1
|
Rajaram P, Jeice AR, Srinivasan M, Al-Ansari MM, Mythili R, Suganthi S, Rathi VH. Comparative analysis of the antimicrobial activity and dye degradation of metal oxides (TiO 2, CdO, Mn 2O 3, and ZnO) nanoparticles using a green approach. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:498. [PMID: 39508968 DOI: 10.1007/s10653-024-02270-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 10/14/2024] [Indexed: 11/15/2024]
Abstract
A tremendous amount of recent work has been done on different metal oxide nanomaterials for biological activities and photocatalytic dye degradation. This work used the Cissus quadrangularis leaf extract to prepare TiO2, CdO, Mn2O3, and ZnO nanoparticles using a green synthesis approach. To ascertain the physicochemical characteristics of the generated metal oxide nanoparticles, various characterisation techniques were used. The X-ray diffraction technique was used to determine the composition of the crystal and phase. Metal oxide nanoparticles have been proven to be present through surface morphological investigations using a scanning electron microscope and energy dispersive spectroscopy analysis. UV-Vis and Fourier transform infrared spectra were used for spectroscopic analysis. X-ray photoelectron spectroscopy can determine a material's elemental composition in addition to the electronic and chemical states of its atoms. The nanomaterial's distinct morphology, which resembles rods, rose petals, platelets, and spheres, was discovered by scanning electron microscope. Synthesized metal oxide nanoparticles have demonstrated a remarkable efficiency of 87.5-90.6% when utilized as a catalyst towards the removal of the malachite green dye under UV light irradiation. Additionally, we use the disc diffusion method to assess antibiotic efficacy against Bacillus subtilis, Candida tropicalis, and Escherichia coli. ZnO nanoparticles had the greatest zones of inhibition for 80 μL doses, measuring 26.99 mm for Bacillus subtilis, 27.57 mm for Escherichia coli, and 25.28 mm for Candida tropicalis. The antimicrobial activity was strongly impacted by the size of the nanoparticles and increased with decreasing particle size. Overall, our research demonstrates that metal oxide nanoparticles are a promising photocatalytic agent for wastewater treatment and biological applications.
Collapse
Affiliation(s)
- Prammitha Rajaram
- Department of Physics and SSN Research Centre, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India
| | - Ambrose Rejo Jeice
- St.Teresa Arts and Science College for Women, Mangalakuntu, TamilNadu, 629178, India.
| | - M Srinivasan
- Department of Physics and SSN Research Centre, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India
| | - Mysoon M Al-Ansari
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - R Mythili
- Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, 600077, India
| | - Sanjeevamuthu Suganthi
- School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, 38541, Republic of Korea
| | - V Helen Rathi
- Department of Physics and Research Centre, Annai Velankanni College, Tholayavattam, 629157, Tamil Nadu, India
| |
Collapse
|
2
|
Lims SC, Jose M, Aswathappa S, Dhas SSJ, Kumar RS, Pham PV. Co-precipitation synthesis of highly pure and Mg-doped CdO nanoparticles: from rod to sphere shapes. RSC Adv 2024; 14:22690-22700. [PMID: 39027038 PMCID: PMC11255783 DOI: 10.1039/d4ra03525a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/14/2024] [Indexed: 07/20/2024] Open
Abstract
This study reports a facile approach for examining surface morphology transitions in semiconductor nanoparticles (NPs), with a focus on pristine and magnesium-doped cadmium oxide NPs. Mg-doped CdO NPs are synthesized via co-precipitation, and their composition, structure, and elemental distribution are analyzed through X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), Raman spectra, and X-ray photoelectron spectroscopy (XPS), along with optical characterization and impedance analysis. Doping with Mg2+ changes the morphology from rod-like to quasi-spherical, reduces the crystallite size, and impacts their structural and functional properties. Optical transmittance analysis revealed that Mg2+ doping resulted in a reduction of the band gap energy. Impedance spectroscopy demonstrates improved dielectric constant and electrical conductivity for Mg-doped CdO NPs. The Nyquist plots show grain effects and the equivalent circuit analysis corresponds to a R(CR)(CR) circuit. These advancements point to the potential of spherical Mg-doped CdO NPs in semiconductor applications due to their superior structural and functional characteristics.
