1
|
Zheng J, Liu D, Liu X, Wang Z, Li J, Wang X, Wang J, Fu Q, Cao Y, Jiang L, Chen Y. Ag/ZnO microcavities with high sensitivity and self-cleaning properties for fast repetitive SERS detection. Phys Chem Chem Phys 2024; 26:17083-17089. [PMID: 38842138 DOI: 10.1039/d4cp01325e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
A SERS substrate with high sensitivity and reusability was proposed. The chip consists of multiple ZnO microcavities loaded with silver particles. Based on structural characteristics, this coupling between cavity modes and localized surface plasmon modes can highly localize the electric field, where experimental results revealed a detection limit of 10-11 M for R6G. In addition, during carrier control in semiconductors with localized electromagnetic fields, our substrate also exhibits high self-cleaning efficiency and in situ detection stability. Even in a dry environment, it exhibits excellent light-mediated cleaning ability across multiple reuse test cycles. The convenient, rinse-free substrate, with its cost-effective and sustainable features, shows great promise for the study on detection and degradation of active materials.
Collapse
Affiliation(s)
- Jiale Zheng
- School of Physics, Nanjing University of Science and Technology, Nanjing, 210094, China.
| | - Dongliang Liu
- School of Science, Xi'an Polytechnic University, 19 Jinhua South Road, Xi'an 710048, China
| | - Xilong Liu
- School of Physics, Nanjing University of Science and Technology, Nanjing, 210094, China.
| | - Zekai Wang
- School of Physics, Nanjing University of Science and Technology, Nanjing, 210094, China.
| | - Junfeng Li
- School of Physics, Nanjing University of Science and Technology, Nanjing, 210094, China.
| | - Xinxin Wang
- School of Physics, Nanjing University of Science and Technology, Nanjing, 210094, China.
| | - Jun Wang
- School of Science, Xi'an Polytechnic University, 19 Jinhua South Road, Xi'an 710048, China
| | - Qiang Fu
- Department of Optoelectronic Information Science and Engineering, School of Physics and Materials Engineering, Hefei Normal University, Hefei 230601, China
| | - Yanqiang Cao
- School of Physics, Nanjing University of Science and Technology, Nanjing, 210094, China.
| | - Liyong Jiang
- School of Physics, Nanjing University of Science and Technology, Nanjing, 210094, China.
| | - Yikai Chen
- School of Physics, Nanjing University of Science and Technology, Nanjing, 210094, China.
- MIIT Key Laboratory of Semiconductor Microstructure and Quantum Sensing, Nanjing, 210094, China
| |
Collapse
|
2
|
Chen Z, Sun Y, Zhang X, Shen Y, Khalifa SAM, Huang X, Shi J, Li Z, Zou X. Green and sustainable self-cleaning flexible SERS base: Utilized for cyclic-detection of residues on apple surface. Food Chem 2024; 441:138345. [PMID: 38185049 DOI: 10.1016/j.foodchem.2023.138345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/14/2023] [Accepted: 12/30/2023] [Indexed: 01/09/2024]
Abstract
Advances in flexible SERS substrates has made it possible to approach the ultimate goal of rapid in-situ monitoring of fruit and vegetable safety, but its vulnerability under laser ablation results in low utilization. In order to solve this problem, a 3D framework of TiO2-doped PVDF\PVP polymer was utilized to self-assemble gold-silver core-shell nanorods (Au@Ag NRs) to prepare a flexible SERS substrate with good physical stability and self-cleaning properties. This substrate showed excellent detection limit and recyclability after the detection of three pesticide residues in apple peel. The LOD of methyl-parathion (MP) was as low as 0.037 ng/cm2, with an RSD of 5.61 % for 5 cycle-detection. The recoveries of two additional pesticides thiram (TMTD) and chlorpyrifos (CPF) were 86.32 %-112.47 %. We hoped that this research will contribute to providing a recyclable and facile method for in-situ analysis of fruit and vegetable surface residues and functional manufacture of flexible SERS substrates.
