1
|
Hwang G, Kim D. Transport and retention of positively charged zinc oxide nanoparticles in saturated porous media: Effects of metal oxides and clays. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 351:124007. [PMID: 38677461 DOI: 10.1016/j.envpol.2024.124007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/27/2024] [Accepted: 04/16/2024] [Indexed: 04/29/2024]
Abstract
The effects of metal oxides and clays on the transport of zinc oxide nanoparticles (ZnO-NPs) in saturated porous media were investigated under different ionic strength (IS) conditions. We studied the transport and retention behavior of ZnO-NPs for different types of porous media (untreated, acid treated, and acid-salt treated sand). The selected untreated sand was used as a representative sand, coated with both metal oxide and clay. The acid treated and acid-salt-treated sands were used and compared to investigate the effects of clays on the surface of the sand. In addition, the effects of clay particles in bulk solutions on the mobility and retention of ZnO-NPs were observed using bentonite as a representative clay particle. We found that the increased mobility of positively charged ZnO-NPs can be attributed to increasing charge heterogeneity of silica sand with metal oxides (mainly, iron oxide) and clays in untreated sand. No breakthrough of ZnO-NP was observed for acid-treated (presence of clays and absence of metal oxides) and acid-salt-treated sand (absence of both metal oxide and clays). Most of the injected ZnO-NPs were deposited on the surface of the sand near the column inlet. The transport of bentonite-facilitated ZnO-NPs was improved at the lowest IS (0.1 mM) (∼20%), whereas there was no difference in the mobility of ZnO-NPs at high IS solutions (1 mM and 10 mM). In particular, the breakthrough amount improved with increasing bentonite concentration. Classical Derjaguin-Landau-Verwey-Overbeek interactions help explain observed interactions between ZnO-NPs and sand as well as bentonite and sand.
Collapse
Affiliation(s)
- Gukhwa Hwang
- Department of Mineral Resources and Energy Engineering, Jeonbuk National University, Jeonju, Jeonbuk-do, 54896, Republic of Korea; Research Institute for Energy and Mineral Resources Development, Jeonbuk National University, Jeonju, Jeonbuk-do, 54896, Republic of Korea.
| | - Donghyun Kim
- Resources Utilization Division, Korea Institute of Geoscience & Mineral Resources, Daejeon, 34132, Republic of Korea
| |
Collapse
|
2
|
Yang X, Huang G, Feng Q, An C, Zhou S, Bi H, Lyu L. Unveiling the Vertical Migration of Microplastics with Suspended Particulate Matter in the Estuarine Environment: Roles of Salinity, Particle Properties, and Hydrodynamics. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:2944-2955. [PMID: 38306690 DOI: 10.1021/acs.est.3c08186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2024]
Abstract
The estuary is an energetic area connecting the inland, river, and ocean. The migration of microplastics (MPs) in this highly complex area is tied to the entire ecosystem. In this study, the effects of cohesive SPM (clay) and noncohesive SPM (sand) on the vertical migration of positively buoyant MPs, polyethylene (PE), and negatively buoyant MPs, polytetrafluoroethylene (PTFE), in the estuarine environment under hydrodynamic disturbances were investigated. The settling of positively buoyant MPs was more reliant on the cohesive SPM compared to the settling of negatively buoyant MPs. Moreover, MPs interacting with the SPM mixture at a clay-to-sand ratio of 1:9 settled more efficiently than those interacting with clay alone. A significant positive correlation was observed between MP settling percentage and the salinity level. MP settling percentage was significantly negatively correlated with fluid shear stress for both types of MPs, meanwhile, negatively buoyant MPs were able to resist greater hydraulic disturbances. In the low-energy mixing state, for both types of MPs, the settling percentage reached about 50% in only 10 min. The resuspension process of MPs under hydrodynamic disturbances was also uncovered. Additionally, the migration and potential sites of MPs were described in the context of prevalent environmental phenomena in estuaries.
