1
|
Wang B, Hu H, Huang D, Tao Y. Study on uranium ion adsorption property of porous glass modified with amidoxime group. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:26204-26216. [PMID: 38498136 DOI: 10.1007/s11356-024-32943-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/11/2024] [Indexed: 03/20/2024]
Abstract
In this paper, we prepared three types of porous glasses (PGs) with specific surface areas of 311.60 m2/g, 277.60 m2/g, and 231.38 m2/g, respectively, via borosilicate glass phase separation. These glasses were further modified with amidoxime groups (AO) using the hydroxylamine method, yielding adsorbents named 1.5-PG-AO, 2-PG-AO, and 3-PG-AO. The adsorption performance of these adsorbents under various conditions was investigated, including sorption kinetics and adsorption mechanisms. The results reveal that the number of micropores and specific surface area of PG are significantly reduced after AO modification. All three adsorbents exhibit similar adsorption capabilities. Particularly, pH has a pronounced effect on U (VI) adsorption of PG-AO, with a maximum value at pH = 4.5. Equilibrium adsorption is achieved within 2 h, with a maximum adsorption capacity of 129 mg/g. Notably, a uranium removal rate of 99.94% is attained. Furthermore, the adsorbents show high selectivity in uranium solutions containing Na+ or K+. Moreover, the adsorbents demonstrate exceptional regeneration ability, with the removal rate remaining above 80% even after undergoing five adsorption-desorption cycles. The adsorption reaction of uranium on PG-AO involves a combination of multiple processes, with monolayer chemisorption being the dominant mechanism. Both the complex adsorption of AO and the ion exchange and physical adsorption of PG contribute to the adsorption of uranyl ions on the PG-AO adsorbents.
Collapse
Affiliation(s)
- Bingxin Wang
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, 421001, People's Republic of China
| | - Hongyuan Hu
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, 421001, People's Republic of China
| | - Difei Huang
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, 421001, People's Republic of China
| | - Yuqiang Tao
- School of Chemistry and Chemical Engineering, University of South China, Hengyang, 421001, People's Republic of China.
- Hunan Key Laboratory for the Design and Application of Actinide Complexes, Hengyang, 421001, People's Republic of China.
| |
Collapse
|
2
|
Mulkapuri S, Siddikha A, Ravi A, Saha P, Kumar AV, Boodida S, Vithal M, Das SK. Electrocatalytic Hydrogen Evolution by a Uranium(VI) Polyoxometalate: an Environmental Toxin for Sustainable Energy Generation. Inorg Chem 2023; 62:19664-19676. [PMID: 37967464 DOI: 10.1021/acs.inorgchem.3c03018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
The uranyl ion (UO2)2+, a uranium nuclear waste, is one of the serious contaminants in our ecosystem because of its radioactivity, relevant human activities, and highly mobile and complex nature of living cells. In this article, we have reported the synthesis and structural characterization of an uranyl cation-incorporated polyoxometalate (POM) compound, K10[{K4(H2O)6}{UO2}2(α-PW9O34)2]·13H2O (1), in which the uranyl cations are complexed with an in situ generated [α-PW9O34]9- cluster. Single-crystal X-ray diffraction (SCXRD) analysis of compound 1 reveals that the uranyl-potassium complex cationic species, [{K4(H2O)6}{UO2}2]8+, is sandwiched by two [α-PW9O34]9- clusters resulting in a Dawson type of POM. Compound 1 was further characterized by inductively coupled plasma optical emission spectroscopy (ICP-OES) analysis and infrared (IR), Raman, electronic absorption, and solid-state photoluminescence spectral studies. IR stretching vibrations at 895 and 856 cm-1 and the Raman signature peak at 792 cm-1 in the IR and Raman spectra of compound 1 primarily confirm the presence of a trans-[O═U═O]2+ ion. The solid-state photoluminescence spectrum of 1 exhibits a typical vibronic structure, resulting from symmetrical vibrations of [O═U═O]2+ bands, corresponding to the electronic transitions of S11 → S10 and S10 → S0υ (υ = 0-3). Interestingly, title compound 1 shows efficient electrocatalytic hydrogen evolution by water reduction with low Tafel slope values of 186.59 and 114.83 mV dec-1 at 1 mA cm-2 along with optimal Faradaic efficiency values of 82 and 87% at neutral pH and in acidic pH 3, respectively. Detailed electrochemical analyses reveal that the catalytic hydrogen evolution reaction (HER) activity mediated by compound 1 is associated with the UVI/UV redox couple of the POM. The microscopic as well as routine spectral analyses of postelectrode samples and controlled experiments have confirmed that compound 1 behaves like a true molecular electrocatalyst for the HER. To our knowledge, this is the first paradigm of a uranium-containing polyoxometalate that exhibits electrocatalytic water reduction to molecular H2. In a nutshell, an environmental toxin (a uranium-oxo compound) has been demonstrated to be utilized as an efficient electrocatalyst for hydrogen generation from water, a green approach of sustainable energy production.
