1
|
Wu T, Ren S, Akram W, Li T, Zhu X, Li X, Niu L, Fan H, Sun Z, Fang J. High-Performance Wearable Joule Heater Derived from Sea-Island Microfiber Nonwoven Fabric. ACS APPLIED MATERIALS & INTERFACES 2024; 16:51565-51574. [PMID: 39276071 DOI: 10.1021/acsami.4c13386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/16/2024]
Abstract
A three-dimensional (3D) hierarchical microfiber bundle-based scaffold integrated with silver nanowires (AgNWs) and porous polyurethane (PU) was designed for the Joule heater via a facile dip-coating method. The interconnected micrometer-sized voids and unique hierarchical structure benefit uniform AgNWs anchored and the formation of a high-efficiency 3D conductive network. As expected, this composite exhibits a superior electrical conductivity of 1586.4 S/m and the best electrothermal conversion performance of 118.6 °C at 2.0 V compared to reported wearable Joule heaters to date. Moreover, the durable microfiber bundle-PU network provides strong mechanical properties, allowing for the stable and durable electrothermal performance of such a composite to resist twisting, bending, abrasion, and washing. Application studies show that this kind of Joule heater is suitable for a wide range of applications, such as seat heating, a heating jacket, personal thermal management, etc.
Collapse
Affiliation(s)
- Tong Wu
- College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215123, People's Republic of China
| | - Song Ren
- College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215123, People's Republic of China
| | - Wasim Akram
- College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215123, People's Republic of China
| | - Tingshan Li
- College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215123, People's Republic of China
| | - Xiangyu Zhu
- College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215123, People's Republic of China
| | - Xinran Li
- College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215123, People's Republic of China
| | - Li Niu
- College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215123, People's Republic of China
| | - Haojun Fan
- College of Biomass Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, People's Republic of China
| | - Zhe Sun
- College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215123, People's Republic of China
| | - Jian Fang
- College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215123, People's Republic of China
| |
Collapse
|
2
|
Liu X, Teng R, Fu C, Wang R, Chen Z, Li W, Liu S. Design and Synthesis of a Robust and Multifunctional Superhydrophobic Coating with a Three-Dimensional Network Structure on a Paper-Based Material. ACS APPLIED MATERIALS & INTERFACES 2024; 16:37111-37121. [PMID: 38968403 DOI: 10.1021/acsami.4c08089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/07/2024]
Abstract
A fundamental challenge in artificial superhydrophobic papers is their poor resistance to mechanical abrasion, which limits their practical application in different fields. Herein, a robust and multifunctional superhydrophobic paper is successfully fabricated via a facile spraying method by combining silver nanowires and fluorinated titania nanoparticles through a common paper sizing agent (alkyl ketene dimer) onto paper. It is shown that the surface of the paper-based material presents a three-dimensional network structure due to the cross-linking of silver nanowires with a high aspect ratio. Further hydrophilic and hydrophobic performance test results show that it exhibits exceptional water repellency, with a desirable static contact angle of 165° and roll-off angle of 6.2°. The superhydrophobic paper showcases excellent mechanical durability and maintains its superhydrophobicity even after enduring 130 linear sandpaper abrasion cycles or high-velocity water jetting impact benefited from interfacial van der Waals and hydrogen bonding. Simultaneously, the robust superhydrophobic surface can effectively prevent the penetration of acid or alkali solutions, as well as UV light, resulting in excellent chemical stability. Additionally, the superhydrophobic paper offers supplementary features such as self-cleaning, electrical conductivity, and antibacterial capability. Further development of this strategy paves a way toward next-generation superhydrophobic paper composed of nanostructures and characterized by multiple (or additional) functionalities.