Collapse
Affiliation(s)
- Xiaohan Yang
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, QC H3G 1M8, Canada
| | - Guohe Huang
- Environmental Systems Engineering, Faculty of Engineering and Applied Science, University of Regina, Regina, SK S4S 0A2, Canada
| | - Qi Feng
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, QC H3G 1M8, Canada
| | - Chunjiang An
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, QC H3G 1M8, Canada
| | - Siyuan Zhou
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, QC H3G 1M8, Canada
| | - Huifang Bi
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, QC H3G 1M8, Canada
| | - Linxiang Lyu
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, QC H3G 1M8, Canada
| |
Collapse
|
3
|
Wu Y, Cheng Z, Wu M, Hao Y, Lu G, Mo C, Li Q, Wu J, Wu J, Hu BX. Quantification of two-site kinetic transport parameters of polystyrene nanoplastics in porous media. CHEMOSPHERE 2023; 338:139506. [PMID: 37453519 DOI: 10.1016/j.chemosphere.2023.139506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 07/04/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
In this study, a combination of column experiments, interface chemistry theory and transport model with two-site kinetics was used to systematically investigate the effect of pH on the transport of polystyrene nanoparticles (PSNPs) in porous media. The porous media containing quartz sand (QS) and three kinds of clay minerals (CMs)-kaolinite (KL), illite (IL) and montmorillonite (MT), was used in column experiments to simulate the porous media in the soil-groundwater systems. Experimental results showed that the inhibitory effect of CMs on the transport of PSNPs is weakened as pH increases. The two-dimensional (2D) surface of the DLVO interaction energy (2D-pH-DLVO) was built to calculate the interactions between PSNPs and CMs under different conditions of pH. Results suggested the inflection point of PSNP-QS, PSNP-KL, PSNP-IL and PSNP-MT are 2.42, 3.30, 2.84 and 3.69, respectively. Most importantly, there was a significant correlation between the two-site kinetic parameters related to PSNPs transport and the DLVO energy barrier (DB). The contributions of the interactions of PSNPs-PSNPs and PSNPs-minerals were determined for PSNPs transport in porous media. The critical values of pH related to the migration ability of PSNPs in porous media could be determined by a combination of column experiments, 2D-pH-DLVO and PSNPs transport model. The critical values of pH were 2.95-3.01, 3.22-3.51, 2.98-3.02, 3.31-3.33 for the migration ability of PSNPs in QS, QS + KL, QS + IL and QS + MT porous media, respectively. The stronger migration ability of PSNPs under high pH conditions is attributed to the enhanced deprotonation of the media surface and increased negative surface charge, which increases the electrostatic repulsion between PSNPs and porous media (QS, CMs). Moreover, the agglomeration of PSNPs usually is weaker and the average particle size of agglomerates is smaller under the condition of high pH, thus leading to the stronger migration ability of PSNPs under high pH conditions.
Collapse
Affiliation(s)
- Yuheng Wu
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Zhou Cheng
- Guangdong Provincial Academy of Environmental Science, Guangzhou, 510045, China
| | - Ming Wu
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China; Key Laboratory of Surficial Geochemistry, Ministry of Education, Department of Hydrosciences, School of Earth Sciences and Engineering, Nanjing University, Nanjing, 210023, China; Guangdong Yixin Ecological Technology Co., Ltd, Guangzhou, 510055, China.