Collapse
Affiliation(s)
- Zhiyang Chen
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China; China-UK Joint Laboratory for Nondestructive Detection of Agro-products, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yue Sun
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China; China-UK Joint Laboratory for Nondestructive Detection of Agro-products, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xinai Zhang
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Ye Shen
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Shaden A M Khalifa
- Psychiatry and Neurology Department, Capio Saint Göran"s Hospital, Sankt Göransplan 1, 112 19 Stockholm, Sweden; International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| | - Xiaowei Huang
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Jiyong Shi
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China; China-UK Joint Laboratory for Nondestructive Detection of Agro-products, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Zhihua Li
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China; China-UK Joint Laboratory for Nondestructive Detection of Agro-products, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| | - Xiaobo Zou
- Agricultural Product Processing and Storage Lab, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China; China-UK Joint Laboratory for Nondestructive Detection of Agro-products, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| |
Collapse
|
3
|
Issa Hamoud H, Wolski L, Pankin I, Bañares MA, Daturi M, El-Roz M. In situ and Operando Spectroscopies in Photocatalysis: Powerful Techniques for a Better Understanding of the Performance and the Reaction Mechanism. Top Curr Chem (Cham) 2022; 380:37. [PMID: 35951125 DOI: 10.1007/s41061-022-00387-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/18/2022] [Indexed: 10/15/2022]
Abstract
In photocatalysis, a set of elemental steps are involved together at different timescales to govern the overall efficiency of the process. These steps are divided as follow: (1) photon absorption and excitation (in femtoseconds), (2) charge separation (femto- to picoseconds), (3) charge carrier diffusion/transport (nano- to microseconds), and (4 and 5) reactant activation/conversion and mass transfer (micro- to milliseconds). The identification and quantification of these steps, using the appropriate tool/technique, can provide the guidelines to emphasize the most influential key parameter that improve the overall efficiency and to develop the "photocatalyst by design" concept. In this review, the identification/quantification of reactant activation/conversion and mass transfer (steps 4 and 5) is discussed in details using the in situ/operando techniques, especially the infrared (IR), Raman, and X-ray absorption spectroscopy (XAS). The use of these techniques in photocatalysis was highlighted by the most recent and conclusive case studies which allow a better characterization of the active site and reveal the reaction pathways in order to establish a structure-performance relationship. In each case study, the reaction conditions and the reactor design for photocatalysis (pressure, temperature, concentration, etc.) were thoroughly discussed. In the last part, some examples in the use of time-resolved techniques (time-resolved FTIR, photoluminescence, and transient absorption) are also presented as an author's guideline to study the elemental steps in photocatalysis at shorter timescale (ps, ns, and µs).
Collapse
Affiliation(s)
- Houeida Issa Hamoud
- Laboratoire Catalyse et Spectrochimie, Normandie Université, ENSICAEN, UNICAEN, CNRS, 14050, Caen, France
| | - Lukasz Wolski
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614, Poznań, Poland
| | - Ilia Pankin
- Smart Materials, Research Institute, Southern Federal University, Sladkova Street 174/28, 344090, Rostov-on-Don, Russia
| | - Miguel A Bañares
- Catalytic Spectroscopy Laboratory, Instituto de Catalisis, ICP-CSIC, 28049, Madrid, Spain
| | - Marco Daturi
- Laboratoire Catalyse et Spectrochimie, Normandie Université, ENSICAEN, UNICAEN, CNRS, 14050, Caen, France
| | - Mohamad El-Roz
- Laboratoire Catalyse et Spectrochimie, Normandie Université, ENSICAEN, UNICAEN, CNRS, 14050, Caen, France.
