1
|
Ali OI, Azzam AB. Functional Ag-EDTA-modified MnO 2 nanocoral reef for rapid removal of hazardous copper from wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:123751-123769. [PMID: 37991610 PMCID: PMC10746771 DOI: 10.1007/s11356-023-30805-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 10/27/2023] [Indexed: 11/23/2023]
Abstract
A novel MnO2@EDTA-Ag nanocoral reef was constructed via a simplified redox reaction followed by EDTA and Ag nanoparticles impregnation to capture hazardous copper (II) from wastewater. A comprehensive characterization of the synthesized materials was conducted. The morphology of MnO2@EDTA-Ag in the form of a nanocoral reef was constructed of two-dimensional nanoplatelets and nanorod-like nanostructures. The optimal adsorption conditions proposed by the Plackett-Burman design (PBD) that would provide a removal % of 99.95 were pH 5.5, a contact time of 32.0 min, a Cu(II) concentration of 11.2 mg L-1, an adsorbent dose of 0.05 g, and a temperature of 40.3 °C. The loading of Ag nanoparticles onto MnO2@EDTA improved the adsorption capability of MnO2@EDTA-Ag. Additionally, the recyclability of MnO2@EDTA-Ag nanocoral reef was maintained at 80% after three adsorption-desorption cycles, and there was no significant change in the XRD analysis before and after the recycling process, implying its stability. It was found that nanocoral reef-assisted EDTA formed a chelation/complexation reaction between COO- groups and C-N bonds of EDTA with Cu(II) ions. In addition, X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR) analysis proved the synergistic effect of the electrostatic interaction and chelation/complexation was responsible for the removal mechanism of Cu(II). Also, the results demonstrated no significant variation in MnO2@EDTA-Ag removal efficiency for all the tested real water samples, revealing its efficacy in wastewater treatment. Therefore, the current study suggests that MnO2@EDTA-Ag has substantial potential to be used as a feasible adsorbent for probable hazardous metals remediation.
Collapse
Affiliation(s)
- Omnia I Ali
- Chemistry Department, Faculty of Science, Helwan University, Cairo, 11795, Egypt.
| | - Ahmed B Azzam
- Chemistry Department, Faculty of Science, Helwan University, Cairo, 11795, Egypt
| |
Collapse
|
2
|
Han R, Pan Y, Yin C, Du C, Xiang Y, Wang Y, Zhu H. Proton-self-doped PANI@CC as the cathode for high-performance aqueous zinc-ion battery. J Colloid Interface Sci 2023; 650:322-329. [PMID: 37413866 DOI: 10.1016/j.jcis.2023.06.208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 06/24/2023] [Accepted: 06/30/2023] [Indexed: 07/08/2023]
Abstract
Aqueous zinc-ion batteries (AZIB) have several advantages such as low cost, large theoretical capacity and good safety. However, the development of polyaniline (PANI) cathode materials has been limited by slow diffusion kinetics. Herein, proton-self-doped polyaniline@carbon cloth (CC) (PANI@CC) was prepared via in-situ polymerization, where polyaniline was deposited on an activated carbon cloth. The PANI@CC cathode exhibits a high specific capacity of 234.3 mA h g-1 at 0.5 A g-1, and excellent rate performance, delivering a capacity of 143 mA h g-1 at 10 A g-1. Furthermore, the reversible redox conversion during the charge-discharge process was studied using ex-situ X-ray photoelectron spectroscopy (XPS) and ex-situ Raman spectra. The results show that the excellent performance of the PANI@CC battery can be attributed to the formation of a conductive network between the carbon cloth and polyaniline. Also, a mixing mechanism involving insertion/extraction of Zn2+/H+ and a double-ion process is proposed. PANI@CC electrode is a novel idea for developing high-performance batteries.
Collapse
Affiliation(s)
- Rong Han
- School of Materials Science and Engineering, Anhui University of Science and Technology, Huainan, Anhui 232001, China
| | - Yusong Pan
- School of Materials Science and Engineering, Anhui University of Science and Technology, Huainan, Anhui 232001, China.
| | - Chenjie Yin
- School of Chemical Engineering, Anhui University of Science and Technology, Huainan, Anhui 232001, China.