| | - Yanru Hao
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Guoping Lu
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Cehui Mo
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China
| | - Qusheng Li
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China
| | - Jianfeng Wu
- Key Laboratory of Surficial Geochemistry, Ministry of Education, Department of Hydrosciences, School of Earth Sciences and Engineering, Nanjing University, Nanjing, 210023, China
| | - Jichun Wu
- Key Laboratory of Surficial Geochemistry, Ministry of Education, Department of Hydrosciences, School of Earth Sciences and Engineering, Nanjing University, Nanjing, 210023, China
| | - Bill X Hu
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou, 510632, China; School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| |
Collapse
|
4
|
Chang B, He B, Cao G, Zhou Z, Liu X, Yang Y, Xu C, Hu F, Lv J, Du W. Co-transport of polystyrene microplastics and kaolinite colloids in goethite-coated quartz sand: Joint effects of heteropolymerization and surface charge modification. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 884:163832. [PMID: 37121313 DOI: 10.1016/j.scitotenv.2023.163832] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/15/2023] [Accepted: 04/25/2023] [Indexed: 05/07/2023]
Abstract
This study investigated the transport behavior of polystyrene microplastics (MPs) in saturated quartz sand and goethite-coated sand in the presence of coexisting kaolinite colloids. Column experiments were conducted under a wide range of solution chemistry conditions, including pH levels of 6.0, 7.0, and 9.0, as well as background Na+ concentrations of 5 mM and 25 mM. We found that: (1) The individual transport of MPs in porous media diminished both with increasing background ion strength and decreasing pH, and its transport ability was significantly dominated by the interactions between MPs and porous media rather than the interplay between MPs, which has been further corroborated by the aggregation stability experiments of MPs particles. (2) MPs had a much lower ability to move through goethite-coated sand columns than quartz sand columns. This is because goethite coating reduces the repulsion energy barriers between porous media and MPs. The increased specific surface area and surface complexity of sand columns after goethite coating should also account for this difference. (3) MPs transport would be subjected to the differentiated impact of co-transported kaolinite colloids in the two types of porous media. The promotion effect of kaolinite colloid on MPs' transport capacity is not significantly affected by background ionic strength changes when quartz sand is served as the porous medium; however, the promotion effect is highly correlated with the background ionic strength when goethite-coated sand is served as the porous medium. In comparison with low background ionic strength conditions, kaolinite colloids under high background ionic strength conditions significantly facilitated MPs transport. This is mainly because under high background ionic conditions, kaolinite colloids are more likely to be deposited on the surface of goethite-covered sand, competing with MPs for the limited deposition sites. The extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) theory is applicable to describe the transport behavior of MPs.
Collapse
Affiliation(s)
- Bokun Chang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Bing He
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Gang Cao
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Soil Physics and Land Management Group, Wageningen University & Research, 6700 AA Wageningen, The Netherlands
| | - Zhiying Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Xiaoqi Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Yajun Yang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Chenyang Xu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Feinan Hu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling 712100, China
| | - Jialong Lv
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China.
| | - Wei Du
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
5
|
Li M, Zhang X, Yi K, He L, Han P, Tong M. Transport and deposition of microplastic particles in saturated porous media: Co-effects of clay particles and natural organic matter. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 287:117585. [PMID: 34147776 DOI: 10.1016/j.envpol.2021.117585] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/08/2021] [Accepted: 06/10/2021] [Indexed: 06/12/2023]
Abstract
Natural colloids such as clays and natural organic matter (NOM) are universally present in environments, which could interact with microplastics (MPs) and thus alter the fate and transport of MPs in porous media. The co-effects of clays and NOM on MPs transport in saturated porous media were systematically explored at both low and high ionic strength (IS) conditions. Specifically, bentonite and humic acid (HA) were employed as representative clays and NOM. 5 mM NaCl and 1 mM CaCl2 solutions were used as low IS conditions, while 25 mM NaCl and 5 mM CaCl2 solutions were employed as high IS conditions. We found that formation of MPs-bentonite heteroaggregates had great effects on MPs transport under different conditions. Without HA, the small MPs-bentonite heteroaggregates formed under low IS increased MPs transport via serving as mobile carriers, while larger MPs-bentonite heteroaggregates formed at high IS led to the decreased MPs mobility. When both HA and bentonite were copresent in MPs suspension, we found that HA could inhibit the formation of larger sized MPs-bentonite heteroaggregates. Particularly, when the two types of natural colloids copresent in MPs suspensions, MPs transport behaviors were similar to those with only bentonite present in MPs suspensions at low IS, while MPs transport was greatly increased at high IS comparing with those only with bentonite in suspensions. Clearly, without HA in suspensions, bentonite played the dominant role on MPs transport under all examined conditions concerned in this study. Instead, when both HA and bentonite copresent in MPs suspensions, MPs transport was mainly controlled by bentonite at low IS, while both bentonite and HA had major contributions at high IS. The results showed that under solution conditions concerned in present study, MPs mobility in porous media would be greatly affected (either enhanced or inhibited) by the two types of natural colloids.