Collapse
Affiliation(s)
- S Cathrin Lims
- Department of Physics, National Sun Yat-sen University Kaohsiung 80424 Taiwan
- Department of Physics, Sacred Heart College Tirupattur 635601 India
| | - M Jose
- Department of Physics, Sacred Heart College Tirupattur 635601 India
| | - Sivakumar Aswathappa
- Key Laboratory of High-Temperature and High-Pressure Study of the Earth's Interior, Institute of Geochemistry, Chinese Academy of Sciences Guizhou 550081 China
| | - S Sahaya Jude Dhas
- School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University Tamil Nadu 602105 India
| | - Raju Suresh Kumar
- Department of Chemistry, King Saud University Riyadh 2455 Saudi Arabia
| | - Phuong V Pham
- Department of Physics, National Sun Yat-sen University Kaohsiung 80424 Taiwan
| |
Collapse
|
3
|
Lohitha T, Albert HM. Biosynthesis, Structural, Spectroscopic, Photoluminescence, and Antifungal Activity of Ni-doped CeO 2 Nanoparticles. J Fluoresc 2024:10.1007/s10895-024-03831-5. [PMID: 38958905 DOI: 10.1007/s10895-024-03831-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 06/25/2024] [Indexed: 07/04/2024]
Abstract
Pedalium Murex leaf extract was used in this study to create Nickel-doped Cerium oxide (Ni-CeO2) nanoparticles at 3 mol% and 5 mol% molar concentrations. The biosynthesized process was applied for the fabrication of Ni-CeO2 NPs. The X-ray diffraction method was used to identify their crystal structure. The XRD measurements showed that the Ni-CeO2 NPs crystallized into the face-centred cubic system. Fourier transform infrared spectral study was applied to explore the molecular vibrations and chemical bonding. The surface texture and chemical ingredients of Ni-CeO2 NPs were studied using field-emission scanning electron microscopy and energy-dispersive X-ray analysis. The EDX mapping spectra illustrate the uniform dispersal of Ce, Ni, and O atoms over the sample's surface. X-ray photoelectron spectroscopy (XPS) was conducted to confirm the chemical state of the Ni-CeO2 NPs. UV-Vis spectrum study was performed to ascertain the photon absorption, bandgap, and Urbach edge of Ni-CeO2 NPs. Photoluminescence (PL) research has been used to study the light-emitting characteristic of Ni-CeO2 NPs. The emissive intensity transition corresponding to Ni-CeO2 NPs was found to increase with the dopant level. The CIE 1931 chromaticity map was plotted to find the aptness of the samples for optical uses. The antifungal ability of Ni-CeO2 NPs was evaluated against the fungi candida albicans and candida krusein with the agar well-diffusion process. The fungicidal activity of the 3 mol% Ni doped CeO2 nanoparticles has shown a maximum zone of inhibition. The experimental findings illustrate the utility of Ni-CeO2 NPs for optical and antifungal applications.
Collapse
Affiliation(s)
- T Lohitha
- Department of Physics, Sathyabama Institute of Science & Technology, Chennai, 600119, India
| | - Helen Merina Albert
- Department of Physics, Sathyabama Institute of Science & Technology, Chennai, 600119, India.
| |
Collapse
|
4
|
Jinendra U, Bilehal D, Nagabhushana B, Kumar AP, Afzal M, Shivamallu C, Majani SS, Kollur SP. Synthesis, characterization, and photoluminescence investigations of Al/Co-doped ZnO nanopowder. J Mol Struct 2024; 1305:137701. [DOI: 10.1016/j.molstruc.2024.137701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
|
5
|
Huang Y, Chen Y, Lu Z, Yu B, Zou L, Song X, Han H, Jin Q, Ji J. Facile Synthesis of Self-Targeted Zn 2+ -Gallic acid Nanoflowers for Specific Adhesion and Elimination of Gram-Positive Bacteria. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302578. [PMID: 37376855 DOI: 10.1002/smll.202302578] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/30/2023] [Indexed: 06/29/2023]
Abstract
Transition metal ions are served as disinfectant thousand years ago. However, the in vivo antibacterial application of metal ions is strongly restricted due to its high affinity with proteins and lack of appropriate bacterial targeting method. Herein, for the first time, Zn2+ -gallic acid nanoflowers (ZGNFs) are synthesized by a facile one-pot method without additional stabilizing agents. ZGNFs are stable in aqueous solution while can be easily decomposed in acidic environments. Besides, ZGNFs can specifically adhere onto Gram-positive bacteria, which is mediated by the interaction of quinone from ZGNFs and amino groups from teichoic acid of Gram-positive bacteria. ZGNFs exhibit high bactericidal effect toward various Gram-positive bacteria in multiple environments, which can be ascribed to the in situ Zn2+ release on bacterial surface. Transcriptome studies reveal that ZGNFs can disorder basic metabolic processes of Methicillin-resistant Staphylococcus aureus (MRSA). Moreover, in a MRSA-induced keratitis model, ZGNFs exhibit long-term retention in the infected corneal site and prominent MRSA elimination efficacy due to the self-targeting ability. This research not only reports an innovative method to prepare metal-polyphenol nanoparticles, but also provides a novel nanoplatform for targeted delivery of Zn2+ in combating Gram-positive bacterial infections.