Collapse
Affiliation(s)
- Sateesh Mulkapuri
- School of Chemistry, University of Hyderabad, P. O. Central University, Hyderabad 500046, India
| | - Asha Siddikha
- School of Chemistry, University of Hyderabad, P. O. Central University, Hyderabad 500046, India
- Department of Chemistry, JNTUH University College of Engineering, Science and Technology, Hyderabad 500085, India
- Department of Chemistry, Osmania University, Hyderabad 500 007, India
| | - Athira Ravi
- School of Chemistry, University of Hyderabad, P. O. Central University, Hyderabad 500046, India
| | - Pinki Saha
- School of Chemistry, University of Hyderabad, P. O. Central University, Hyderabad 500046, India
| | - Avulu Vinod Kumar
- School of Chemistry, University of Hyderabad, P. O. Central University, Hyderabad 500046, India
| | - Sathyanarayana Boodida
- Department of Chemistry, JNTUH University College of Engineering, Science and Technology, Hyderabad 500085, India
| | - Muga Vithal
- Department of Chemistry, Osmania University, Hyderabad 500 007, India
| | - Samar K Das
- School of Chemistry, University of Hyderabad, P. O. Central University, Hyderabad 500046, India
| |
Collapse
|
3
|
Xiao Y, Helal AS, Mazario E, Mayoral A, Chevillot-Biraud A, Decorse P, Losno R, Maurel F, Ammar S, Lomas JS, Hémadi M. Functionalized maghemite nanoparticles for enhanced adsorption of uranium from simulated wastewater and magnetic harvesting. ENVIRONMENTAL RESEARCH 2023; 216:114569. [PMID: 36244439 DOI: 10.1016/j.envres.2022.114569] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/05/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Maghemite (γ-Fe2O3) nanoparticles (MNPs) were functionalized with 3-aminopropyltriethoxysilane (APTES) to give APTES@Fe2O3 (AMNP) which was then reacted with diethylenetriamine-pentaacetic acid (DTPA) to give a nanohybrid DTPA-APTES@Fe2O3 (DAMNP). Nano-isothermal titration calorimetry shows that DTPA complexation with uranyl ions in water is exothermic and has a stoichiometry of two DTPA to three uranyl ions. Density functional theory calculations indicate the possibility of several complexes between DTPA and UO22+ with different stoichiometries. Interactions between uranyl ions and DAMNP functional groups are revealed by X-photoelectron and Fourier transform infrared spectroscopies. Spherical aberration-corrected Scanning Transmission Electron Microscopy visualizes uranium on the particle surface. Adsorbent performance metrics were evaluated by batch adsorption studies under different conditions of pH, initial uranium concentration and contact time, and the results expressed in terms of equilibrium adsorption capacities (qe) and partition coefficients (PC). By either criterion, performance increases from MNP to AMNP to DAMNP, with the maximum uptake at pH 5.5 in all cases: MNP, qe = 63 mg g-1, PC = 127 mg g-1 mM-1; AMNP, qe = 165 mg g-1, PC = 584 mg g-1 mM-1; DAMNP, qe = 249 mg g-1, PC = 2318 mg g-1 mM-1 (at 25 °C; initial U concentration 0.63 mM; 5 mg adsorbent in 10 mL of solution; contact time, 3 h). The pH maximum is related to the predominance of mono- and di-cationic uranium species. Uptake by DAMNPs follows a pseudo-first-order or pseudo-second-order kinetic model and fits a variety of adsorption models. The maximum adsorption capacity for DAMNPs is higher than for other functionalized magnetic nanohybrids. This adsorbent can be regenerated and recycled for at least 10 cycles with less than 10% loss in activity, and shows high selectivity. These findings suggest that DAMNP could be a promising adsorbent for the recovery of uranium from nuclear wastewaters.