Collapse
Affiliation(s)
- Meng Li
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China
| | - Xiangwei Zhang
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China
| | - Kexin Yi
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China
| | - Lei He
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China
| | - Peng Han
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China
| | - Meiping Tong
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China.
| |
Collapse
|
6
|
Simonin M, Martins JMF, Uzu G, Spadini L, Navel A, Richaume A. Low mobility of CuO and TiO 2 nanoparticles in agricultural soils of contrasting texture and organic matter content. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 783:146952. [PMID: 33866176 DOI: 10.1016/j.scitotenv.2021.146952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 03/31/2021] [Accepted: 03/31/2021] [Indexed: 06/12/2023]
Abstract
The fate of nanoparticles (NPs) in soil under relevant environmental conditions is still poorly understood. In this study, the mobility of two metal-oxide nanoparticles (CuO and TiO2) in contrasting agricultural soils was investigated in water-saturated soil columns. The transport of TiO2 and CuO-NPs were assessed in six soils with three different textures (from sand to clay) and two contrasted organic matter (OM) contents for each texture. TiO2 mobility was very low in all soils, regardless of texture and OM content. Mass recoveries were always less than 5%, probably in relation with the strong homo-aggregation of TiO2-NPs observed in all soil solutions, with apparent sizes 3-6 times larger than their nominal size. This low mobility suggests that TiO2-NPs present a low risk of direct groundwater contamination in contrasted surface soils. Although their retention was also generally high (more than 86%), CuO nanoparticles were found to be mobile in all soils. This is probably related to their smaller apparent size and low capacity of homo-aggregation of CuO-NPs in all soil solutions. No clear influence of neither soil texture or soil total organic matter content could be observed on CuO transport. However, this study shows that in contrasted agricultural soils, CuO-NPs transport is mainly controlled by the solutes dissolved in soil solution (DOC and PO4 species), rather than by the properties of the soil solid phase.
Collapse
Affiliation(s)
- Marie Simonin
- Univ. Grenoble Alpes, CNRS, G-INP, IRD, IGE, F-38000 Grenoble, France; Univ. Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, F 69622 Villeurbanne, France
| | - Jean M F Martins
- Univ. Grenoble Alpes, CNRS, G-INP, IRD, IGE, F-38000 Grenoble, France.
| | - Gaëlle Uzu
- Univ. Grenoble Alpes, CNRS, G-INP, IRD, IGE, F-38000 Grenoble, France
| | - Lorenzo Spadini
- Univ. Grenoble Alpes, CNRS, G-INP, IRD, IGE, F-38000 Grenoble, France
| | - Aline Navel
- Univ. Grenoble Alpes, CNRS, G-INP, IRD, IGE, F-38000 Grenoble, France
| | - Agnès Richaume
- Univ. Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, F 69622 Villeurbanne, France
| |
Collapse
|
7
|
Li Y, Wang M, Zhang Y, Koopal LK, Tan W. Goethite effects on transport and activity of lysozyme with humic acid in quartz sand. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
8
|
Wang Y, Wan Q, Liu B, Wei Z, Zhang M, Tang Y. Co-transport and competitive retention of different ionic rare earth elements (REEs) in quartz sand: Effect of kaolinite. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 722:137779. [PMID: 32208243 DOI: 10.1016/j.scitotenv.2020.137779] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 03/01/2020] [Accepted: 03/05/2020] [Indexed: 06/10/2023]
Abstract
The increasing excavation and utilization of rare earth elements (REEs) have resulted in an elevated release of these elements into the environment. Therefore, investigating the transport behavior of REEs is critical for a comprehensive understanding of their geochemical cycles and to propose potential pollution control strategies. This study investigated the transport, co-transport, and competitive retention of three REEs: La (a light REE), Gd (a middle REE), and Yb (a heavy REE), as well as the co-transport of REEs and kaolinite (a representative clay mineral) in porous media. Both observed and simulated breakthrough curves and retention profiles demonstrated that all ionic REEs exhibited considerable breakthrough and slight retention with almost uniform shapes in quartz sand (QS) owing to the weak affinity of ionic REEs to QS. The breakthrough of REEs in all experiments followed the order of La > Gd > Yb, indicating that REE breakthrough increased with decreasing atomic number. The same elements exhibited their highest breakthrough during the co-transport of the three REEs, followed by co-transport of two REEs, and finally single transport. Furthermore, mathematical modeling indicated that the retention of REEs in QS was a predominantly kinetic process, whereby competitive blocking was the dominant mechanism for the enhanced breakthrough of REEs during co-transport, as compared to single transport. The co-transport of REEs and kaolinite demonstrated that kaolinite has a slight influence on the transport of REEs in QS under adsorption kinetics. However, REEs inhibited the transport and strongly enhanced the retention of kaolinite in QS due to a decreasing electrostatic repulsion between kaolinite and QS in the presence of REEs, even if the adsorption of REEs onto kaolinite was weak under adsorption kinetics. Therefore, this study increases our understanding of the transport mechanisms of REEs in the environment.
