti-tumor chemotherapy. Carbohydr Polym 2020; 245:116493. [DOI: 10.1016/j.carbpol.2020.116493] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/06/2020] [Accepted: 05/18/2020] [Indexed: 01/04/2023]
|
14
|
Balitaan JNI, Hsiao CD, Yeh JM, Santiago KS. Innovation inspired by nature: Biocompatible self-healing injectable hydrogels based on modified-β-chitin for wound healing. Int J Biol Macromol 2020; 162:723-736. [PMID: 32553972 DOI: 10.1016/j.ijbiomac.2020.06.129] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/10/2020] [Accepted: 06/12/2020] [Indexed: 12/24/2022]
Abstract
Remarkable properties of hydrogels are compromised by failure to recover from damage, bringing their intended functions to an end. To address this, hydrogels can be functionalized with self-healing property to enable them to restore themselves after damage, thus, extending their lifetime. Herein, hydrogels were prepared by cross-linking acrylamide-modified β-chitin (Am-β-Chn) with alginate dialdehyde (ADA) to form Schiff base, showing IR characteristic peak at 1650 cm-1, attributed to the stretching vibration of CN. The dynamic Schiff base and H-bond rendered the double crosslinked hydrogels self-healing as demonstrated by continuous step strain rheology. Characterization of the hydrogels revealed excellent biocompatibility, biodegradability, injectability and self-healing properties. Furthermore, the wound healing property of the hydrogels was investigated in vivo using zebrafish as a model system. Indirect application of Am-β-Chn/ADA hydrogel remarkably led to ~87% wound healing as compared to control which gave ~50%, suggesting that hydrogels are effective in accelerating wound healing. However, a clear understanding of the exact mechanism of its wound healing property remains to be investigated. To the best of our knowledge, this is the first innovation of developing novel double crosslinked Am-β-Chn/ADA hydrogels with both self-healing and accelerated wound healing properties, directly from marine-food wastes.
Collapse
Affiliation(s)
- Jolleen Natalie I Balitaan
- The Graduate School, University of Santo Tomas, España Boulevard, Manila 1008, Philippines; Department of Chemistry, College of Science, España Boulevard, Manila 1008, Philippines
| | - Chung-Der Hsiao
- Department of Bioscience Technology, Chung Yuan Christian University, Chung Li 32023, Taiwan, ROC
| | - Jui-Ming Yeh
- Department of Chemistry, Chung Yuan Christian University, Chung Li 32023, Taiwan, ROC; Center for Nanotechnology, Chung Yuan Christian University, Chung Li 32023, Taiwan, ROC; R&D Center for Membrane Technology, Chung Yuan Christian University, Chung Li 32023, Taiwan, ROC
| | - Karen S Santiago
- The Graduate School, University of Santo Tomas, España Boulevard, Manila 1008, Philippines; Department of Chemistry, College of Science, España Boulevard, Manila 1008, Philippines; Research Center for Natural and Applied Sciences, University of Santo Tomas, España Boulevard, Manila 1008, Philippines.
| |
Collapse
|
15
|
Stojkovska J, Zvicer J, Obradovic B. Preclinical functional characterization methods of nanocomposite hydrogels containing silver nanoparticles for biomedical applications. Appl Microbiol Biotechnol 2020; 104:4643-4658. [DOI: 10.1007/s00253-020-10521-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 01/04/2020] [Accepted: 03/03/2020] [Indexed: 12/20/2022]
|
16
|
Venkateshaiah A, Padil VV, Nagalakshmaiah M, Waclawek S, Černík M, Varma RS. Microscopic Techniques for the Analysis of Micro and Nanostructures of Biopolymers and Their Derivatives. Polymers (Basel) 2020; 12:E512. [PMID: 32120773 PMCID: PMC7182842 DOI: 10.3390/polym12030512] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 02/21/2020] [Accepted: 02/24/2020] [Indexed: 02/07/2023] Open
Abstract
Natural biopolymers, a class of materials extracted from renewable sources, is garnering interest due to growing concerns over environmental safety; biopolymers have the advantage of biocompatibility and biodegradability, an imperative requirement. The synthesis of nanoparticles and nanofibers from biopolymers provides a green platform relative to the conventional methods that use hazardous chemicals. However, it is challenging to characterize these nanoparticles and fibers due to the variation in size, shape, and morphology. In order to evaluate these properties, microscopic techniques such as optical microscopy, atomic force microscopy (AFM), and transmission electron microscopy (TEM) are essential. With the advent of new biopolymer systems, it is necessary to obtain insights into the fundamental structures of these systems to determine their structural, physical, and morphological properties, which play a vital role in defining their performance and applications. Microscopic techniques perform a decisive role in revealing intricate details, which assists in the appraisal of microstructure, surface morphology, chemical composition, and interfacial properties. This review highlights the significance of various microscopic techniques incorporating the literature details that help characterize biopolymers and their derivatives.
Collapse
Affiliation(s)
- Abhilash Venkateshaiah
- Department of Nanomaterials in Natural Sciences, Institute for Nanomaterials, Advanced Technology and Innovation, Technical University of Liberec, 461 17 Liberec, Czech Republic; (A.V.); (S.W.)
| | - Vinod V.T. Padil
- Department of Nanomaterials in Natural Sciences, Institute for Nanomaterials, Advanced Technology and Innovation, Technical University of Liberec, 461 17 Liberec, Czech Republic; (A.V.); (S.W.)
| | - Malladi Nagalakshmaiah
- IMT Lille Douai, Department of Polymers and Composites Technology and Mechanical Engineering (TPCIM), 941 rue Charles Bourseul, CS10838, F-59508 Douai, France
| | - Stanisław Waclawek
- Department of Nanomaterials in Natural Sciences, Institute for Nanomaterials, Advanced Technology and Innovation, Technical University of Liberec, 461 17 Liberec, Czech Republic; (A.V.); (S.W.)
| | - Miroslav Černík
- Department of Nanomaterials in Natural Sciences, Institute for Nanomaterials, Advanced Technology and Innovation, Technical University of Liberec, 461 17 Liberec, Czech Republic; (A.V.); (S.W.)
| | - Rajender S. Varma
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacký University in Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| |
Collapse
|
17
|
Ouadil B, Amadine O, Essamlali Y, Cherkaoui O, Zahouily M. A new route for the preparation of hydrophobic and antibacterial textiles fabrics using Ag-loaded graphene nanocomposite. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.123713] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
18
|
One-pot green route synthesis of silver nanoparticles from jack fruit seeds and their antibacterial activities with escherichia coli and salmonella bacteria. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101241] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|