Collapse
Affiliation(s)
- Yawen Xiao
- Université Paris Cité, CNRS, ITODYS, F-75013, Paris, France
| | - Ahmed S Helal
- Université Paris Cité, CNRS, ITODYS, F-75013, Paris, France; Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, USA; Nuclear Materials Authority, P.O. Box 540, El Maadi, Cairo, Egypt
| | - Eva Mazario
- Université Paris Cité, CNRS, ITODYS, F-75013, Paris, France
| | - Alvaro Mayoral
- Universidad de Zaragoza Instituto de Nanociencia de Aragón Zaragoza, Aragon, Spain
| | | | | | - Rémi Losno
- Université Paris Cité, Institut de Physique du Globe de Paris, CNRS, F-75005, Paris, France
| | | | - Souad Ammar
- Université Paris Cité, CNRS, ITODYS, F-75013, Paris, France
| | - John S Lomas
- Université Paris Cité, CNRS, ITODYS, F-75013, Paris, France
| | - Miryana Hémadi
- Université Paris Cité, CNRS, ITODYS, F-75013, Paris, France.
| |
Collapse
|
4
|
Chen Q, Xue X, Liu Y, Guo A, Chen K, Yin J, Yu F, Zhu H, Guo X. Shear-induced fabrication of SiO 2 nano-meshes for efficient uranium capture. JOURNAL OF HAZARDOUS MATERIALS 2022; 438:129524. [PMID: 35999738 DOI: 10.1016/j.jhazmat.2022.129524] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 06/17/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
The extraction of uranium from seawater and the safe treatment of wastewater containing uranium (VI) were important to ensure the sustainable development of nuclear-related energy sources. Two-dimensional silica nanomaterials have been extensively investigated in the field of uranium adsorption due to their high adsorption capacity, short equilibration times, and easily modified surface groups. However, the two-dimensional mesoporous silica nanomaterial preparation has become a challenge due to the lack of natural sheet templating agents. The reason will hinder the development of silica nanomaterials for uranium extraction. Here, the specific surface area silica nanomeshes (HSMSMs) uranium adsorbent was prepared by a high shear method to induce nanobubble formation. HSMSMs showed a high uranium adsorption capacity of 822 mg-U/g-abs in seawater with the uranium adsorption concentration was 50 mg/L, which was approximately 2 times higher than the conventional mesoporous silica nanomaterials. Compared to HSMSMs, the amidoxime-modified high specific surface area silica nanomesh (HSMSMs-AO) demonstrated good selectivity for U(VI), and the uranium ions uptake was 877 mg-U/g-abs in 50 mg/L uranium-spiked simulated seawater. Due to HSMSMs-AO's stable chemical properties and high mechanical strength, HSMSMs-AO also displayed long service life. Benefiting from the simple preparation method and high adsorption capacity of HSMSMs, HSMSMs could be a promising candidate for large-scale extraction of uranium from seawater.