Collapse
Affiliation(s)
- Yujie Wang
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Quan Wan
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Beibei Liu
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Zikai Wei
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Miaoyue Zhang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China.
| | - Yetao Tang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
9
|
Rastghalam ZS, Yan C, Shang J, Cheng T. The role of Fe oxyhydroxide coating, illite clay, and peat moss in nanoscale titanium dioxide (nTiO 2) retention and transport in geochemically heterogeneous media. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 257:113625. [PMID: 31806460 DOI: 10.1016/j.envpol.2019.113625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 09/26/2019] [Accepted: 11/12/2019] [Indexed: 06/10/2023]
Abstract
Natural media such as soil and sediment contain mineralogical and organic components with distinct chemical, surface, and electrostatic properties. To better understand the role of various soil and sediment components on particle transport, columns were packed with quartz sand and natural sediment with added Fe oxyhydroxide coating, illite clay, and peat moss to investigate how these added components influence nTiO2 retention and transport in geochemically heterogeneous medium. Results showed that nTiO2 transport was low at pH 5, attributable to the electrostatic attraction between positively-charged nTiO2 and negatively-charged medium. While illite did not notably affect nTiO2 transport at pH 5, Fe oxyhydroxide coating increased nTiO2 transport due to electrostatic repulsion between Fe oxyhydroxide and nTiO2. Peat moss also increased nTiO2 transport at pH 5, attributable to the increased DOC concentration, which resulted in higher DOC adsorption to nTiO2 and intensified electrostatic repulsion between nTiO2 and the medium. At pH 9, nTiO2 transport was high due to the electrostatic repulsion between negatively-charged nTiO2 and medium surfaces. Fe oxyhydroxide coating at pH 9 slightly delayed nTiO2 transport due to electrostatic attraction, while illite clay and peat moss substantially inhibited nTiO2 transport via straining/entrapment or electrostatic attraction. Overall, this study demonstrated that pH has a considerable effect on how minerals and organic components of a medium influence nTiO2 transport. At low pH, electrostatic attraction was the dominant mechanism, therefore, nTiO2 mobility was low regardless of the differences in mineralogical and organic components. Conversely, nTiO2 mobility was high at high pH and nTiO2 retention was dominated by straining/entrapment and sensitive to the mineralogical and organic composition of the medium.
Collapse
Affiliation(s)
- Zahra Sadat Rastghalam
- Department of Earth Sciences, Memorial University, St. John's, Newfoundland and Labrador, A1B 3X5, Canada
| | - Chaorui Yan
- Department of Soil and Water Sciences, China Agricultural University, Beijing, 100193, China
| | - Jianying Shang
- Department of Soil and Water Sciences, China Agricultural University, Beijing, 100193, China
| | - Tao Cheng
- Department of Earth Sciences, Memorial University, St. John's, Newfoundland and Labrador, A1B 3X5, Canada.
| |
Collapse
|