Collapse
Affiliation(s)
- Yue Huang
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Yongcheng Chen
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Zhouyu Lu
- Eye Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, P. R. China
| | - Bo Yu
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Lingyun Zou
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Xiaohui Song
- Eye Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, P. R. China
| | - Haijie Han
- Eye Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, P. R. China
| | - Qiao Jin
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Jian Ji
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, P. R. China
| |
Collapse
|
6
|
Jinendra U, Nagabhushana BM, Bilehal D, Iqbal M, Amachawadi RG, Shivamallu C, Kollur SP. Encapsulated Co-ZnO nanospheres as degradation tool for organic pollutants: Synthesis, morphology, adsorption and photo luminescent investigations. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 299:122879. [PMID: 37201331 DOI: 10.1016/j.saa.2023.122879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/12/2023] [Accepted: 05/11/2023] [Indexed: 05/20/2023]
Abstract
Zinc oxide (ZnO) nanostructures, both undoped and Co-doped, were synthesized through the solution combustion process. The diffraction patterns from powder XRD revealed that the materials were crystalline. The morphology of the spherically formed nanoparticles was visualized in SEM micrographs. FTIR spectra verified the existence of a defect-associated peak in Co-encapsulated ZnO (Zn0.98Co0.02O) NPs. Photoluminescence studies are undertaken. Malachite Green (MG) dye is used as a representative organic pollutant to study the adsorptive degradation of Co-doped ZnO nanomaterial. Moreover, the adsorption properties, including isotherm and kinetics, are investigated by analyzing the degradation of MG dye. Experimental parameters, such as the concentration of the MG dye, dosage and pH, were varied to ascertain favorable conditions for the degradation study. The results indicate that the MG dye is 70% degraded. After Co-doping, near-band edge emission in undoped ZnO changed into intense red defect emission and was directly correlated with changes in PL emission.
Collapse
Affiliation(s)
- Usha Jinendra
- Department of Chemistry, Karnataka University, Dharwad 560008, Karnataka, India
| | - B M Nagabhushana
- Department of Chemistry, MSRIT, Bengaluru 560 054, Karnataka, India
| | - Dinesh Bilehal
- Department of Chemistry, Karnataka University, Dharwad 560008, Karnataka, India.
| | - Muzaffar Iqbal
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Raghavendra G Amachawadi
- Department of Clinical Sciences, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506-5606, USA
| | - Chandan Shivamallu
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education and Research, Mysuru, Karnataka 570 015, India
| | - Shiva Prasad Kollur
- School of Physical Sciences, Amrita Vishwa Vidyapeetham, Mysuru Campus, Mysuru, Karnataka 570 026, India.
| |
Collapse
|
7
|
Shukla K, Gupta R, Gupta RK, Prakash J. Highly efficient visible light active doped metal oxide photocatalyst and SERS substrate for water treatment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:34054-34068. [PMID: 36508093 DOI: 10.1007/s11356-022-24639-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 12/02/2022] [Indexed: 06/18/2023]
Abstract
The development of efficient nanomaterials with promising optical and surface properties for multifunctional applications has always been a subject of novel research. In this work, the study of highly efficient TiO2 nanorods (NRs) and Ta-doped TiO2 NRs (Ta-TiO2 NRs) synthesized by alkaline hydrothermal treatment followed by soaking treatment has been reported. NRs were investigated for their potential applications as recyclable/reproducible visible light active photocatalysts and surface-enhanced Raman scattering (SERS) substrates in wastewater treatment. NRs were characterized by various microscopic (scanning and transmission electron microscopy), spectroscopic (X-ray diffraction, X-ray photoelectron, UV-visible, photoluminescence, and Raman spectroscopy), and surface (Brunauer-Emmett-Teller) techniques. The NRs exhibited promising optical properties with a band gap of 2.95 eV (TiO2 NRs) and 2.58 eV (Ta-TiO2 NRs) showing excellent photo-degradation activities for methylene blue (MB) dye molecules under natural sunlight. Particularly, Ta-TiO2 NRs showed enhanced response as visible light active photocatalysts in normal sunlight and also as SERS substrate attributed to the additional defects introduced by Ta doping. It could be explained by the combined effect of doping-induced enhanced visible light absorption and charge transfer (CT) properties of Ta-TiO2 NRs. Furthermore, Ta-TiO2 NRs were investigated for their long-term stability, reproducibility of the data, and recyclability in view of their potential applications in water treatment.