Collapse
Affiliation(s)
- Qiang Chen
- School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, PR China
| | - Xueyan Xue
- Bingtuan Industrial Technology Research Institute, Shihezi University, Shihezi 832003, PR China
| | - Ying Liu
- China National Nuclear Industry Corporation 404, Jiayuguan 735100, PR China
| | - Aixia Guo
- School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, PR China
| | - Kai Chen
- School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, PR China
| | - Jiao Yin
- Laboratory of Environmental Sciences and Technology, Xinjiang Technical Institute of Physics & Chemistry, Urumqi 830011, PR China
| | - Feng Yu
- School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, PR China; Bingtuan Industrial Technology Research Institute, Shihezi University, Shihezi 832003, PR China.
| | - Hui Zhu
- Laboratory of Environmental Sciences and Technology, Xinjiang Technical Institute of Physics & Chemistry, Urumqi 830011, PR China.
| | - Xuhong Guo
- School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, PR China; State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, PR China.
| |
Collapse
|
5
|
Study of the performance of a bloom-forming cyanobacterium (Microcystis aeruginosa) on the biosorption of uranium. J Radioanal Nucl Chem 2022. [DOI: 10.1007/s10967-022-08384-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
6
|
Succinic acid functionalized magnetic mesoporous silica for the magnetic assisted separation of uranium from aqueous solution. J Radioanal Nucl Chem 2022. [DOI: 10.1007/s10967-022-08336-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
7
|
Amesh P, Venkatesan KA, Suneesh AS, Chandra M, Gupta DK, Thoguluva RR. Efficient and selective adsorption of U(VI) by succinic acid modified iron oxide adsorbent. RADIOCHIM ACTA 2022. [DOI: 10.1515/ract-2021-1115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The iron oxide surface was modified with succinic acid moiety and the adsorbent obtained, Fe-SUC, was evaluated for the adsorption of U(VI) (Uranium (VI)) from aqueous solution. The Fe-SUC was characterized by FT-IR (Fourier Transform Infrared Spectroscopy), Raman spectroscopy, thermogravimetry, X-ray diffraction, SEM-EDX (Scanning Electron Microscope - Energy-dispersive X-ray Spectroscopy), and particle size analysis. The adsorption behavior of U(VI) on Fe-SUC was studied as a function of pH, contact time, and concentration of U(VI) in the aqueous phase. The adsorption of U(VI) increased with increase in the pH of aqueous phase, and the adsorption saturation occurred at pH = 6. The kinetic data obtained for the adsorption of U(VI) on Fe-SUC were modeled with the pseudo-first-order and pseudo-second-order rate models. Similarly, the U(VI) adsorption isotherm was fitted with Langmuir, Freundlich, Temkin, and Dubinin-Radushkevich adsorption isotherm models. The Langmuir adsorption capacity of U(VI) on Fe-SUC was about ∼176 mg g−1. The selectivity of the adsorbent toward U(VI) was evaluated in the presence of several possible interfering ions. The adsorbed U(VI) was recovered by 0.5 M sodium carbonate solution and the spent adsorbent was tested for its reusability.
