1
|
Khan K, Ikram M, Haider A, Ul-Hamid A, Ali G, Goumri-Said S, Kanoun MB, Yousaf SA, El-Rayyes A, Jeridi M. Experimental and computational approach of zirconium and chitosan doped NiCo 2O 4 nanorods served as dye degrader and bactericidal action. Int J Biol Macromol 2024; 272:132810. [PMID: 38825288 DOI: 10.1016/j.ijbiomac.2024.132810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/27/2024] [Accepted: 05/30/2024] [Indexed: 06/04/2024]
Abstract
Different concentrations of zirconium with a fixed quantity (4 wt%) of chitosan (CS) doped nickel cobaltite (NiCo2O4) nanorods were synthesized using a co-precipitation approach. This cutting-edge research explores the cooperative effect of Zr-doped CS-NiCo2O4 to degrade the Eriochrome black T (EBT) and investigates potent antibacterial activity against Staphylococcus aureus (S. aureus). Advanced characterization techniques were conducted to analyze structural textures, morphological analysis, and optical characteristics of synthesized materials. XRD pattern unveiled the spinal cubic structure of NiCo2O4, incorporating Zr and CS peak shifted to a lower 2θ value. UV-Vis spectroscopy revealed the absorption range increased with CS and the same trend was observed upon Zr, showing a decrease in bandgap energy (Eg) from 2.55 to 2.4 eV. The optimal photocatalytic efficacy of doped NiCo2O4 within the basic medium was around 96.26 %, and bactericidal efficacy was examined against S. aureus, revealing a remarkable inhibition zone (5.95 mm).
Collapse
Affiliation(s)
- Khadija Khan
- Solar Cell Applications Research Lab, Department of Physics, Government College University Lahore, Lahore 54000, Punjab, Pakistan
| | - Muhammad Ikram
- Solar Cell Applications Research Lab, Department of Physics, Government College University Lahore, Lahore 54000, Punjab, Pakistan.
| | - Ali Haider
- Department of Clinical Medicine, Faculty of Veterinary and Animal Sciences, Muhammad Nawaz Shareef, University of Agriculture, 66000 Multan, Punjab, Pakistan
| | - Anwar Ul-Hamid
- Core Research Facilities, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia.
| | - Ghafar Ali
- Nanomaterials Research Group (NRG), Physics Division, PINSTECH, Islamabad 44000, Pakistan
| | - Souraya Goumri-Said
- Physics Department, College of Science and General Studies, Alfaisal University, P.O. Box 50927, Riyadh 11533, Saudi Arabia
| | - Mohammed Benali Kanoun
- Department of Mathematics and Sciences, College of Humanities and Sciences, Prince Sultan University, P.O. Box 66833, Riyadh 11586, Saudi Arabia.
| | - S Amber Yousaf
- Department of Physics, University of Central Punjab, Lahore 54000, Punjab, Pakistan
| | - Ali El-Rayyes
- Chemistry Department, College of Science, Northern Border University, Arar 1321, Saudi Arabia
| | - Mouna Jeridi
- Biology Department, College of Science, King Khalid University, Abha 61413, Saudi Arabia
| |
Collapse
|
2
|
Miyah Y, El Messaoudi N, Benjelloun M, Acikbas Y, Şenol ZM, Ciğeroğlu Z, Lopez-Maldonado EA. Advanced applications of hydroxyapatite nanocomposite materials for heavy metals and organic pollutants removal by adsorption and photocatalytic degradation: A review. CHEMOSPHERE 2024; 358:142236. [PMID: 38705409 DOI: 10.1016/j.chemosphere.2024.142236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/27/2024] [Accepted: 05/02/2024] [Indexed: 05/07/2024]
Abstract
This comprehensive review delves into the forefront of scientific exploration, focusing on hydroxyapatite-based nanocomposites (HANCs) and their transformative role in the adsorption of heavy metals (HMs) and organic pollutants (OPs). Nanoscale properties, including high surface area and porous structure, contribute to the enhanced adsorption capabilities of HANCs. The nanocomposites' reactive sites facilitate efficient contaminant interactions, resulting in improved kinetics and capacities. HANCs exhibit selective adsorption properties, showcasing the ability to discriminate between different contaminants. The eco-friendly synthesis methods and potential for recyclability position the HANCs as environmentally friendly solutions for adsorption processes. The review acknowledges the dynamic nature of the field, which is characterized by continuous innovation and a robust focus on ongoing research endeavors. The paper highlights the HANCs' selective adsorption capabilities of various HMs and OPs through various interactions, including hydrogen and electrostatic bonding. These materials are also used for aquatic pollutants' photocatalytic degradation, where reactive hydroxyl radicals are generated to oxidize organic pollutants quickly. Future perspectives explore novel compositions, fabrication methods, and applications, driving the evolution of HANCs for improved adsorption performance. This review provides a comprehensive synthesis of the state-of-the-art HANCs, offering insights into their diverse applications, sustainability aspects, and pivotal role in advancing adsorption technologies for HMs and OPs.