Collapse
Affiliation(s)
- Komal Shukla
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur, 208016, Uttar Pradesh, India
| | - Rajeev Gupta
- Department of Physics, School of Engineering Studies, University of Petroleum & Energy Studies, Dehradun, 248007, Uttarakhand, India
| | - Raju Kumar Gupta
- Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur, 208016, Uttar Pradesh, India
| | - Jai Prakash
- Department of Chemistry, National Institute of Technology Hamirpur, Hamirpur, 177005, India.
| |
Collapse
|
8
|
Jebali M, Colangelo G, Gómez-Merino AI. Green Synthesis, Characterization, and Empirical Thermal Conductivity Assessment of ZnO Nanofluids for High-Efficiency Heat-Transfer Applications. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1542. [PMID: 36837172 PMCID: PMC9966383 DOI: 10.3390/ma16041542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/18/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
ZnO nanoparticles were synthesized using lemon juice and zinc nitrate (1:1) through the green method. The structure of the biosynthesized ZnO nanoparticles was analyzed by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and thermogravimetric analysis (TGA). The morphology and the size of ZnO nanoparticles were elucidated by transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The powder was highly dispersed and irregularly shaped and the size of the nanoparticles ranged from 28 to 270 nm, depending on the shape of the particles. Thermal conductivity of the biosynthesized ZnO PG/W mixture 40:60 (v/v) nanofluids was measured within the temperature range of 20-70 °C. Experimental results revealed a linear increase in thermal conductivity with the rise of temperature and volume fraction. The enhancement of this parameter with temperature was probably due to the different shapes of the former agglomerates. They were broken by the thermal energy in aggregates of different forms. A correlation of these structures with temperature was established. Finally, an empirical model was developed for predicting thermal conductivity with particle volume fraction and temperature.
Collapse
Affiliation(s)
- Meriem Jebali
- Department of Engineering for Innovation, University of Salento, 73100 Lecce, Italy
| | - Gianpiero Colangelo
- Department of Engineering for Innovation, University of Salento, 73100 Lecce, Italy
| | | |
Collapse
|
9
|
C-TiO2+Ni and ZnO+Ni Magnetic Photocatalyst Powder Synthesis by Reactive Magnetron Sputtering Technique and Their Application for Bacteria Inactivation. INORGANICS 2023. [DOI: 10.3390/inorganics11020059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
In the current study, a bi-layered magnetic photocatalyst powder consisting of a Ni layer on one side and carbon-doped TiO2 or ZnO photocatalyst layers on the other side was synthesized by magnetron sputtering technique. SEM, XRD, and XPS analysis of powders revealed that the photocatalytic TiO2 layer had a mixed anatase-rutile structure, was doped by carbon to approximately 3 at. % and had a fraction of Ti(III) oxide. Meanwhile, the ZnO layer was crystalized in a wurtzite structure and had a considerable number of intrinsic defects, which are useful for visible light photocatalysis. The activity of magnetic photocatalyst powder was tested by photocatalytic bleaching of dyes, as well as performing photocatalytic inactivation of Salmonella bacteria under UV and visible light irradiation. It was observed, that C-TiO2+Ni magnetic photocatalyst had relatively high and stable activity under both light sources (for five consecutive cycles dye degradation reached approximately 95%), but ZnO+Ni was generally lacking in activity and stability (over five cycles under UV and visible light, dye degradation fell from approximately 60% to 55% and from 90% to 70%, respectively). Photocatalytic treatment of bacteria also provided mixed results. On one hand, in all tests bacteria were not inactivated completely. However, on the other hand, their susceptibility to antibiotics increased significantly.