Collapse
Affiliation(s)
- Pamarthi Amesh
- Reprocessing Research and Development Group, Indira Gandhi Centre for Atomic Research , Kalpakkam 603 102 , India
- Homi Bhabha National Institute , Anushaktinagar , Mumbai , Maharashtra 400094 , India
| | - Konda Athmaram Venkatesan
- Reprocessing Research and Development Group, Indira Gandhi Centre for Atomic Research , Kalpakkam 603 102 , India
- Homi Bhabha National Institute , Anushaktinagar , Mumbai , Maharashtra 400094 , India
| | - Asokan Sudha Suneesh
- Materials Chemistry and Metal Fuel Cycle Group, Indira Gandhi Centre for Atomic Research , Kalpakkam 603 102 , India
| | - Manish Chandra
- Materials Chemistry and Metal Fuel Cycle Group, Indira Gandhi Centre for Atomic Research , Kalpakkam 603 102 , India
| | - Deepak K. Gupta
- Materials Science Group, Indira Gandhi Centre for Atomic Research , Kalpakkam 603 102 , India
| | - Ravindran R. Thoguluva
- Materials Science Group, Indira Gandhi Centre for Atomic Research , Kalpakkam 603 102 , India
| |
Collapse
|
8
|
Huang T, Su Z, Dai Y, Zhou L. Enhancement of the heterogeneous adsorption and incorporation of uranium VI caused by the intercalation of β-cyclodextrin into the green rust. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 290:118002. [PMID: 34419862 DOI: 10.1016/j.envpol.2021.118002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/15/2021] [Accepted: 08/17/2021] [Indexed: 06/13/2023]
Abstract
The influence of intercalated anions on the structure and composition of green rusts supplies a theoretical possibility for the investigation of the structural modification of FeII/FeIII (oxyhydr)oxide materials. β-Cyclodextrin was intercalated into the mixed-valent iron-based hydroxide layers to synthesize new green rust materials (β-CD GRs), pursuing high-capacity uraniumVI (UVI) sorption. The molar ratios of FeII to FeIII and the molar ratios of β-CD GR to FeII + FeIII had a significant effect on the synthesis of β-CD GRs. The synthesis process was further optimized by the quadric predictor and desirability function in a central composite design in combination. Both strong acidity and alkalinity were harmful to the adsorption of β-CD GRs towards UVI. The pseudo-first-order kinetic model and Langmuir isotherm model were appropriate in fitting the whole adsorption process. The maximum monolayer adsorption capacity of β-CD GRs was 2548.61 mg/g. The presence of mimic groundwater constituents explicitly deteriorated the interaction between β-CD GR and UVI species. Nanoscale nodules and particles were formed on the β-CD GR after the adsorption experiments. The peaks at 1159 and 609 cm-1 vanished with the band at 1103 cm-1 being left-shifted to 1117 cm-1 in the FTIR spectra of β-CD GR during the heterogeneous process. The intercalation of β-CD brought obvious enhancement of UVI species sorption to the GR material, which was combinedly driven by several reaction pathways and different from the unmodified GRs.
Collapse
Affiliation(s)
- Tao Huang
- School of Materials Engineering, Changshu Institute of Technology, 215500, China; Suzhou Key Laboratory of Functional Ceramic Materials, Changshu Institute of Technology, Changshu, 215500, China; School of Chemical Engineering & Technology, China University of Mining and Technology, Xuzhou, Jiangsu, 221116, China.
| | - Zhiyu Su
- School of Materials Engineering, Changshu Institute of Technology, 215500, China
| | - Yuxing Dai
- School of Materials Engineering, Changshu Institute of Technology, 215500, China
| | - Lulu Zhou
- School of Materials Engineering, Changshu Institute of Technology, 215500, China
| |
Collapse
|
9
|
Poly(amidoamine) dendrimer decorated dendritic fibrous nano-silica for efficient removal of uranium (VI). J SOLID STATE CHEM 2021. [DOI: 10.1016/j.jssc.2021.122511] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
10
|
|
11
|
Lisichkin GV, Olenin AY. Chemically Modified Silica in Sorption-Instrumental Analytical Methods. RUSS J GEN CHEM+ 2021. [DOI: 10.1134/s1070363221050182] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
12
|
Amesh P, Venkatesan KA, Suneesh AS, Gupta DK, Ravindran TR. Diethylenetriamine functionalized silica gel for adsorption of uranium from aqueous solution and seawater. J Radioanal Nucl Chem 2021. [DOI: 10.1007/s10967-021-07761-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
13
|
Celikbıcak O, Bayramoglu G, Acıkgoz-Erkaya I, Arica MY. Aggrandizement of uranium (VI) removal performance of Lentinus concinnus biomass by attachment of 2,5-diaminobenzenesulfonic acid ligand. J Radioanal Nucl Chem 2021. [DOI: 10.1007/s10967-021-07708-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|