Collapse
Affiliation(s)
- Youssef Miyah
- Laboratory of Materials, Processes, Catalysis, and Environment, Higher School of Technology, University Sidi Mohamed Ben Abdellah, Fez-Morocco, Morocco; Ministry of Health and Social Protection, Higher Institute of Nursing Professions and Health Techniques, Fez-Morocco, Morocco.
| | - Noureddine El Messaoudi
- Laboratory of Applied Chemistry and Environment, Faculty of Sciences, Ibn Zohr University, 80000, Agadir, Morocco.
| | - Mohammed Benjelloun
- Laboratory of Materials, Processes, Catalysis, and Environment, Higher School of Technology, University Sidi Mohamed Ben Abdellah, Fez-Morocco, Morocco
| | - Yaser Acikbas
- Department of Materials Science and Nanotechnology Engineering, Usak University, 64200, Usak, Turkey
| | - Zeynep Mine Şenol
- Sivas Cumhuriyet University, Faculty of Health Sciences, Department of Nutrition and Diet, 58140, Sivas, Turkey
| | - Zeynep Ciğeroğlu
- Department of Chemical Engineering, Faculty of Engineering, Usak University, 64300, Usak, Turkey
| | - Eduardo Alberto Lopez-Maldonado
- Faculty of Chemical Sciences and Engineering, Autonomous University of Baja, California, CP: 22390, Tijuana, Baja California, Mexico
| |
Collapse
|
3
|
Tarannum S, Sahadat Hossain M, Bashar MS, Bahadur NM, Ahmed S. Amplification of photocatalytic degradation of antibiotics (amoxicillin, ciprofloxacin) by sodium doping in nano-crystallite hydroxyapatite. RSC Adv 2024; 14:12386-12396. [PMID: 38638810 PMCID: PMC11025524 DOI: 10.1039/d4ra00126e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 04/08/2024] [Indexed: 04/20/2024] Open
Abstract
In this research, we explain the production of sodium-doped hydroxyapatite (Na_HAp) via wet chemical precipitation, followed by crystal modification. To enhance its photocatalytic activity different % of (0.25, 0.5, 1, and 2) sodium doped into HAp crystal. It has been demonstrated that doping is an effective method for modifying the properties of nanomaterials, such as their optical performance and chemical reactivity. Several instrumental approaches were used to characterize this newly synthesized sodium-doped HAp (Na_HAp), e.g. scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), and UV-vis spectrometry were used to analyze the morphology, elemental composition, crystal structure, and optical bandgap, respectively. Under sunlight irradiation, the new Na_HAp photocatalyst was put to use in the process of degrading pharmaceutical pollutants such as antibiotics (amoxicillin and ciprofloxacin). It was found that using a 0.1 g dose of 1% Na_HAp under specified conditions, such as a pH of 7 and 120 minutes of sunlight irradiation, resulted in degradation percentages of 60% and 41.59% for amoxicillin and ciprofloxacin, respectively. Different radical scavengers were utilized to determine the reaction mechanism for the photochemical degradation of antibiotics. Additionally, the ability to be reused and the stability of 1% Na_HAp, a newly developed photocatalyst, were assessed. Therefore, this research adds to our understanding of how to optimize redox capacity for the rapid breakdown of a variety of antibiotics when exposed to sunlight.