Collapse
Affiliation(s)
- Xue Liu
- Key Laboratory of Bio-based Material Science and Technology (Ministry of Education), College of Material Science and Engineering, Northeast Forestry University, Harbin 150040, China
| | - Rui Teng
- Key Laboratory of Bio-based Material Science and Technology (Ministry of Education), College of Material Science and Engineering, Northeast Forestry University, Harbin 150040, China
| | - Chenglong Fu
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ruiwen Wang
- Key Laboratory of Bio-based Material Science and Technology (Ministry of Education), College of Material Science and Engineering, Northeast Forestry University, Harbin 150040, China
| | - Zhijun Chen
- Key Laboratory of Bio-based Material Science and Technology (Ministry of Education), College of Material Science and Engineering, Northeast Forestry University, Harbin 150040, China
| | - Wei Li
- Key Laboratory of Bio-based Material Science and Technology (Ministry of Education), College of Material Science and Engineering, Northeast Forestry University, Harbin 150040, China
| | - Shouxin Liu
- Key Laboratory of Bio-based Material Science and Technology (Ministry of Education), College of Material Science and Engineering, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
3
|
Wang Z, Gao Q, Luo H, Zhao J, Fan H, Chen Y, Xiang J. Visible Light-Driven SnIn 4S 8 Photocatalyst Decorated on Polyurethane-Impregnated Microfiber Non-Woven Fabric for Pollutant Degradation. Polymers (Basel) 2024; 16:369. [PMID: 38337258 DOI: 10.3390/polym16030369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
In recent years, polyurethane has drawn great attention because of its many advantages in physical and chemical performance. In this work, firstly, polyurethane was impregnated in a non-woven fabric (NWF). Then, polyurethane-impregnated NWF was coagulated utilizing a wet phase inversion. Finally, after alkali treatment, microfiber non-woven fabrics with a porous polyurethane matrix (PNWF) were fabricated and used as substrates. SnIn4S8 (SIS) prepared by a microwave-assisted method was used as a photocatalyst and a novel SIS/PNWF substrate with multiple uses and highly efficient catalytic degradation ability under visible light was successfully fabricated. The surface morphology, chemical and crystal structures, optical performance, and wettability of SIS/PNWF substrates were observed. Subsequently, the photocatalytic performance of SIS/PNWF substrates was investigated by the decomposition of rhodamine B (RhB) under visible light irradiation. Compared with SIS/PNWF-2% (2%, the weight ratio of SIS and PNWF, same below), SIS/PNWF-5% as well as SIS/PNWF-15%, SIS/PNWF-10% substrates exhibited superior photocatalytic efficiency of 97% in 2 h. This may be due to the superior photocatalytic performance of SIS and the inherent hierarchical porous structure of PNWF substrates. Additionally, the hydrophobicity of SIS/PNWF substrates can enable them to float on the solution and further be applied on an open-water surface. Furthermore, tensile strength and recycle experiments demonstrated that SIS/PNWF substrates possessed superior mechanical strength and excellent recycle stability. This work provides a facile and efficient pathway to prepare SIS/PNWF substrates for the degradation of organic pollutants with enhanced catalytic efficiency.
Collapse
Affiliation(s)
- Zhonghui Wang
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China
- National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu 610065, China
| | - Qiang Gao
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China
- National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu 610065, China
| | - Haihang Luo
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China
- National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu 610065, China
| | - Jianming Zhao
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China
- National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu 610065, China
| | - Haojun Fan
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China
- National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu 610065, China
| | - Yi Chen
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China
- National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu 610065, China
| | - Jun Xiang
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China
- National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu 610065, China
| |
Collapse
|
4
|
Yang T, Wu P, Liu C, Li Z, Wang W, Xu Y, Wang H, Jiang W. Facile Fabrication of a Robust Superhydrophilic/Underwater Superoleophobic Material for Oil-Fouling Expulsion. ACS APPLIED MATERIALS & INTERFACES 2023; 15:38056-38067. [PMID: 37493598 DOI: 10.1021/acsami.3c07056] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
The reduction of oil fouling in pipes and tanks is essential for the oil storage and transportation industry. In this study, a superhydrophilic/underwater superoleophobic surface (SUSS) with high wearability, weatherability, and durability was developed using a facile two-step synthesis method and used to expel fouled oil from the surface using water without a surfactant. Some typical oils, including kerosene and white oil, can be spontaneously expelled by static water; however, rapeseed oil requires motive water for expulsion because of its high affinity for the SUSS. Different occurrences can be estimated based on a correlated parameter, φ(Pe), which is calculated using an introduced dimensionless number, P e = σ L V u μ . A positive value of φ indicates the occurrence of fouled-oil expulsion by water replacement, whereas a negative value indicates no occurrence of this phenomenon. This study provides a facile strategy for the rapid cleansing of oil-fouled pipes and tanks without using a detergent, thereby lowering costs and environmental risks.