Collapse
|
10
|
Vindhya PS, Kavitha VT. Leaf extract-mediated synthesis of Mn-doped CuO nanoparticles for antimicrobial, antioxidant and photocatalytic applications. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02631-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
11
|
Rafiq H, Aftab ZEH, Anjum T, Ali B, Akram W, Bashir U, Mirza FS, Aftab M, Ali MD, Li G. Bio-fabrication of Zinc Oxide nanoparticles to rescue Mung Bean against Cercospora leaf spot disease. FRONTIERS IN PLANT SCIENCE 2022; 13:1052984. [PMID: 36523618 PMCID: PMC9745094 DOI: 10.3389/fpls.2022.1052984] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 11/03/2022] [Indexed: 06/17/2023]
Abstract
Plant disease management using nanotechnology is evolving continuously across the world. The purpose of this study was to determine the effect of different concentrations of green synthesized zinc oxide nanoparticles (ZnO NPs) using Trachyspermum ammi seed extract on Cercospora leaf spot disease in mung bean plants under in-vitro and in-planta conditions. Additionally, the effects on mung bean agronomic and physiological parameters were also assessed. The green synthesized ZnO NPs were characterized using UV-visible spectroscopy, Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and Scanning electron microscopy (SEM). Green synthesized NPs were tested for their ability to inhibit fungal growth at five different concentrations under in-vitro experiment. After 7 days of inoculation, ZnO NPs (1200 ppm) inhibited mycelial growth substantially (89.86% ± 0.70). The in-planta experiment showed statistically significant result of disease control (30% ± 11.54) in response to 1200 ppm ZnO NPs. The same treatment showed statistically significant improvements in shoot length, root length, number of leaves, number of pods, shoot fresh weight (28.62%), shoot dry weight (85.18%), root fresh weight (38.88%), and root dry weight (38.88%) compared to the control. Our findings show that green synthesized ZnO NPs can control Cercospora canescens in mung bean, pointing to their use in plant disease control and growth enhancement.
Collapse
Affiliation(s)
- Hamza Rafiq
- Department of Plant Pathology, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
- Guangdong Key Laboratory for New Technology Research of Vegetables/Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Zill-e-Huma Aftab
- Department of Plant Pathology, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Tehmina Anjum
- Department of Plant Pathology, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Basharat Ali
- Institute of Microbiology and Molecular Genetics, University of the Punjab, Lahore, Pakistan
| | - Waheed Akram
- Department of Plant Pathology, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Uzma Bashir
- Department of Plant Pathology, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Faisal Shafiq Mirza
- Department of Plant Pathology, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Muzammil Aftab
- Department of Physics, Government College University, Lahore, Pakistan
| | - Muhammad Danish Ali
- Department of Science and Humanities, National University of Computer and Emerging Sciences- FAST, Lahore, Pakistan
- Department of Physics, University of the Punjab, Lahore, Pakistan
| | - Guihua Li
- Guangdong Key Laboratory for New Technology Research of Vegetables/Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| |
Collapse
|
12
|
Abdelsalam IM, Ghosh S, AlKafaas SS, Bedair H, Malloum A, ElKafas SS, Saad-Allah KM. Nanotechnology as a tool for abiotic stress mitigation in horticultural crops. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01251-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
13
|
Functionalized Microbial Consortia with Silver-Doped Hydroxyapatite (Ag@HAp) Nanostructures for Removal of RO84 from Industrial Effluent. CRYSTALS 2022. [DOI: 10.3390/cryst12070970] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Considering that freshwater is a necessity for human life, sewage treatment has been a serious concern for an increasing number of scientists and academics in recent years. To clean industrial effluents, innovative catalysts with good adsorption, chemical stability, and physicochemical properties have been constructed. Here, a prospective microbial consortium was extracted from the wastewater and used as a low-cost catalyst that was functionalized with silver and silver-doped hydroxyapatite (Ag@HAp) nanostructures made using a sonochemical approach. The structural, optical, and crystal phases of Ag and Ag-doped hydroxyapatite (Ag@HAp) nanostructures were studied using ultraviolet-visible (UV-Vis), Fourier transfer infrared spectroscopy (FTIR), X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and high-resolution transmission electron microscopy (HRTEM) techniques. The degradation action of functionalized microbial consortia was examined against reactive orange 84 (RO84) organic discharge. Excellent efficiency for the removal of industrial effluents was found for the Ag NPs and Ag-doped hydroxyapatite (Ag@HAp) loaded with microbial consortia. A maximum of 95% of the decolorization properties of the RO84 dye were obtained in the case of microbial consortia with Ag and Ag@HAp, which was better than the consortia alone (80.32% for 5 ppm and 69.54% for 20 ppm). The consortia/Ag showed 93.34% for 5 ppm and 85.43% for 20 ppm, while was higher for consortia/Ag@HAp (95.34 and 88.43%). The use of these surface-modified nanocatalysts for wastewater treatment and waste effluents discharged from laboratories, the chemical industry, and other sources could be expanded.