Collapse
Affiliation(s)
- Sakabe Tarannum
- Institute of Glass & Ceramic Research and Testing, Bangladesh Council of Scientific and Industrial Research (BCSIR) Dhaka 1205 Bangladesh
- Department of Applied Chemistry and Chemical Engineering, Noakhali Science and Technology University Noakhali Bangladesh
| | - Md Sahadat Hossain
- Institute of Glass & Ceramic Research and Testing, Bangladesh Council of Scientific and Industrial Research (BCSIR) Dhaka 1205 Bangladesh
| | - Muhammad Shahriar Bashar
- Institute of Energy Research & Development, Bangladesh Council of Scientific and Industrial Research (BCSIR) Dhaka 1205 Bangladesh
| | - Newaz Mohammed Bahadur
- Department of Applied Chemistry and Chemical Engineering, Noakhali Science and Technology University Noakhali Bangladesh
| | - Samina Ahmed
- Institute of Glass & Ceramic Research and Testing, Bangladesh Council of Scientific and Industrial Research (BCSIR) Dhaka 1205 Bangladesh
- BCSIR Dhaka Laboratories, Bangladesh Council of Scientific and Industrial Research (BCSIR) Dhaka-1205 Bangladesh
| |
Collapse
|
4
|
Nikitha M, Elanchezhiyan SS, Meenakshi S. Photodegradation of rhodamine-B in aqueous environment using visible-active gC 3N 4@CS-MoS 2 nanocomposite. ENVIRONMENTAL RESEARCH 2023; 238:117032. [PMID: 37673121 DOI: 10.1016/j.envres.2023.117032] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 08/07/2023] [Accepted: 08/30/2023] [Indexed: 09/08/2023]
Abstract
Rapid industrial expansion leads to environmental pollution especially in an aqueous environment. Photocatalytic degradation is one of the most efficient and environmentally friendly techniques used to treat industrial pollution due to its complete degradation capability of a variety of water contaminants to their non-toxic state. Graphitic carbon nitride (gC3N4) and molybdenum disulfide (MoS2) provide efficient dye degradation, but MoS2 has few disadvantages. Hence, chitosan (CS) supported gC3N4-MoS2 hybrid nanocomposite was developed in this study to reduce these issues by accelerating the degradation of dye molecules such as rhodamine-B under visible light. The prepared gC3N4@CS-MoS2 hybrid nanocomposite was thoroughly characterized using various analytical tools including FTIR, XRD, SEM, EDX, XPS, UV-Visible, and PL spectra. Several influencing parameters such as irradiation time, initial pH, dosage, and initial dye concentration were optimized by batch mode. The photodegradation of rhodamine-B could be induced by the heterogeneous gC3N4@CS-MoS2-water hybrid nanocomposite. The narrow band gap of gC3N4@CS-MoS2 (1.80 eV) makes it suitable for effective degradation of rhodamine-B due to more active in the visible region and attained its highest degradation efficiency of 99% after 40 min at pH 8 with minimum dosage of 60 mg. The possible degradation mechanism was tentatively proposed for rhodamine-B dye molecules from aqueous environment. The present work shows a novel photocatalyst for the purification and detoxification of dye molecules as well as other water contaminants found in polluted wastewater.
Collapse
Affiliation(s)
- M Nikitha
- Department of Chemistry, The Gandhigram Rural Institute-Deemed to be University, Gandhigram, 624 302, Tamil Nadu, India.
| | - S Sd Elanchezhiyan
- Sethu Institute of Technology, Department of Chemistry, Kariapatti, Virthunagar District, Tamil Nadu, India.
| | - S Meenakshi
- Department of Chemistry, The Gandhigram Rural Institute-Deemed to be University, Gandhigram, 624 302, Tamil Nadu, India.