| |
Collapse
|
4
|
Rodríguez-Barajas N, Becerra-Solano L, Gutiérrez-Mercado YK, Macías-Carballo M, M. Gómez C, Pérez-Larios A. Study of the Interaction of Ti-Zn as a Mixed Oxide at Different pH Values Synthesized by the Sol-Gel Method and Its Antibacterial Properties. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1948. [PMID: 35745287 PMCID: PMC9229482 DOI: 10.3390/nano12121948] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/30/2022] [Accepted: 06/01/2022] [Indexed: 12/15/2022]
Abstract
TiO2, ZnO, and their combination (TiO2−ZnO) at different molar ratios and pH values (Ti−Zn A and B 3:1, 1:1, and 1:3) via the sol−gel method were characterized by SEM, XRD, UV-Vis, and FT-IR. Moreover, antibacterial tests of the nanoparticles were conducted against Escherichia coli (E. coli), Salmonella paratyphi (S. paratyphi), Staphylococcus aureus (S. aureus), and Listeria monocytogenes (L. monocytogenes). The indirect bandgap of the Ti−Zn binary oxide synthesized in the basic process at molar ratios of 3:1, 1:1, and 1:3 exhibited a higher eV (3.31, 3.30, and 3.19 eV, respectively) compared to pure TiO2 (3.2 eV) and synthesized in the acid process (3.22, 3.29, and 3.19 eV at same molar ratio, respectively); in addition, the results of the indirect bandgap were interesting due to a difference found by other authors. Moreover, the sol−gel method promoted the formation of a spherical, semi-sphere, and semi-hexagonal shape (TiO2, Ti−Zn 1:1, and Ti−Zn 1:3) with a size ≤ 150 nm synthesized during the acid process, with a crystallite size of ~71, ~12, ~34, and ~21 nm, respectively, while ZnO NPs developed a hexagonal and large size (200−800 nm) under the same synthesis process (acid). Samples were classified as TiO2 anatase phase (basic synthesis); however, the presented changes developed in the rutile phase (24% rutile phase) at an acid pH during the synthesis process. Moreover, Ti−Zn maintained the anatase phase even with a molar ratio of 1:3. The most interesting assessment was the antibacterial test; the Ti−Zn A (1:3) demonstrated a bacteriostatic effect compared with all treatments except ZnO, which showed a similar effect in dark conditions, and only Gram-positive bacteria were susceptible (Listeria monocytogenes > Staphylococcus aureus). Therefore, the Ti−Zn characteristic suggests that the results have potential in treating wastewater as well as in pharmaceutical (as drug carriers) and medical applications.
Collapse
Affiliation(s)
- Noé Rodríguez-Barajas
- Centro Universitario de los Altos, Laboratorio de Investigación en Nanomateriales, Agua y Energía, Departamento de Ingeniería, Universidad de Guadalajara, Av. Rafael Casillas Aceves 1200, Tepatitlán de Morelos 47600, Mexico;
| | - Luis Becerra-Solano
- Centro Universitario de los Altos, Laboratorio de Biotecnológico de Investigación y Diagnóstico, Departamento de Clínicas, División de Ciencias Biomédicas, Universidad de Guadalajara, Av. Rafael Casillas Aceves 1200, Tepatitlán de Morelos 47600, Mexico; (L.B.-S.); (Y.K.G.-M.); (M.M.-C.)
| | - Yanet Karina Gutiérrez-Mercado
- Centro Universitario de los Altos, Laboratorio de Biotecnológico de Investigación y Diagnóstico, Departamento de Clínicas, División de Ciencias Biomédicas, Universidad de Guadalajara, Av. Rafael Casillas Aceves 1200, Tepatitlán de Morelos 47600, Mexico; (L.B.-S.); (Y.K.G.-M.); (M.M.-C.)
| | - Monserrat Macías-Carballo
- Centro Universitario de los Altos, Laboratorio de Biotecnológico de Investigación y Diagnóstico, Departamento de Clínicas, División de Ciencias Biomédicas, Universidad de Guadalajara, Av. Rafael Casillas Aceves 1200, Tepatitlán de Morelos 47600, Mexico; (L.B.-S.); (Y.K.G.-M.); (M.M.-C.)