Collapse
|
14
|
Aslinjensipriya A, Reena RS, Infantiya SG, Ragu R, Jerome Das S. Uncovering the replacement of Zn2+ ions on nano-structural, opto/magneto/electrical, antibacterial and antifungal attributes of nickel oxide nanoparticles via sol-gel strategy. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123146] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
15
|
Nanostructured Antibiotics and Their Emerging Medicinal Applications: An Overview of Nanoantibiotics. Antibiotics (Basel) 2022; 11:antibiotics11060708. [PMID: 35740115 PMCID: PMC9219893 DOI: 10.3390/antibiotics11060708] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 02/07/2023] Open
Abstract
Bacterial strains resistant to antimicrobial treatments, such as antibiotics, have emerged as serious clinical problems, necessitating the development of novel bactericidal materials. Nanostructures with particle sizes ranging from 1 to 100 nanometers have appeared recently as novel antibacterial agents, which are also known as “nanoantibiotics”. Nanomaterials have been shown to exert greater antibacterial effects on Gram-positive and Gram-negative bacteria across several studies. Antibacterial nanofilms for medical implants and restorative matters to prevent bacterial harm and antibacterial vaccinations to control bacterial infections are examples of nanoparticle applications in the biomedical sectors. The development of unique nanostructures, such as nanocrystals and nanostructured materials, is an exciting step in alternative efforts to manage microorganisms because these materials provide disrupted antibacterial effects, including better biocompatibility, as opposed to minor molecular antimicrobial systems, which have short-term functions and are poisonous. Although the mechanism of action of nanoparticles (NPs) is unknown, scientific suggestions include the oxidative-reductive phenomenon, reactive ionic metals, and reactive oxygen species (ROS). Many synchronized gene transformations in the same bacterial cell are essential for antibacterial resistance to emerge; thus, bacterial cells find it difficult to build resistance to nanoparticles. Therefore, nanomaterials are considered as advanced solution tools for the fields of medical science and allied health science. The current review emphasizes the importance of nanoparticles and various nanosized materials as antimicrobial agents based on their size, nature, etc.
Collapse
|
16
|
Enhanced Plasmon Based Ag and Au Nanosystems and Their Improved Biomedical Impacts. CRYSTALS 2022. [DOI: 10.3390/cryst12050589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Numerous specialists and academics have backed the improved physicochemical characteristics of metal substrate (Ag, Au) based composite nanoparticles for a number of applications, including pharmaceuticals, optoelectronics, and environmental impact. Insights of Ag and Au NPs-based nanomaterials will be discussed, as well as important production, physicochemical, and biotechnological characteristics. The plasmon capacities of Ag and Au NPs, along with their customisable form, scale, and surface modification could be described by specified geometries and constituent contents. It was revealed that interaction dynamics of Ag and Au implanted nanomaterials with dopants/defects ratios seem to be more effective in stimulating pathogens by interrupting biochemical reactions. As a result, we focus on defect science in Ag and Au-based nanoscale materials, taking into account surface morphology, ionic packing, and chemical phase assessment. This chapter will cover the important optical, geometrical, and physicochemical features of Ag and Au nanomaterials, and their pharmacological significance.
Collapse
|
17
|
2D Personality of Multifunctional Carbon Nitrides towards Enhanced Catalytic Performance in Energy Storage and Remediation. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12083753] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Numerous scholars in the scientific and management areas have been overly focused on contemporary breakthroughs in two-dimensional objects for multiple prospective applications. Photochemical and electrocatalytic functions of integrated circuits associated with multi-component tools have been enhanced by designing the macro- and microstructures of the building blocks. Therefore, the current research attempts to explore a larger spectrum of layered graphitic carbon nitrides (g-C3N4) and their derivatives as an efficient catalyst. By executing systematic manufacturing, optimization, and evaluation of its relevance towards astonishing energy storage devices, adsorption chemistry, and remediation, many researchers have focused on the coupling of such 2D carbon nitrides combined with suitable elementals. Hybrid carbon nitrides have been promoted as reliable 2D combinations for the enhanced electrophotocatalytic functionalities, proved by experimental observations and research outputs. By appreciating the modified structural, surface, and physicochemical characteristics of the carbon nitrides, we aim to report a systematic overview of the g-C3N4 materials for the application of energy storages and environments. It has altered energy band gap, thermal stability, remarkable dimensional texturing, and electrochemistry, and therefore detailed studies are highlighted by discussing the chemical architectures and atomic alternation of g-C3N4 (2D) structures.