| |
Collapse
|
5
|
Shu K, Chuaicham C, Noguchi Y, Xu L, Sasaki K. Charge transfer mechanism through S-scheme heterojunction in in-situ synthesized TiO 2/Fe-doped hydroxyapatite for improved photodegradation of xanthate. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132337. [PMID: 37647669 DOI: 10.1016/j.jhazmat.2023.132337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/08/2023] [Accepted: 08/15/2023] [Indexed: 09/01/2023]
Abstract
The heterojunction structure of the photocatalyst composite, which necessitates a robust interface and sufficient contact areas, holds the key to obtaining high charge carrier migration efficiency. Here, a novel composite, TiO2 nanoparticles/Fe-doped hydroxyapatite (TONPs/FH_CS), is fabricated using a two-step synthetic technique, in which FH_CS is synthesized from artificial converter slag enriched with Fe and Ca. The unique nanorod@plate structure of FH_CS enables the uniform immobilization of TONPs onto FH_CS. Thereby, an n-n type heterojunction exhibits a highly intimate Ti-O-Fe heterointerface. Kelvin probe testing demonstrates the formation of an interfacial electric field oriented from FH_CS to TONPs, which serves as the driving force for interfacial electron transfer through the Ti-O-Fe channels. The photoacoustic signals provide information on electron trap levels and densities, indicating the formation of the electron transfer channels. •O2- and •OH species are responsible for being the active species in this system. A photoexcited carrier transfer pathway exhibiting an S-scheme mechanism with high separation efficiency significantly enhances the utilization of charge carriers in each phase. Thus, improved xanthate degradation has been achieved using a heterojunction containing a photocatalyst derived from industrial solid waste. This work demonstrates the significant potential of steel-making byproduct utilization in industrial wastewater treatment.
Collapse
Affiliation(s)
- Kaiqian Shu
- Department of Earth Resources Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishiku, Fukuoka 819-0395, Japan
| | - Chitiphon Chuaicham
- Department of Earth Resources Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishiku, Fukuoka 819-0395, Japan
| | - Yuto Noguchi
- Department of Earth Resources Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishiku, Fukuoka 819-0395, Japan
| | - Longhua Xu
- Key Laboratory of Solid Waste Treatment and Resource Recycle Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, Sichuan, PR China
| | - Keiko Sasaki
- Department of Earth Resources Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishiku, Fukuoka 819-0395, Japan.
| |
Collapse
|
6
|
Saharan P, Kumar V, Kaushal I, Mittal A, Shukla SK, Kumar D, Sharma AK, Om H. A comprehensive review on the metal-based green valorized nanocomposite for the remediation of emerging colored organic waste. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:45677-45700. [PMID: 36826768 DOI: 10.1007/s11356-023-25998-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 02/14/2023] [Indexed: 04/15/2023]
Abstract
In today's era, "green" synthesis is an emerging research trend. It has gained widespread attention owing to its dynamic behavior, reliability, simplicity, sustainability, and environment friendly approach for fabricating various nanomaterials. Green fabrication of metal/metal oxides nanomaterials, hybrid materials, and other metal-based nanocomposite can be utilized to remove toxic colored aqueous pollutants. Nanomaterials synthesized by using green approach is considered to be the significant tool to minimize unwanted or harmful by-products otherwise released from traditional synthesis methods. Various kinds of biosynthesized nanomaterials, such as animal waste and plant-based, have been successfully applied and well documented in the literature. However, their application part, especially for the cure of colored organic polluted water, has not been reported as a single review article. Therefore, the current work aims to assemble reports on using novel biosynthesized green metal-based nanomaterials to exclude harmful dyes from polluted water.
Collapse
Affiliation(s)
- Priya Saharan
- Centre of Excellence for Energy and Environment, DeenbandhuChhotu Ram University of Science and Technology, Murthal, Sonipat, India
| | - Vinit Kumar
- Central Instrumentation Laboratory, DeenbandhuChhotu Ram University of Science and Technology, Murthal, Sonipat, India
| | - Indu Kaushal
- Department of Chemistry, DeenbandhuChhotu Ram University of Science and Technology, Murthal, Sonipat, India
| | - Alok Mittal
- Department of Chemistry, Maulana Azad National Institute of Technology, Bhopal, India
| | - Saroj K Shukla
- Department of Polymer Science, Bhaskaryacharya College of Applied Sciences, Delhi, India
| | - Dharmender Kumar
- Department of Biotechnology, DeenbandhuChhotu Ram University of Science and Technology, Murthal, Sonipat, India
| | - Ashok K Sharma
- Department of Chemistry, DeenbandhuChhotu Ram University of Science and Technology, Murthal, Sonipat, India.