| | - Claudia M. Gómez
- Departamento de Química, División de Ciencias Naturales y Exactas, Campus Guanajuato de la Universidad de Guanajuato, Noria Alta S/N, Col. Noria Alta, Guanajuato 36050, Mexico
| | - Alejandro Pérez-Larios
- Centro Universitario de los Altos, Laboratorio de Investigación en Nanomateriales, Agua y Energía, Departamento de Ingeniería, Universidad de Guadalajara, Av. Rafael Casillas Aceves 1200, Tepatitlán de Morelos 47600, Mexico;
| |
Collapse
|
5
|
Ultrasensitive photoelectrochemical aptasensor for detecting telomerase activity based on Ag 2S/Ag decorated ZnIn 2S 4/C 3N 4 3D/2D Z-scheme heterostructures and amplified by Au/Cu 2+-boron-nitride nanozyme. Biosens Bioelectron 2022; 203:114048. [PMID: 35121445 DOI: 10.1016/j.bios.2022.114048] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/25/2022] [Indexed: 02/07/2023]
Abstract
Enzyme-mediated signal amplification strategies have gained substantial attention in photoelectrochemical (PEC) biosensing, while natural enzyme on the photoelectrode inevitably obstructs the interfacial electron transfer, in turn deteriorating the photocurrent responses. Herein, Au nanoparticles and Cu2+-modified boron nitride nanosheets (AuNPs/Cu2+-BNNS) behaved as nanozyme to achieve remarkable magnification in the PEC signals from a novel signal-off aptasensor for ultra-sensitive assay of telomerase (TE) activity based on Ag2S/Ag nanoparticles decorated ZnIn2S4/C3N4 Z-scheme heterostructures (termed as Ag2S/Ag/ZnIn2S4/C3N4, synthesized by hydrothermal treatment). Specifically, telomerase primer sequences (TS) were extended by TE in the presence of deoxyribonucleoside triphosphates (dNTPs), which was directly bond with the thiol modified complementary DNA (cDNA), achieving efficient linkage with the nanozyme via Au-S bond. The immobilized nanoenzyme catalyzed the oxidation between 4-chloro-1-naphthol (4-CN) and H2O2 to generate insoluble precipitation on the photo-electrode. By virtue of the inhibited PEC signals with the TE-enabled TS extension, an aptasensor for assay of TE activity was developed, showing the wide linear range of 50-5×105 cell mL-1 and a low detection limit of 19 cell mL-1. This work provides some valuable guidelines for developing advanced nanozyme-based PEC bioanalysis of diverse cancer cells.
Collapse
|
6
|
Silver@mesoporous Anatase TiO2 Core-Shell Nanoparticles and Their Application in Photocatalysis and SERS Sensing. COATINGS 2022. [DOI: 10.3390/coatings12010064] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Nanostructured noble metal-semiconductor materials have been attracting increasing attention because of their broad application in the field of environmental remediation, sensing and photocatalysis. In this study, a facile approach for fabricating silver@mesoporousanataseTiO2 (Ag@mTiO2) core-shell nanoparticles employing sol-gel and hydrothermal reaction is demonstrated. The Ag@mTiO2nanoparticles display excellent surface-enhanced Raman scattering (SERS) sensitivity and they can detect the methylene blue (MB) molecules with the concentration of as low as 10−8 M. They also exhibit outstanding photocatalytic activity compared with mTiO2, due to the efficient separation and recombination restrain of electron–hole pairs under ultraviolet light. The Ag@mTiO2nanoparticles also present good stability and they can achieve recyclable photocatalytic degradation experiments for five times without loss of activity. Subsequently, the nanoparticles with dual functions were successfully used to in situ monitor the photodegradation process of MB aqueous solution. These results, demonstrating the multifunctional Ag@mTiO2 nanoparticles, hold promising applications for simultaneous SERS analysis and the removal of dye pollutants in environmental field.