Collapse
Affiliation(s)
- Tinghan Yang
- Low-carbon Technology and Chemical Reaction Engineering Laboratory, School of Chemical Engineering, Sichuan University, Chengdu 610065, PR China
| | - Pan Wu
- Low-carbon Technology and Chemical Reaction Engineering Laboratory, School of Chemical Engineering, Sichuan University, Chengdu 610065, PR China
| | - Changjun Liu
- Low-carbon Technology and Chemical Reaction Engineering Laboratory, School of Chemical Engineering, Sichuan University, Chengdu 610065, PR China
| | - Zunzhao Li
- SINOPEC Dalian Research Institute of Petroleum and Petrochemicals Co., Ltd., Dalian 116000, PR China
| | - Wei Wang
- SINOPEC Dalian Research Institute of Petroleum and Petrochemicals Co., Ltd., Dalian 116000, PR China
| | - Yang Xu
- SINOPEC North Energy (Dalian) Co., Ltd., Dalian 116000, PR China
| | - Haibo Wang
- SINOPEC North Energy (Dalian) Co., Ltd., Dalian 116000, PR China
| | - Wei Jiang
- Low-carbon Technology and Chemical Reaction Engineering Laboratory, School of Chemical Engineering, Sichuan University, Chengdu 610065, PR China
| |
Collapse
|
5
|
Li J, Wang L, Luo H, Gao Q, Chen Y, Xiang J, Yan J, Fan H. Sandwich-like high-efficient EMI shielding materials based on 3D conductive network and porous microfiber skeleton. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
6
|
Single-Side Superhydrophobicity in Si3N4-Doped and SiO2-Treated Polypropylene Nonwoven Webs with Antibacterial Activity. Polymers (Basel) 2022; 14:polym14142952. [PMID: 35890729 PMCID: PMC9323961 DOI: 10.3390/polym14142952] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 12/19/2022] Open
Abstract
Meltblown (MB) nonwovens as air filter materials have played an important role in protecting people from microbe infection in the COVID-19 pandemic. As the pandemic enters the third year in this current global event, it becomes more and more beneficial to develop more functional MB nonwovens with special surface selectivity as well as antibacterial activities. In this article, an antibacterial polypropylene MB nonwoven doped with nano silicon nitride (Si3N4), one of ceramic materials, was developed. With the introduction of Si3N4, both the average diameter of the fibers and the pore diameter and porosity of the nonwovens can be tailored. Moreover, the nonwovens having a single-side moisture transportation, which would be more comfortable in use for respirators or masks, was designed by imparting a hydrophobicity gradient through the single-side superhydrophobic finishing of reactive organic/inorganic silicon coprecipitation in situ. After a nano/micro structural SiO2 precipitation on one side of the fabric surfaces, the contact angles were up to 161.7° from 141.0° originally. The nonwovens were evaluated on antibacterial activity, the result of which indicated that they had a high antibacterial activity when the dosage of Si3N4 was 0.6 wt%. The bacteriostatic rate against E. coli and S. aureus was up to over 96%. Due to the nontoxicity and excellent antibacterial activity of Si3N4, this MB nonwovens are promising as a high-efficiency air filter material, particularly during the pandemic.
Collapse
|
7
|
Zhang H, Cao Y, Zhen Q, Hu JJ, Cui JQ, Qian XM. Facile Preparation of PET/PA6 Bicomponent Microfilament Fabrics with Tunable Porosity for Comfortable Medical Protective Clothing. ACS APPLIED BIO MATERIALS 2022; 5:3509-3518. [PMID: 35793521 DOI: 10.1021/acsabm.2c00447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Medical protective materials have broadly drawn attention due to their ability to stop the spread of infectious diseases and protect the safety of medical staff. However, creating medical protective materials that combine excellent liquid shielding performance and outstanding mechanical properties with high breathability is still a challenging task. Herein, a polyester/polyamide 6 (PET/PA6) bicomponent microfilament fabric with tunable porosity for comfortable medical protective clothing was prepared via dip-coating technology and an easy and effective thermal-belt bonding process. The dip coating of the C6-based fluorocarbon polymer endowed the samples with excellent hydrophobicity (alcohol contact angles, 130-128°); meanwhile, by adjusting the temperature and pressure of the thermal-belt bonding process, the porosity of the samples was adapted in the range of 64.19-88.64%. Furthermore, benefitting tunable porosity and surface hydrophobicity, the samples also demonstrated an excellent softness score (24.3-34.5), agreeable air permeability (46.3-27.8 mm/s), and high hydrostatic pressure (1176-4130 Pa). Significantly, the created textiles successfully filter aerosol from the air and display highly tensile strength. These excellent comprehensive performances indicate that the prepared PET/PA6 bicomponent microfilament fabrics would be an attractive choice for medical protective apparel.