| | - Hari Om
- Department of Chemistry, DeenbandhuChhotu Ram University of Science and Technology, Murthal, Sonipat, India
| |
Collapse
|
7
|
Saigl Z, Tifouti O, Alkhanbashi B, Alharbi G, Algamdi H. Chitosan as adsorbent for removal of some organic dyes: a review. CHEMICAL PAPERS 2023. [DOI: 10.1007/s11696-022-02641-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
8
|
Hossain MS, Tuntun SM, Bahadur NM, Ahmed S. Enhancement of photocatalytic efficacy by exploiting copper doping in nano-hydroxyapatite for degradation of Congo red dye. RSC Adv 2022; 12:34080-34094. [PMID: 36505682 PMCID: PMC9704492 DOI: 10.1039/d2ra06294a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 11/15/2022] [Indexed: 11/29/2022] Open
Abstract
This research deals with the photocatalytic activity of hydroxyapatite and the improvement of efficiency by doping various percentages of copper; the catalysts were synthesized by the wet-chemical method. Pure and copper-doped photocatalysts were characterized by several techniques including X-ray diffraction (XRD), Fourier Transform Infrared (FTIR) spectroscopy, Raman spectroscopy, scanning electron microscopy (SEM), thermogravimetric analysis (TGA), dynamic scanning calorimetry (DSC), and UV-Vis spectroscopy. The competency of pure and copper-doped hydroxyapatite as photocatalysts was assessed by their interaction with Congo red dye. The crystallographic parameters of the catalysts were also estimated by employing the XRD technique, and a relationship was established between the calculated parameters and photocatalytic performance. Crystallite size was calculated from various model equations, which revealed an acceptable crystallite size of 42-68 nm. Copper doping in hydroxyapatite impressively augmented the photocatalytic efficacy, for example 99% dye was degraded upon 0.63% Cu-doping compared to 75% for the pure HAp, which was exemplified not only by the reaction rate but also by the quantum yield. The degradation percentages changed with time but became fixed at 200 min. The molar extinction coefficient was estimated by employing the Beer-Lambert law and further utilized to compute the photonic efficiency of the catalysts. In the study of the photochemical reaction, a simplified reaction process was proposed, and the potentials of the conduction band and valence band were assessed, which influenced the activity. The doping of Cu in crystalline hydroxyapatite will enhance the photocatalytic activity towards Congo red dye under all experimental conditions.
Collapse
Affiliation(s)
- Md. Sahadat Hossain
- Glass Research Division, Institute of Glass & Ceramic Research and Testing, Bangladesh Council of Scientific and Industrial Research (BCSIR)Dhaka 1205Bangladesh
| | - Supanna Malek Tuntun
- Glass Research Division, Institute of Glass & Ceramic Research and Testing, Bangladesh Council of Scientific and Industrial Research (BCSIR)Dhaka 1205Bangladesh,Department of Applied Chemistry and Chemical Engineering, Noakhali Science and Technology UniversityNoakhaliBangladesh
| | - Newaz Mohammed Bahadur
- Department of Applied Chemistry and Chemical Engineering, Noakhali Science and Technology UniversityNoakhaliBangladesh
| | - Samina Ahmed
- Glass Research Division, Institute of Glass & Ceramic Research and Testing, Bangladesh Council of Scientific and Industrial Research (BCSIR)Dhaka 1205Bangladesh,BCSIR Laboratories Dhaka, Bangladesh Council of Scientific and Industrial Research (BCSIR)Dhaka 1205Bangladesh
| |
Collapse
|
9
|
Ahamed AF, Kalaivasan N, Thangaraj R. Probing the Photocatalytic Degradation of Acid Orange 7 Dye with Chitosan Impregnated Hydroxyapatite/Manganese Dioxide Composite. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02492-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
10
|
Altıntıg E, Ates A, Angın D, Topal Z, Aydemir Z. Kinetic, equilibrium, adsorption mechanisms of RBBR and MG dyes on Chitosan-Coated Montmorillonite with an Ecofriendly Approach. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Helmy ET, Soliman UA, Elbasiony AM, Nguyen BS. CuCe-Ferrite/TiO2 Nanocomposite as an Efficient Magnetically Separable Photocatalyst for Dye Pollutants Decolorization. Top Catal 2022. [DOI: 10.1007/s11244-022-01671-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AbstractIn this work, a magnetically separated photocatalyst with great efficiency CuCe-Ferrite/TiO2 composite was prepared and characterized by X-ray diffraction (XRD), UV–Vis spectrophotometry, Fourier transformer infra-red spectroscopy (FTIR), field emission scanning electron microscopy (FE-SEM), high resolution transmission electron microscopy (HR-TEM), energy dispersive X-ray spectroscopy (EDX) and vibrating sample magnetometer (VSM). Single-phase cubic spinel was formed by calcining the prepared sample at a temperature of 550 °C, according to the results. Different concentrations of reactive red 250 (RR250) dye photodegradation was evaluated using different doses of CuCe-ferrite/ TiO2 and TiO2 NPs. Higher efficiency of RR250 photodegradation up to 100% was obtained using CuCe-ferrite/ TiO2. The photodegradation efficiency was confirmed using chemical oxygen demand (COD) test of both treated and untreated samples. The oxidation process was mostly mediated by photogenerated .O2− according to scavenger test results. The catalyst possess higher photodegradation efficiency even after regeneration for ten times.
Graphical Abstract
Collapse
|
12
|
Manganese Ferrite-Hydroxyapatite Nanocomposite Synthesis: Biogenic Waste Remodeling for Water Decontamination. NANOMATERIALS 2022; 12:nano12101631. [PMID: 35630853 PMCID: PMC9143517 DOI: 10.3390/nano12101631] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/26/2022] [Accepted: 05/08/2022] [Indexed: 12/10/2022]
Abstract
Environmental pollution, especially water pollution caused by dyes, heavy metal ions and biological pathogens, is a root cause of various lethal diseases in human-beings and animals. Water purification materials and treatment methods are overpriced. Consequently, there is an imperative outlook observance for cheap materials for the purification of wastewaters. In order to fill up the projected demand for clean water, the present study aimed to make use of cost-effective and environmentally friendly methods to convert bone-waste from animals such as cows into novel composites for the decontamination of water. The bone-waste of slaughtered cows from the Najran region of Saudi Arabia was collected and used for the synthesis of hydroxyapatite based on the thermal method. The synthesized hydroxyapatite (Ca10(PO4)6(OH)2) was utilized to prepare a manganese ferrite/hydroxyapatite composite. The nanocomposite was categorized by diverse sophisticated procedures, for instance XRD, FE-SEM, EDX, TEM, UV, PL and FT-IR. This composite possesses outstanding photocatalytic activity against methylene blue dye, which is a common pollutant from industrial wastes. Moreover, the synthesised composite revealed exceptional bacteriostatic commotion towards E. coli and S. aureus bacteria, which are accountable for acute waterborne infections. The outcome of this study demonstrated that the integration of manganese ferrite into hydroxyapatite significantly intensified both antimicrobial and photocatalytic actions when compared to the virgin hydroxyapatite.
Collapse
|
13
|
El-Naggar ME, Abu Ali OA, Saleh DI, Abu-Saied MA, Ahmed MK, Abdel-Fattah E, Mansour SF. Degradation of methylene blue using Co-dopant of Mg and Se into hydroxyapatite composite. LUMINESCENCE 2022; 37:399-407. [PMID: 34984799 DOI: 10.1002/bio.4183] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 11/07/2021] [Accepted: 12/15/2021] [Indexed: 11/07/2022]
Abstract
In this work, a comparative study of different Magnesium ions content was incorporated into hydroxyapatite (HAP) modified with selenite ions aiming to develop the degradation performance of methylene blue. Although the dopant metal (Mg2+ ) has a relatively low ratio, it makes a change in microstructure, morphology, surface area, external surface charge, particle size, and degradation performance. The effect of magnesium and selenium binary doping on microstructural and degradation of methylene blue has been evaluated. The external surface charge measured by zeta potential clarified that the highest negativity was -11.8 mV and it was accomplished in 1.0Mg/Se-HAP. Also, the roughness average grew from 36.8 nm reaching 59.2 nm upon the additional Mg (II). Moreover, TEM micrographs showed that compositions were formed in rod shapes. The process of degradation are optimized, showing effectiveness in methylene blue (MB) degradation of 62.4 % after 150 min of exposure to visible light. Electrostatic attraction and H-bonding and coordination have a vital role in the adsorption process. The recyclability of the as-prepared compositions exhibited that the effectiveness has been reduced to be about 54.2 % after five times of re-using.