Collapse
|
7
|
Influence of Ag Photodeposition Conditions over SERS Intensity of Ag/ZnO Microspheres for Nanomolar Detection of Methylene Blue. NANOMATERIALS 2021; 11:nano11123414. [PMID: 34947762 PMCID: PMC8705486 DOI: 10.3390/nano11123414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 11/24/2021] [Accepted: 12/13/2021] [Indexed: 11/29/2022]
Abstract
Surface enhanced Raman spectroscopy (SERS) is considered a versatile and multifunctional technique with the ability to detect molecules of different species at very low molar concentration. In this work, hierarchical ZnO microspheres (ZnO MSs) and Ag/ZnO MSs were fabricated and decorated by hydrothermal and photodeposition methods, respectively. For Ag deposition, precursor molar concentration (1.9 and 9.8 mM) and UV irradiation time (5, 15, and 30 min) were evaluated by SEM, TEM, X-ray diffraction and Raman spectroscopy. X-ray diffraction showed a peak at 37.9° corresponding to the (111) plane of Ag, whose intensity increases as precursor concentration and UV irradiation time increases. SEM images confirmed the formation of ZnO MSs (from 2.5 to 4.5 µm) building by radially aligned two-dimensional ZnO nanosheets with thicknesses below 30 nm. The Raman spectra of Ag/ZnO MSs exhibited a vibration mode at 486 cm−1 which can be directly associated to Ag deposition on ZnO MSs surface. The performance of SERS substrate was evaluated using rhodamine 6G. The SERS substrate grown at 9.8 mM during 30 min showed the best SERS activity and the ability to detect methylene blue at 10−9 M.
Collapse
|
8
|
Wu JY, Hsieh CH, Feria DN, Shen JL. PAA/ZnO Raspberry-Shaped Composite Microspheres Decorated with Ag Nanoparticles as Cleanable SERS Substrates. ACS OMEGA 2020; 5:29795-29800. [PMID: 33251414 PMCID: PMC7689682 DOI: 10.1021/acsomega.0c03726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 10/27/2020] [Indexed: 06/12/2023]
Abstract
A PAA/ZnO/Ag heterostructure composite material was prepared by a reduction method. The properties of composite particles are analyzed by transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDS), UV-visible spectroscopy, and Raman spectroscopy. Ag nanoparticles play an important role in PAA/ZnO/Ag composite microspheres, conferring new SERS properties and functions to PAA/ZnO/Ag. The intensity of the SERS signal of PAA/ZnO/Ag irradiated with UV light decreased from 10 000 to below 500. The SERS detection limit of R6G obtained was reduced to 1 × 10-6 M. The PAA/ZnO/Ag composite particles show a very good degradation effect on R6G under UV light irradiation. This study has developed a new synthesis method to prepare SERS signal enhancement materials with self-cleaning effects. According to the experimental results, the PAA/ZnO/Ag composite material has higher sensitivity than the PAA/ZnO composite material.
Collapse
Affiliation(s)
- Jun Yi Wu
- Department
of Chemical Engineering, University of Chung
Yuan Christian, Chung
Pei Road, Chung Li District, Taoyuan County 320, Taiwan
| | - Chih-Hua Hsieh
- High
Speed 3D Printing Research Center, National
Taiwan University of Science and Technology, No. 43, Keelung Road, Sec. 4,
Da’an District, Taipei 106, Taiwan
| | - Denice N. Feria
- Department
of Physical, University of Chung Yuan Christian, Chung Pei Road,
Chung Li District, Taoyuan County 320, Taiwan
| | - Ji-Lin Shen
- Department
of Physical, University of Chung Yuan Christian, Chung Pei Road,
Chung Li District, Taoyuan County 320, Taiwan
| |
Collapse
|