Collapse
Affiliation(s)
- Heng Zhang
- School of Textile, Zhongyuan University of Technology, No. 1 Huaihe Road, Xinzheng County, 451191 Zhengzhou, Henan Province, China.,Henan Key Laboratory of Medical Polymer Materials Technology and Application, No. 1 Yangze Road, Changyuan County, 453400 Xinxiang, Henan Province, China
| | - Yang Cao
- Henan Key Laboratory of Medical Polymer Materials Technology and Application, No. 1 Yangze Road, Changyuan County, 453400 Xinxiang, Henan Province, China.,School of Textile Science and Engineering, Tiangong University, No. 399 Binshui Xilu Road, Xiqing District, 300387 Tianjin, China
| | - Qi Zhen
- School of Clothing, Zhongyuan University of Technology, No. 1 Huaihe Road, Xinzheng County, 451191 Zhengzhou, Henan Province, China.,Henan Key Laboratory of Medical Polymer Materials Technology and Application, No. 1 Yangze Road, Changyuan County, 453400 Xinxiang, Henan Province, China
| | - Jun-Jie Hu
- Shanghai Earntz Nonwoven Co., Ltd., No. 88, Jiangong Road, Jinshan District, 201501 Shanghai, China
| | - Jing-Qiang Cui
- Henan Key Laboratory of Medical Polymer Materials Technology and Application, No. 1 Yangze Road, Changyuan County, 453400 Xinxiang, Henan Province, China.,Henan Tuoren Medical Device Co., Ltd., Tuoren Industrial Zone, Changyuan County, No. 1 Yangze Road, Changyuan County, 453400 Xinxiang, Henan Province, China
| | - Xiao-Ming Qian
- Henan Key Laboratory of Medical Polymer Materials Technology and Application, No. 1 Yangze Road, Changyuan County, 453400 Xinxiang, Henan Province, China.,School of Textile Science and Engineering, Tiangong University, No. 399 Binshui Xilu Road, Xiqing District, 300387 Tianjin, China
| |
Collapse
|
8
|
Superhydrophobic self-similar nonwoven-titanate nanostructured materials. J Colloid Interface Sci 2021; 598:93-103. [PMID: 33894618 DOI: 10.1016/j.jcis.2021.03.045] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/07/2021] [Accepted: 03/08/2021] [Indexed: 11/22/2022]
Abstract
HYPOTHESIS Self-similarity is a scale-invariant irregularity that can assist in designing a robust superhydrophobic material. A combinatorial design strategy involving self-similarity and dual-length scale can be employed to create a new library of a doubly re-entrant, disordered, and porous network of superhydrophobic materials. Asymmetric wettability can be engineered in nonwoven materials by rendering them with superhydrophobic characteristics on one side. EXPERIMENTS A facile, scalable, and inexpensive spray-coating technique was used to decorate the weakly hydrophobicstearate-treatedtitanate nanowires (TiONWs)over the self-similar nonwoven material. Laser scanning confocal microscopy was employed to image the impalement dynamics in three dimensions. With the aid of X-ray microcomputed tomography analysis, the three-dimensional (3D) nonwoven structural parameters were obtained and analyzed. The underwater superhydrophobic behavior of the prepared samples was investigated. FINDINGS A classic 'lotus effect' has been successfully endowed in self-similar nonwoven-titanate nanostructured materials (SS-Ti-NMs) from a nonwoven material that housed the air pockets in bulk and water repellent TiONWs on the surface. The finer fiber-based SS-Ti-NMs exhibited lower roll-off angles and a thinner layer of water on its surface. An asymmetric wettability and the unusual display of underwater superhydrophobic behavior of SS-Ti-NMs have been uncovered.
Collapse
|