Collapse
|
18
|
Investigations on electronic and optical properties of Zn:CdO-PVDF polymer composite thin films. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-021-04002-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
19
|
Aftab M, Butt MZ, Ali D, Aftab ZH, Tanveer MU, Fayyaz B. Investigation of antifungal response of NiO and copper-doped NiO thin films against Aspergillus niger and Macrophomina phaseolina fungi. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:3840-3852. [PMID: 34402016 DOI: 10.1007/s11356-021-15945-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 08/09/2021] [Indexed: 06/13/2023]
Abstract
Pure NiO and NiO thin films doped with 0.1 to 25% Cu were grown on pre-heated soda-lime glass substrates via spray pyrolysis technique. The surface roughness of the NiO:Cu thin films decreased as Cu/Ni ratio was increased. Antifungal activity of these thin films against Aspergillus niger (A. niger) which affects some of the fruits, and Macrophomina phaseolina (M. phaseolina) which is a soil borne fungus responsible for the infection of root and lower stem of several plants, was then investigated by bioassay and broth dilution methods. The antifungal response of pure NiO thin film was weak but it improved considerably on doping with copper. The higher the copper content in NiO:Cu thin film, the better was its antifungal response. Moreover, for the given Cu/Ni ratio range of 0-25%, the optical density (OD) of Potato Dextrose (PD) broth inoculated with A. niger and containing NiO:Cu material was reduced or antifungal ability was enhanced by 8.3, 9.9, 11.7, and 13.4 times for the exposure time of 6, 8, 10, and 12 days, respectively. Similarly, the OD of PD broth inoculated with M. phaseolina and containing NiO:Cu material was reduced or antifungal ability was enhanced by 16-37 times in the exposure temperature range of 20-40 °C. A linear relationship of OD with crystallite size and lattice strain of the thin films showed that NiO:Cu material possessed memory of the structural modifications induced by the dopant atoms though its phase changed from crystalline to non-crystalline state. These results can be utilized in agricultural sector. Graphical abstract.
Collapse
Affiliation(s)
- Muzamil Aftab
- Center for Advanced Studies in Physics, GC University Lahore, Lahore, 54000, Pakistan
| | - Muhammad Zakria Butt
- Center for Advanced Studies in Physics, GC University Lahore, Lahore, 54000, Pakistan.
| | - Dilawar Ali
- Department of Physics, GC University Lahore, Lahore, 54000, Pakistan
| | - Zille Huma Aftab
- Institute of Agricultural Sciences, University of the Punjab, Lahore, 54590, Pakistan
| | | | - Bakhtawar Fayyaz
- Institute of Agricultural Sciences, University of the Punjab, Lahore, 54590, Pakistan
| |
Collapse
|
20
|
Recent Trends in Fascinating Applications of Nanotechnology in Allied Health Sciences. CRYSTALS 2021. [DOI: 10.3390/cryst12010039] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The increased advancement in nanosciences in recent times has led to fascinating innovations. It has potential applications for altering the structural, surface, and physicochemical properties of nano-ranged metamaterials. The adaptable optical, structural, and surface characteristics of the nanoscopic regimes enhance the quality of integrated nanodevices and sensors. These are further used in optoelectronics, biomedicines, and catalysis. The use of nanomaterials for constructing nano-biosensors and various other organic and inorganic functional nanomaterials is quite promising. They have excellent electronic and surface-to-volume reactivity. Their various applications include metal and metal-oxides-based nanoparticles, clusters, wires, and 2D nanosheets as carbon nanotubes. More recently, hybrid nanomaterials are being developed to regulate sensing functionalities in the field of nanomedicine and the pharmaceutical industry. They are used as nano-markers, templates, and targeted agents. Moreover, the mechanical strength, chemical stability, durability, and flexibility of the hybrid nanomaterials make them appropriate for developing a healthy life for humans. This consists of a variety of applications, such as drug delivery, antimicrobial impacts, nutrition, orthopedics, dentistry, and fluorescence fabrics. This review article caters to the essential importance of nanoscience for biomedical applications and information for health science and research. The fundamental characteristics and functionalities of nanomaterials for particular biomedical uses are specifically addressed here.