| | - Chao Du
- School of Materials Science and Engineering, Anhui University of Science and Technology, Huainan, Anhui 232001, China
| | - Yanlei Xiang
- School of Materials Science and Engineering, Anhui University of Science and Technology, Huainan, Anhui 232001, China
| | - Yuanqing Wang
- School of Materials Science and Engineering, Anhui University of Science and Technology, Huainan, Anhui 232001, China
| | - Hongwu Zhu
- School of Materials Science and Engineering, Anhui University of Science and Technology, Huainan, Anhui 232001, China
| |
Collapse
|
3
|
Xiong H, Shi K, Han J, Cui C, Liu Y, Zhang B. Synthesis of β-FeOOH/polyaniline heterogeneous catalyst for efficient photo-Fenton degradation of AOII dye. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:59366-59381. [PMID: 37004613 DOI: 10.1007/s11356-023-26582-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 03/17/2023] [Indexed: 05/10/2023]
Abstract
Discharge of the untreated dye-containing wastewaters will induce water source pollution and further harm aquatic organisms. In this study, the akaganéite/polyaniline catalyst (β-FeOOH/PANI, about 1.0 μm) could be successfully composed by polyaniline (PANI, (C6H7N)n, 200-300 nm) and akaganéite (β-FeOOH, FeO(OH)1-xClx, less than 200 nm), according to the identification and characterization results of XRD, Ramon, FTIR, XPS, SEAD, EDS, and FESEM (or HRTEM). Due to PANI providing more photogenerated electrons, the β-FeOOH/PANI composite (compared with β-FeOOH) in photo-Fenton system had the more highly catalytic degradation capacity to Acid Orange II (AOII) under an optimal condition (7.5 mmol/L of H2O2 oxidant, 40 mg/L of AOII, 0.2 g/L of catalyst dosage, and pH 4.0). The AOII degradation kinetics could be well fitted by pseudo-first-order model. In photo-Fenton catalytic process of AOII dye, the ∙OH and h+ were the main reaction substances. The AOII in solutions could be gradually mineralized into non-toxic inorganic H2O molecule and CO2. The β-FeOOH/PANI catalyst also had a good reusable ability of about 91.4% AOII degradation after 4 runs. These results can provide a reference for synthesis of catalyst used in photo-Fenton system and the applications in degradation removal of organic dye from wastewaters.
Collapse
Affiliation(s)
- Huixin Xiong
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225127, People's Republic of China.
| | - Kun Shi
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225127, People's Republic of China
| | - Jie Han
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, Jiangsu, People's Republic of China
| | - Can Cui
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225127, People's Republic of China
| | - Yang Liu
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225127, People's Republic of China
| | - Bailin Zhang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225127, People's Republic of China
| |
Collapse
|
4
|
Mamat K, Muslim A, Lan H, Malik D, Musajan A. Significantly improving the Cu
2+
removal performance of conducting
polymer‐based
adsorbent from aqueous solution through
cross‐linking
modification. J Appl Polym Sci 2022. [DOI: 10.1002/app.53176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Kamila Mamat
- School of Chemistry and Chemical Engineering Xinjiang Normal University Xinjiang China
- Xinjiang Key Laboratory of Energy Storage and Photoelectrocatalytic Materials Xinjiang China
| | - Arzugul Muslim
- School of Chemistry and Chemical Engineering Xinjiang Normal University Xinjiang China
- Xinjiang Key Laboratory of Energy Storage and Photoelectrocatalytic Materials Xinjiang China
| | - Haidie Lan
- School of Chemistry and Chemical Engineering Xinjiang Normal University Xinjiang China
- Xinjiang Key Laboratory of Energy Storage and Photoelectrocatalytic Materials Xinjiang China
| | - Dilnur Malik
- School of Chemistry and Chemical Engineering Xinjiang Normal University Xinjiang China
| | - Aynur Musajan
- School of Chemistry and Chemical Engineering Xinjiang Normal University Xinjiang China
| |
Collapse
|
5
|
Myasoedova TN, Gadzhieva VA, Miroshnichenko YS. Properties of mesoporous pani nanorods obtained by facil acid-free synthesis as a sorbent for methylene blue and indigo carmine removal. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-03206-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
6
|
Das HT, Dutta S, Beura R, Das N. Role of polyaniline in accomplishing a sustainable environment: recent trends in polyaniline for eradicating hazardous pollutants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:49598-49631. [PMID: 35596869 DOI: 10.1007/s11356-022-20916-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/13/2022] [Indexed: 06/15/2023]
Abstract
Attaining a sustainable environment has become a prime area of research interest, as it is an utmost necessity for a healthy life. Hence, ample studies have been carried out in adopting different processes and utilizing various materials to attain the goal. Herein, we present an exclusive discussion on one such material, i.e., polyaniline (PANI) and its derivatives. Being an intrinsic conducting type, it has grabbed more attention due to its durability in different doped/un-doped states, promptness in structural alteration, and solution processability. This review presents an exhaustive discussion on published reports showing utilization of PANI and its derivative in various forms like pure and composites, for cleaning the environment through adsorption, photodegradation, etc., and the various methods adopted in order to achieve an optimum operating condition to obtain the maximum outcome. In addition to these merits and demerits, various technical challenges faced with materials have been also presented. Therefore, it is expected that this piece of work, presenting the exhaustive discussion on PANI and; its derivatives would help to develop a better understanding of this excellent conducting polymer PANI and provide a state of art on the role of this material for attaining sustainable surroundings for the living beings.
Collapse
Affiliation(s)
- Himadri Tanaya Das
- Centre of Excellence for Advance Materials and Applications, Utkal University, Bhubaneswar, Odisha, India.
| | - Swapnamoy Dutta
- CEITEC-Central European Institute of Technology, Brno University of Technology, 61200, Brno, Czech Republic
| | - Rosalin Beura
- University School of Basic and Applied Sciences, Guru Gobind Singh Indraprastha University, Dwaraka, New Delhi, India
| | - Nigamananda Das
- Centre of Excellence for Advance Materials and Applications, Utkal University, Bhubaneswar, Odisha, India.
- Department of Chemistry, Utkal University, Bhubaneswar, Odisha, India.
| |
Collapse
|