Collapse
Affiliation(s)
- Mehrez E El-Naggar
- Textile Research Division, National Research Center (Affiliation ID: 60014618), Dokki, Cairo, Egypt
| | - Ola A Abu Ali
- Department of Chemistry, College of Science, Taif University, P.O.Box 11099, Taif, Saudi Arabia
| | - Dalia I Saleh
- Department of Chemistry, College of Science, Taif University, P.O.Box 11099, Taif, Saudi Arabia
| | - M A Abu-Saied
- Polymeric Materials Research Department, Advanced Technology and New Materials Research Institute, City of Scientific Research and Technological Applications (SRTA-CITY), Alexandria, Egypt
| | - M K Ahmed
- Faculty of nanotechnology for postgraduate studies, Cairo University, El-Sheikh Zayed, Egypt.,Department of Physics, Faculty of Science, Suez University, Suez, Egypt
| | - E Abdel-Fattah
- Physics Department, College of Science and Humanities, Prince Sattam Bin Abdulaziz University, P.O. 173, Al-Kharj, Saudi Arabia.,Physics Department, Faculty of Science, Zagazig University, Zagazig, Egypt
| | - S F Mansour
- Physics Department, Faculty of Science, Zagazig University, Zagazig, Egypt
| |
Collapse
|
14
|
Sirajudheen P, Poovathumkuzhi NC, Vigneshwaran S, Chelaveettil BM, Meenakshi S. Applications of chitin and chitosan based biomaterials for the adsorptive removal of textile dyes from water - A comprehensive review. Carbohydr Polym 2021; 273:118604. [PMID: 34561004 DOI: 10.1016/j.carbpol.2021.118604] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 08/11/2021] [Accepted: 08/20/2021] [Indexed: 12/29/2022]
Abstract
The presence of pollutants in the water bodies deteriorate the water quality and make it unfit for use. From an environmental perspective, it is essential to develop new technologies for the wastewater treatment and recycling of dye contaminated water. The surface modified chitin and chitosan biopolymeric composites based adsorbents, have an important role in the toxic organic dyes from removal wastewater. The surface modification of biopolymers with various organics and inorganics produces more active sites at the surface of the adsorbent, which enhances dye and adsorbent interaction more reliable. Herein, the work brought in the thought of the application of various chitin and chitosan composites in wastewater remediation and suggested the versatility in composites for the development of rapid, selective and effective removal processes for the detoxification of a variety of organic dyes. It further emphasizes the existing obstruction and impending prediction for the deprivation of dyes via adsorption techniques.
Collapse
Affiliation(s)
- Palliyalil Sirajudheen
- Department of Chemistry, The Gandhigram Rural Institute - Deemed to be University, Gandhigram - 624 302, Dindigul, Tamil Nadu, India; Department of Chemistry, Pocker Sahib Memorial Orphanage College, Tirurangadi - 676306, Malappuram, Kerala, India
| | | | - Sivakumar Vigneshwaran
- Department of Chemistry, The Gandhigram Rural Institute - Deemed to be University, Gandhigram - 624 302, Dindigul, Tamil Nadu, India; Department of Chemistry, Nadar Saraswathi College of Engineering and Technology, 11 Vadapudupatti- 625 531, Theni, Tamil Nadu, India
| | | | - Sankaran Meenakshi
- Department of Chemistry, The Gandhigram Rural Institute - Deemed to be University, Gandhigram - 624 302, Dindigul, Tamil Nadu, India.