Collapse
|
21
|
Mateyise NGS, Ghosh S, Gryzenhout M, Chiyindiko E, Conradie MM, Langner EH, Conradie J. Synthesis, characterization, DFT and biological activity of oligothiophene β-diketone and Cu-complexes. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115290] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
22
|
Zhang Z, Liu F, Lin Y. Nanospheres self-assembled by hybrid oxide nanocrystal and their photoelectric properties. J DISPER SCI TECHNOL 2021. [DOI: 10.1080/01932691.2021.1954015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Zhenqian Zhang
- School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovolatic Science and Engineering, Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, Changzhou University, Changzhou, People's Republic of China
| | - Fang Liu
- School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovolatic Science and Engineering, Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, Changzhou University, Changzhou, People's Republic of China
| | - Yongzhou Lin
- School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovolatic Science and Engineering, Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, Changzhou University, Changzhou, People's Republic of China
| |
Collapse
|
23
|
Xu M, Song Y, Wang J, Li N. Anisotropic transition metal–based nanomaterials for biomedical applications. VIEW 2021. [DOI: 10.1002/viw.20200154] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Affiliation(s)
- Min Xu
- Tianjin Key Laboratory of Drug Delivery and High‐Efficiency, School of Pharmaceutical Science and Technology Tianjin University Tianjin China
| | - Yiling Song
- Tianjin Key Laboratory of Drug Delivery and High‐Efficiency, School of Pharmaceutical Science and Technology Tianjin University Tianjin China
| | - Jinping Wang
- Key Laboratory of Molecular Biophysics of Hebei Province, Institute of Biophysics, School of Sciences Hebei University of Technology Tianjin China
| | - Nan Li
- Tianjin Key Laboratory of Drug Delivery and High‐Efficiency, School of Pharmaceutical Science and Technology Tianjin University Tianjin China
| |
Collapse
|
24
|
Akpomie KG, Ghosh S, Gryzenhout M, Conradie J. One-pot synthesis of zinc oxide nanoparticles via chemical precipitation for bromophenol blue adsorption and the antifungal activity against filamentous fungi. Sci Rep 2021; 11:8305. [PMID: 33859316 PMCID: PMC8050082 DOI: 10.1038/s41598-021-87819-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 04/05/2021] [Indexed: 01/01/2023] Open
Abstract
In this research, zinc oxide nanoparticles (ZnONPs) were prepared via a facile one-pot chemical precipitation approach and applied in the adsorption of bromophenol blue (BRB) and as antifungal agents against the filamentous fungi and plant pathogens; Alternaria alternata CGJM3078, Alternaria alternata CGJM3006 and Fusarium verticilliodes CGJM3823. The ZnONPs were characterized by the UV-Vis, FTIR, XRD, TGA, BET, SEM, TEM, and EDX techniques, which showed efficient synthesis. The characteristics ZnO UV-Vis absorption band was observed at 375 nm, while the XRD showed an average ZnONPs crystalline size of 47.2 nm. The SEM and TEM images showed an irregular shaped and aggregated porous structure of 65.3 nm average-sized ZnONPs. The TGA showed 22.9% weight loss at 800 °C indicating the high thermal stability of ZnONPs, while BET analysis revealed a surface area, pore volume and pore diameter of 9.259 m2/g, 0.03745 cm3/g and 9.87 nm respectively. The Freundlich, pseudo-second-order, and intra-particle diffusion models showed R2 > 0.9494 and SSE < 0.7412, thus, exhibited the best fit to the isotherm and kinetics models. Thermodynamics revealed feasible, endothermic, random, and spontaneous adsorption of BRB onto the synthesized ZnONPs. The antifungal assay conducted depicts strong antifungal activities against all three tested fungi. Noticeably, ZnONPs (0.002-5 mg/mL) showed maximum activities with the largest zone of inhibition against A. alternata CGJM 3006 from 25.09 to 36.28 mm. This was followed by the strain F. verticilliodes CGJM 3823 (range from 23.77 to 34.77 mm) > A. alternata CGJM3078 (range from 22.73 to 30.63 mm) in comparison to Bleach 5% (positive control). Additionally a model was proposed based on the possible underlying mechanisms for the antifungal effect. This research demonstrated the potent use of ZnONPs for the adsorption of BRB and as effective antifungal agents.
Collapse
Affiliation(s)
- Kovo G Akpomie
- Department of Chemistry, University of the Free State, Bloemfontein, South Africa.
- Department of Pure & Industrial Chemistry, University of Nigeria, Nsukka, Nigeria.
| | - Soumya Ghosh
- Department of Genetics, University of the Free State, Bloemfontein, ZA9300, South Africa
| | - Marieka Gryzenhout
- Department of Genetics, University of the Free State, Bloemfontein, ZA9300, South Africa
| | - Jeanet Conradie
- Department of Chemistry, University of the Free State, Bloemfontein, South Africa
| |
Collapse
|
25
|
Gryzenhout M, Ghosh S, Tchotet Tchoumi JM, Vermeulen M, Kinge TR. Ganoderma: Diversity, Ecological Significances, and Potential Applications in Industry and Allied Sectors. Fungal Biol 2021. [DOI: 10.1007/978-3-030-67561-5_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|