| |
Collapse
|
15
|
Crystallographic analysis of biphasic hydroxyapatite synthesized by different methods: an appraisal between new and existing models. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-021-01949-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
16
|
Resende RF, Silva TFB, Santos NADV, Papini RM, Magriotis ZM. Anionic collector adsorption onto bentonites and potential applications in the treatment of mining wastewater. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127401] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
17
|
Dassanayake RS, Acharya S, Abidi N. Recent Advances in Biopolymer-Based Dye Removal Technologies. Molecules 2021; 26:4697. [PMID: 34361855 PMCID: PMC8347927 DOI: 10.3390/molecules26154697] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/21/2021] [Accepted: 07/29/2021] [Indexed: 12/19/2022] Open
Abstract
Synthetic dyes have become an integral part of many industries such as textiles, tannin and even food and pharmaceuticals. Industrial dye effluents from various dye utilizing industries are considered harmful to the environment and human health due to their intense color, toxicity and carcinogenic nature. To mitigate environmental and public health related issues, different techniques of dye remediation have been widely investigated. However, efficient and cost-effective methods of dye removal have not been fully established yet. This paper highlights and presents a review of recent literature on the utilization of the most widely available biopolymers, specifically, cellulose, chitin and chitosan-based products for dye removal. The focus has been limited to the three most widely explored technologies: adsorption, advanced oxidation processes and membrane filtration. Due to their high efficiency in dye removal coupled with environmental benignity, scalability, low cost and non-toxicity, biopolymer-based dye removal technologies have the potential to become sustainable alternatives for the remediation of industrial dye effluents as well as contaminated water bodies.
Collapse
Affiliation(s)
- Rohan S. Dassanayake
- Department of Biosystems Technology, Faculty of Technology, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka;
| | - Sanjit Acharya
- Fiber and Biopolymer Research Institute, Texas Tech University, Lubbock, TX 79409, USA;
| | - Noureddine Abidi
- Fiber and Biopolymer Research Institute, Texas Tech University, Lubbock, TX 79409, USA;
| |
Collapse
|
18
|
Suresh R, Rajendran S, Hoang TKA, Vo DVN, Siddiqui MN, Cornejo-Ponce L. Recent progress in green and biopolymer based photocatalysts for the abatement of aquatic pollutants. ENVIRONMENTAL RESEARCH 2021; 199:111324. [PMID: 33991569 DOI: 10.1016/j.envres.2021.111324] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/16/2021] [Accepted: 05/07/2021] [Indexed: 06/12/2023]
Abstract
Enormous research studies on the abatement of anthropogenic aquatic pollutants including organic dyes, pesticides, cosmetics, antibiotics and inorganic species by using varieties of semiconductor photocatalysts have been reported in recent decades. Besides, many of these photocatalysts suffer in real applications owing to their high production cost and low stability. In many cases, the photocatalysts themselves are being considered as secondary pollutants. To eliminate these drawbacks, the green synthesized photocatalysts and the use of biopolymers as photocatalyst supports are considered in recent years. In this context, recent developments in green synthesized metals, metal oxides, other metal compounds, and carbon based photocatalysts in water purification are critically reviewed. Furthermore, the pivotal role of biopolymers including chitin, chitosan, cellulose, natural gum, hydroxyapatite, alginate in photocatalytic removal of aquatic pollutants is comprehensively reviewed. The presence of functional groups, electron trapping ability, biocompatibility, natural occurrence, and low production cost are the major reasons for using biopolymers in photocatalysis. Finally, the summary and conclusion are presented along with existing challenges in this research area.
Collapse
Affiliation(s)
- R Suresh
- Laboratorio de Investigaciones Ambientales Zonas Áridas, Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez 1775, Arica, Chile
| | - Saravanan Rajendran
- Laboratorio de Investigaciones Ambientales Zonas Áridas, Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez 1775, Arica, Chile.
| | - Tuan K A Hoang
- Centre of Excellence in Transportation Electrification and Energy Storage, Hydro-Québec, 1806, boul. Lionel-Boulet, Varennes, J3X 1S1, Canada
| | - Dai-Viet N Vo
- Center of Excellence for Green Energy and Environmental Nanomaterials (CE@GrEEN), Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Viet Nam
| | - Mohammad Nahid Siddiqui
- Chemistry Department and IRC Membranes & Water Security, King Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia
| | - Lorena Cornejo-Ponce
- Laboratorio de Investigaciones Ambientales Zonas Áridas, Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez 1775, Arica, Chile
| |
Collapse
|